EP1549893A1 - Modular lng process - Google Patents

Modular lng process

Info

Publication number
EP1549893A1
EP1549893A1 EP03759673A EP03759673A EP1549893A1 EP 1549893 A1 EP1549893 A1 EP 1549893A1 EP 03759673 A EP03759673 A EP 03759673A EP 03759673 A EP03759673 A EP 03759673A EP 1549893 A1 EP1549893 A1 EP 1549893A1
Authority
EP
European Patent Office
Prior art keywords
light hydrocarbon
hydrocarbon gas
launch train
facilities
train
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03759673A
Other languages
German (de)
English (en)
French (fr)
Inventor
Jeffrey H. Sawchuk
Richard Jones, Jr.
Patrick B. Ward
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BP Corp North America Inc
Original Assignee
BP Corp North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BP Corp North America Inc filed Critical BP Corp North America Inc
Publication of EP1549893A1 publication Critical patent/EP1549893A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/005Adaptations for refrigeration plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/064Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle in combination with an industrial process, e.g. chemical, metallurgical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0269Arrangement of liquefaction units or equipments fulfilling the same process step, e.g. multiple "trains" concept
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0269Arrangement of liquefaction units or equipments fulfilling the same process step, e.g. multiple "trains" concept
    • F25J1/027Inter-connecting multiple hot equipments upstream of the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0274Retrofitting or revamping of an existing liquefaction unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0294Multiple compressor casings/strings in parallel, e.g. split arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/66Separating acid gases, e.g. CO2, SO2, H2S or RSH
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/68Separating water or hydrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • Y10S62/911Portable

Definitions

  • This invention relates to a method for liquefying variable selected quantities of light hydrocarbon gas to produce liquefied light hydrocarbon gas using plant facilities that comprise an initial light hydrocarbon gas liquefaction launch train with common shared facilities, which may be expanded by adding plant equipment associated with one or more optional expansion phases to the launch train.
  • LNG liquefied natural gas
  • the capacity of the liquefaction plant is determined primarily by the available market for the gas, the availability of transportation to the market and the like. Accordingly in many instances it is desirable to increase the capacity of the liquefaction process in incremental stages as the market expands to remain in balance with the available market. Accordingly light hydrocarbon gas liquefaction processes, referred to herein as natural gas liquefaction processes or LNG processes, are typically installed in trains.
  • the term "train” as used herein refers to a series of vessels capable of, pre-treating and liquefying natural gas. The gas is desirably treated to remove acid gases and water to very low levels prior to charging it to the liquefaction zone.
  • the train also includes compression facilities for compressing the refrigerant required for the refrigeration vessel and the like.
  • the train is an integrated process for producing a selected quantity of liquefied natural gas.
  • industry has expanded plant capacity by adding one or more additional trains (each of which includes its own gas pretreatment equipment, liquefaction equipment, as well as liquefied product transport and storage facilities), as required to meet the available market demand and the like.
  • trains have been previously designed to produce a certain quantity of liquefied product with no future expansion of the train having been considered in the design.
  • FIG. 1 an embodiment of a light hydrocarbon gas liquefaction system and process (train) is schematically shown.
  • the system and process includes a refrigeration cryogenic heat exchanger 15.
  • compressed refrigerant is supplied to cryogenic heat exchanger 15 by turbines 31, 33, 35, and 37, which are shaft coupled to refrigerant compressors 32, 34, 36, and 38, respectfully.
  • High-pressure refrigerant is supplied to compressors 32 and 34 by high-pressure refrigerant lines 61 and 62. These lines typically return high-pressure refrigerant from cryogenic heat exchanger 15 after it has served its purpose as a refrigerant and has been warmed to a substantially gaseous condition.
  • Compressed high-pressure refrigerant is supplied to cryogenic heat exchanger 15 via lines 63 and 64.
  • Low- pressure refrigerant is supplied to compressors 36 and 38 by low-pressure refrigerant lines 65 and 66. These lines typically return low-pressure refrigerant from cryogenic heat exchanger 15 after it has served its purpose as a refrigerant and has been warmed to substantially gaseous condition.
  • Compressed low-pressure refrigerant is supplied to cryogenic heat exchanger 15 via lines 67 and 68. No significance should be attributed to this except that refrigerants can be produced from compressors 32, 34, 36, and 38 at different pressures if desired and passed to cryogenic heat exchanger 15 at different points in the refrigeration process if desired.
  • an inlet light hydrocarbon gas that has desirably been treated to remove acid gases and water is charged to cryogenic heat exchanger 15 via line 59.
  • the liquefied light hydrocarbon gas product is produced through line 69.
  • a natural gas or other light hydrocarbon gas stream is introduced to acid gas removal vessel 10 via line 40.
  • Acid gas regenerator 11 is shown in fluid communication with acid gas removal vessel 10 via lines 41 and 42.
  • the treated gas is typically recovered from vessel 10 through line 43.
  • the recovered gases are passed via lines 44, 45, and 46 to designated dehydration vessels 20, 21, and 22.
  • vessel 10 is an aqueous amine scrubber, operating as known to those skilled in the art.
  • the aqueous amine may be selected from materials such as digycolanolamine (DGA), diethylamine (DEA), methyldiethanolamine (MDEA), methylethylanolamine (MEA), SULFINOL (trademark of Shell Oil Company), activated methyldiethanolamine (aMDEA), and combinations thereof.
  • DGA digycolanolamine
  • DEA diethylamine
  • MDEA methyldiethanolamine
  • MEA methylethylanolamine
  • SULFINOL trademark of Shell Oil Company
  • activated methyldiethanolamine aMDEA
  • Carbon dioxide is typically removed to levels less than about 60 parts per million (ppm) while sulfur is typically removed to levels less than about 4 ppm through vessels such as acid gas removal vessel 10.
  • aqueous amine process produces a gas that is relatively saturated in water and since the water freezes at a temperature much higher than methane, which constitutes the majority of the natural gas stream to be liquefied, it is necessary that at least a major portion of the water be removed from the gas stream.
  • Treated water- saturated gas is recovered from acid gas removal vessel 10 via line 43 where it is passed to dehydration vessels 20, 21, and 22 via lines 44, 45, and 46, respectfully. Water is selectively removed through dehydration vessels 20, 21, and 22 to produce a dewatered gas in lines 54, 55, and 56.
  • the dehydrated gas from vessels 20, 21, and 22 is then combined and passed to cryogenic heat exchanger 15 via line 59.
  • these dehydration vessels contain an adso ⁇ tion material such as a molecular sieve, activated alumina, or the like. Such material is effective in removing the water from an inlet gaseous stream to extremely low levels, thus rendering the gaseous stream suitable for liquefaction in cryogenic heat exchanger 15.
  • an adso ⁇ tion material such as a molecular sieve, activated alumina, or the like.
  • Such material is effective in removing the water from an inlet gaseous stream to extremely low levels, thus rendering the gaseous stream suitable for liquefaction in cryogenic heat exchanger 15.
  • three vessels are placed in each train to meet the requirements to dehydrate incoming gas.
  • the process may also use adso ⁇ tion materials for removal of other contaminants, such as mercury.
  • dehydration vessels 20, 21, and 22 two vessels will generally serve to remove the water from its associated feed gas stream, 44, 45, or 46, while one vessel is being regenerated by hot regeneration gas.
  • Such configuration is depicted in Fig. 1 where dehydration vessels 20 and 21 serve to produce relatively water free gas streams 54 and 55 by removing water from inlet gas streams 44 and 45.
  • Dehydration vessel 22, in the depicted configuration is being regenerated by hot regeneration gas where the regeneration gas enters the vessel via line 70 and exits via line 71. All dehydration vessels 20, 21, and 22 all have the capability to operate in either dehydration or regeneration mode (though not shown for simplicity), as indicated in Fig 1 by vessel 22 and process streams 70 and 71.
  • the acid gas removal vessels are readily regenerated as well known to those skilled in the art by a variety of techniques.
  • One commonly used technique is the use of a reboiler on vessel 11 for regeneration.
  • the method comprises: a) designing the light hydrocarbon gas liquefaction launch train for the liquefaction of the selected initial quantity of light hydrocarbon gas, the launch train including facilities for light hydrocarbon gas pretreatment to remove acid gases and water, refrigerant compression, cryogenic heat exchange, access services, light hydrocarbon gas liquefaction, and liquefied light hydrocarbon gas product storage and shipping; b) designing at least a portion of the facilities in the launch train for shared use by the launch train and any subsequent optional modular expansion phases to said launch train; and c) designing at least a portion of the launch train facilities for shared use by modular expansion, as required by the addition of one or more subsequent optional expansion phases to the launch train, up to the maximum capacity as required to liquefy the selected maximum quantity of light hydrocarbon gas for the process, the shared use facilities of the launch train being designed at a size sufficient to liquefy the selected maximum quantity of light hydrocarbon gas for the process either in the launch train as constructed or as constructed in the launch train and expanded in the one or more optional expansion phases to the required capacity.
  • the method comprises: a) constructing a light hydrocarbon gas liquefaction launch train for the liquefaction of a first selected quantity of light hydrocarbon gas including facilities for light hydrocarbon gas pretreatment to remove acid gases and water, refrigerant compression, cryogenic heat exchange, access services, light hydrocarbon gas liquefaction, and liquefied light hydrocarbon gas product storage and shipping; b) positioning at least a portion of the facilities in the launch train for shared use by the launch train and optional subsequent expansion phases; c) constructing at least a portion of the launch train facilities for shared use for modular expansion as required by the addition of subsequent expansion phases up to the maximum capacity required to liquefy the maximum quantity of light hydrocarbon gas or initially constructing the portion of the launch train facilities for shared use of a size sufficient to liquefy the maximum quantity of liquefied light hydrocarbon gas for the process either in the launch train as constructed or as constructed in the launch train and expanded in the one or more optional expansion phases to the required capacity.
  • the process includes a light hydrocarbon gas liquefaction launch train to liquefy an initial amount of light hydrocarbon gas and one or more optional subsequent expansion phases to said light hydrocarbon gas liquefaction train to liquefy additional selected quantities of light hydrocarbon gas up to a selected maximum quantity of light hydrocarbon gas for the process.
  • the method comprises: a) constructing the light hydrocarbon gas liquefaction launch train for the liquefaction of the selected initial quantity of light hydrocarbon gas, the launch train including facilities for light hydrocarbon gas pretreatment to remove acid gases and water, refrigerant compression, cryogenic heat exchange, access services, light hydrocarbon gas liquefaction, and liquefied light hydrocarbon gas product storage and shipping; b) positioning at least a portion of the facilities in the launch train for shared use by the launch train and any subsequent optional modular expansion phases to said launch train; c) constructing at least a portion of the launch train facilities for shared use by modular expansion, as required by the addition of one or more subsequent optional expansion phases to the launch train, up to the maximum capacity as required to liquefy the selected maximum quantity of light hydrocarbon gas for the process, the shared use facilities of the launch train being designed at a size sufficient to liquefy the selected maximum quantity of light hydrocarbon gas for the process either in the launch train as constructed or as constructed in the launch train and expanded in the one or more optional expansion phases to the required capacity;
  • the invention also relates to a method for efficiently and economically operating a light hydrocarbon gas liquefaction process for the liquefaction of selected quantities of light hydrocarbon gas.
  • the process includes a light hydrocarbon gas liquefaction launch train to liquefy an initial amount of light hydrocarbon gas and one or more subsequent expansion phases to said light hydrocarbon gas liquefaction train to liquefy additional selected quantities of light hydrocarbon gas up to a selected maximum quantity of light hydrocarbon gas for the process.
  • the method comprises: a) constructing the light hydrocarbon gas liquefaction launch train for the liquefaction of the selected initial quantity of light hydrocarbon gas, the launch train including facilities for light hydrocarbon gas pretreatment to remove acid gases and water, refrigerant compression, cryogenic heat exchange, access services, light hydrocarbon gas liquefaction, and liquefied light hydrocarbon gas product storage and shipping; b) positioning at least a portion of the facilities in the launch train for shared use by the launch train and subsequent modular expansion phases to said launch train; c) constructing at least a portion of the launch train facilities for shared use by modular expansion, as required by the addition of one or more subsequent expansion phases to the launch train, up to the maximum capacity as required to liquefy the selected maximum quantity of light hydrocarbon gas for the process, the shared use facilities of the launch train being designed at a size sufficient to liquefy the selected maximum quantity of light hydrocarbon gas for the process either in the launch train as constructed or as constructed in the launch train and expanded in the one or more expansion phases to the required capacity; d) processing
  • Figure 1 is a schematic diagram of a process for liquefying light hydrocarbon gas using one liquefaction train.
  • FIG. 2 is a schematic diagram of an embodiment of the invention using an acid gas removal facility as a shared use facility where a launch train comprises equipment and associated piping depicted with solid lines and subsequent expansion phases (modules) to the launch train comprise equipment and associated piping depicted by the dashed lines.
  • Figure 3 is a schematic diagram of an embodiment of the invention using a dehydration facility as a shared use facility where a launch train comprises equipment and associated piping depicted with solid lines and subsequent expansion phases
  • Figure 4 is a schematic diagram of an embodiment of a liquefaction facility where a launch train comprises refrigerant compression and cryogenic heat exchange equipment and associated piping depicted with solid lines and subsequent expansion phases (modules) comprise refrigerant compression and cryogenic heat exchange equipment and associated piping depicted by the dashed lines.
  • the present invention provides an improved efficiency and economy in operating a light hydrocarbon gas liquefaction process for the liquefaction of selected quantities of light hydrocarbon gas by use of an initial light hydrocarbon gas liquefaction launch train, and up to a selected maximum quantity of liquefied light hydrocarbon gas using one or more subsequent modular expansion phases by a method comprising the design of such process to include certain facilities which are common to both the initial launch train and subsequent expansion phases.
  • the term "light hydrocarbon gas liquefaction train” or "train” refers to those units and facilities used for pretreatment and post-treatment of the gas feeds to the liquefaction facility as well as the facilities for compressing the refrigerant and the like as shown in Figure 1.
  • Such acid gas facilities can include acid gas removal equipment, dehydration equipment, mercury or other contaminant removal equipment, and refrigerant compression and cryogenic heat exchange equipment, and associated piping.
  • Vessels for the removal of acid gases and for dehydration typically include both an abso ⁇ tion vessel and a regenerator vessel to regenerate the media used in the vessel for acid gas removal or for dehydration respectively.
  • an abso ⁇ tion vessel and a regeneration vessel are required in the acid gas removal section. If these facilities are duplicated in each train (as previously practiced within the art) then each train will include an abso ⁇ tion vessel and a regenerator vessel.
  • the train was designed and constructed to include a regenerator for the aqueous amine used in the acid gas abso ⁇ tion vessels of a size sufficient to accommodate additional abso ⁇ tion vessels as required as additional expansions are desired.
  • this equipment is located in an area which is equally accessible or at least accessible to all necessary equipment so that additional acid gas removal vessels can be positioned to serve the launch train and additional expansions and remain in fluid communication with the regenerator vessel for the regeneration and recycling of the aqueous amine solution used for the acid gas abso ⁇ tion.
  • these vessels could be commonly sited with the gas from which the acid gases have been removed being then passed to the appropriate liquefaction facility. This results in the construction of only a single aqueous amine regeneration vessel and permits the construction of only an additional acid gas abso ⁇ tion vessel for each subsequent liquefaction expansion phase.
  • dehydration vessels When dehydration vessels are used three are typically constructed for each train. Two vessels are typically used for adso ⁇ tion of water with the third being regenerated by hot gases which drive out the water.
  • a plurality of dehydration vessels can be placed together at a common site to dewater the reduced acid gas content gas produced by the removal of the acid gases to produce a dewatered light liquid hydrocarbon gas stream having a reduced acid gas content. It is well known that the regeneration times for such vessels is substantially less than the time required on line for dehydration. Prior practice has been to provide three dehydration vessels for each train so that two vessels are on line while the other vessel is being regenerated.
  • the vessels are located at a common site only one extra vessel needs to be added during an expansion.
  • the single vessel is sufficient since the two vessels which are operative at any given time will operate for long enough to provide time to regenerate the third vessel.
  • the third vessel is regenerated the gas flow from one of the other vessels which may have become spent can be rerouted to the regenerated vessel with the vessel which has become spent then being regenerated.
  • These vessels can be used in groups wherein the number of vessels usable in a group is equal to a number equal to the run time for each vessel divided by the regeneration time to produce a number which is a whole number disregarding any fraction plus one. This number defines the number of vessels which can be used with one additional vessel for regeneration. In the event that the regeneration time is equal to one third of the run time then four vessels can be used to service three trains rather than the six vessels which would normally be constructed according to the prior art. Similarly improvements can be realized in the construction of docking facilities, liquid natural gas storage and shipping facilities, C 3 + hydrocarbon removal facilities and the like. [0022] According to the present invention these facilities are produced in a form in the first launch train from which they can be expanded by modular increments or of a size necessary to handle the maximum quantity of light hydrocarbon gas which will be processed through the liquefaction process.
  • Such processes have been expanded by adding trains and as indicated previously by duplicating all the facilities required for each train in each train.
  • shared facilities are used by the first liquefaction launch train and the subsequent modular expansion phases.
  • the initial launch liquefaction train is designed to size the shared equipment of a size capable of handling the maximum capacity expected by the combination of the initial launch train and incremental expansion as modular expansion phases are added to increase capacity. For instance, less than a full amount of compressed refrigerant may be charged in a subsequent modular expansion initially. This permits addition of the expansion phase before a market exists for all of the liquefied natural gas which could be produced through the facility.
  • FIG. 2 illustrates a phased expansion of an acid gas removal unit (AGRU) where the solid lines represent a launch (new or existing) train and the dotted lines represent optional future expansion equipment and associated piping required for a one or two-phase expansion.
  • each train typically contains an acid gas removal vessel 10 and an acid gas regenerator 11.
  • acid gas removal vessel 110 and acid gas regenerator 1 11 along with associated piping could be installed, thus increasing the throughput of the original AGRU.
  • a further train expansion could be obtained through the addition of acid gas removal vessel 210 and acid gas regenerator 211 along with associated piping.
  • the need for multiple acid gas regenerators could be eliminated by using one acid gas regenerator, which would further reduce the capital expenditure and space (real estate) required by full train expansions previously known in the art.
  • the acid gas regenerator 11 can be sized so that it can handle all of the regeneration requirements for future expansions, thereby eliminating the need for acid gas regenerators 11 1 and 21 1.
  • inlet gas streams which are charged via line 40' (forty prime).
  • the inlet gas may be
  • the acid gas removal vessels shown may employ aqueous amine solutions, as known generally in the art, and operate as discussed in connection with Figure 1.
  • the gaseous streams having reduced acid gas content are recovered through lines 43,
  • the fresh amine from the acid gas regeneration vessel carried by one primary line (not shown for simplicity) exiting the lower portion of the regeneration vessel, would be appropriately distributed through lines 42, 142, and 242.
  • the spent amine would leave acid gas removal vessels 10, 1 10, and 210 via lines 41, 141, and 241 and combine into one primary line (also not shown) entering the upper portion of the single acid gas regeneration vessel.
  • a regenerated aqueous amine solution is provided to the upper portion of each vessel on a continuous basis with spent amine solution being recovered from the lower portion of the vessel and passed back to regeneration.
  • the vessel must be sized to provide sufficient fresh regenerated aqueous amine to remove the acid gas compounds from the gaseous stream charged to the operating acid gas removal vessels, 10, 1 10, and 210.
  • the sizing of one regeneration vessel entails little additional expense to provide sufficient regenerating capacity to, provide sufficient regenerated amine to service all four of the vessels.
  • additional expansions can be made by simply adding a single acid gas removal contact vessel. So long as significant regeneration capacity exists, the gain in gas throughput is obtained at a considerably reduced capital cost by virtue of requiring only the addition of a single acid gas removal vessel rather than an acid gas removal vessel and a regeneration vessel.
  • each vessel can be designed for operation in either dehydration or regeneration mode, which has not been fully shown for simplicity.
  • vessels 20 and 21 are in dehydration mode while vessel 22 is in regeneration mode where a stripping gas is introduced to vessel 22 via line 70 and exits via line 71.
  • each vessel is designed with appropriate valves and piping so that all dehydration vessels may operate in either dehydration or regeneration mode, as illustrated through the previous example.
  • process line 59' (fifty-nine prime) and may be distributed to cryogenic heat
  • compressed refrigerant is supplied to cryogenic heat exchangers 15, 115, and 215 by turbines 31, 33, 35, 37, 131, 135, 231, and 235 respectively, which are shaft coupled to refrigerant compressors 32, 34, 36, 38, 132, 136, 232, and 236 respectfully.
  • High-pressure refrigerant is supplied to compressors 32, 34, 132, and 232 by high-pressure refrigerant lines 61, 62, 162, and 262. These lines typically return high-pressure refrigerant from cryogenic heat exchangers 15, 115, and 215 after it has served its purpose as a refrigerant and has been warmed to a substantially gaseous condition.
  • Compressed high-pressure refrigerant is supplied to cryogenic heat exchangers 15, 115, and 215 via lines 63, 64, 163, and 263.
  • Low-pressure refrigerant is supplied to compressors 36, 38, 136, and 236 by low-pressure refrigerant lines 65, 66, 166, and 266. These lines typically return low-pressure refrigerant from cryogenic heat exchangers 15, 1 15, and 215 after it has served its pu ⁇ ose as a refrigerant and has been warmed to substantially gaseous condition.
  • Compressed low-pressure refrigerant is supplied to cryogenic heat exchangers 15, 1 15, and 215 via lines 67, 68, 167, and 267.
  • refrigerants can be produced from compressors 32, 34, 36, 38, 132, 136, 232, and 236 at different pressures if desired and passed to cryogenic heat exchangers 15, 115, 215 at different points in the refrigeration process if desired and as appropriate.
  • the same or different refrigerants can be used in the high-pressure and low-pressure refrigerant loops.
  • mercury or other contaminant removal equipment is typically employed in a light hydrocarbon liquefaction process. For mercury removal, there are two methods to accomplish the task, a non-regenerative system or a regenerative system.
  • elemental mercury in the gas phase is trapped by mercury trapping material such as sulfur, which fixes the volatile mercury in the form of non-volatile mercury sulfide (HgS).
  • mercury trapping material such as sulfur
  • an activated carbon is chemically treated or impregnated with a mercury-fixing compound such as sulfur.
  • the mercury is chemi-sorbed onto the non-regenerative carbon, which must be periodically replaced.
  • elemental mercury in the gas phase is trapped by mercury trapping material such as silver.
  • the silver is supported on alumina or zeolite (mol sieve), or other inert support. This material is placed in the mol sieve unit and the mercury is desorbed during the regeneration cycle.
  • improved efficiency and economy have been achieved by including in a launch train of a light hydrocarbon gas liquefaction process shared facilities which can be used by subsequent expansions by either modularization or by use of the shared facilities which are designed for the desired maximum capacity of light hydrocarbon gas to be processed in the liquefaction process initially.
  • This results in substantial savings in the overall operation of the process at maximum capacity and provides for great ease in expanding the process incrementally.
  • improved economy can be achieved as discussed by adding a regeneration section which is of a size suitable to regenerate aqueous amine for all of the acid gas removal vessels which are contemplated at maximum capacity of the process comprising all of the trains in combination.
  • the added liquefaction facility can be added with a reduced light hydrocarbon gas flow with a reduced quantity of compressed refrigerant to produce a liquefied light hydrocarbon gas stream in a quantity suitable to meet the current demand.
  • docking facilities, access roads, C 3 + hydrocarbon removal facilities and the like can all be designed for either modular expansion or of a size to accommodate the maximum plant size initially with the resulting efficiency in process expansion when required and economies achieved by reducing the duplication of equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)
EP03759673A 2002-09-30 2003-09-30 Modular lng process Withdrawn EP1549893A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US41480602P 2002-09-30 2002-09-30
US414806P 2002-09-30
PCT/US2003/031252 WO2004031670A1 (en) 2002-09-30 2003-09-30 Modular lng process

Publications (1)

Publication Number Publication Date
EP1549893A1 true EP1549893A1 (en) 2005-07-06

Family

ID=41615003

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03759673A Withdrawn EP1549893A1 (en) 2002-09-30 2003-09-30 Modular lng process

Country Status (11)

Country Link
US (2) US7047764B2 (es)
EP (1) EP1549893A1 (es)
JP (2) JP2006501434A (es)
CN (1) CN100455960C (es)
AU (1) AU2003275396C1 (es)
BR (1) BR0306494A (es)
CA (1) CA2499578C (es)
EG (1) EG24009A (es)
MX (1) MXPA05003330A (es)
NO (1) NO20052110L (es)
WO (1) WO2004031670A1 (es)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7074322B2 (en) 2002-09-30 2006-07-11 Bp Corporation North America Inc. System and method for liquefying variable selected quantities of light hydrocarbon gas with a plurality of light hydrocarbon gas liquefaction trains
CA2499578C (en) * 2002-09-30 2012-03-13 Bp Corporation North America Inc. Modular lng process
JP2008503609A (ja) * 2004-06-18 2008-02-07 エクソンモービル アップストリーム リサーチ カンパニー 評価可能な能力を持つ液化天然ガスプラント
RU2395765C2 (ru) * 2005-02-17 2010-07-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Установка и способ для сжижения природного газа
US20070181210A1 (en) * 2006-02-08 2007-08-09 Mckitish Stephen J Modular cryogenic liquid storage systems
US20100319396A1 (en) * 2006-10-23 2010-12-23 Willem Dam Method and apparatus for liquefying hydrocarbon streams
WO2008058926A2 (en) * 2006-11-14 2008-05-22 Shell Internationale Research Maatschappij B.V. Method and apparatus for cooling a hydrocarbon stream
US8591199B2 (en) * 2007-01-11 2013-11-26 Conocophillips Company Multi-stage compressor/driver system and method of operation
US8454727B2 (en) 2010-05-28 2013-06-04 Uop Llc Treatment of natural gas feeds
US8388732B2 (en) 2010-06-25 2013-03-05 Uop Llc Integrated membrane and adsorption system for carbon dioxide removal from natural gas
US8282707B2 (en) 2010-06-30 2012-10-09 Uop Llc Natural gas purification system
CA2805087C (en) 2010-07-30 2017-02-28 Exxonmobil Upstream Research Company Systems and methods for using multiple cryogenic hydraulic turbines
EP2892631B1 (en) * 2012-09-07 2018-11-14 Chevron U.S.A., Inc. Method for removing mercury from natural gas
CN105324554B (zh) 2013-06-28 2017-05-24 三菱重工压缩机有限公司 轴流膨胀机
EP3014086B1 (en) 2013-06-28 2021-06-16 ExxonMobil Upstream Research Company Systems and methods of utilizing axial flow expanders
CA2888026A1 (en) * 2013-09-21 2015-03-26 Woodside Energy Technologies Pty Ltd Expandable lng processing plant
KR101475004B1 (ko) * 2013-10-11 2014-12-22 삼성중공업 주식회사 육상 인프라를 이용한 lng 처리시스템
JP6415989B2 (ja) 2015-01-05 2018-10-31 三菱重工サーマルシステムズ株式会社 液化ガス用冷却装置
US10563914B2 (en) * 2015-08-06 2020-02-18 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Methods and systems for integration of industrial site efficiency losses to produce LNG and/or LIN
WO2018207994A1 (ko) * 2017-05-12 2018-11-15 삼성중공업 주식회사 천연가스 액화장치

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3161492A (en) * 1961-08-25 1964-12-15 Hydrocarbon Research Inc Mobile gas liquefaction platform
JP3393675B2 (ja) * 1993-04-27 2003-04-07 大阪瓦斯株式会社 都市ガスの液化気化装置およびその運転方法
KR100242982B1 (ko) * 1996-10-17 2000-02-01 김영환 반도체 장비의 가스 공급 장치
US6168768B1 (en) 1998-01-23 2001-01-02 Exxon Research And Engineering Company Production of low sulfer syngas from natural gas with C4+/C5+ hydrocarbon recovery
US5896755A (en) * 1998-07-10 1999-04-27 Praxair Technology, Inc. Cryogenic rectification system with modular cold boxes
TW421704B (en) * 1998-11-18 2001-02-11 Shell Internattonale Res Mij B Plant for liquefying natural gas
US6176046B1 (en) * 1998-11-24 2001-01-23 Northstar Industries, Inc. Portable, pre-manufactured, modular natural gas delivery stations
US6220052B1 (en) * 1999-08-17 2001-04-24 Liberty Fuels, Inc. Apparatus and method for liquefying natural gas for vehicular use
CN1095496C (zh) * 1999-10-15 2002-12-04 余庆发 液化天然气的生产方法
GC0000279A (en) 2000-04-25 2006-11-01 Shell Int Research Controlling the production of a liquefied natural gas product stream
JP4253107B2 (ja) * 2000-08-24 2009-04-08 キヤノンアネルバ株式会社 基板処理装置及びその増設方法
US6658892B2 (en) 2002-01-30 2003-12-09 Exxonmobil Upstream Research Company Processes and systems for liquefying natural gas
US6647744B2 (en) 2002-01-30 2003-11-18 Exxonmobil Upstream Research Company Processes and systems for liquefying natural gas
CA2499578C (en) * 2002-09-30 2012-03-13 Bp Corporation North America Inc. Modular lng process
US7074322B2 (en) * 2002-09-30 2006-07-11 Bp Corporation North America Inc. System and method for liquefying variable selected quantities of light hydrocarbon gas with a plurality of light hydrocarbon gas liquefaction trains

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAWCHUK ET AL: "BP'S BIG GREEN TRAIN - NEXT GENERATION LNG", GASTECH 2002, 13 October 2002 (2002-10-13), Qatar, XP001236100 *
See also references of WO2004031670A1 *

Also Published As

Publication number Publication date
WO2004031670A1 (en) 2004-04-15
BR0306494A (pt) 2004-10-13
US20060112726A1 (en) 2006-06-01
AU2003275396C1 (en) 2010-12-23
AU2003275396B2 (en) 2008-02-28
US20040118153A1 (en) 2004-06-24
JP2011094145A (ja) 2011-05-12
JP2006501434A (ja) 2006-01-12
CN100455960C (zh) 2009-01-28
NO20052110L (no) 2005-06-28
NO20052110D0 (no) 2005-04-29
CN1685190A (zh) 2005-10-19
US7047764B2 (en) 2006-05-23
CA2499578A1 (en) 2004-04-15
US7251956B2 (en) 2007-08-07
MXPA05003330A (es) 2005-07-05
CA2499578C (en) 2012-03-13
AU2003275396A1 (en) 2004-04-23
EG24009A (en) 2008-03-19

Similar Documents

Publication Publication Date Title
US7251956B2 (en) Modular LNG process
US7678349B2 (en) System for liquefying light hydrocarbon gas with a plurality of light hydrocarbon gas liquefaction trains
RU2300061C2 (ru) Способ сжижения природного газа с повышенным удалением азота
US3894856A (en) Liquefaction of natural gas with product used as adsorber
RU2241181C2 (ru) Способ ожижения газообразного вещества (варианты) и устройство для его осуществления (варианты)
US6105390A (en) Apparatus and process for the refrigeration, liquefaction and separation of gases with varying levels of purity
CN1969161B (zh) 半闭环法
US20040083888A1 (en) Heat integration system for natural gas liquefaction
BG64011B1 (bg) Методи за втечняване под налягане на газов поток чрез каскадно охлаждане
US8585804B2 (en) Natural gas liquids recovery device and method
EA007310B1 (ru) Способ и устройство для сжижения природного газа
AU2008202359B2 (en) Modular lng process
AU2011244945A1 (en) Modular LNG process
CN116592574B (zh) 一种回收膨胀功的液氢运输船再液化系统
US20230400251A1 (en) Integrated process for purifying and liquefying natural gas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070706

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20120306