EP1546428B1 - Method and device for the production of metal alloy bodies having localized small particle size - Google Patents

Method and device for the production of metal alloy bodies having localized small particle size Download PDF

Info

Publication number
EP1546428B1
EP1546428B1 EP03798871A EP03798871A EP1546428B1 EP 1546428 B1 EP1546428 B1 EP 1546428B1 EP 03798871 A EP03798871 A EP 03798871A EP 03798871 A EP03798871 A EP 03798871A EP 1546428 B1 EP1546428 B1 EP 1546428B1
Authority
EP
European Patent Office
Prior art keywords
metal alloy
alloy body
area
plunger
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03798871A
Other languages
German (de)
French (fr)
Other versions
EP1546428A2 (en
Inventor
Lothar Wagner
Jiulai Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brandenburgische Technische Universitaet Cottbus
Original Assignee
Brandenburgische Technische Universitaet Cottbus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brandenburgische Technische Universitaet Cottbus filed Critical Brandenburgische Technische Universitaet Cottbus
Publication of EP1546428A2 publication Critical patent/EP1546428A2/en
Application granted granted Critical
Publication of EP1546428B1 publication Critical patent/EP1546428B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/001Extruding metal; Impact extrusion to improve the material properties, e.g. lateral extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/20Making uncoated products by backward extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/21Presses specially adapted for extruding metal
    • B21C23/218Indirect extrusion presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C25/00Profiling tools for metal extruding
    • B21C25/08Dies or mandrels with section variable during extruding, e.g. for making tapered work; Controlling variation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • B21J1/025Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough affecting grain orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/008Incremental forging
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the invention relates to a method for the production of metal alloys, in particular magnesium alloys, with small grain sizes within a non-extruded metal alloy body and to an apparatus for carrying out the method.
  • the use of light metal materials mainly serves to reduce the weight of the components used.
  • the use of prefabricated bodies of light metal materials e.g.
  • aluminum, metal and titanium alloys especially in further processing such as e.g. during rolling, forging or rolling, manufacturing problems, since due to the usually large grain sizes of the starting materials cracks and fractures mostly arise along the grain boundaries at the corners of the body made of light metal materials. This influences and reduces the mechanical and optical properties of the components.
  • the prior art therefore attempts on the one hand to improve the mechanical properties of the corresponding starting alloys.
  • the DE 199 37 184 A1 relates, for example, to a metal alloy for use at elevated temperatures, which is particularly suitable for use in die casting.
  • the disadvantage here is that previously known and commonly used light metal alloys can not be used and for each application and each application method, a special light metal alloy would have to be developed.
  • the DE 199 17 175 A1 describes a method for producing a component, as well as the component according to the invention.
  • the component is produced in a die-casting mold by means of a ceramic green body in the die casting mold in that this green body is filled with a metal or a metal alloy, wherein the green body is produced as a ceramic base body by means of a ceramic powder mixture by a heating and pressing process.
  • the disadvantage here is that this method is only applicable in the die casting process.
  • the DE 100 33 768 A1 describes a method for folding thin-walled semi-finished products or components of at least one metallic material, wherein the material is difficult or brittle deformable at room temperature and is heated in the region to be folded.
  • the disadvantage here however, that the brittle properties of the machined metal materials are not changed during the folding and therefore the components continue to break and susceptible to cracking in subsequent manufacturing sections.
  • the 25 21 330 C2 describes a method for inducing a simultaneous with the heat deformation running dynamic recrystallization in a metal alloy with a non-sufficient fine-grained structure, wherein for the structural influence of a metal alloy of the metal alloy blank additional elements such. Copper or zinc, and these are present as mixed crystals, wherein the fine-grained structure is formed due to a predetermined deformation temperature and a predetermined strain rate in the blank due to a progressive recrystallization.
  • the disadvantage here is that the change in the microstructure depends on the recrystallization rate within the blank and therefore can only be used to a limited extent within the scope of a processing and production method.
  • the describes DE 695 05 327 T2 a method for producing a localized fine grain microstructure on selected surfaces of aluminum alloys.
  • the surface of an aluminum sheet with a coarse grain microstructure with generally parallel to the longitudinal plane lying long grain boundaries is through locally processing a bullfin burr within existing holes by breaking up the coarse-grained microstructure and then initiating recrystallization by a localized heat treatment.
  • the disadvantage here is that the method is applicable only for drilling within an aluminum alloy of an aircraft sheet metal. Furthermore, the depth of deformation of this process in the surface is very low, so that hereby only the surface corrosion of the treated surfaces but not breakage and cracking during rolling is prevented.
  • the DE 195 08 718 A1 describes a method for improving the properties of an alloy by extrusion or alternatively by applying a force from different directions. Both alternative types of procedure should ensure a "kneading" of the raw alloy. Thereby, the fine graininess is increased within the entire metal alloy body.
  • the surfaces of a non-extruded metal alloy body having a particle size greater than 200 .mu.m are alternately locally compressed and decompressed by a cyclic, location-dependent alternating loading of the surface of the non-extruded metal alloy body. and permanently heated to a process temperature range of up to 600 ° C.
  • the cyclic, location-dependent alternating loading of the surface of the metal alloy body takes place by temporary pressure by means of pressure-exerting elements on individual defined surface segments of the surface of the metal alloy body.
  • surface is understood as a surface layer of the metal alloy body, which is influenced and changed by the cyclic, location-dependent loading.
  • the depth of this surface layer is Depending on the metal alloy used, the temperature and the deformation rate of the metal alloy due to the cyclic, location-dependent alternating load along the outer sides of the metal alloy body.
  • first one of two sub-areas of the area segment is loaded by means of pressure-exerting elements and in a second pressing cycle the second sub-area of the area segment is compressed by means of other pressure-exerting elements, wherein in the second pressing cycle the first sub-area is not loaded.
  • the shape of the respective surface segment is preferably symmetrical, in particular circular or rectangular, designed.
  • spring-restoring elements allow as a location-dependent counterforce to the first partial surface, a control of the deformation height and rate of the decompressing first partial surface, in particular at the beginning of the second Presszyklusses.
  • a jerky movement of the decompressing first partial surface may occur, which may adversely affect the material properties of the decompressing first partial surface.
  • the metal alloy body Upon completion of the second press cycle, the metal alloy body assumed the initial volumetric shape as before the two press cycles. This press cycle sequence can be carried out as often as desired within a surface segment with a further number of integer press cycles.
  • the metal alloy body After completion of the two pressing cycles, the metal alloy body is heated unloaded for a period of time to a temperature of up to 600 ° C, if a high rate of heat loss within the area segment is given.
  • the shape of the first partial surface is preferably designed as an annular surface or a semicircular surface within the surface segment and the second partial surface is configured corresponding to the first partial surface within the planar segment.
  • a plurality of surface segments are defined on the surface of the metal alloy body, the surface segments adjoining each other, and the surface of the metal alloy body is completely covered with surface segments with respect to at least one orientation. During the process cycles, throughout the metal alloy body, a constant temperature in a temperature range of up to 600 ° C given.
  • the volume of the metal alloy body is not changed.
  • the method is not only applicable to a surface segment on the surface of a metal alloy body, but can successively cyclically and alternately compress and decompress the two partial surfaces of the respective individual surface segments along connected surface segments.
  • the two partial surfaces of the individual surface segments along the surface of the metal alloy body can be successively cyclically and simultaneously compressed and decompressed along associated surface segments.
  • several surfaces of the metal alloy body can be cyclically or simultaneously compressed and decompressed simultaneously.
  • a pressure-exerting element loaded one of two partial surface of the surface segment during a first pressing cycle, and then another, for first fitting exactly corresponding, pressure-exerting element with a residual surface corresponding second partial surface is applied to the surface segment and loaded in a subsequent second press cycle and a heat source permanently tempered the metal alloy body to a predetermined process temperature in a range up to 600 ° C.
  • the heat source is only necessary if the heat loss rates are too high during the process or the manufacturing process takes too long and thus associated with temperature losses of the metal alloy body.
  • the surface segment is defined by the inner diameter of a pressure-resistant container parallel to the surface of the metal alloy body.
  • the pressure-exerting elements fill the inner diameter of the container in a corresponding and accurate way.
  • the cross section of the metal alloy body corresponds to the cross section of the container, wherein the dimensions of the container by the dimensions of the metal alloy body and the processing plant, For example, the rolling mill, are determined.
  • the pressure in the interior of the container is transmitted by stamping elements on in each case one of two partial surfaces, wherein the stamp elements are actuated by force transmitters connected to an external press. Furthermore, the interior and the surface segment is maintained during the process to a process temperature to compensate for any temperature losses.
  • a power transformer controls the stamp elements in the inventive device alternately and cyclically and transmits the pressure of the press on the respective partial surfaces of the surface segments.
  • the stamping surface of the first stamping element is designed in particular as an annular surface or as a semicircular surface within the inner diameter of the container.
  • the stamp surface of the second stamp element is formed with a precise fit and corresponding to the first stamp face of the first stamp element within the inner diameter of the container.
  • the height of the first stamp member and the height of the metal alloy body taken together have a greater height extent than the container.
  • the deformation in the surface of the metal alloy body is determined.
  • excessive over-height relative to the container results in instabilities during the press cycles and may result in breakage of the punch elements.
  • the stamp elements are pressed so far into the metal alloy body during a pressing cycle that the upper edge of the stamp elements coincide with the upper edge of the container.
  • a continuous array of juxtaposed containers along the surface of a metal alloy body defines a plurality of surface segments along an alignment of the surface of a metal alloy body.
  • a periodic arrangement of first and second punch elements serves for the cyclic, location-dependent alternating pressing of an elongated metal alloy body and thus influences the grain sizes of specific orientations along the surface of the metal alloy body.
  • the respective first and second punch elements of a surface segment are individually controllable.
  • the first punch element is driven by a force transmitter and driven in a two pressing cycle, the second punch element and then a new pressing cycle is initiated in a surface segment nearest thereto.
  • the grain size of the metal alloy is changed by the device according to the invention along an orientation of the surface.
  • the metal alloy body is removed from the container.
  • the grain sizes are reduced only along a selected orientation vertical to the longitudinal axis of the metal alloy body, wherein the orientations of the reduced grain sizes along the surface of the metal alloy body are symmetrical with respect to the longitudinal axis of the metal alloy body and in particular a sandwich structure with respect to the treated and untreated surfaces of the metal alloy body.
  • the process of the present application includes the processing of extruded metal alloys as described in U.S. Pat DE 195 08 718 A1 out. It is used to process non-extruded metal alloys with a grain size of more than 200 ⁇ m through a cyclic, location-dependent alternating load, which leads to local compression and decompression on individual defined surface segments.
  • the method of the application differs substantially from the method of DE 195 08 718 A1 , When "kneading" a raw alloy by the application of a force from different directions, a cyclic, location-dependent load of the metal alloy, which leads to a local compression and decompression, is excluded.
  • fine grain can be achieved only on the surfaces of defined segments of the metal alloy body. Since the machining of the top and bottom of a metal alloy is sufficient to control the material properties of the alloy, e.g. When rolling in terms of ductility to improve, the inventive method offers advantages over the prior art.
  • Fig. 1a shows a schematic representation of the transverse view of the device according to the invention during three different process sections.
  • the metal alloy body 10 is compressed within a container 11 by a first punch element 12.
  • the upwardly directed surface of the metal alloy body 10 corresponds to a defined surface segment.
  • the first stamp member 12 compresses only one part symmetrical with respect to the shape of the sheet segment.
  • the second stamp member 13 is inserted into the remaining gap of the surface segment and pressed into the metal alloy body 10 in a second process section (middle illustration).
  • 1 b shows a schematic longitudinal view of the device according to the invention in two different process stages.
  • the process according to the invention is carried out within a surface segment A defined by the first stamp element 12 along the surface of the metal alloy body 10, in FIG in a first cycle of the first punch member 12 is pressed into the metal alloy body 10 and in a second pressing cycle, the second punch member 13 is also pressed into the metal alloy body 10 and the first punch member 12 back unloaded unloaded (left view).
  • the method according to the invention is applied to the following surface segment B and to the adjoining surface segments along the surface (right-hand representation).
  • FIG. 2 a shows a schematic illustration of the transverse view of the device according to the invention during three different process sections.
  • the surface segment of the surface of the metal alloy body is in this case loaded asymmetrically with respect to the central axis of the container 11.
  • the metal alloy body 10 is compressed within a container 11 by a first asymmetrical punch element 12.
  • the first stamp member 12 compresses only an asymmetric part of the sheet segment.
  • the second stamp member 13 is inserted into the remaining gap of the surface segment and pressed into the metal alloy body 10 in a second process section (middle illustration).
  • FIG. 2b shows a schematic longitudinal view of the device according to the invention in two different process stages for an asymmetric variant of the inventive arrangement in FIG. 1b.
  • the method according to the invention is carried out in which the first stamp element 12 is pressed asymmetrically into the metal alloy body 10 in a first process cycle and the second stamp element 13 is pressed in a second pressing cycle is also pressed into the metal alloy body 10, wherein in the second pressing cycle, the first stamp member 12 back unloaded unloaded (left illustration).
  • the method according to the invention is applied to the following surface segment B and to the adjoining surface segments along the surface (right-hand representation).
  • FIG 3 shows a schematic transverse view of the device according to the invention with a first stamp element that is asymmetrical with respect to the center axis.
  • the first die element 12 is replaced by a force transducer 14, such as a force transducer. a steel plate, pressed into the container 11 (left illustration).
  • the bottom of the container 11 is fixed by a steel plate 15.
  • the force transmitter 14 is replaced by an asymmetrical force transmitter 14 (middle illustration).
  • a restoring spring element 16 which controls the relaxation of the first stamp member 12 during simultaneous compression of the second punch member 13 in the metal alloy body 10 by the selected spring constant during the second process cycle lake (right illustration) ,
  • the spring element 16 By the spring element 16, a rearward movement of the decompressing first partial surface is avoided at the beginning of the second pressing cycle. This jerky movement is mainly determined by the static friction between the inner surface of the container 11 and the first stamp member 12.
  • Fig. 4 shows a recording of the grain sizes within a metal alloy body before and after the application of the method according to the invention.
  • the starting material used is an AZ31 magnesium alloy with an average particle size of 800 ⁇ m (FIG. 4A).
  • the particle sizes in the deformation region have been reduced to an average of 17 ⁇ m.
  • Fig. 5 shows two different configurations of the device according to the invention.
  • a circular magnesium alloy body 10 is inserted in a circular container 11 having an inner diameter of 30 mm.
  • This magnesium alloy body 10 is loaded by a first annular punch element 12, wherein the inner diameter of the first punch element 12 with 15 mm corresponds to the outer diameter of the second punch element 13.
  • the stamp elements 12,13 are connected via a steel plate 14 as a power transmission with an outer press (not shown).
  • both stamp elements 12, 13 are semicircular, with the respective outside diameter of the stamp elements 12, 13 corresponding to the internal pressure gauge of the container 10.
  • the power transmission 14 is provided with a spring-restoring element 16.
  • spring-returning element 16 By spring-returning element 16, a rearward movement of the decompressing first partial surface is avoided at the beginning of the second pressing cycle.
  • FIG. 6 shows a schematic representation of the product according to the invention.
  • the metal alloy body 10 is characterized in that on two mutually symmetrical side surfaces with respect to the longitudinal axis of the metal alloy body 10, a reduction of the grain sizes is achieved by the inventive method and by this sandwich structure with respect to the inventively processed and unprocessed surfaces, the fracture and cracking tendency especially is reduced at the edges of the metal alloy body 10 during further forming, in particular during rolling, of the product according to the invention.

Abstract

The invention relates to a method for the production of metal alloys, especially magnesium alloys, having small particle size in a non-extruded metal alloy body, in addition to a device for carrying out said method and a product which is produced according to the inventive method. Cyclical, location-dependent, alternating charging of partial surfaces of the surface of the non-extruded metal alloy body enables them to be locally compressed and de-compressed. In association with a process temperature of up to 600 DEG C of the metal alloy body, this leads to a reduction in the particle size of the metal alloy on the surface, which in turn leads to a significant improvement of the rollability of the metal alloy.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Metalllegierungen, insbesondere Magnesiumlegierungen, mit geringen Korngrößen innerhalb eines nicht-extrudierten Metalllegierungskörpers sowie eine Vorrichtung zur Durchführung des Verfahrens.The invention relates to a method for the production of metal alloys, in particular magnesium alloys, with small grain sizes within a non-extruded metal alloy body and to an apparatus for carrying out the method.

Die Verwendung von Leichtmetallwerkstoffen, insbesondere im Automobil- und Flugzeugbau, dient vor allem der Gewichtsreduzierung der verwendeten Bauteile. Die Verwendung von vorgefertigten Körpern aus Leichtmetallwerkstoffen, wie z.B. Aluminium-, Metall- und Titanlegierungen, bereitet jedoch insbesondere bei der weiteren Verarbeitung wie z.B. beim Walzen, Schmieden oder Rollen, Fertigungsprobleme, da aufgrund der zumeist großen Korngrößen der Ausgangswerkstoffen Risse und Brüche zumeist entlang der Korngrenzen an den Ecken der Körper aus Leichtmetallwerkstoffen entstehen. Dies beeinflusst und reduziert die mechanischen und optischen Eigenschaften der Bauteile.The use of light metal materials, especially in the automotive and aircraft construction, mainly serves to reduce the weight of the components used. The use of prefabricated bodies of light metal materials, e.g. However, aluminum, metal and titanium alloys, especially in further processing such as e.g. during rolling, forging or rolling, manufacturing problems, since due to the usually large grain sizes of the starting materials cracks and fractures mostly arise along the grain boundaries at the corners of the body made of light metal materials. This influences and reduces the mechanical and optical properties of the components.

Im Stand der Technik wird daher zum einen versucht, die mechanischen Eigenschaften der entsprechenden Ausgangslegierungen zu verbessern. Die DE 199 37 184 A1 betrifft z.B. eine Metalllegierung für die Verwendung bei erhöhten Temperaturen, die sich besonders zur Verwendung beim Druckgießverfahren eignet. Nachteilig hierbei ist, dass bisher bekannte und häufig verwendete Leichtmetalllegierungen nicht verwendet werden können und für jede Anwendung und jedes Anwendungsverfahren eine spezielle Leichtmetalllegierung entwickelt werden müsste.The prior art therefore attempts on the one hand to improve the mechanical properties of the corresponding starting alloys. The DE 199 37 184 A1 relates, for example, to a metal alloy for use at elevated temperatures, which is particularly suitable for use in die casting. The disadvantage here is that previously known and commonly used light metal alloys can not be used and for each application and each application method, a special light metal alloy would have to be developed.

Weiterhin sind im Stand der Technik spezielle Bearbeitungs- und Fertigungsverfahren von häufig verwendeten Leichtmetalllegierungen bekannt. Die DE 199 17 175 A1 beschreibt ein Verfahren zum Herstellen eines Bauteils, sowie das erfindungsgemäße Bauteil. Das Bauteil wird in einer Druckgussform mittels eines keramischen Grünkörpers in der Druckgussform dadurch hergestellt, dass dieser Grünkörper mit einem Metall oder einer Metalllegierung befüllt wird, wobei der Grünkörper als keramischer Grundkörper mittels einer keramischen Pulvermischung durch ein Heiz- und Pressverfahren hergestellt wird. Nachteilig ist hierbei, dass dieses Verfahren nur im Druckgussverfahren anwendbar ist. Die DE 100 33 768 A1 beschreibt ein Verfahren zum Falzen von dünnwandigen Halbzeugen oder Bauteilen aus mindestens einem metallischen Werkstoffen, wobei der Werkstoff bei Raumtemperatur schwer oder spröde verformbar ist und im zum falzenden Bereich erhitzt wird. Nachteilig ist hierbei jedoch, dass die Sprödeigenschaften der bearbeitenden Metallwerkstoffe während der Falzung nicht verändert werden und daher die Bauteile weiterhin bruch- und rissanfällig in nachfolgenden Fertigungsabschnitten sind.Furthermore, special processing and manufacturing methods of frequently used light metal alloys are known in the art. The DE 199 17 175 A1 describes a method for producing a component, as well as the component according to the invention. The component is produced in a die-casting mold by means of a ceramic green body in the die casting mold in that this green body is filled with a metal or a metal alloy, wherein the green body is produced as a ceramic base body by means of a ceramic powder mixture by a heating and pressing process. The disadvantage here is that this method is only applicable in the die casting process. The DE 100 33 768 A1 describes a method for folding thin-walled semi-finished products or components of at least one metallic material, wherein the material is difficult or brittle deformable at room temperature and is heated in the region to be folded. The disadvantage here, however, that the brittle properties of the machined metal materials are not changed during the folding and therefore the components continue to break and susceptible to cracking in subsequent manufacturing sections.

Ebenfalls ist bekannt, dass insbesondere bei der Weiterumformung von herkömmlichen Metallwerkstoffen, wie z.B. dem Walzen oder Schmieden, die Verteilung und die Größe von Korngrößen in einem herkömmlichen Metallwerkstoffkörper, insbesondere bei der Walzbearbeitung, einen entscheidenden Einfluss auf während der Fertigung entstehende Bruch- und Rissstellen der Bauteile hat. Die 25 21 330 C2 beschreibt ein Verfahren zur Induzierung einer gleichzeitig mit der Wärmeverformung verlaufenden dynamischen Rekristallisation in einer Metalllegierung mit einem nichtausreichenden feinkörnigen Gefüge, wobei zur Gefügebeeinflussung einer Metalllegierung der Metalllegierungsrohling zusätzliche Elemente, wie z.B. Kupfer oder Zink, enthält und diese als Mischkristalle vorliegen, wobei das feinkörnige Gefüge sich aufgrund einer vorgegebenen Verformtemperatur und einer vorgegebenen Dehnungsgeschwindigkeit im Rohling aufgrund einer fortschreitenden Rekristallisation ausbildet. Nachteilig ist hierbei, dass die Veränderung des Gefüges von der Rekristallisationsgeschwindigkeit innerhalb des Rohlings abhängt und daher im Rahmen eines Bearbeitungs- und Fertigungsverfahrens nur eingeschränkt einsetzbar ist.It is also known that, in particular, in the re-forming of conventional metal materials, such as e.g. the rolling or forging, the distribution and the size of grain sizes in a conventional metal material body, in particular during rolling, has a decisive influence on fracture and tear points of the components arising during production. The 25 21 330 C2 describes a method for inducing a simultaneous with the heat deformation running dynamic recrystallization in a metal alloy with a non-sufficient fine-grained structure, wherein for the structural influence of a metal alloy of the metal alloy blank additional elements such. Copper or zinc, and these are present as mixed crystals, wherein the fine-grained structure is formed due to a predetermined deformation temperature and a predetermined strain rate in the blank due to a progressive recrystallization. The disadvantage here is that the change in the microstructure depends on the recrystallization rate within the blank and therefore can only be used to a limited extent within the scope of a processing and production method.

Weiterhin beschreibt die DE 695 05 327 T2 ein Verfahren zur Herstellung eines lokalisierten Feinkornmikrogefüges auf ausgewählten Oberflächen aus Aluminiumlegierungen. Die Oberfläche eines Aluminiumbleches mit einer Grobkornmikrostruktur mit allgemein parallel zur Längsebene liegenden langen Korngrenzen wird durch eine Kugelfinnenbearbeitung innerhalb von vorhandenen Bohrungen lokal bearbeitet, indem die grobkörnige Mikrostruktur aufgebrochen und anschließend durch eine lokalisierte Wärmebehandlung eine Rekristallisation initiiert wird. Nachteilig ist hierbei, dass das Verfahren nur für Bohrung innerhalb einer Aluminiumlegierung eines Flugzeugbleches anwendbar ist. Weiterhin ist die Deformationstiefe dieses Verfahrens in die Oberfläche nur sehr gering, so dass hiermit lediglich die Oberflächenkorrosion der behandelten Flächen nicht jedoch eine Bruch- und Rissbildung beim Walzen verhindert wird.Furthermore, the describes DE 695 05 327 T2 a method for producing a localized fine grain microstructure on selected surfaces of aluminum alloys. The surface of an aluminum sheet with a coarse grain microstructure with generally parallel to the longitudinal plane lying long grain boundaries is through locally processing a bullfin burr within existing holes by breaking up the coarse-grained microstructure and then initiating recrystallization by a localized heat treatment. The disadvantage here is that the method is applicable only for drilling within an aluminum alloy of an aircraft sheet metal. Furthermore, the depth of deformation of this process in the surface is very low, so that hereby only the surface corrosion of the treated surfaces but not breakage and cracking during rolling is prevented.

Die DE 195 08 718 A1 beschreibt ein Verfahren zur Verbesserung der Eigenschaften einer Legierung mittels Extrusion oder alternativ durch Anwendung einer Kraft aus verschiedenen Richtungen. Beide alternativen Verfahrensarten sollen einen "Knetvorgang" der Rohlegierung gewährleisten. Dadurch wird die Feinkörnigkeit innerhalb des gesamten Metalllegierungskörper erhöht.The DE 195 08 718 A1 describes a method for improving the properties of an alloy by extrusion or alternatively by applying a force from different directions. Both alternative types of procedure should ensure a "kneading" of the raw alloy. Thereby, the fine graininess is increased within the entire metal alloy body.

US 5 868 026 beschreibt eine Methode zum Pressen von Werkstücken. US 5,868,026 describes a method for pressing workpieces.

Ausgehend von diesem Stand der Technik ist es die Aufgabe der vorliegenden Erfindung, das Gefüge von vorhandenen Metalllegierungen derart zu beeinflussen, dass die Bruch- und Rissneigung von nicht-extrudierten Metalllegierungskörpern in Bearbeitungs- und Fertigungsverfahren, insbesondere beim Walzen, reduziert wird und damit eine kostengünstige Herstellung von walzfähigen Metalllegierungskörpern bereitgestellt wird.Based on this prior art, it is the object of the present invention to influence the structure of existing metal alloys such that the fracture and cracking tendency of non-extruded metal alloy bodies in processing and manufacturing processes, especially when rolling, is reduced and thus a cost Preparation of rollable metal alloy bodies is provided.

Gelöst wird diese Aufgabe durch die Merkmale des Anspruchs 1. Erfindungsgemäß ist danach vorgesehen, dass die Oberflächen eines nicht-extrudierten Metalllegierungskörpers mit einer Korngröße größer als 200µm durch eine zyklische, ortsabhängig alternierende Belastung der Oberfläche des nicht-extrudierten Metalllegierungskörpers alternierend lokal komprimiert und dekomprimiert, sowie permanent auf einen Prozesstemperaturbereich von bis 600°C erhitzt werden. Die zyklische, ortsabhängig alternierende Belastung der Oberfläche des Metalllegierungskörpers erfolgt durch temporären Druck mittels druckausübender Elemente auf einzelne definierte Flächensegmente der Oberfläche des Metalllegierungskörpers.This object is achieved by the features of claim 1. According to the invention, it is provided that the surfaces of a non-extruded metal alloy body having a particle size greater than 200 .mu.m are alternately locally compressed and decompressed by a cyclic, location-dependent alternating loading of the surface of the non-extruded metal alloy body. and permanently heated to a process temperature range of up to 600 ° C. The cyclic, location-dependent alternating loading of the surface of the metal alloy body takes place by temporary pressure by means of pressure-exerting elements on individual defined surface segments of the surface of the metal alloy body.

Im Rahmen der vorliegenden Erfindung wird Oberfläche als eine Oberflächenschicht des Metalllegierungskörpers verstanden, die durch die zyklische, ortsabhängige Belastung beeinflusst und verändert wird. Die Tiefe dieser Oberflächenschicht ist abhängig von der verwendeten Metalllegierung, der Temperatur und der Deformationsrate der Metalllegierung aufgrund der zyklischen, ortsabhängig alternierenden Belastung entlang der Außenseiten des Metalllegierungskörpers.In the context of the present invention, surface is understood as a surface layer of the metal alloy body, which is influenced and changed by the cyclic, location-dependent loading. The depth of this surface layer is Depending on the metal alloy used, the temperature and the deformation rate of the metal alloy due to the cyclic, location-dependent alternating load along the outer sides of the metal alloy body.

In einem Flächensegment der Oberfläche wird in einem ersten Presszyklus zuerst eine von zwei Teilflächen des Flächensegments mittels druckausübender Elemente belastet und in einem zweiten Presszyklus anschließend die zweite Teilfläche des Flächensegments mittels anderer druckausübender Elemente komprimiert, wobei im zweiten Presszyklus die erste Teilfläche nicht belastet wird. Die Form des jeweiligen Flächensegments ist dabei bevorzugt symmetrisch, insbesondere kreisförmig oder rechteckig, ausgestaltet. Innerhalb eines Flächensegments wird während des zweiten Presszyklusses die nicht belastete erste Teilfläche aufgrund volumetrischer Kräfte innerhalb des Metalllegierungskörpers und/oder mittels zugausübender Elemente dekomprimiert. Weiterhin ist die Verwendung von Feder-rückstellenden Elementen vorgesehen, die als ortsabhängige Gegenkraft zur ersten Teilfläche eine Steuerung der Deformationshöhe und -rate der dekomprimierenden ersten Teilfläche insbesondere zu Beginn des zweiten Presszyklusses erlauben. Gerade zu Beginn des zweiten Presszyklusses kann es aufgrund von wirkenden Reibungskräften zu einer ruckartigen Bewegung der dekomprimierenden ersten Teilfläche kommen, die die Materialeigenschaften der dekomprimierenden ersten Teilfläche negativ beeinflussen kann. Nach Abschluss des zweiten Presszyklusses hat der Metalllegierungskörper die Ausgangsvolumenform wie vor den zwei Presszyklen angenommen. Diese Presszyklenabfolge kann beliebig oft innerhalb eines Flächensegments mit einer weitere Anzahl von ganzzahligen Presszyklen durchgeführt werden. Nach Abschluss der zwei Presszyklen wird der Metalllegierungskörper unbelastet für einen Zeitraum auf eine Temperatur bis 600°C erwärmt, falls eine hohe Wärmeverlustrate innerhalb des Flächensegmentes gegeben ist. Weiterhin ist die Form der ersten Teilfläche bevorzugt als Ringfläche oder eine Halbkreisfläche innerhalb des Flächensegments und die zweite Teilfläche korrespondierend zur ersten Teilfläche innerhalb des Flächensegments ausgebildet. Ebenfalls werden auf der Oberfläche des Metalllegierungskörpers eine Vielzahl von Flächensegmenten definiert, wobei die Flächensegmente aneinander anschließen und die Oberfläche des Metalllegierungskörpers bezüglich mindestens einer Ausrichtung vollständig mit Flächensegmenten bedeckt ist. Während der Prozesszyklen ist innerhalb des gesamten Metalllegierungskörpers eine konstante Temperatur in einem Temperaturbereich von bis 600°C gegeben. Während des Verfahrens wird das Volumen des Metalllegierungskörpers nicht verändert. Das Verfahren ist nicht nur auf ein Flächensegment auf der Oberfläche eines Metalllegierungskörpers anwendbar, sondern kann entlang von verbundenen Flächensegmenten sukzessiv zyklisch und alternierend die beiden Teilflächen der jeweiligen einzelnen Flächensegmente komprimieren und dekomprimieren. Alternativ können entlang von verbundenen Flächensegmenten die beiden Teilflächen der einzelnen Flächensegmente entlang der Oberfläche des Metalllegierungskörpers sukzessiv zyklisch und gleichzeitig komprimiert und dekomprimiert werden. Dabei können gleichzeitig mehrere Oberflächen des Metalllegierungskörpers sukzessiv zyklisch oder gleichzeitig komprimiert und dekomprimiert werden.In a surface segment of the surface, in a first pressing cycle, first one of two sub-areas of the area segment is loaded by means of pressure-exerting elements and in a second pressing cycle the second sub-area of the area segment is compressed by means of other pressure-exerting elements, wherein in the second pressing cycle the first sub-area is not loaded. The shape of the respective surface segment is preferably symmetrical, in particular circular or rectangular, designed. Within a surface segment, during the second pressing cycle, the unloaded first partial surface is decompressed due to volumetric forces within the metal alloy body and / or by means of tensile elements. Furthermore, the use of spring-restoring elements is provided, which allow as a location-dependent counterforce to the first partial surface, a control of the deformation height and rate of the decompressing first partial surface, in particular at the beginning of the second Presszyklusses. Just at the beginning of the second pressing cycle, due to acting frictional forces, a jerky movement of the decompressing first partial surface may occur, which may adversely affect the material properties of the decompressing first partial surface. Upon completion of the second press cycle, the metal alloy body assumed the initial volumetric shape as before the two press cycles. This press cycle sequence can be carried out as often as desired within a surface segment with a further number of integer press cycles. After completion of the two pressing cycles, the metal alloy body is heated unloaded for a period of time to a temperature of up to 600 ° C, if a high rate of heat loss within the area segment is given. Furthermore, the shape of the first partial surface is preferably designed as an annular surface or a semicircular surface within the surface segment and the second partial surface is configured corresponding to the first partial surface within the planar segment. Also, a plurality of surface segments are defined on the surface of the metal alloy body, the surface segments adjoining each other, and the surface of the metal alloy body is completely covered with surface segments with respect to at least one orientation. During the process cycles, throughout the metal alloy body, a constant temperature in a temperature range of up to 600 ° C given. During the process, the volume of the metal alloy body is not changed. The method is not only applicable to a surface segment on the surface of a metal alloy body, but can successively cyclically and alternately compress and decompress the two partial surfaces of the respective individual surface segments along connected surface segments. Alternatively, the two partial surfaces of the individual surface segments along the surface of the metal alloy body can be successively cyclically and simultaneously compressed and decompressed along associated surface segments. At the same time, several surfaces of the metal alloy body can be cyclically or simultaneously compressed and decompressed simultaneously.

Weiterhin ist es Aufgabe der vorliegenden Erfindung, eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens zur schaffen.It is another object of the present invention to provide a device for carrying out the method according to the invention.

Gelöst wird diese Aufgabe durch die Merkmale des Anspruchs 13. Erfindungsgemäß ist danach vorgesehen, dass auf einem definierten Flächensegment auf der Oberfläche des Metalllegierungskörpers mit grober Korngröße ein druckausübendes Element eine von zwei Teilfläche des Flächensegments während eines ersten Presszyklusses belastet, und anschließend ein anderes, zum ersten passgenau korrespondierendes, druckausübender Element mit einer der Restfläche entsprechenden zweiten Teilfläche auf das Flächensegment aufgebracht und in einem anschließenden zweiten Pressenzyklus belastet wird und eine Heizquelle den Metalllegierungskörper permanent auf eine vorgegebene Prozesstemperatur in einem Bereich bis 600°C temperiert. Die Heizquelle ist jedoch nur notwendig, falls die Wärmeverlustraten während des Verfahrensablaufes zu hoch sind oder der Fertigungsprozess zu lange dauert und damit entsprechende Temperaturverluste des Metalllegierungskörpers einhergehen. Das Flächensegment wird durch den Innendurchmesser eines druckbeständigen Containers parallel zur Oberfläche des Metalllegierungskörpers definiert.This object is achieved by the features of claim 13. According to the invention, it is provided that on a defined surface segment on the surface of the metal alloy body with coarse grain size, a pressure-exerting element loaded one of two partial surface of the surface segment during a first pressing cycle, and then another, for first fitting exactly corresponding, pressure-exerting element with a residual surface corresponding second partial surface is applied to the surface segment and loaded in a subsequent second press cycle and a heat source permanently tempered the metal alloy body to a predetermined process temperature in a range up to 600 ° C. However, the heat source is only necessary if the heat loss rates are too high during the process or the manufacturing process takes too long and thus associated with temperature losses of the metal alloy body. The surface segment is defined by the inner diameter of a pressure-resistant container parallel to the surface of the metal alloy body.

Dabei füllen die druckausübenden Elemente korrespondierend und passgenau den Innendurchmesser des Containers aus. Der Querschnitt des Metalllegierungskörpers entspricht dem Querschnitt des Containers, wobei die Abmessungen des Containers durch die Dimensionen des Metalllegierungskörpers und der Bearbeitungsanlage, z.B. der Walzstrasse, bestimmt sind. Der Druck im Innenraum des Containers wird durch Stempelelemente auf jeweils eine von zwei Teilflächen übertragen, wobei die Stempelelemente durch mit einer äußeren Presse verbundenen Kraftüberträger angesteuert werden. Weiterhin wird der Innenraum und das Flächensegment während des Verfahrens auf eine Prozesstemperatur gehalten, um eventuell auftretende Temperaturverluste auszugleichen. Ein Kraftüberträger steuert bei der erfindungsgemäßen Vorrichtung die Stempelelemente alternierend und zyklisch an und überträgt den Druck der Presse auf die jeweilige Teilflächen der Flächensegmente. Nach Belastung des ersten Stempelelements mittels der Presse und des Kraftüberträgers wird der Kraftüberträger, wie z.B. eine Stahlplatte, durch die Presse entlastet und anschließend wird der Druck ausschließlich auf das zweite Stempelelement über den durch die Presse wiederbelastenden Kraftüberträger übertragen. Der Kraftüberträger bzw. die Stahlplatte werden dabei auf die Prozesstemperatur geheizt. Ebenfalls ist die Stempelfläche des ersten Stempelelements insbesondere als Ringfläche oder als Halbkreisfläche innerhalb des Innendruchmessers des Containers ausgebildet. Die Stempelfläche des zweiten Stempelelements ist passgenau und korrespondierend zur ersten Stempelfläche des ersten Stempelelements innerhalb des Innendruchmessers des Containers ausgebildet. Die Höhe des ersten Stempelelements und die Höhe des Metalllegierungskörpers zusammengenommen besitzen eine größere Höhenerstreckung als der Container. Durch die Variation der jeweiligen Überhöhe des Stempelelements und des Metalllegierungsktirpers gegenüber dem Container, wird die Deformation in der Oberfläche des Metalllegierungskörpers festgelegt. Eine zu große Überhöhe relativ zum Container führt jedoch zu Instabilitäten während der Presszyklen und kann zu einem Bruch der Stempelelemente führen. Weiterhin werden die Stempelelemente während eines Presszyklusses so weit in den Metalllegierungskörper gepresst, dass die Oberkante der Stempelelemente mit der Oberkante des Containers übereinstimmen. Eine fortlaufende Anordnung von nebeneinander angeordneten Containern entlang der Oberfläche eines Metalllegierungskörpers definiert eine Vielzahl von Flächensegmenten entlang einer Ausrichtung der Oberfläche eines Metalllegierungskörpers. In den so definierten Flächensegmenten dient eine periodische Anordnung von ersten und zweiten Stempelelementen zur zyklischen, ortsabhängig alternierenden Pressung eines länglichen Metalllegierungskörpers und beeinflusst damit die Korngrößen von bestimmten Ausrichtungen entlang der Oberfläche des Metalllegierungskörpers. Dabei sind die jeweiligen ersten und zweiten Stempelelemente eines Flächensegments einzeln ansteuerbar. Weiterhin wird in jedem Flächensegment im ersten Presszyklus das ersten Stempelelement durch einen Kraftüberträger angesteuert und in einem zwei Pressungszyklus das zweite Stempelelement angesteuert und anschließend wird in einem hierzu nächstgelegenen Flächensegment ein neuer Presszyklus initiiert. Hierdurch wird durch die erfindungsgemäße Vorrichtung entlang einer Ausrichtung der Oberfläche die Korngröße der Metalllegierung verändert. Nach Abschluss aller Prozesszyklen wird der Metalllegierungskörper aus dem Container entfernt.The pressure-exerting elements fill the inner diameter of the container in a corresponding and accurate way. The cross section of the metal alloy body corresponds to the cross section of the container, wherein the dimensions of the container by the dimensions of the metal alloy body and the processing plant, For example, the rolling mill, are determined. The pressure in the interior of the container is transmitted by stamping elements on in each case one of two partial surfaces, wherein the stamp elements are actuated by force transmitters connected to an external press. Furthermore, the interior and the surface segment is maintained during the process to a process temperature to compensate for any temperature losses. A power transformer controls the stamp elements in the inventive device alternately and cyclically and transmits the pressure of the press on the respective partial surfaces of the surface segments. After loading of the first punch member by means of the press and the power transformer of the power transmission, such as a steel plate is relieved by the press and then the pressure is transmitted exclusively to the second punch member on the wiederbelastenden by the press power transfer. The power transmission or the steel plate are heated to the process temperature. Likewise, the stamping surface of the first stamping element is designed in particular as an annular surface or as a semicircular surface within the inner diameter of the container. The stamp surface of the second stamp element is formed with a precise fit and corresponding to the first stamp face of the first stamp element within the inner diameter of the container. The height of the first stamp member and the height of the metal alloy body taken together have a greater height extent than the container. By varying the respective height of the punch member and the Metalllegierungsktirpers relative to the container, the deformation in the surface of the metal alloy body is determined. However, excessive over-height relative to the container results in instabilities during the press cycles and may result in breakage of the punch elements. Furthermore, the stamp elements are pressed so far into the metal alloy body during a pressing cycle that the upper edge of the stamp elements coincide with the upper edge of the container. A continuous array of juxtaposed containers along the surface of a metal alloy body defines a plurality of surface segments along an alignment of the surface of a metal alloy body. In the surface segments thus defined, a periodic arrangement of first and second punch elements serves for the cyclic, location-dependent alternating pressing of an elongated metal alloy body and thus influences the grain sizes of specific orientations along the surface of the metal alloy body. there the respective first and second punch elements of a surface segment are individually controllable. Furthermore, in each area segment in the first press cycle, the first punch element is driven by a force transmitter and driven in a two pressing cycle, the second punch element and then a new pressing cycle is initiated in a surface segment nearest thereto. As a result, the grain size of the metal alloy is changed by the device according to the invention along an orientation of the surface. After completion of all process cycles, the metal alloy body is removed from the container.

Erfindungsgemäß ist weiterhin vorgesehen, dass nur entlang ausgewählter Ausrichtung vertikal zur Längsachse des Metalllegierungskörpers die Korngrößen reduziert werden, wobei die Ausrichtungen der reduzierten Korngrößen entlang der Oberfläche des Metalllegierungskörpers bezüglich der Längsachse des Metalllegierungskörpers symmetrisch sind und insbesondere eine Sandwich-Struktur bezüglich der behandelten und unbehandelten Oberflächen des Metalllegierungskörpers bilden.According to the invention, it is further provided that the grain sizes are reduced only along a selected orientation vertical to the longitudinal axis of the metal alloy body, wherein the orientations of the reduced grain sizes along the surface of the metal alloy body are symmetrical with respect to the longitudinal axis of the metal alloy body and in particular a sandwich structure with respect to the treated and untreated surfaces of the metal alloy body.

Das Verfahren der vorliegenden Anmeldung schließt die Bearbeitung extrudierter Metalllegierungen wie in der DE 195 08 718 A1 aus. Es dient der Bearbeitung von nicht-extrudierten Metalllegierungen mit einer Korngröße von mehr als 200 µm durch eine zyklische, ortsabhängig alternierende Belastung, welche zu einer lokalen Kompression und Dekompression auf einzelnen definierten Flächensegmenten führt. Durch diese Merkmale unterscheidet sich das Verfahren der Anmeldung wesentlich von dem Verfahren der DE 195 08 718 A1 . Beim "Kneten" einer Rohlegierung durch die Anwendung einer Kraft aus verschiedenen Richtungen, ist eine zyklische, ortsabhängige Belastung der Metalllegierung, welche zu einer lokalen Kompression sowie Dekompression führt, ausgeschlossen. Dies insbesondere auf definierten Flachensegmenten, da bei dem Verfahren der DE 195 08 718 A1 die Kraft auf die Fläche der Metalllegierung übertragen wird, die sich gerade eher zufällig vor dem Kraftüberträger befindet. Das Verfahren der DE 195 08 718 A1 dient der Durchmischung der Komponenten der Rohlegierung, welches zur Eliminierung der Grenzflächen sowie der gleichmäßigen Verteilung von beispielsweise Siliziumpartikeln führt. Dahingegen ist das Verfahren der vorliegenden Anmeldung darauf ausgerichtet, auf einem definierten Flächensegment auf der Oberfläche des Metalllegierungskörpers geringere Korngrößen zu erreichen.The process of the present application includes the processing of extruded metal alloys as described in U.S. Pat DE 195 08 718 A1 out. It is used to process non-extruded metal alloys with a grain size of more than 200 μm through a cyclic, location-dependent alternating load, which leads to local compression and decompression on individual defined surface segments. By these features, the method of the application differs substantially from the method of DE 195 08 718 A1 , When "kneading" a raw alloy by the application of a force from different directions, a cyclic, location-dependent load of the metal alloy, which leads to a local compression and decompression, is excluded. This particular on defined segments of the plane, since in the process of DE 195 08 718 A1 the force is transferred to the surface of the metal alloy, which happens to be in front of the force transmitter at random. The procedure of DE 195 08 718 A1 serves to mix the components of the raw alloy, which leads to the elimination of the interfaces and the uniform distribution of, for example, silicon particles. In contrast, the method of the present application is designed to achieve on a defined area segment on the surface of the metal alloy body smaller grain sizes.

Durch das Verfahren der hier vorliegenden Anmeldung kann Feinkörnigkeit ausschließlich an den Oberflächen an definierten Segmenten des Metalllegierungskörpers erreicht werden. Da die Bearbeitung von Ober- und Unterseite einer Metalllegierung ausreicht, um die Materialeigenschaften der Legierung z.B. beim Walzen hinsichtlich Duktilität zu verbessern, bietet das erfindungsgemäße Verfahren Vorteile gegenüber dem Stand der Technik.By the method of the present application fine grain can be achieved only on the surfaces of defined segments of the metal alloy body. Since the machining of the top and bottom of a metal alloy is sufficient to control the material properties of the alloy, e.g. When rolling in terms of ductility to improve, the inventive method offers advantages over the prior art.

Weitere vorteilhafte Maßnahmen sind in den übrigen Unteransprüchen beschrieben; die Erfindung wird anhand von Ausführungsbeispielen und der nachfolgenden Figuren näher beschrieben; es zeigt:

Figur 1a
schematische Queransicht der erfindungsgemäßen Vorrichtung mit einem bezüglich der Mittelachse symmetrischen ersten Stempelelement;
Figur 1b
schematische Längsansicht der erfindungsgemäßen Vorrichtung entlang einer periodischen Anordnung der gesamten Oberfläche mit bezüglich der Mittelachse symmetrischen ersten Stempelelementen;
Figur 2a
schematische Queransicht der erfindungsgemäßen Vorrichtung mit einem bezüglich der Mittelachse asymmetrischen ersten Stempelelement;
Figur 2b
schematische Längsansicht der erfindungsgemäßen Vorrichtung entlang einer periodischen Anordnung der gesamten Oberfläche mit bezüglich der Mittelachse asymmetrischen ersten Stempelelementen;
Figur 3
schematische Queransicht der erfindungsgemäßen Vorrichtung mit einem bezüglich der Mittelachse asymmetrischen ersten Stempelelement und einem rückstellenden Federelement während des zweiten Presszyklusses;
Figur 4
Aufnahme der Mikrostruktur einer Metalllegierung (AZ31) vor und nach der lokalisierten Bearbeitung entsprechend dem erfindungsgemäßen Verfahren;
Figur 5
Exemplarische Abmessungen der erfindungsgemäßen Vorrichtung;
Figur 6
schematische Ansicht des erfindungsgemäßen Erzeugnisses.
Further advantageous measures are described in the remaining subclaims; the invention will be described in more detail with reference to embodiments and the following figures; it shows:
FIG. 1a
schematic transverse view of the device according to the invention with a symmetrical with respect to the central axis of the first punch element;
FIG. 1b
schematic longitudinal view of the device according to the invention along a periodic arrangement of the entire surface with respect to the central axis symmetrical first punch elements;
FIG. 2a
schematic transverse view of the device according to the invention with a respect to the central axis asymmetric first punch member;
FIG. 2b
schematic longitudinal view of the device according to the invention along a periodic arrangement of the entire surface with respect to the central axis asymmetric first punch elements;
FIG. 3
schematic transverse view of the device according to the invention with a respect to the central axis asymmetric first punch member and a restoring spring element during the second Presszyklusses;
FIG. 4
Recording the microstructure of a metal alloy (AZ31) before and after the localized processing according to the method according to the invention;
FIG. 5
Exemplary dimensions of the device according to the invention;
FIG. 6
schematic view of the product according to the invention.

Fig. 1a zeigt eine schematische Darstellung der Queransicht der erfindungsgemäßen Vorrichtung während dreier unterschiedlicher Prozessabschnitte. Während des ersten Prozesszyklussees (linke Darstellung) wird der Metalllegierungskörper 10 innerhalb eines Containers 11 durch ein erstes Stempelelement 12 komprimiert. Dabei ist dieser schematischen Darstellung nur der Querschnitt des Metalllegierungskörpers 10 sichtbar. Die nach oben ausgerichtete Oberfläche des Metalllegierungskörpers 10 entspricht dabei einem definierten Flächensegment. Das ersten Stempelelement 12 komprimiert nur einen bezüglich der Form des Flächensegments symmetrischen Teil. Nach vollständiger Pressung des ersten Stempelelements 12 in den Metalllegierungskörper 10 wird in einem zweiten Prozessabschnitt (mittlere Darstellung) das zweite Stempelelement 13 in den verbleibenden Zwischenraum des Flächensegments eingefügt und in den Metalllegierungskörper 10 hineingepresst. Nach Abschluss diese zweiten Presszyklusses (rechte Darstellung) ist aufgrund volumentrische Rückstellkräfte das im zweiten Prozesszyklus unbelastete erste Stempelelement 12 teilweise aus dem Container 11 herausgedrückt worden und der Metalllegierungskörper 10 hat seine Ausgangsvolumenform angenommen. Während des gesamten Prozessen wird der Metalllegierungskörper 10 durch eine Heizung (nicht dargestellt) auf eine vorgegebene Prozesstemperatur temperiert oder der Metalllegierungskörper 10 besitzt selbst die erforderliche Prozesstemperatur aufgrund einer Vorheizung (nicht dargestellt).Fig. 1a shows a schematic representation of the transverse view of the device according to the invention during three different process sections. During the first process cycle (left illustration), the metal alloy body 10 is compressed within a container 11 by a first punch element 12. In this case, only the cross section of the metal alloy body 10 is visible in this schematic illustration. The upwardly directed surface of the metal alloy body 10 corresponds to a defined surface segment. The first stamp member 12 compresses only one part symmetrical with respect to the shape of the sheet segment. After complete compression of the first stamp member 12 in the metal alloy body 10, the second stamp member 13 is inserted into the remaining gap of the surface segment and pressed into the metal alloy body 10 in a second process section (middle illustration). After completion of this second Presszyklusses (right illustration) is due to volumetric restoring forces in the second process cycle unloaded first punch member 12 has been partially pushed out of the container 11 and the metal alloy body 10 has assumed its Ausgangsvolumenform. Throughout the process, the metal alloy body 10 is tempered by a heater (not shown) to a predetermined process temperature or the metal alloy body 10 itself has the required process temperature due to preheating (not shown).

Die Fig. 1 b zeigt eine schematische Längsansicht der erfindungsgemäßen Vorrichtung in zwei unterschiedlichen Prozessstadien. Innerhalb eines durch das erste Stempelelement 12 definierten Flächensegments A entlang der Oberfläche des Metalllegierungskörpers 10 wird das erfindungsgemäßen Verfahren durchgeführt, in dem in einem ersten Prozesszyklus das erste Stempelelement 12 in den Metalllegierungskörper 10 gepresst und in einem zweiten Presszyklus das zweite Stempelelement 13 ebenfalls in den Metalllegierungskörper 10 gepresst wird und das erste Stempelelement 12 unbelastet zurückrelaxiert (linke Darstellung). Anschließend wird das erfindungsgemäße Verfahren auf das folgende Flächensegment B und auf die anschließenden Flächensegmente entlang der Oberfläche angewendet (rechte Darstellung).1 b shows a schematic longitudinal view of the device according to the invention in two different process stages. The process according to the invention is carried out within a surface segment A defined by the first stamp element 12 along the surface of the metal alloy body 10, in FIG in a first cycle of the first punch member 12 is pressed into the metal alloy body 10 and in a second pressing cycle, the second punch member 13 is also pressed into the metal alloy body 10 and the first punch member 12 back unloaded unloaded (left view). Subsequently, the method according to the invention is applied to the following surface segment B and to the adjoining surface segments along the surface (right-hand representation).

In der Fig. 2a ist eine schematische Darstellung der Queransicht der erfindungsgemäßen Vorrichtung während dreier unterschiedlicher Prozessabschnitte zu sehen. Das Flächensegment der Oberfläche des Metalllegierungskörpers wird hierbei asymmetrisch bezüglich der Mittelachse des Containers 11 belastet. Während des ersten Prozesszyklussees (linke Darstellung) wird der Metalllegierungskörper 10 innerhalb eines Containers 11 durch ein erstes asymmetrisches Stempelelement 12 komprimiert. Dabei ist in dieser schematischen Darstellung nur der Querschnitt des Metalllegierungskörpers 10 sichtbar. Das ersten Stempelelement 12 komprimiert nur einen asymmetrischen Teil des Flächensegments. Nach vollständiger Pressung des ersten Stempelelements 12 in den Metalllegierungskörper 10 wird in einem zweiten Prozessabschnitt (mittlere Darstellung) das zweite Stempelelement 13 in den verbleibenden Zwischenraum des Flächensegments eingefügt und in den Metalllegierungskörper 10 hineingepresst. Nach Abschluss diese zweiten Presszyklusses (rechte Darstellung) ist aufgrund volumentrische Rückstellkräfte das im zweiten Prozesszyklus unbelastete erste Stempelelement 12 teilweise aus dem Container 11 herausgedrückt worden und der Metalllegierungskörper 10 hat seine Ausgangsvolumenform angenommen. Während des gesamten Prozessen wird der Metalllegierungskörper 10 durch eine Heizung (nicht dargestellt) auf eine vorgegebene Prozesstemperatur temperiert oder der Metalllegierungskörper 10 besitzt selbst die erforderliche Prozesstemperatur aufgrund einer Vorheizung (nicht dargestellt).FIG. 2 a shows a schematic illustration of the transverse view of the device according to the invention during three different process sections. The surface segment of the surface of the metal alloy body is in this case loaded asymmetrically with respect to the central axis of the container 11. During the first cycle of the process (left illustration), the metal alloy body 10 is compressed within a container 11 by a first asymmetrical punch element 12. In this case, only the cross section of the metal alloy body 10 is visible in this schematic representation. The first stamp member 12 compresses only an asymmetric part of the sheet segment. After complete compression of the first stamp member 12 in the metal alloy body 10, the second stamp member 13 is inserted into the remaining gap of the surface segment and pressed into the metal alloy body 10 in a second process section (middle illustration). After completion of this second Presszyklusses (right illustration) is due to volumetric restoring forces in the second process cycle unloaded first punch member 12 has been partially pushed out of the container 11 and the metal alloy body 10 has assumed its Ausgangsvolumenform. Throughout the process, the metal alloy body 10 is tempered by a heater (not shown) to a predetermined process temperature or the metal alloy body 10 itself has the required process temperature due to preheating (not shown).

Die Fig. 2b zeigt eine schematische Längsansicht der erfindungsgemäßen Vorrichtung in zwei unterschiedlichen Prozessstadien für eine asymmetrische Variante der erfinderischen Anordnung in Fig. 1b. Innerhalb eines definierten Flächensegments A wird das erfindungsgemäßen Verfahren durchgeführt, in dem in einem ersten Prozesszyklus das erste Stempelelement 12 in den Metalllegierungskörper 10 asymmetrisch gepresst und in einem zweiten Presszyklus das zweite Stempelelement 13 ebenfalls in den Metalllegierungskörper 10 gepresst wird, wobei im zweiten Presszyklus das erste Stempelelement 12 unbelastet zurückrelaxiert (linke Darstellung). Anschließend wird das erfindungsgemäße Verfahren auf das folgende Flächensegment B und auf die anschließenden Flächensegmente entlang der Oberfläche angewendet (rechte Darstellung).FIG. 2b shows a schematic longitudinal view of the device according to the invention in two different process stages for an asymmetric variant of the inventive arrangement in FIG. 1b. Within a defined surface segment A, the method according to the invention is carried out in which the first stamp element 12 is pressed asymmetrically into the metal alloy body 10 in a first process cycle and the second stamp element 13 is pressed in a second pressing cycle is also pressed into the metal alloy body 10, wherein in the second pressing cycle, the first stamp member 12 back unloaded unloaded (left illustration). Subsequently, the method according to the invention is applied to the following surface segment B and to the adjoining surface segments along the surface (right-hand representation).

Fig. 3 zeigt eine schematische Queransicht der erfindungsgemäßen Vorrichtung mit einem bezüglich der Mittelachse asymmetrischen ersten Stempelelement. In einem ersten Prozesszyklus wird das erste Stempelelement 12 durch einen Kraftüberträger 14, wie z.B. eine Stahlplatte, in den Container 11 gepresst (linke Darstellung). Als korrespondierende Halterung wird der Boden des Containers 11 durch eine Stahlplatte 15 fixiert. Nach Ablauf des erste Presszyklusses wird der Kraftüberträger 14 durch einen asymmetrischen Kraftüberträger 14 ersetzt (mittlere Darstellung). In dem Kraftüberträger 14 befindet sich an der zum ersten Stempelelement 12 korrespondierenden Position ein rückstellendes Federelement 16, das während des zweiten Prozesszyklussees die Relaxation des ersten Stempelelements 12 bei gleichzeitiger Kompression des zweiten Stempelelements 13 in den Metalllegierungskörpers 10 durch die gewählte Federkonstante steuert (rechte Darstellung). Durch das Federelement 16 wird zu Beginn des zweiten Presszyklusses eine rückartige Bewegung der dekomprimierenden ersten Teilfläche vermieden. Diese ruckartige Bewegung wird vor allem durch die Haftreibung zwischen der Innenfläche des Containers 11 und des ersten Stempelelements 12 bestimmt.3 shows a schematic transverse view of the device according to the invention with a first stamp element that is asymmetrical with respect to the center axis. In a first process cycle, the first die element 12 is replaced by a force transducer 14, such as a force transducer. a steel plate, pressed into the container 11 (left illustration). As a corresponding holder, the bottom of the container 11 is fixed by a steel plate 15. After the end of the first pressing cycle, the force transmitter 14 is replaced by an asymmetrical force transmitter 14 (middle illustration). In the force transmitter 14 is located at the position corresponding to the first stamp member 12 a restoring spring element 16 which controls the relaxation of the first stamp member 12 during simultaneous compression of the second punch member 13 in the metal alloy body 10 by the selected spring constant during the second process cycle lake (right illustration) , By the spring element 16, a rearward movement of the decompressing first partial surface is avoided at the beginning of the second pressing cycle. This jerky movement is mainly determined by the static friction between the inner surface of the container 11 and the first stamp member 12.

Die Fig. 4 zeigt eine Aufnahme der Korngrößen innerhalb eines Metalllegierungskörpers vor und nach der Anwendung des erfindungsgemäßen Verfahrens. Als Ausgangskörper dient eine AZ31 Magnesiumlegierung mit einer durchschnittlichen Korngröße von 800µm (Fig. 4A). Nach Anwendung des erfindungsgemäßen Verfahrens bei einer Prozesstemperatur von 400°C und einer Nachheizperiode nach Abschluss der Presszyklen von 30min bei 400°C ist es in der Deformationsregion der Flächensegmente zu einer Verkleinerung der Korngrößen auf durchschnittliche 17 µm gekommen. Die Verkleinerung der Korngrößen ist - gemessen von der Außenseite des Magnesiumlegierungskörpers - bis in eine Deformationstiefe von 9mm messbar.Fig. 4 shows a recording of the grain sizes within a metal alloy body before and after the application of the method according to the invention. The starting material used is an AZ31 magnesium alloy with an average particle size of 800 μm (FIG. 4A). After applying the method according to the invention at a process temperature of 400 ° C. and a postheating period after completion of the press cycles of 30 minutes at 400 ° C., the particle sizes in the deformation region have been reduced to an average of 17 μm. The reduction of the grain sizes - measured from the outside of the magnesium alloy body - to a deformation depth of 9mm measurable.

Fig. 5 zeigt zwei unterschiedliche Konfigurationen der erfindungsgemäßen Vorrichtung. In der Konfiguration Fig. 5A wird in einem kreisförmigen Container 11 mit einem Innendruchmesser von 30mm ein kreisförmiger Magnesiumlegierungskörper 10 eingeführt. Dieser Magnesiumlegierungskörper 10 wird durch ein erstes ringförmiges Stempelelement 12 belastet, wobei der Innendruchmesser des ersten Stempelelements 12 mit 15mm dem Aussendruchmesser des zweiten Stempelelements 13 entspricht. Die Stempelelemente 12,13 sind über eine Stahlplatte 14 als Kraftüberträger mit einer äußeren Presse (nicht dargestellt) verbunden. In der Konfiguration Fig. 5B sind beide Stempelelemente 12,13 halbkreisförmig ausgebildet, wobei der jeweilige Außendurchmesser der Stempelelemente 12,13 dem Innendruckmesser des Containers 10 entspricht. Weiterhin ist in dieser Konfiguration der Kraftüberträger 14 mit einem Feder-rückstellenden Element 16 versehen. Durch das Federrückstellende Element 16 wird zu Beginn des zweiten Presszyklusses eine rückartige Bewegung der dekomprimierenden ersten Teilfläche vermieden.Fig. 5 shows two different configurations of the device according to the invention. In the configuration of Fig. 5A, a circular magnesium alloy body 10 is inserted in a circular container 11 having an inner diameter of 30 mm. This magnesium alloy body 10 is loaded by a first annular punch element 12, wherein the inner diameter of the first punch element 12 with 15 mm corresponds to the outer diameter of the second punch element 13. The stamp elements 12,13 are connected via a steel plate 14 as a power transmission with an outer press (not shown). In the configuration of FIG. 5B, both stamp elements 12, 13 are semicircular, with the respective outside diameter of the stamp elements 12, 13 corresponding to the internal pressure gauge of the container 10. Furthermore, in this configuration, the power transmission 14 is provided with a spring-restoring element 16. By spring-returning element 16, a rearward movement of the decompressing first partial surface is avoided at the beginning of the second pressing cycle.

Nur in diesen beiden Beispielen sind alle Abmessungen des Magnesiumlegierungskörpers 10 geringer als die des Containers 11. Auch die absoluten Abmessungen der gezeigten Konfigurationen sind nur als Beispiele im Labormaßstab anzusehen.Only in these two examples are all the dimensions of the magnesium alloy body 10 less than that of the container 11. The absolute dimensions of the configurations shown are only to be regarded as examples on a laboratory scale.

In der Fig. 6 ist eine schematische Darstellung des erfindungsgemäßen Erzeugnisses abgebildet. Der Metalllegierungskörper 10 ist dadurch gekennzeichnet, dass auf zwei, zueinander symmetrischen Seitenflächen bezüglich der Längsachse des Metalllegierungskörper 10 eine Verringerung der Korngrößen durch das erfindungsgemäße Verfahren erreicht wird und durch diese Sandwich-Struktur bezüglich der erfindungsgemäß bearbeiteten und unbearbeiteten Oberflächen die Bruch- und Rissneigung vor allem an den Rändern des Metalllegierungskörpers 10 bei der Weiterumformung, insbesondere beim Walzen, des erfindungsgemäßen Erzeugnisses reduziert wird.FIG. 6 shows a schematic representation of the product according to the invention. The metal alloy body 10 is characterized in that on two mutually symmetrical side surfaces with respect to the longitudinal axis of the metal alloy body 10, a reduction of the grain sizes is achieved by the inventive method and by this sandwich structure with respect to the inventively processed and unprocessed surfaces, the fracture and cracking tendency especially is reduced at the edges of the metal alloy body 10 during further forming, in particular during rolling, of the product according to the invention.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
MetalllegierungskörperMetal alloy body
1111
ContainerContainer
1212
erstes Stempelelementfirst stamp element
1313
zweites Stempelelementsecond stamp element
1414
KraftüberträgerForce transmitter
1515
Stahlplattesteel plate
1616
Federelementspring element

Claims (26)

  1. A method for the production of metal alloys with low grain sizes within a non-extruded metal alloy body, characterised in that the surface of the non-extruded metal alloy body (10) with a grain size of greater than 200 µm is alternately locally compressed and decompressed by a cyclic, location-dependent alternate loading of the surface of the non-extruded metal alloy body (10).
  2. The method according to claim 1, characterised in that the cyclic, location-dependent alternate loading of the surface of the metal alloy body (10) is effected with temporary pressure by means of pressure-exerting elements on individual defined area segments of the surface of the metal alloy body (10).
  3. The method according to claims 1 and 2, characterised in that, in an area segment of the surface, in a first pressing cycle one of two part areas of the area segment is initially loaded by means of pressure-exerting elements and in a second pressing cycle the second part area of the area segment is then loaded with other pressure-exerting elements, wherein the first part area remains unloaded in the second pressing cycle.
  4. The method according to claims 1 to 3, characterised in that, within an area segment, during the second pressing cycle the unloaded first part area is relaxed by means of volumetric forces within the metal alloy body (10) and/or by means of tension-exerting elements and/or by means of spring-returning elements.
  5. The method according to claims 1 to 4, characterised in that, on completion of the second pressing cycle, the metal alloy body (10) is restored to its initial volume shape as existed before the two pressing cycles.
  6. The method according to claims 3 to 5, characterised in that, on completion of the two pressing cycles, a further number of whole-number pressing cycles are carried out on the area segment.
  7. The method according to claims 3 to 6, characterised in that the shape of the respective area segment is symmetrical, and circular or rectangular in particular.
  8. The method according to claims 1 to 7, characterised in that, during the pressing cycles, the temperature within the entire metal alloy body (10) is kept constant in a range of up to 600°C.
  9. The method according to claims 1 to 8, characterised in that on the surface of the metal alloy body (10) the area segments are defined in such a way that they adjoin one another and the surface of the metal alloy body (10) in terms of at least one direction at right angles to the longitudinal axis of the metal alloy body (10) is completely filled with area segments.
  10. The method according to claim 9, characterised in that compression and decompression are effected successively on adjoining area segments cyclically and alternately along the surface of the metal alloy body (10).
  11. The method according to claim 9, characterised in that compression and decompression are effected successively on adjoining area segments cyclically and simultaneously along the surface of the metal alloy body (10).
  12. The method according to claims 10 or 11, characterised in that compression and decompression are effected successively on adjoining area segments cyclically and simultaneously along several surface directions of the metal alloy body (10).
  13. A device for implementation of the method according to claims 1 to 12, characterised in that, on a defined area segment on the surface of the metal alloy body (10) with a coarse grain size,
    a) a pressure-exerting element (12) loads one of two part areas of the area segment during a first pressing cycle and then
    b) a different pressure-exerting element (13), precisely fitting and corresponding to the first one, is applied to the other, second part area and loads this second part area in a subsequent second pressing cycle.
  14. The device according to claim 13, characterised in that a pressure-resistant container (11) parallel with the surface of the metal alloy body (10) is used for vertically guiding the pressure-exerting elements (12, 13), wherein an area segment is defined by the inner diameter of the container (11).
  15. The device according to claims 13 to 14, characterised in that the pressure-exerting elements (12, 13) fill the inner diameter of the container (11) correspondingly and with a precise fit.
  16. The device according to claims 14 to 15, characterised in that the cross section of the metal alloy body (10) corresponds to the cross section of the container (11).
  17. The device according to claims 14 to 16, characterised in that an external press generates the pressure in the interior of the container (11) with plunger elements (12, 13) on one of two part areas in each case.
  18. The device according to claim 17, characterised in that a power transmitter (14) joined to the press drives the plunger elements (12, 13) alternately and cyclically and transmits the pressure from the press to the respective part area of the plunger elements (12, 13).
  19. The device according to claim 18, characterised in that, after the loading of the first plunger element (12) by means of the press and the power transmitter (14), the power transmitter (14) is relieved and the pressure from the press via the reloading power transmitter (14) is subsequently exclusively transmitted via the second plunger element (13).
  20. The device according to claims 13 to 19, characterised in that the metal alloy body (10), the plunger elements (12, 13), the power transmitter (14) and the steel plate (15) are heated to a constant press temperature in a range of up to 600°C.
  21. The device according to claims 13 to 20, characterised in that the plunger face of the first plunger element (12), particularly as an external face corresponding to the inner diameter of the container (11), is arranged with a circular recess or as a face filling the inner diameter of the container (11) on one half side and the second part area corresponding to the first part area is formed within the inner diameter of the container (11).
  22. The device according to claims 13 to 21, characterised in that the plunger face of the second plunger element (13) is formed precisely fitting and corresponding to the first plunger face of the first plunger element (12) within the inner diameter of the container (11).
  23. The device according to claims 13 to 22, characterised in that the height of the plunger elements (12, 13) and the height of the metal alloy body (10) are together greater than the height of the container (11), wherein the plunger elements (12, 13) are each pressed during a pressing cycle so far into the metal alloy body (10) that the top edge of the respective plunger elements (12, 13) is aligned with the top edge of the container (11).
  24. The device according to claims 17 to 23, characterised in that the first (12) and second plunger elements (13) of an area segment are each individually drivable.
  25. The device according to claims 17 to 24, characterised in that, in at least one area segment, in the first pressing cycle the first plunger element (12) is driven by a power transmitter (14) and in a second pressing cycle the second plunger element (13) is driven and subsequently a new pressing cycle is initiated in the immediately adjoining area segment.
  26. The device according to claims 17 to 24, characterised in that, in terms of a direction at right angles to the longitudinal axis of the metal alloy body, in the first pressing cycle the first plunger element (12) is driven in each case by a power transmitter (14) and in a second pressing cycle the second plunger element (13) is driven in each case at the same time.
EP03798871A 2002-09-30 2003-09-26 Method and device for the production of metal alloy bodies having localized small particle size Expired - Lifetime EP1546428B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10245896A DE10245896A1 (en) 2002-09-30 2002-09-30 Method and device for producing metal alloy bodies with localized small grain sizes
DE10245896 2002-09-30
PCT/DE2003/003312 WO2004031431A2 (en) 2002-09-30 2003-09-26 Method and device for the production of metal alloy bodies having localized small particle size

Publications (2)

Publication Number Publication Date
EP1546428A2 EP1546428A2 (en) 2005-06-29
EP1546428B1 true EP1546428B1 (en) 2007-08-29

Family

ID=31984346

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03798871A Expired - Lifetime EP1546428B1 (en) 2002-09-30 2003-09-26 Method and device for the production of metal alloy bodies having localized small particle size

Country Status (5)

Country Link
EP (1) EP1546428B1 (en)
AT (1) ATE371753T1 (en)
AU (1) AU2003275934A1 (en)
DE (3) DE10245896A1 (en)
WO (1) WO2004031431A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109304375B (en) * 2018-11-27 2021-01-05 中北大学 Multi-male-die step-by-step backward extrusion forming method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1456050A (en) * 1974-05-13 1976-11-17 British Aluminium Co Ltd Production of metallic articles
GB2129724B (en) * 1982-11-11 1986-01-29 Inst Po Metalloznanie I Tekno Extrusion and stamping of material
US5571348A (en) * 1993-02-16 1996-11-05 National Tsing Hua University Method and apparatus for improving alloy property and product produced thereby
US5328530A (en) * 1993-06-07 1994-07-12 The United States Of America As Represented By The Secretary Of The Air Force Hot forging of coarse grain alloys
CA2141775A1 (en) * 1994-09-02 1996-03-03 Murray W. Mahoney Process for imparting a localized fine grain microstructure to selected surfaces in aluminum alloys
US5868026A (en) * 1994-10-28 1999-02-09 Wyman-Gordon Company Stepped, segmented, closed-die forging

Also Published As

Publication number Publication date
WO2004031431A3 (en) 2004-08-12
DE50308081D1 (en) 2007-10-11
EP1546428A2 (en) 2005-06-29
AU2003275934A1 (en) 2004-04-23
AU2003275934A8 (en) 2004-04-23
DE10245896A1 (en) 2004-04-08
WO2004031431A2 (en) 2004-04-15
DE10393888D2 (en) 2005-09-01
ATE371753T1 (en) 2007-09-15

Similar Documents

Publication Publication Date Title
DE69914248T2 (en) Process for the production of completely sealed helical gears made of metal powder
DE2409668A1 (en) METHOD OF COMPRESSING A METAL POWDER COMPACT AND THE DEVICE AND COMPACT FOR CARRYING OUT THIS PROCESS
DE3343210C1 (en) Method and device for the production of compacted shaped bodies
EP2480358A1 (en) Method for producing a composite part
EP0328898A1 (en) Process for preparing a heat-resistant article from a powder-metallurgically prepared work piece with a high transversal ductibility based on aluminium
WO2018095774A1 (en) Method for machining a workpiece from a metallic material
EP0266712B1 (en) Method and device for manufacturing friction elements, especially synchronizing parts in motor vehicle transmissions
DE2333136A1 (en) METHOD AND DEVICE FOR MANUFACTURING A SINTER METAL PRODUCT
EP1252947B1 (en) Method for the manufacture of an axle element for a motor vehicle
EP1546428B1 (en) Method and device for the production of metal alloy bodies having localized small particle size
DE19955321B4 (en) Rotary swaging machine with hydraulic force compensation
DE1929558A1 (en) Cold extrusion press
DE102013213072A1 (en) Apparatus and method for forming components from metal materials
EP0045984B1 (en) Process for manufacturing an article from a heat-resisting alloy
DE102011114844B4 (en) Process for the production of near net shape pre-forged gears on shaft shafts
EP0852525B1 (en) Method of producing large annular workpieces
US2446892A (en) Method of shaping bimetallic articles
DE3717606C2 (en)
AT409831B (en) METHOD FOR THE POWDER METALLURGICAL PRODUCTION OF PRE-MATERIAL AND PRE-MATERIAL
EP0452541A2 (en) Method of manufacturing hollow objects from tantalum
DE2438315C3 (en) Process for the powder metallurgical production of precision parts
DE102012013778A1 (en) Forming tool for massive forming of metal material, has die cavity that is formed corresponding to the shape of component, whose regions with steel material, are formed with different material properties
EP2888064B1 (en) Forming method
EP1710028A1 (en) Process for manufacturing a bolt shaped high precision body, bolt shaped body and manufacturing apparatus thereof
DE3536154C1 (en) Device for plastic upsetting of porous, rotationally symmetrical sintered metal parts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050216

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BRANDENBURGISCHE TECHNISCHE UNIVERSITAET COTTBUS

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50308081

Country of ref document: DE

Date of ref document: 20071011

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER & PARTNER PATENTANWAELTE AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071210

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
BERE Be: lapsed

Owner name: BRANDENBURGISCHE TECHNISCHE UNIVERSITAT COTTBUS

Effective date: 20070930

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080129

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071129

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071129

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090907

Year of fee payment: 7

Ref country code: CH

Payment date: 20090918

Year of fee payment: 7

Ref country code: GB

Payment date: 20090916

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090831

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100926

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50308081

Country of ref document: DE

Effective date: 20110401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110401

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100926

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100926

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090923

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230509