EP1540761B1 - Waveguide filter - Google Patents

Waveguide filter Download PDF

Info

Publication number
EP1540761B1
EP1540761B1 EP03798046A EP03798046A EP1540761B1 EP 1540761 B1 EP1540761 B1 EP 1540761B1 EP 03798046 A EP03798046 A EP 03798046A EP 03798046 A EP03798046 A EP 03798046A EP 1540761 B1 EP1540761 B1 EP 1540761B1
Authority
EP
European Patent Office
Prior art keywords
waveguide filter
substrate
component
waveguide
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03798046A
Other languages
German (de)
French (fr)
Other versions
EP1540761A1 (en
Inventor
Thomas Johannes MÜLLER
Marcus BÄRTELE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
EADS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EADS Deutschland GmbH filed Critical EADS Deutschland GmbH
Publication of EP1540761A1 publication Critical patent/EP1540761A1/en
Application granted granted Critical
Publication of EP1540761B1 publication Critical patent/EP1540761B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2088Integrated in a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters

Definitions

  • the invention relates to a waveguide filter according to claim 1.
  • Waveguide filters are common components in micro and millimeter wave technology. This type of filter usually has relatively high resonator qualities and low electrical tolerances for the passband and stopband. Waveguide filters are characterized by high blocking attenuation and low transmission loss. Waveguide filters are preferably used where, due to high demands on the electrical tolerance accuracy and quality, the use of planar filters is no longer possible.
  • the arrangement comprises a carrier plate having a first and second substrate surface, each having a coupling terminal and an electrically conductive plate.
  • a hood arranged over the carrier plate forms with the electrically conductive plate a hollow chamber which acts as a cavity resonator.
  • the resonant cavity acts as a high-pass filter, whereby only those frequencies are existent capable of propagation which are greater than a cutoff frequency determined by the geometrical dimensions of the cavity resonator.
  • a filter is off US 6,236,291 B1 known.
  • a housing is arranged, which forms a cavity with the upper side of the substrate.
  • a dielectric plate is arranged, which acts as a dielectric filter.
  • FIG. 1 another possible arrangement is shown.
  • the illustration shows the integration of a waveguide filter in a planar circuit according to the prior art.
  • the arrangement comprises a substrate S having on the top a first Stripline ML1 and a second stripline ML2, for example, has a microstrip line.
  • the first strip line ML1 serves to couple the transported electromagnetic wave into the waveguide filter HF
  • the second strip line ML2 serves to decouple the wave from the waveguide filter HF.
  • coupling and decoupling points are provided at both ends of the filter in order to convert the signal from the mode propagatable on the stripline into the waveguide mode propagatable in the filter, and vice versa.
  • the strip lines ML1, ML2 each end below a screen cap SC, which serves to prevent radiation of the electromagnetic wave in the environment.
  • a back-side metallization RM which has an opening DB in the area of the umbrella cap.
  • a metallic carrier plate TP is arranged, which also has an interruption DB in the region of the umbrella cap, so that the two openings in the rear-side metallization of the substrate and the carrier plate TP are aligned with one another.
  • the waveguide filter HF is screwed, wherein the openings of the waveguide filter are each connected to the openings DB.
  • An electromagnetic wave passes from the first stripline ML1 through the substrate S and the aperture DB into the waveguide filter HF. From the waveguide filter HF, the electromagnetic wave then passes through the openings DB to the second stripline ML2.
  • a disadvantage of integrating a conventional waveguide filter into a stripline environment is the associated high cost, which heretofore prevents widespread use of this principle. Cost drivers at this point are the high number of manufacturing steps and components and the necessary assembly of components on the front and back of the substrate.
  • the waveguide transition requires a precisely manufactured mechanically accurately positioned shield cap SC.
  • the metallizations on the substrate S must be patterned on both sides with a small offset between the conductor patterns on top and bottom.
  • the opening DB in the carrier plate is to be produced in an additional manufacturing step.
  • the substrate S is conductive and positionally accurate to connect to the support plate TP.
  • a to be produced as a separate component canopy is conductive and accurate position on the substrate S applied.
  • the waveguide filter HF usually consists of two separately produced parts (waveguide filter lower part with three side walls of the waveguide filter and cover part as the fourth side wall of the waveguide filter) which must be joined first. Afterwards, the attached filter has to be fixed exactly to the bottom of the carrier plate.
  • the waveguide filter usually comprises several components (screen cap, carrier plate, waveguide filter) and that this type of implementation has a high space requirement.
  • a waveguide filter is eg also off JP 2002 111312 A , as the closest prior art, or from Kinayman et al. "A novel surface-mount millimeter-wave bandpass filter" IEEE Microwave and Wireless Components Letters, IEEE Service Center, Piscatawa, NJ, US, Vol. 12, No. 3, March 2002, pages 76-78 known.
  • US 2,463,472 describes a cavity resonator mounted on a crystal plate. The connection between the resonator and the plate takes place by means of a web on the resonator.
  • EP 0 500 949 A1 describes an arrangement of a cylindrical waveguide.
  • the waveguide is formed of a metal body having a cylindrical bore and a shorting plate covering the borehole.
  • the metal body has a ridge which runs concentrically around the borehole.
  • the waveguide filter according to the invention consists essentially of a single, simple and inexpensive to manufacture component, which is applied to the top of a corresponding prestructured substrate.
  • the waveguide filter is not formed by the component or the substrate itself, but only by the inventive arrangement of the two elements to each other.
  • the component can advantageously be designed as an SMD (surface mounted device) component.
  • SMD surface mounted device
  • a plurality of the components used on a printed circuit board are SMD components.
  • the SMD component of the waveguide filter according to the invention can be suitably included in the manufacturing process.
  • the assembly of the assembly can be carried out from only one side. This results in further advantages in terms of manufacturing costs and time.
  • the component also referred to as the filter top, advantageously has a conductive surface and may be made of metal or metallized plastic, for example, with the latter resulting in further advantages in terms of manufacturing costs and weight.
  • the filter top is advantageously conductively connected to the substrate, in particular the filter top is soldered to the substrate or adhesively bonded.
  • the filter top part has a structure on the side wall opposite the top side of the substrate (that is, the side of the substrate to which the filter top part is fastened).
  • This structure can be predetermined depending on the desired filter properties of the waveguide filter.
  • the cross section of the waveguide filter is advantageous to choose according to the high-frequency signal to be filtered.
  • Fig. 2 shows in plan view the filter top with structured inner surface.
  • the filter top FB has at its opposite ends in each case an opening OZ, through which the microstrip lines (see. Fig. 4 and Fig. 5 ) are guided in the waveguide filter.
  • the filter top FB is substantially U-shaped (see. Fig. 3 ) and has a structure SK on the inside.
  • the structure SK is advantageously selected according to the desired filter properties of the waveguide filter.
  • the filter upper part FB according to the invention has a peripheral web ST ( Fig. 2 and Fig. 3 ).
  • This web ST sits on the waveguide filter directly on the metallized top of the substrate (not shown).
  • This web ST is expedient adapted for the respective, used, joining method.
  • the conductive solder or the conductive adhesive can be distributed, thus ensuring an optimal connection.
  • the web ST can be suitably adapted so that, for example, in the joining process "soldering" the solder surface occurring surface voltages are used to the fact that the component FB during the soldering process exactly on the in Fig. 4 positioned shown metallically structured layer.
  • Fig. 3 shows along the section AA 'according to Fig. 2 a sectional view of the filter top.
  • the substantially U-shaped filter top FB is shown with the internal structure SK.
  • the structure SK is shown here only as an example. Of course, other structural forms are possible depending on the application.
  • Fig. 4 shows in plan view, the metallized top of the substrate, on which the filter top to form the waveguide filter according to the invention can be placed.
  • the strip lines are denoted by ML1, ML2 and the metallization by TM, which forms a wall of the waveguide filter in the arrangement according to the invention.
  • the strip lines ML1, ML2 can be, for example, microstrip lines and serve for coupling and decoupling the electromagnetic waves into the waveguide filter.
  • Fig. 5 shows in sectional view along the section line BB 'from Fig. 2 and Fig. 4 the inventive arrangement for a waveguide filter.
  • the waveguide filter HF is formed by the fact that in Fig. 2 shown filter top FB fit on the in Fig. 4 illustrated metallized top surface TM of the substrate S is applied.
  • the strip lines ML1, ML2 executed on the upper side of the substrate S lead from the outside into the inner region of the waveguide filter HF.
  • the metallization TM on the upper side of the substrate S forms the fourth wall of the waveguide filter HF according to the invention.
  • the other side walls (not shown) of the waveguide filter HF are formed by the filter top FB.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Centrifugal Separators (AREA)
  • Treatment Of Sludge (AREA)

Abstract

The SMD component (FB) is fitted on top of the substrate (S). A sidewall of the waveguide filter is formed by the structured metallic layer (TM) of the substrate. Remaining side walls of the waveguide are formed by the component (FB). The waveguide filter includes input- and output coupling locations for electromagnetic waves. These waves propagate in the striplines (ML1, ML2) and are coupled into- and out from the waveguide filter.

Description

Die Erfindung betrifft ein Hohlleiterfilter gemäß Patentanspruch 1.The invention relates to a waveguide filter according to claim 1.

Hohlleiterfilter sind gängige Bauelemente in der Mikro- und Millimeterwellentechnik. Dieser Filtertyp besitzt üblicherweise relativ hohe Resonatorgüten und geringe elektrische Toleranzen für den Durchlass- und Sperrbereich. Hohlleiterfilter zeichnen sich durch hohe Sperrdämpfungen und geringe Durchgangsdämpfung aus. Hohlleiterfilter werden vorzugsweise dort eingesetzt, wo aufgrund hoher Anforderungen an die elektrische Toleranzgenauigkeit und Güte die Verwendung planarer Filter nicht mehr möglich ist.Waveguide filters are common components in micro and millimeter wave technology. This type of filter usually has relatively high resonator qualities and low electrical tolerances for the passband and stopband. Waveguide filters are characterized by high blocking attenuation and low transmission loss. Waveguide filters are preferably used where, due to high demands on the electrical tolerance accuracy and quality, the use of planar filters is no longer possible.

Aus DE 197 57 892 A1 ist eine Anordnung zur frequenzselektiven Unterdrückung von Hochfrequenzsignalen bekannt. Die Anordnung umfaßt dabei eine Trägerplatte mit einer ersten und zweiten Substratfläche mit jeweils einem Koppelanschluß sowie mit einer elektrisch leitfähigen Platte. Eine über die Trägerplatte angeordnete Haube bildet mit der elektrisch leitfähigen Platte eine Hohlkammer, welche als Hohlraumresonator wirkt. Der Hohlraumresonator wirkt als Hochpaß, wodurch nur solche Frequenzen ausbreitungsfähig existent sind, welche größer als eine durch die geometrischen Abmessungen des Hohlraumresonators bestimmte Grenzfrequenz sind.Out DE 197 57 892 A1 An arrangement for the frequency-selective suppression of high-frequency signals is known. The arrangement comprises a carrier plate having a first and second substrate surface, each having a coupling terminal and an electrically conductive plate. A hood arranged over the carrier plate forms with the electrically conductive plate a hollow chamber which acts as a cavity resonator. The resonant cavity acts as a high-pass filter, whereby only those frequencies are existent capable of propagation which are greater than a cutoff frequency determined by the geometrical dimensions of the cavity resonator.

Ein weiteres bekanntes Filter ist aus US 6,236,291 B1 bekannt. Auf der Oberseite eines auf der Unterseite komplett metallisch beschichteten Substrats ist ein Gehäuse angeordnet, welches mit der Oberseite des Substrats einen Hohlraum bildet. In diesem Hohlraum ist eine dielektrische Platte angeordnet, welche als dielektrisches Filter wirkt.Another known filter is off US 6,236,291 B1 known. On the top of a completely metallically coated substrate on the underside, a housing is arranged, which forms a cavity with the upper side of the substrate. In this cavity, a dielectric plate is arranged, which acts as a dielectric filter.

In Fig. 1 ist eine weitere mögliche Anordnung dargestellt. Die Darstellung zeigt die Integration eines Hohlleiterfilters in eine planare Schaltung gemäß dem Stand der Technik. Die Anordnung umfaßt ein Substrat S, das auf der Oberseite eine erste Streifenleitung ML1 und eine zweite Streifenleitung ML2, z.B. eine Mikrostreifenleitung aufweist. Die erste Streifenleitung ML1 dient dabei der Einkopplung der transportierten elektromagnetischen Welle in das Hohlleiterfilter HF und die zweite Streifenleitung ML2 dient der Auskopplung der Welle aus dem Hohlleiterfilter HF. Zur Ein-/Auskopplung des Signals von der Streifenleitung sind an beiden Enden des Filters Ein- und Auskoppelstellen vorhanden, um das Signal von der auf der Streifenleitung ausbreitungsfähigen Mode in die in dem Filter ausbreitungsfähige Hohlleitermode zu überführen und umgekehrt.In Fig. 1 another possible arrangement is shown. The illustration shows the integration of a waveguide filter in a planar circuit according to the prior art. The arrangement comprises a substrate S having on the top a first Stripline ML1 and a second stripline ML2, for example, has a microstrip line. The first strip line ML1 serves to couple the transported electromagnetic wave into the waveguide filter HF, and the second strip line ML2 serves to decouple the wave from the waveguide filter HF. For coupling / decoupling the signal from the stripline, coupling and decoupling points are provided at both ends of the filter in order to convert the signal from the mode propagatable on the stripline into the waveguide mode propagatable in the filter, and vice versa.

Diese Koppelstellen werden an beiden Enden des Filters aus den Streifenleitungen ML1, ML2, dem Substrat S, der Schirmkappe SC, den Durchkontaktierungen (Via-Holes) VH, der Rückseitenmasse RM und der Trägerplatte TP mit der Durchbrechung DB gebildet.These coupling points are formed at both ends of the filter from the strip lines ML1, ML2, the substrate S, the screen cap SC, the vias (via holes) VH, the backside ground RM and the carrier plate TP with the opening DB.

Die Streifenleitungen ML1, ML2 enden jeweils unterhalb einer Schirmkappe SC, welche dazu dient, eine Abstrahlung der elektromagnetischen Welle in die Umgebung zu verhindern. Auf der Unterseite des Substrats S befindet sich eine Rückseitenmetallisierung RM, welche im Bereich der Schirmkappe eine Durchbrechung DB aufweist. An der Unterseite des Substrats ist eine metallische Trägerplatte TP angeordnet, welche im Bereich der Schirmkappe ebenfalls eine Unterbrechung DB aufweist, so dass die beiden Durchbrechungen in der Rückseitenmetallisierung des Substrats und der Trägerplatte TP miteinander fluchten. Auf diese Trägerplatte TP ist das Hohlleiterfilter HF aufgeschraubt, wobei die Öffnungen des Hohlleiterfilters jeweils mit den Durchbrechungen DB verbunden sind.The strip lines ML1, ML2 each end below a screen cap SC, which serves to prevent radiation of the electromagnetic wave in the environment. On the underside of the substrate S is a back-side metallization RM, which has an opening DB in the area of the umbrella cap. On the underside of the substrate, a metallic carrier plate TP is arranged, which also has an interruption DB in the region of the umbrella cap, so that the two openings in the rear-side metallization of the substrate and the carrier plate TP are aligned with one another. On this support plate TP, the waveguide filter HF is screwed, wherein the openings of the waveguide filter are each connected to the openings DB.

Eine elektromagnetische Welle gelangt von der ersten Streifenleitung ML1 durch das Substrat S und die Durchbrechung DB in das Hohlleiterfilter HF. Vom Hohlleiterfilter HF gelangt die elektromagnetische Welle dann durch die Durchbrechungen DB zu der zweiten Streifenleitung ML2.An electromagnetic wave passes from the first stripline ML1 through the substrate S and the aperture DB into the waveguide filter HF. From the waveguide filter HF, the electromagnetic wave then passes through the openings DB to the second stripline ML2.

Ein Nachteil bei der Integration eines herkömmlichen Hohlleiterfilters in eine Streifenleitungsumgebung (z.B. in gedruckten Schaltungen oder Leiterkarten) sind die damit verbundenen hohen Kosten, die bisher eine breite Anwendung dieses Prinzips verhindern. Kostentreiber an dieser Stelle sind die hohe Anzahl an Fertigungsschritten und Komponenten und die notwendige Montage von Bauteilen auf Vorder- und Rückseite des Substrats.A disadvantage of integrating a conventional waveguide filter into a stripline environment (e.g., in printed circuit boards or printed circuit boards) is the associated high cost, which heretofore prevents widespread use of this principle. Cost drivers at this point are the high number of manufacturing steps and components and the necessary assembly of components on the front and back of the substrate.

Der Hohlleiterübergang erfordert eine präzise gefertigte mechanisch genau positionierte Schirmkappe SC. Die Metallisierungen auf dem Substrat S müssen beidseitig mit einem geringen Versatz zwischen den Leiterbahnbildern auf Unter- und Oberseite strukturiert werden. Die Durchbrechung DB in der Trägerplatte ist in einem zusätzlichen Fertigungsschritt herzustellen. Das Substrat S ist leitfähig und positionsgenau mit der Trägerplatte TP zu verbinden. Eine als separates Bauteil herzustellende Schirmkappe ist leitfähig und positionsgenau auf das Substrat S aufzubringen.The waveguide transition requires a precisely manufactured mechanically accurately positioned shield cap SC. The metallizations on the substrate S must be patterned on both sides with a small offset between the conductor patterns on top and bottom. The opening DB in the carrier plate is to be produced in an additional manufacturing step. The substrate S is conductive and positionally accurate to connect to the support plate TP. A to be produced as a separate component canopy is conductive and accurate position on the substrate S applied.

Das Hohlleiterfilter HF besteht üblicherweise aus zwei separat herzustellenden Teilen (Hohlleiterfilterunterteil mit drei Seitenwänden des Hohlleiterfilters und Deckelteil als vierte Seitenwand des Hohlleiterfilters) die zunächst gefügt werden müssen. Anschließend muss das gefügte Filter positionsgenau an der Unterseite der Trägerplatte befestigt werden.The waveguide filter HF usually consists of two separately produced parts (waveguide filter lower part with three side walls of the waveguide filter and cover part as the fourth side wall of the waveguide filter) which must be joined first. Afterwards, the attached filter has to be fixed exactly to the bottom of the carrier plate.

Weitere Nachteile ergeben sich daraus, dass das Hohlleiterfilter üblicherweise mehrere Bauteile (Schirmkappe, Trägerplatte, Hohlleiterfilter) umfasst und dass diese Art der Implementierung einen hohen Raumbedarf aufweist.Further disadvantages result from the fact that the waveguide filter usually comprises several components (screen cap, carrier plate, waveguide filter) and that this type of implementation has a high space requirement.

Ein Hohlleiterfilter ist z.B. auch aus JP 2002 111312 A , als nächstliegender Stand der Technik, oder aus Kinayman et al. "A novel surface-mountable millimeter-wave bandpass filter" IEEE Microwave and Wireless Components Letters, IEEE Service Center, Piscatawa, NJ, US, Bd. 12, Nr. 3, März 2002, Seiten 76-78 bekannt.A waveguide filter is eg also off JP 2002 111312 A , as the closest prior art, or from Kinayman et al. "A novel surface-mount millimeter-wave bandpass filter" IEEE Microwave and Wireless Components Letters, IEEE Service Center, Piscatawa, NJ, US, Vol. 12, No. 3, March 2002, pages 76-78 known.

US 2,463,472 beschreibt einen Hohlraumresonator, welcher auf eine Kristalplatte aufgebracht ist. Die Verbindung zwischen dem Resonator und der Platte erfolgt mittels eines Steges am Resonator. US 2,463,472 describes a cavity resonator mounted on a crystal plate. The connection between the resonator and the plate takes place by means of a web on the resonator.

EP 0 500 949 A1 beschreibt eine Anordnung eines zylindrischen Hohlleiters. Der Hohlleiter ist gebildet aus einem Metallkörper mit einem zylindrischen Bohrloch und einer Kurzschlussplatte, welche das Bohrloch abdeckt. Der Metallkörper weist einen Steg auf, welcher konzentrisch um das Bohrloch verläuft. EP 0 500 949 A1 describes an arrangement of a cylindrical waveguide. The waveguide is formed of a metal body having a cylindrical bore and a shorting plate covering the borehole. The metal body has a ridge which runs concentrically around the borehole.

Es ist Aufgabe der Erfindung, ein Hohlleiterfilter zu schaffen, welches einfach, kostengünstig, raumsparend und mit einer guten elektrischen Verbindung an eine Leiterplatte adaptiert werden kann.It is an object of the invention to provide a waveguide filter, which can be easily, inexpensively, compactly and with a good electrical connection to a circuit board adapted.

Diese Aufgabe wird mit dem Hohlleiterfilter gemäß den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Ausführungen des erfindungsgemäßen Hohlleiterfilters sind Gegenstand von Unteransprüchen.This object is achieved with the waveguide filter according to the features of patent claim 1. Advantageous embodiments of the waveguide filter according to the invention are the subject of dependent claims.

Ein Vorteil der Erfindung ist, dass das erfindungsgemäße Hohlleiterfilter im Wesentlichen aus einem einzigen, einfach und kostengünstig herzustellenden Bauteil besteht, welches auf der Oberseite eines entsprechend vorstrukturierten Substrats aufgebracht ist. Das Hohlleiterfilter wird dabei nicht durch das Bauteil oder das Substrat an sich gebildet, sondern erst durch die erfindungsgemäße Anordnung beider Elemente zueinander.An advantage of the invention is that the waveguide filter according to the invention consists essentially of a single, simple and inexpensive to manufacture component, which is applied to the top of a corresponding prestructured substrate. The waveguide filter is not formed by the component or the substrate itself, but only by the inventive arrangement of the two elements to each other.

Das Bauteil kann vorteilhaft als SMD-(surface mounted device)-Bauteil ausgeführt sein. Üblicherweise sind eine Vielzahl der auf einer Leiterkarte verwendeten Bauteile SMD-Bauteile. Das erfindungsgemäße SMD-Bauteil des Hohlleiterfilters kann zweckmäßig in den Fertigungsprozess einbezogen werden. Die Montage der Baugruppe kann von nur einer Seite aus durchgeführt werden. Hierdurch entstehen weitere Vorteile hinsichtlich Fertigungskosten- und zeit.The component can advantageously be designed as an SMD (surface mounted device) component. Usually, a plurality of the components used on a printed circuit board are SMD components. The SMD component of the waveguide filter according to the invention can be suitably included in the manufacturing process. The assembly of the assembly can be carried out from only one side. This results in further advantages in terms of manufacturing costs and time.

Das Bauteil, auch als Filteroberteil bezeichnet, besitzt vorteilhaft eine leitfähige Oberfläche und kann z.B. aus Metall oder metallisiertem Kunststoff hergestellt sein, wobei bei letzterem weitere Vorteile hinsichtlich Herstellungskosten und Gewicht entstehen.The component, also referred to as the filter top, advantageously has a conductive surface and may be made of metal or metallized plastic, for example, with the latter resulting in further advantages in terms of manufacturing costs and weight.

Das Filteroberteil ist mit dem Substrat vorteilhaft leitend verbunden, insbesondere ist das Filteroberteil mit dem Substrat verlötet oder leitend verklebt.The filter top is advantageously conductively connected to the substrate, in particular the filter top is soldered to the substrate or adhesively bonded.

In einer vorteilhaften Ausführung der Erfindung weist das Filteroberteil auf der, der Oberseite des Substrats (also der Seite des Substrat, an der das Filteroberteil befestigt ist) gegenüberliegenden Seitenwand eine Struktur auf. Diese Struktur ist dabei je nach den gewünschten Filtereigenschaften des Hohlleiterfilters vorgebbar. Der Querschnitt des Hohlleiterfilters ist vorteilhaft entsprechend des zu filternden Hochfrequenzsignals zu wählen.In an advantageous embodiment of the invention, the filter top part has a structure on the side wall opposite the top side of the substrate (that is, the side of the substrate to which the filter top part is fastened). This structure can be predetermined depending on the desired filter properties of the waveguide filter. The cross section of the waveguide filter is advantageous to choose according to the high-frequency signal to be filtered.

Die Erfindung sowie weitere vorteilhafte Ausführungen werden im folgenden anhand von Zeichnungen näher erläutert. Es zeigen:

Fig. 1
einen an ein Substrat angebrachten Hohlleiterfilter gemäß dem Stand der Technik,
Fig. 2
in Draufsicht das Filteroberteil mit strukturierter Innenoberfläche eines Hohlleiterfilters gemäss der Erfindung
Fig. 3
im Längsschnitt das Filteroberteil entlang der Schnittline A-A' gemäß Fig. 2
Fig. 4
in Draufsicht die metallisierte Schicht auf der Oberseite des Substrats,
Fig. 5
einen Querschnitt einer erfindungsgemäßen Anordnung eines Hohlleiterfilters umfassend Substrat und Filteroberteil entlang der Schnittlinie B-B' gemäß Fig. 2 und Fig. 4.
The invention and further advantageous embodiments are explained in more detail below with reference to drawings. Show it:
Fig. 1
a waveguide filter according to the prior art attached to a substrate;
Fig. 2
in plan view the filter top with structured inner surface of a waveguide filter according to the invention
Fig. 3
in longitudinal section the filter shell along the section line AA 'according to Fig. 2
Fig. 4
in plan view the metallized layer on top of the substrate,
Fig. 5
a cross section of an inventive arrangement of a waveguide filter comprising the substrate and the filter top along the section line BB 'according to Fig. 2 and Fig. 4 ,

Fig. 2 zeigt in Draufsicht das Filteroberteil mit strukturierter Innenoberfläche. Das Filteroberteil FB weist an seinen gegenüberliegenden Enden jeweils eine Öffnung OZ auf, durch welche die Mikrostreifenleitungen (vgl. Fig. 4 und Fig. 5) in das Hohlleiterfilter geführt werden. Das Filteroberteil FB ist im Wesentlichen u-förmig (vgl. Fig. 3) und weist im Innern eine Struktur SK auf. Die Struktur SK ist dabei vorteilhaft entsprechend der gewünschten Filtereigenschaften des Hohlleiterfilters gewählt. Fig. 2 shows in plan view the filter top with structured inner surface. The filter top FB has at its opposite ends in each case an opening OZ, through which the microstrip lines (see. Fig. 4 and Fig. 5 ) are guided in the waveguide filter. The filter top FB is substantially U-shaped (see. Fig. 3 ) and has a structure SK on the inside. The structure SK is advantageously selected according to the desired filter properties of the waveguide filter.

Durch Fertigungsverfahren wie Fräsen oder Kunststoffspritzguß ist es möglich, mechanisch sehr genaue Strukturen SK zu erzeugens, so dass das Hohlleiterfilter entsprechend auch elektrisch nur geringe Toleranzen für die Einkopplung und die Filterfunktion aufweist.By manufacturing methods such as milling or plastic injection molding, it is possible to produce mechanically very accurate structures SK, so that the waveguide filter according to electrically also has only small tolerances for the coupling and the filter function.

Darüber hinaus weist das Filteroberteil FB erfindungsgemäß einen umlaufenden Steg ST auf (Fig. 2 und Fig. 3). Dieser Steg ST sitzt beim Hohlleiterfilter direkt auf der metallisierten Oberseite des Substrats auf (nicht dargestellt). Dieser Steg ST ist zweckmäßig für das jeweilige, zum Einsatz kommende, Fügeverfahren angepaßt. In dem Zwischenraum, der sich beim Zusammenführen zwischen dem Filteroberteil und dem Substrat ergibt, kann sich das leitfähige Lot oder der leitfähige Kleber verteilen und so eine optimale Verbindung gewährleisten.In addition, the filter upper part FB according to the invention has a peripheral web ST ( Fig. 2 and Fig. 3 ). This web ST sits on the waveguide filter directly on the metallized top of the substrate (not shown). This web ST is expedient adapted for the respective, used, joining method. In the space that results when merging between the filter top and the substrate, the conductive solder or the conductive adhesive can be distributed, thus ensuring an optimal connection.

Der Steg ST kann zweckmäßig so angepaßt werden, dass z.B. bei dem Fügeverfahren "Löten" die beim Lötvorgang auftretenden Lot-Oberflächenspannungen dazu ausgenutzt werden, dass sich das Bauteil FB während des Lötvorgangs exakt auf der in Fig. 4 dargestellten metallisch strukturierten Schicht positioniert.The web ST can be suitably adapted so that, for example, in the joining process "soldering" the solder surface occurring surface voltages are used to the fact that the component FB during the soldering process exactly on the in Fig. 4 positioned shown metallically structured layer.

Fig. 3 zeigt entlang der Schnittlinie A-A' gemäß Fig. 2 eine Schnittdarstellung des Filteroberteils. In der Darstellung ist das im wesentlich u-förmige Filteroberteil FB mit der innenliegenden Struktur SK gezeigt. Die Struktur SK ist hierbei lediglich beispielhaft dargestellt. Es sind je nach Anwendungsfall selbstverständlich auch andere Strukturformen möglich. Fig. 3 shows along the section AA 'according to Fig. 2 a sectional view of the filter top. In the illustration, the substantially U-shaped filter top FB is shown with the internal structure SK. The structure SK is shown here only as an example. Of course, other structural forms are possible depending on the application.

Fig. 4 zeigt in Draufsicht die metallisierte Oberseite des Substrats, auf welches das Filteroberteil zur Bildung des erfindungsgemäßen Hohlleiterfilters aufsetzbar ist. Dabei sind mit ML1, ML2 die Streifenleitungen und mit TM die Metallisierung bezeichnet, die in der erfindungsgemäßen Anordnung eine Wand des Hohlleiterfilters bildet. Die Streifenleitungen ML1, ML2 können z.B. Mikrostreifenleitungen sein und dienen der Ein- und Auskopplung der elektromagnetischen Wellen in das Hohlleiterfilter. Fig. 4 shows in plan view, the metallized top of the substrate, on which the filter top to form the waveguide filter according to the invention can be placed. In this case, the strip lines are denoted by ML1, ML2 and the metallization by TM, which forms a wall of the waveguide filter in the arrangement according to the invention. The strip lines ML1, ML2 can be, for example, microstrip lines and serve for coupling and decoupling the electromagnetic waves into the waveguide filter.

Fig. 5 zeigt in Schnittdarstellung entlang der Schnittlinie B-B' aus Fig. 2 und Fig. 4 die erfindungsgemäße Anordnung für ein Hohlleiterfilter. Das Hohlleiterfilter HF wird dadurch gebildet, dass das in Fig. 2 dargestellte Filteroberteil FB passgenau auf die in Fig. 4 dargestellte metallisierte Oberseite TM des Substrats S aufgebracht ist. Fig. 5 shows in sectional view along the section line BB 'from Fig. 2 and Fig. 4 the inventive arrangement for a waveguide filter. The waveguide filter HF is formed by the fact that in Fig. 2 shown filter top FB fit on the in Fig. 4 illustrated metallized top surface TM of the substrate S is applied.

Die auf der Oberseite des Substrats S ausgeführte Streifenleitungen ML1, ML2 führen von außen in den Innenbereich des Hohlleiterfilters HF. Die Metallisierung TM auf der Oberseite des Substrats S bildet die erfindungsgemäße vierte Wand des Hohlleiterfilters HF. Die anderen Seitenwände (nicht dargestellt) des Hohlleiterfilters HF werden durch das Filteroberteil FB gebildet.The strip lines ML1, ML2 executed on the upper side of the substrate S lead from the outside into the inner region of the waveguide filter HF. The metallization TM on the upper side of the substrate S forms the fourth wall of the waveguide filter HF according to the invention. The other side walls (not shown) of the waveguide filter HF are formed by the filter top FB.

Claims (8)

  1. Waveguide filter formed from a substrate (S) which, on the upper face, has a structured metallic layer (TM) with one or more metallic striplines (ML1, ML2) for carrying electromagnetic waves, wherein the structure of the structured metallic layer can be predetermined in accordance with the desired filter characteristics of the waveguide filter
    and having a component (FB)
    wherein the component (FB) is fitted to the upper face of the substrate (S) and
    wherein side wall of the waveguide filter is formed by the structured metallic layer (TM) on the substrate (S), and the other side walls of the waveguide filter are formed by the inner surface, facing the substrate (S), of the component (FB), wherein the waveguide filter has input and output points for coupling the electromagnetic wave that is carried in the striplines (ML1, ML2) into the waveguide filter, and vice versa, and
    wherein that side wall of the component (FB) which rests on the upper face of the substrate (S) has a structure (SK), characterized in that the component (FB) has a web (ST), which runs along the structure (SK) which can be predetermined for the corresponding filter characteristics, which web (ST) rests on the structured metallic layer (TM) on the upper face of the substrate (S) and represents a raised area of the inner edges of the structure (SK) on the component (FB).
  2. Waveguide filter according to Claim 1, characterized in that the component (FB) is a surface mounted device.
  3. Waveguide filter according to one of the preceding claims, characterized in that the cross section of the component (FB) is chosen in accordance with the predeterminable filter characteristics of the waveguide filter (HF).
  4. Waveguide filter according to one of the preceding claims, characterized in that the at least one stripline (ML1, ML2) which is provided on the upper face of the substrate projects into the waveguide filter.
  5. Waveguide filter according to one of the preceding claims, characterized in that the substrate (S) has rear-face metallization (RM) on the lower face.
  6. Waveguide filter according to one of the preceding claims, characterized in that the component (FB) and the substrate (S) are conductively connected, in particular being soldered or conductively adhesively bonded.
  7. Waveguide filter according to one of the preceding claims, characterized in that the component (FB) has a conductive surface.
  8. Use of a waveguide filter according to one of the preceding claims in a transmitting/receiving arrangement for a communication and/or radar application.
EP03798046A 2002-09-20 2003-07-30 Waveguide filter Expired - Lifetime EP1540761B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10243670A DE10243670B3 (en) 2002-09-20 2002-09-20 Waveguide filter with upper, structured metallic layer and striplines on substrate, also includes surface-mounted-device on top of substrate
DE10243670 2002-09-20
PCT/DE2003/002552 WO2004030140A1 (en) 2002-09-20 2003-07-30 Waveguide filter

Publications (2)

Publication Number Publication Date
EP1540761A1 EP1540761A1 (en) 2005-06-15
EP1540761B1 true EP1540761B1 (en) 2010-06-02

Family

ID=30128858

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03798046A Expired - Lifetime EP1540761B1 (en) 2002-09-20 2003-07-30 Waveguide filter

Country Status (14)

Country Link
US (1) US20060139129A1 (en)
EP (1) EP1540761B1 (en)
JP (1) JP2005539460A (en)
KR (1) KR101011282B1 (en)
CN (1) CN1327568C (en)
AT (1) ATE470250T1 (en)
AU (1) AU2003257395B2 (en)
BR (1) BR0306441A (en)
CA (1) CA2499583C (en)
DE (2) DE10243670B3 (en)
IL (1) IL167324A (en)
NO (1) NO20041576L (en)
PL (1) PL207567B1 (en)
WO (1) WO2004030140A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7576090B2 (en) 2004-12-27 2009-08-18 4Sc Ag Benzazole analogues and uses thereof
CN101557040B (en) * 2009-05-22 2013-03-13 中国电子科技集团公司第三十八研究所 Frequency-selective broadband waveguide slot antenna array
US11621464B2 (en) 2020-12-30 2023-04-04 Hughes Network Systems, Llc Waveguide assembly

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2463472A (en) * 1945-03-16 1949-03-01 Premier Crystal Lab Inc Cavity resonator
JPH04113703A (en) * 1990-09-03 1992-04-15 Matsushita Electric Ind Co Ltd Microwave circuit
JPH0590807A (en) * 1991-09-27 1993-04-09 Nissan Motor Co Ltd Waveguide/strip line converter
DE19757892A1 (en) * 1997-12-24 1999-07-01 Bosch Gmbh Robert Arrangement for frequency-selective suppression of high-frequency signals
JPH11289201A (en) * 1998-04-06 1999-10-19 Murata Mfg Co Ltd Dielectric filter, transmitter-receiver and communication equipment
JP2002111312A (en) * 2000-09-29 2002-04-12 Hitachi Kokusai Electric Inc Waveguide filter

Also Published As

Publication number Publication date
AU2003257395A1 (en) 2004-04-19
CA2499583A1 (en) 2004-04-08
DE10243670B3 (en) 2004-02-12
KR20050057508A (en) 2005-06-16
CA2499583C (en) 2009-10-06
IL167324A (en) 2010-11-30
EP1540761A1 (en) 2005-06-15
AU2003257395B2 (en) 2008-10-09
CN1327568C (en) 2007-07-18
WO2004030140A1 (en) 2004-04-08
PL207567B1 (en) 2011-01-31
KR101011282B1 (en) 2011-01-28
US20060139129A1 (en) 2006-06-29
BR0306441A (en) 2004-10-26
JP2005539460A (en) 2005-12-22
NO20041576L (en) 2004-04-19
ATE470250T1 (en) 2010-06-15
CN1682403A (en) 2005-10-12
DE50312777D1 (en) 2010-07-15
PL374172A1 (en) 2005-10-03

Similar Documents

Publication Publication Date Title
DE4330108C2 (en) Dielectric filter arrangement
DE69933682T2 (en) WAVE-LINE FILTERS FROM THE DAMPING TYPE WITH MULTIPLE DIELECTRIC LAYERS
DE10234737B4 (en) Surface wave duplexer and communication device
DE10248493A1 (en) Branch filter and communication device
DE10120248A1 (en) Structure for connecting a non-radiating dielectric waveguide and a metal waveguide, transmitter / receiver module for millimeter waves and transmitter / receiver for millimeter waves
DE10152533A1 (en) High-frequency circuit board unit, high-frequency module using the unit, electronic device using the module, and methods of manufacturing the high-frequency circuit board unit
DE20221966U1 (en) Acoustic wave device with a matching network
DE10350346A1 (en) High Frequency Line Waveguide Converter and High Frequency Package
DE19712065A1 (en) Duplex unit using surface wave bandpass filter
DE10243671B3 (en) Arrangement for transition between microstrip conductor, hollow conductor has one hollow conductor side wall as metallised coating on substrate with opening into which microstrip conductor protrudes
DE10239887A1 (en) LC filter circuit, laminated LC composite component, multiplexer and radio communication device
DE102006017072A1 (en) Filter and duplexer
DE69729030T2 (en) Dielectric multilayer device and associated manufacturing process
DE102006008500A1 (en) Transmitting circuit, antenna duplexer and high-frequency switch
DE10202699B4 (en) Non-reciprocal circuit device and communication device including the same
DE69829327T2 (en) Dielectric filter, transceiver, and communication device
DE60038079T2 (en) Dielectric resonance device, dielectric filter, assembled dielectric filter device, dielectric duplexer and communication device
DE102007046351B4 (en) High-frequency board that converts a transmission mode of high-frequency signals
EP1540761B1 (en) Waveguide filter
EP1769564B1 (en) Device and method for transmitting/receiving electromagnetic hf signals
DE69818326T2 (en) Dielectric filter, dielectric duplexer and process for their manufacture
DE60212545T2 (en) Non-reciprocal circuit arrangement and communication device
DE19918583C2 (en) Dielectric resonator device
EP1495513B1 (en) Electric matching network with a transformation line
DE69829826T2 (en) Composite filter and radio transmission device with it

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50312777

Country of ref document: DE

Date of ref document: 20100715

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20100623

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100723

Year of fee payment: 8

Ref country code: FI

Payment date: 20100714

Year of fee payment: 8

Ref country code: FR

Payment date: 20100805

Year of fee payment: 8

Ref country code: IT

Payment date: 20100723

Year of fee payment: 8

Ref country code: SE

Payment date: 20100715

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100903

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100722

Year of fee payment: 8

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: EADS DEUTSCHLAND G.M.B.H.

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101004

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

26N No opposition filed

Effective date: 20110303

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50312777

Country of ref document: DE

Effective date: 20110302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100730

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110801

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50312777

Country of ref document: DE

Effective date: 20120201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110730

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100730

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101203

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100913