EP1540761A1 - Waveguide filter - Google Patents

Waveguide filter

Info

Publication number
EP1540761A1
EP1540761A1 EP03798046A EP03798046A EP1540761A1 EP 1540761 A1 EP1540761 A1 EP 1540761A1 EP 03798046 A EP03798046 A EP 03798046A EP 03798046 A EP03798046 A EP 03798046A EP 1540761 A1 EP1540761 A1 EP 1540761A1
Authority
EP
European Patent Office
Prior art keywords
waveguide filter
substrate
component
waveguide
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03798046A
Other languages
German (de)
French (fr)
Other versions
EP1540761B1 (en
Inventor
Thomas Johannes MÜLLER
Marcus BÄRTELE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
EADS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EADS Deutschland GmbH filed Critical EADS Deutschland GmbH
Publication of EP1540761A1 publication Critical patent/EP1540761A1/en
Application granted granted Critical
Publication of EP1540761B1 publication Critical patent/EP1540761B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2088Integrated in a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters

Definitions

  • the invention relates to a waveguide filter according to claim 1.
  • Waveguide filters are common components in micro and millimeter wave technology. This type of filter usually has relatively high resonator qualities and low electrical tolerances for the passband and stopband. Waveguide filters are characterized by high blocking attenuation and low transmission loss. Waveguide filters are preferably used where, due to high demands on the electrical tolerance accuracy and quality, the use of planar filters is no longer possible.
  • the arrangement comprises a carrier plate having a first and second substrate surface, each having a coupling terminal and an electrically conductive plate.
  • a hood arranged over the carrier plate forms with the electrically conductive plate a hollow chamber which acts as a cavity resonator.
  • the resonant cavity acts as a high-pass filter, whereby only those frequencies are existent capable of propagation which are greater than a cutoff frequency determined by the geometrical dimensions of the cavity resonator.
  • a filter is known from US 6,236,291 B1.
  • a housing is arranged, which forms a cavity with the upper side of the substrate.
  • a dielectric plate is arranged, which acts as a dielectric filter.
  • FIG. 1 shows the integration of a waveguide filter in a planar circuit according to the prior art.
  • the arrangement comprises a substrate S having on the top a first Stripline ML1 and a second stripline ML2, for example, has a microstrip line.
  • the first strip line ML1 serves to couple the transported electromagnetic wave into the waveguide filter HF
  • the second strip line ML2 serves to decouple the wave from the waveguide filter HF.
  • input and output coupling points are present at both ends of the filter in order to convert the signal from the mode propagatable on the stripline into the waveguide mode propagatable in the filter, and vice versa.
  • the strip lines ML1, ML2 each end below a screen cap SC, which serves to prevent radiation of the electromagnetic wave in the environment.
  • a back-side metallization RM which has an opening DB in the area of the umbrella cap.
  • a metallic carrier plate TP is arranged, which also has an interruption DB in the region of the umbrella cap, so that the two openings in the rear-side metallization of the substrate and the carrier plate TP are aligned with one another.
  • the waveguide filter HF is screwed, wherein the openings of the waveguide filter are each connected to the openings DB.
  • An electromagnetic wave passes from the first stripline ML1 through the substrate S and the aperture DB into the waveguide filter HF. From the waveguide filter HF, the electromagnetic wave then passes through the openings DB to the second stripline ML2.
  • Cost drivers at this point are the high number of production steps and components and the necessary assembly of components on the front and back of the substrate.
  • the waveguide transition requires a precisely manufactured mechanically accurately positioned shield cap SC.
  • the metallizations on the substrate S must be patterned on both sides with a small offset between the conductor patterns on top and bottom.
  • the opening DB in the carrier plate is to be produced in an additional manufacturing step.
  • the substrate S is conductive and positionally accurate to connect to the support plate TP.
  • a to be produced as a separate component canopy is conductive and accurate position on the substrate S applied.
  • the waveguide filter HF usually consists of two separately produced parts (waveguide filter lower part with three side walls of the waveguide filter and cover part as a fourth side wall of the waveguide filter) which must first be joined. Afterwards, the attached filter has to be fixed exactly to the bottom of the carrier plate.
  • the waveguide filter usually comprises several components (screen cap, carrier plate, waveguide filter) and that this type of implementation has a high space requirement.
  • the waveguide filter is formed from a coated on top with a structured metallic layer and one or more metallic strip lines substrate and a component, wherein the component is applied to the top of the substrate and wherein a side wall of the waveguide filter through the structured metallic Layer of the substrate and the remaining side walls of the waveguide filter are formed by the component and wherein the waveguide filter input and output coupling for coupling the guided in the stripline electromagnetic wave in the waveguide filter and vice versa.
  • the waveguide filter according to the invention consists essentially of a single, simple and inexpensive to manufacture component, which is applied to the top of a corresponding prestructured substrate.
  • the waveguide filter is not formed by the component or the substrate itself, but only by the inventive arrangement of the two elements to each other.
  • the component can advantageously be designed as an SMD (surface mounted device) component.
  • SMD surface mounted device
  • a plurality of the components used on a printed circuit board are SMD components.
  • the SMD component of the waveguide filter according to the invention can be suitably included in the manufacturing process.
  • the assembly of the assembly can be carried out from only one side. This results in further advantages in terms of manufacturing costs and time.
  • the component also referred to as the filter top, advantageously has a conductive surface and may be made of metal or metallized plastic, for example, with the latter resulting in further advantages in terms of manufacturing costs and weight.
  • the filter top is advantageously conductively connected to the substrate, in particular the filter top is soldered to the substrate or adhesively bonded.
  • the filter top part has a structure on the side wall opposite the top side of the substrate (that is, the side of the substrate to which the filter top part is fastened). This structure can be predetermined depending on the desired filter properties of the waveguide filter.
  • the cross section of the waveguide filter is advantageous to choose according to the high-frequency signal to be filtered.
  • FIG. 3 is a longitudinal sectional view of the filter top along the section line A - A 'according to FIG. 2;
  • FIG. 4 is a top view of the metallised layer on the upper side of the substrate;
  • FIG. 5 shows a cross-section of an arrangement according to the invention of a waveguide filter comprising substrate and filter top along the section line B-B 'according to FIG. 2 and FIG. 4.
  • Fig. 2 shows in plan view the filter top with structured inner surface.
  • the filter upper part FB has at its opposite ends in each case an opening OZ, through which the microstrip lines (see Fig. 4 and Fig. 5) are guided into the waveguide filter.
  • the filter top FB is substantially U-shaped (see Fig. 3) and has a structure SK on the inside.
  • the structure SK is advantageously chosen in accordance with the desired filter properties of the waveguide filter.
  • the filter upper part FB advantageously has a peripheral web ST (FIGS. 2 and 3).
  • This web ST sits on the waveguide filter directly on the metallized top of the substrate (not shown).
  • This web ST is expedient adapted for the respective, used, joining method.
  • the conductive solder or the conductive adhesive can be distributed, thus ensuring an optimal connection.
  • the web ST can be suitably adapted so that e.g. in the joining method "soldering", the solder surface process voltages occurring during the soldering process are utilized so that the component FB is positioned exactly on the metallically structured layer shown in FIG. 4 during the soldering process.
  • FIG. 3 shows along the section line A-A 'of FIG. 2 is a sectional view of the filter top.
  • the substantially U-shaped filter top FB is shown with the internal structure SK.
  • the structure SK is shown here by way of example only. Of course, other structural forms are possible depending on the application.
  • FIG. 4 shows a top view of the metallized upper side of the substrate, onto which the upper filter element can be placed to form the waveguide filter according to the invention.
  • the strip lines are denoted by ML1, ML2 and the metallization by TM, which forms a wall of the waveguide filter in the arrangement according to the invention.
  • the strip lines ML1, ML2 may be e.g. Microstrip lines and serve the coupling and decoupling of the electromagnetic waves in the waveguide filter.
  • FIG. 5 shows, in a sectional illustration along the section line BB 'from FIG. 2 and FIG. 4, the arrangement according to the invention for a waveguide filter.
  • the waveguide filter HF is formed by the fact that the filter top FB shown in Fig. 2 is accurately fitted on the illustrated in Fig. 4 metallized top surface TM of the substrate S.
  • the metallization TM on the upper side of the substrate S forms the fourth wall of the waveguide filter HF according to the invention.
  • the other side walls (not shown) of the waveguide filter HF are formed by the filter top FB.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Centrifugal Separators (AREA)
  • Treatment Of Sludge (AREA)

Abstract

The SMD component (FB) is fitted on top of the substrate (S). A sidewall of the waveguide filter is formed by the structured metallic layer (TM) of the substrate. Remaining side walls of the waveguide are formed by the component (FB). The waveguide filter includes input- and output coupling locations for electromagnetic waves. These waves propagate in the striplines (ML1, ML2) and are coupled into- and out from the waveguide filter.

Description

HohlleiterfilterWaveguide filter
Die Erfindung betrifft ein Hohlleiterfilter gemäß Patentanspruch 1.The invention relates to a waveguide filter according to claim 1.
Hohlleiterfilter sind gängige Bauelemente in der Mikro- und Millimeterwellentechnik. Dieser Filtertyp besitzt üblicherweise relativ hohe Resonatorgüten und geringe elektrische Toleranzen für den Durchlass- und Sperrbereich. Hohlleiterfilter zeichnen sich durch hohe Sperrdämpfungen und geringe Durchgangsdämpfung aus. Hohlleiterfilter werden vorzugsweise dort eingesetzt, wo aufgrund hoher Anforderungen an die elektrische Toleranzgenauigkeit und Güte die Verwendung planarer Filter nicht mehr möglich ist.Waveguide filters are common components in micro and millimeter wave technology. This type of filter usually has relatively high resonator qualities and low electrical tolerances for the passband and stopband. Waveguide filters are characterized by high blocking attenuation and low transmission loss. Waveguide filters are preferably used where, due to high demands on the electrical tolerance accuracy and quality, the use of planar filters is no longer possible.
Aus DE 197 57 892 A1 ist eine Anordnung zur frequenzselektiven Unterdrückung von Hochfrequenzsignalen bekannt. Die Anordnung umfaßt dabei eine Trägerplatte mit einer ersten und zweiten Substratfläche mit jeweils einem Koppelanschluß sowie mit einer elektrisch leitfähigen Platte. Eine über die Trägerplatte angeordnete Haube bildet mit der elektrisch leitfähigen Platte eine Hohlkammer, welche als Hohlraumresonator wirkt. Der Hohlraumresonator wirkt als Hochpaß, wodurch nur solche Frequenzen ausbreitungsfähig existent sind, welche größer als eine durch die geometrischen Abmessungen des Hohlraumresonators bestimmte Grenzfrequenz sind.From DE 197 57 892 A1 an arrangement for the frequency-selective suppression of high-frequency signals is known. The arrangement comprises a carrier plate having a first and second substrate surface, each having a coupling terminal and an electrically conductive plate. A hood arranged over the carrier plate forms with the electrically conductive plate a hollow chamber which acts as a cavity resonator. The resonant cavity acts as a high-pass filter, whereby only those frequencies are existent capable of propagation which are greater than a cutoff frequency determined by the geometrical dimensions of the cavity resonator.
Ein weiteres bekanntes Filter ist aus US 6,236,291 B1 bekannt. Auf der Oberseite eines auf der Unterseite komplett metallisch beschichteten Substrats ist ein Gehäuse angeordnet, welches mit der Oberseite des Substrats einen Hohlraum bildet. In die- sem Hohlraum ist eine dielektrische Platte angeordnet, welche als dielektrisches Filter wirkt.Another known filter is known from US 6,236,291 B1. On the top of a completely metallically coated substrate on the underside, a housing is arranged, which forms a cavity with the upper side of the substrate. In this cavity, a dielectric plate is arranged, which acts as a dielectric filter.
In Fig. 1 ist eine weitere mögliche Anordnung dargestellt. Die Darstellung zeigt die Integration eines Hohlleiterfilters in eine planare Schaltung gemäß dem Stand der Technik. Die Anordnung umfaßt ein Substrat S, das auf der Oberseite eine erste Streifenleitung ML1 und eine zweite Streifenleitung ML2, z.B. eine Mikrostreifenlei- tung aufweist. Die erste Streifenleitung ML1 dient dabei der Einkopplung der transportierten elektromagnetischen Welle in das Hohlleiterfilter HF und die zweite Streifenleitung ML2 dient der Auskopplung der Welle aus dem Hohlleiterfilter HF. Zur Ein- /Auskopplung des Signals von der Streifenleitung sind an beiden Enden des Filters Ein- und Auskoppelstellen vorhanden, um das Signal von der auf der Streifenleitung ausbreitungsfähigen Mode in die in dem Filter ausbreitungsfähige Hohlleitermode zu überführen und umgekehrt.In Fig. 1, another possible arrangement is shown. The illustration shows the integration of a waveguide filter in a planar circuit according to the prior art. The arrangement comprises a substrate S having on the top a first Stripline ML1 and a second stripline ML2, for example, has a microstrip line. The first strip line ML1 serves to couple the transported electromagnetic wave into the waveguide filter HF, and the second strip line ML2 serves to decouple the wave from the waveguide filter HF. For coupling / decoupling the signal from the stripline, input and output coupling points are present at both ends of the filter in order to convert the signal from the mode propagatable on the stripline into the waveguide mode propagatable in the filter, and vice versa.
Diese Koppelstellen werden an beiden Enden des Filters aus den Streifenleitungen ML1 , ML2, dem Substrat S, der Schirmkappe SC, den Durchkontaktierungen (Via- Holes) VH, der Rückseitenmasse RM und der Trägerplatte TP mit der Durchbrechung DB gebildet.These coupling points are formed at both ends of the filter from the strip lines ML1, ML2, the substrate S, the shield cap SC, the vias (via holes) VH, the backside ground RM and the support plate TP with the opening DB.
Die Streifenleitungen ML1 , ML2 enden jeweils unterhalb einer Schirmkappe SC, welche dazu dient, eine Abstrahlung der elektromagnetischen Welle in die Umgebung zu verhindern. Auf der Unterseite des Substrats S befindet sich eine Rückseitenmetallisierung RM, welche im Bereich der Schirmkappe eine Durchbrechung DB aufweist. An der Unterseite des Substrats ist eine metallische Trägerplatte TP angeordnet, welche im Bereich der Schirmkappe ebenfalls eine Unterbrechung DB aufweist, so dass die beiden Durchbrechungen in der Rückseitenmetallisierung des Substrats und der Trägerplatte TP miteinander fluchten. Auf diese Trägerplatte TP ist das Hohlleiterfilter HF aufgeschraubt, wobei die Öffnungen des Hohlleiterfilters jeweils mit den Durchbrechungen DB verbunden sind.The strip lines ML1, ML2 each end below a screen cap SC, which serves to prevent radiation of the electromagnetic wave in the environment. On the underside of the substrate S is a back-side metallization RM, which has an opening DB in the area of the umbrella cap. On the underside of the substrate, a metallic carrier plate TP is arranged, which also has an interruption DB in the region of the umbrella cap, so that the two openings in the rear-side metallization of the substrate and the carrier plate TP are aligned with one another. On this support plate TP, the waveguide filter HF is screwed, wherein the openings of the waveguide filter are each connected to the openings DB.
Eine elektromagnetische Welle gelangt von der ersten Streifenleitung ML1 durch das Substrat S und die Durchbrechung DB in das Hohlleiterfilter HF. Vom Hohlleiterfilter HF gelangt die elektromagnetische Welle dann durch die Durchbrechungen DB zu der zweiten Streifenleitung ML2. Ein Nachteil bei der Integration eines herkömmlichen Hohlleiterfilters in eine Streifenleitungsumgebung (z.B. in gedruckten Schaltungen oder Leiterkarten) sind die damit verbundenen hohen Kosten, die bisher eine breite Anwendung dieses Prinzips verhindern. Kostentreiber an dieser Stelle sind die hohe Anzahl an Fertigungsschrit- ten und Komponenten und die notwendige Montage von Bauteilen auf Vorder- und Rückseite des Substrats.An electromagnetic wave passes from the first stripline ML1 through the substrate S and the aperture DB into the waveguide filter HF. From the waveguide filter HF, the electromagnetic wave then passes through the openings DB to the second stripline ML2. A drawback to integrating a conventional waveguide filter into a stripline environment (eg, in printed circuit boards or printed circuit boards) is the associated high cost that has hitherto prevented broad application of this principle. Cost drivers at this point are the high number of production steps and components and the necessary assembly of components on the front and back of the substrate.
Der Hohlleiterübergang erfordert eine präzise gefertigte mechanisch genau positionierte Schirmkappe SC. Die Metallisierungen auf dem Substrat S müssen beidseitig mit einem geringen Versatz zwischen den Leiterbahnbildern auf Unter- und Oberseite strukturiert werden. Die Durchbrechung DB in der Trägerplatte ist in einem zusätzlichen Fertigungsschritt herzustellen. Das Substrat S ist leitfähig und positionsgenau mit der Trägerplatte TP zu verbinden. Eine als separates Bauteil herzustellende Schirmkappe ist leitfähig und positionsgenau auf das Substrat S aufzubringen.The waveguide transition requires a precisely manufactured mechanically accurately positioned shield cap SC. The metallizations on the substrate S must be patterned on both sides with a small offset between the conductor patterns on top and bottom. The opening DB in the carrier plate is to be produced in an additional manufacturing step. The substrate S is conductive and positionally accurate to connect to the support plate TP. A to be produced as a separate component canopy is conductive and accurate position on the substrate S applied.
Das Hohlleiterfilter HF besteht üblicherweise aus zwei separat herzustellenden Teilen (Hohlleiterfilterunterteil mit drei Seitenwänden des Hohlleiterfilters und Deckelteil als vierte Seitenwand des Hohlleiterfilters) die zunächst gefügt werden müssen. Anschließend muss das gefügte Filter positionsgenau an der Unterseite der Träger- platte befestigt werden.The waveguide filter HF usually consists of two separately produced parts (waveguide filter lower part with three side walls of the waveguide filter and cover part as a fourth side wall of the waveguide filter) which must first be joined. Afterwards, the attached filter has to be fixed exactly to the bottom of the carrier plate.
Weitere Nachteile ergeben sich daraus, dass das Hohlleiterfilter üblicherweise mehrere Bauteile (Schirmkappe, Trägerplatte, Hohlleiterfilter) umfasst und dass diese Art der Implementierung einen hohen Raumbedarf aufweist.Further disadvantages result from the fact that the waveguide filter usually comprises several components (screen cap, carrier plate, waveguide filter) and that this type of implementation has a high space requirement.
Es ist somit Aufgabe der Erfindung, ein Hohlleiterfilter zu schaffen, welches einfach, kostengünstig und raumsparend an eine Leiterplatte adaptiert werden kann.It is therefore an object of the invention to provide a waveguide filter, which can be easily, inexpensively and compactly adapted to a circuit board.
Diese Aufgabe wird mit dem Hohlleiterfilter gemäß den Merkmalen des Patentan- spruchs 1 gelöst. Vorteilhafte Ausführungen des erfindungsgemäßen Hohlleiterfilters sind Gegenstand von Unteransprüchen. Gemäß der Erfindung wird das Hohlleiterfilter gebildet aus einem auf der Oberseite mit einer strukturierten metallischen Schicht und ein oder mehreren metallischen Streifenleitungen beschichteten Substrat und einem Bauteil, wobei das Bauteil auf der Oberseite des Substrat aufgebracht ist und wobei eine Seitenwand des Hohlleiter ilters durch die strukturierte metallische Schicht des Substrats und die übrigen Seitenwände des Hohlleiterfilters durch das Bauteil gebildet werden und wobei das Hohlleiterfilter Ein- und Auskoppelstellen zur Kopplung der in der Streifenleitung geführten elektromagnetischen Welle in das Hohlleiterfilter und umgekehrt aufweist.This object is achieved with the waveguide filter according to the features of patent claim 1. Advantageous embodiments of the waveguide filter according to the invention are the subject of dependent claims. According to the invention, the waveguide filter is formed from a coated on top with a structured metallic layer and one or more metallic strip lines substrate and a component, wherein the component is applied to the top of the substrate and wherein a side wall of the waveguide filter through the structured metallic Layer of the substrate and the remaining side walls of the waveguide filter are formed by the component and wherein the waveguide filter input and output coupling for coupling the guided in the stripline electromagnetic wave in the waveguide filter and vice versa.
Ein Vorteil der Erfindung ist, dass das erfindungsgemäße Hohlleiterfilter im Wesentlichen aus einem einzigen, einfach und kostengünstig herzustellenden Bauteil besteht, welches auf der Oberseite eines entsprechend vorstrukturierten Substrats aufgebracht ist. Das Hohlleiterfilter wird dabei nicht durch das Bauteil oder das Substrat an sich gebildet, sondern erst durch die erfindungsgemäße Anordnung beider Elemente zueinander.An advantage of the invention is that the waveguide filter according to the invention consists essentially of a single, simple and inexpensive to manufacture component, which is applied to the top of a corresponding prestructured substrate. The waveguide filter is not formed by the component or the substrate itself, but only by the inventive arrangement of the two elements to each other.
Das Bauteil kann vorteilhaft als SMD-(surface mounted device)-Bauteil ausgeführt sein. Üblicherweise sind eine Vielzahl der auf einer Leiterkarte verwendeten Bauteile SMD-Bauteile. Das erfindungsgemäße SMD-Bauteil des Hohlleiterfilters kann zweckmäßig in den Fertigungsprozess einbezogen werden. Die Montage der Baugruppe kann von nur einer Seite aus durchgeführt werden. Hierdurch entstehen weitere Vorteile hinsichtlich Fertigungskosten- und zeit.The component can advantageously be designed as an SMD (surface mounted device) component. Usually, a plurality of the components used on a printed circuit board are SMD components. The SMD component of the waveguide filter according to the invention can be suitably included in the manufacturing process. The assembly of the assembly can be carried out from only one side. This results in further advantages in terms of manufacturing costs and time.
Das Bauteil, auch als Filteroberteil bezeichnet, besitzt vorteilhaft eine leitfähige Oberfläche und kann z.B. aus Metall oder metallisiertem Kunststoff hergestellt sein, wobei bei letzterem weitere Vorteile hinsichtlich Herstellungskosten und Gewicht entstehen. Das Filteroberteil ist mit dem Substrat vorteilhaft leitend verbunden, insbesondere ist das Filteroberteil mit dem Substrat verlötet oder leitend verklebt. In einer vorteilhaften Ausführung der Erfindung weist das Filteroberteil auf der, der Oberseite des Substrats (also der Seite des Substrat, an der das Filteroberteil befestigt ist) gegenüberliegenden Seitenwand eine Struktur auf. Diese Struktur ist dabei je nach den gewünschten Filtereigenschaften des Hohlleiterfilters vorgebbar. Der Querschnitt des Hohlleiterfilters ist vorteilhaft entsprechend des zu filternden Hochfrequenzsignals zu wählen.The component, also referred to as the filter top, advantageously has a conductive surface and may be made of metal or metallized plastic, for example, with the latter resulting in further advantages in terms of manufacturing costs and weight. The filter top is advantageously conductively connected to the substrate, in particular the filter top is soldered to the substrate or adhesively bonded. In an advantageous embodiment of the invention, the filter top part has a structure on the side wall opposite the top side of the substrate (that is, the side of the substrate to which the filter top part is fastened). This structure can be predetermined depending on the desired filter properties of the waveguide filter. The cross section of the waveguide filter is advantageous to choose according to the high-frequency signal to be filtered.
Die Erfindung sowie weitere vorteilhafte Ausführungen werden im folgenden anhand von Zeichnungen näher erläutert. Es zeigen:The invention and further advantageous embodiments are explained in more detail below with reference to drawings. Show it:
Fig. 1 einen an ein Substrat angebrachten Hohlleiterfilter gemäß dem Stand der Technik,1 shows a mounted on a substrate waveguide filter according to the prior art,
Fig. 2 in Draufsicht das Filteroberteil mit strukturierter Innenoberfläche,2 in plan view the filter top with structured inner surface,
Fig. 3 im Längsschnitt das Filteroberteil entlang der Schnittline A-A' gemäß Fig. 2 Fig. 4 in Draufsicht die metallisierte Schicht auf der Oberseite des Substrats,3 is a longitudinal sectional view of the filter top along the section line A - A 'according to FIG. 2; FIG. 4 is a top view of the metallised layer on the upper side of the substrate;
Fig. 5 einen Querschnitt einer erfindungsgemäßen Anordnung eines Hohlleiterfilters umfassend Substrat und Filteroberteil entlang der Schnittlinie B-B' gemäß Fig. 2 und Fig. 4.5 shows a cross-section of an arrangement according to the invention of a waveguide filter comprising substrate and filter top along the section line B-B 'according to FIG. 2 and FIG. 4.
Fig. 2 zeigt in Draufsicht das Filteroberteil mit strukturierter Innenoberfläche. Das Filteroberteil FB weist an seinen gegenüberliegenden Enden jeweils eine Öffnung OZ auf, durch welche die Mikrostreifenleitungen (vgl. Fig. 4 und Fig. 5) in das Hohlleiterfilter geführt werden. Das Filteroberteil FB ist im Wesentlichen u-förmig (vgl. Fig. 3) und weist im Innern eine Struktur SK auf. Die Struktur SK ist dabei vorteilhaft ent- sprechend der gewünschten Filtereigenschaften des Hohlleiterfilters gewählt.Fig. 2 shows in plan view the filter top with structured inner surface. The filter upper part FB has at its opposite ends in each case an opening OZ, through which the microstrip lines (see Fig. 4 and Fig. 5) are guided into the waveguide filter. The filter top FB is substantially U-shaped (see Fig. 3) and has a structure SK on the inside. The structure SK is advantageously chosen in accordance with the desired filter properties of the waveguide filter.
Durch Fertigungsverfahren wie Fräsen oder Kunststoffspritzguß ist es möglich, mechanisch sehr genaue Strukturen SK zu erzeugen, so dass das Hohlleiterfilter ent- sprechend auch elektrisch nur geringe Toleranzen für die Einkopplung und die Filterfunktion aufweist.By manufacturing methods such as milling or plastic injection molding, it is possible to produce mechanically very accurate structures SK, so that the waveguide filter ent speaking also has only low electrical tolerances for the coupling and the filter function.
Darüber hinaus weist das Filteroberteil FB vorteilhaft einen umlaufenden Steg ST auf (Fig. 2 und Fig. 3). Dieser Steg ST sitzt beim Hohlleiterfilter direkt auf der metallisierten Oberseite des Substrats auf (nicht dargestellt). Dieser Steg ST ist zweckmäßig für das jeweilige, zum Einsatz kommende, Fügeverfahren angepaßt. In dem Zwischenraum, der sich beim Zusammenführen zwischen dem Filteroberteil und dem Substrat ergibt, kann sich das leitfähige Lot oder der leitfähige Kleber verteilen und so eine optimale Verbindung gewährleisten.In addition, the filter upper part FB advantageously has a peripheral web ST (FIGS. 2 and 3). This web ST sits on the waveguide filter directly on the metallized top of the substrate (not shown). This web ST is expedient adapted for the respective, used, joining method. In the space that results when merging between the filter top and the substrate, the conductive solder or the conductive adhesive can be distributed, thus ensuring an optimal connection.
Der Steg ST kann zweckmäßig so angepaßt werden, dass z.B. bei dem Fügeverfahren „Löten" die beim Lötvorgang auftretenden Lot-Oberflächenspannungen dazu ausgenutzt werden, dass sich das Bauteil FB während des Lötvorgangs exakt auf der in Fig. 4 dargestellten metallisch strukturierten Schicht positioniert.The web ST can be suitably adapted so that e.g. in the joining method "soldering", the solder surface process voltages occurring during the soldering process are utilized so that the component FB is positioned exactly on the metallically structured layer shown in FIG. 4 during the soldering process.
Fig. 3 zeigt entlang der Schnittlinie A-A' gemäß Fig. 2 eine Schnittdarstellung des Filteroberteils. In der Darstellung ist das im wesentlich u-förmige Filteroberteil FB mit der innenliegenden Struktur SK gezeigt. Die Struktur SK ist hierbei lediglich beispiel- haft dargestellt. Es sind je nach Anwendungsfall selbstverständlich auch andere Strukturformen möglich.Fig. 3 shows along the section line A-A 'of FIG. 2 is a sectional view of the filter top. In the illustration, the substantially U-shaped filter top FB is shown with the internal structure SK. The structure SK is shown here by way of example only. Of course, other structural forms are possible depending on the application.
Fig. 4 zeigt in Draufsicht die metallisierte Oberseite des Substrats, auf welches das Filteroberteil zur Bildung des erfindungsgemäßen Hohlleiterfilters aufsetzbar ist. Da- bei sind mit ML1 , ML2 die Streifenleitungen und mit TM die Metallisierung bezeichnet, die in der erfindungsgemäßen Anordnung eine Wand des Hohlleiterfilters bildet. Die Streifenleitungen ML1 , ML2 können z.B. Mikrostreifenleitungen sein und dienen der Ein- und Auskopplung der elektromagnetischen Wellen in das Hohlleiterfilter.FIG. 4 shows a top view of the metallized upper side of the substrate, onto which the upper filter element can be placed to form the waveguide filter according to the invention. In this case, the strip lines are denoted by ML1, ML2 and the metallization by TM, which forms a wall of the waveguide filter in the arrangement according to the invention. The strip lines ML1, ML2 may be e.g. Microstrip lines and serve the coupling and decoupling of the electromagnetic waves in the waveguide filter.
Fig. 5 zeigt in Schnittdarstellung entlang der Schnittlinie B-B' aus Fig. 2 und Fig. 4 die erfindungsgemäße Anordnung für ein Hohlleiterfilter. Das Hohlleiterfilter HF wird dadurch gebildet, dass das in Fig. 2 dargestellte Filteroberteil FB passgenau auf die in Fig. 4 dargestellte metallisierte Oberseite TM des Substrats S aufgebracht ist.5 shows, in a sectional illustration along the section line BB 'from FIG. 2 and FIG. 4, the arrangement according to the invention for a waveguide filter. The waveguide filter HF is formed by the fact that the filter top FB shown in Fig. 2 is accurately fitted on the illustrated in Fig. 4 metallized top surface TM of the substrate S.
Die auf der Oberseite des Substrats S ausgeführte Streifen leitungen ML1 , ML2 füh- ren von außen in den Innenbereich des Hohlleiterfilters HF. Die Metallisierung TM auf der Oberseite des Substrats S bildet die erfindungsgemäße vierte Wand des Hohlleiterfilters HF. Die anderen Seitenwände (nicht dargestellt) des Hohlleiterfilters HF werden durch das Filteroberteil FB gebildet. The strip lines ML1, ML2, which are formed on the upper side of the substrate S, lead from the outside into the inner region of the waveguide filter HF. The metallization TM on the upper side of the substrate S forms the fourth wall of the waveguide filter HF according to the invention. The other side walls (not shown) of the waveguide filter HF are formed by the filter top FB.

Claims

Patentansprüche Claims
1. Hohlleiterfilter gebildet aus einem auf der Oberseite mit einer strukturierten metallischen Schicht (TM) und ein oder mehreren metallischen Streifen leitungen (ML1 , ML2) beschichteten Substrat (S) und einem Bauteil (FB), wobei das1. waveguide filter formed from a on the top with a structured metallic layer (TM) and one or more metallic strip lines (ML1, ML2) coated substrate (S) and a component (FB), the
Bauteil (FB) auf der Oberseite des Substrats (S) aufgebracht ist und wobei eine Seitenwand des Hohlleiterfilters durch die strukturierte metallische Schicht (TM) des Substrats (S) und die übrigen Seitenwände des Hohlleiterfilters durch das Bauteil (FB) gebildet werden und wobei das Hohlleiterfilter Ein- und Auskoppel- stellen zur Kopplung der in der Streifenleitung (ML1 , ML2) geführten elektromagnetischen Welle in das Hohlleiterfilter und umgekehrt aufweist.Component (FB) is applied to the top of the substrate (S) and wherein a side wall of the waveguide filter is formed by the structured metallic layer (TM) of the substrate (S) and the other side walls of the waveguide filter are formed by the component (FB) and wherein Waveguide filter has coupling and decoupling points for coupling the electromagnetic wave carried in the stripline (ML1, ML2) into the waveguide filter and vice versa.
2. Hohlleiterfilter nach Anspruch 1 , dadurch gekennzeichnet, dass das Bauteil (FB) ein SMD-Bauteil ist.2. Waveguide filter according to claim 1, characterized in that the component (FB) is an SMD component.
3. Hohlleiterfilter nach Anspruch 2, dadurch gekennzeichnet, dass das Bauteil (FB) einen umlaufenden Steg (ST) aufweist, welcher auf der strukturierten metallischen Schicht (TM) auf der Oberseite des Substrats (S) aufliegt.3. Waveguide filter according to claim 2, characterized in that the component (FB) has a circumferential web (ST) which rests on the structured metallic layer (TM) on the top of the substrate (S).
4. Hohlleiterfilter nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Querschnitt des Bauteils (FB) entsprechend der vorgebbaren Filtereigenschaften des Hohlleiterfilters (HF) gewählt ist.4. Waveguide filter according to one of the preceding claims, characterized in that the cross section of the component (FB) is selected in accordance with the predefinable filter properties of the waveguide filter (HF).
5. Hohlleiterfilter nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die der Oberseite des Substrats (S) gegenüberliegende Seitenwand des Bauteils (S) eine Struktur (SK) aufweist, welche für die entsprechenden Filtereigenschaften vorgebbar ist. 5. Waveguide filter according to one of the preceding claims, characterized in that the side wall of the component (S) opposite the upper side of the substrate (S) has a structure (SK) which can be predetermined for the corresponding filter properties.
6. Hohlleiterfilter nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die mindestens eine auf der Oberseite des Substrats vorhandene Streifenleitung (ML1 , ML2) in das Hohlleiterfilter hineinragt.6. Waveguide filter according to one of the preceding claims, characterized in that the at least one strip line (ML1, ML2) present on the upper side of the substrate projects into the waveguide filter.
7. Hohlleiterfilter nach einem der vorangehenden Ansprüche, dadurch gekenn- zeichnet, dass das Substrat (S) auf der Unterseite eine Rückseitenmetallisierung (RM) aufweist.7. Waveguide filter according to one of the preceding claims, characterized in that the substrate (S) has a rear side metallization (RM) on the underside.
8. Hohlleiterfilter nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Bauteil (FB) und das Substrat (S) leitend verbunden, insbesondere verlötet oder leitend verklebt sind.8. Waveguide filter according to one of the preceding claims, characterized in that the component (FB) and the substrate (S) are conductively connected, in particular soldered or conductively glued.
9. Hohlleiterfilter nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Bauteil (FB) eine leitfähige Oberfläche aufweist.9. Waveguide filter according to one of the preceding claims, characterized in that the component (FB) has a conductive surface.
10. Verwendung eines Hohlleiterfilters nach einem der vorangehenden Ansprüchen in einer Sende-/Empfangsanordnung einer Kommunikations- und/oder Radaranwendung. 10. Use of a waveguide filter according to one of the preceding claims in a transmitting / receiving arrangement of a communication and / or radar application.
EP03798046A 2002-09-20 2003-07-30 Waveguide filter Expired - Lifetime EP1540761B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10243670A DE10243670B3 (en) 2002-09-20 2002-09-20 Waveguide filter with upper, structured metallic layer and striplines on substrate, also includes surface-mounted-device on top of substrate
DE10243670 2002-09-20
PCT/DE2003/002552 WO2004030140A1 (en) 2002-09-20 2003-07-30 Waveguide filter

Publications (2)

Publication Number Publication Date
EP1540761A1 true EP1540761A1 (en) 2005-06-15
EP1540761B1 EP1540761B1 (en) 2010-06-02

Family

ID=30128858

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03798046A Expired - Lifetime EP1540761B1 (en) 2002-09-20 2003-07-30 Waveguide filter

Country Status (14)

Country Link
US (1) US20060139129A1 (en)
EP (1) EP1540761B1 (en)
JP (1) JP2005539460A (en)
KR (1) KR101011282B1 (en)
CN (1) CN1327568C (en)
AT (1) ATE470250T1 (en)
AU (1) AU2003257395B2 (en)
BR (1) BR0306441A (en)
CA (1) CA2499583C (en)
DE (2) DE10243670B3 (en)
IL (1) IL167324A (en)
NO (1) NO20041576L (en)
PL (1) PL207567B1 (en)
WO (1) WO2004030140A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7576090B2 (en) 2004-12-27 2009-08-18 4Sc Ag Benzazole analogues and uses thereof
CN101557040B (en) * 2009-05-22 2013-03-13 中国电子科技集团公司第三十八研究所 Frequency-selective broadband waveguide slot antenna array
US11621464B2 (en) * 2020-12-30 2023-04-04 Hughes Network Systems, Llc Waveguide assembly

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2463472A (en) * 1945-03-16 1949-03-01 Premier Crystal Lab Inc Cavity resonator
JPH04113703A (en) * 1990-09-03 1992-04-15 Matsushita Electric Ind Co Ltd Microwave circuit
JPH0590807A (en) * 1991-09-27 1993-04-09 Nissan Motor Co Ltd Waveguide/strip line converter
DE19757892A1 (en) * 1997-12-24 1999-07-01 Bosch Gmbh Robert Arrangement for frequency-selective suppression of high-frequency signals
JPH11289201A (en) * 1998-04-06 1999-10-19 Murata Mfg Co Ltd Dielectric filter, transmitter-receiver and communication equipment
JP2002111312A (en) * 2000-09-29 2002-04-12 Hitachi Kokusai Electric Inc Waveguide filter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004030140A1 *

Also Published As

Publication number Publication date
JP2005539460A (en) 2005-12-22
PL374172A1 (en) 2005-10-03
ATE470250T1 (en) 2010-06-15
CN1682403A (en) 2005-10-12
KR20050057508A (en) 2005-06-16
PL207567B1 (en) 2011-01-31
EP1540761B1 (en) 2010-06-02
DE50312777D1 (en) 2010-07-15
CN1327568C (en) 2007-07-18
DE10243670B3 (en) 2004-02-12
KR101011282B1 (en) 2011-01-28
IL167324A (en) 2010-11-30
BR0306441A (en) 2004-10-26
CA2499583A1 (en) 2004-04-08
CA2499583C (en) 2009-10-06
AU2003257395B2 (en) 2008-10-09
WO2004030140A1 (en) 2004-04-08
US20060139129A1 (en) 2006-06-29
NO20041576L (en) 2004-04-19
AU2003257395A1 (en) 2004-04-19

Similar Documents

Publication Publication Date Title
DE4330108C2 (en) Dielectric filter arrangement
DE19712065C2 (en) Duplexer unit
DE69933682T2 (en) WAVE-LINE FILTERS FROM THE DAMPING TYPE WITH MULTIPLE DIELECTRIC LAYERS
DE10234737B4 (en) Surface wave duplexer and communication device
DE10248493A1 (en) Branch filter and communication device
DE10152533A1 (en) High-frequency circuit board unit, high-frequency module using the unit, electronic device using the module, and methods of manufacturing the high-frequency circuit board unit
DE10120248A1 (en) Structure for connecting a non-radiating dielectric waveguide and a metal waveguide, transmitter / receiver module for millimeter waves and transmitter / receiver for millimeter waves
DE10243671B3 (en) Arrangement for transition between microstrip conductor, hollow conductor has one hollow conductor side wall as metallised coating on substrate with opening into which microstrip conductor protrudes
DE102006017072A1 (en) Filter and duplexer
DE102006008500A1 (en) Transmitting circuit, antenna duplexer and high-frequency switch
DE10218767B4 (en) Electronic component for surface mounting
DE10202699B4 (en) Non-reciprocal circuit device and communication device including the same
DE2707176B2 (en) Resonance circuit formed using stripline technology
EP1540761B1 (en) Waveguide filter
DE102007046351B4 (en) High-frequency board that converts a transmission mode of high-frequency signals
DE3642934C2 (en)
DE102007021899A1 (en) Microwave circuit, has defected ground structure filter formed using strip line technology by recess in metallization of rear side of substrate, where pair of signal lines run on front side of substrate and connected with balun
DE19918583C2 (en) Dielectric resonator device
DE69829826T2 (en) Composite filter and radio transmission device with it
DE102006023431B4 (en) High Pass Filter
EP1495513B1 (en) Electric matching network with a transformation line
EP0978151B1 (en) Device for frequency selective suppression of high frequency signals
EP0673067A2 (en) High-frequency circuit with integrated logic circuit
DE10322136B4 (en) Front-end module with low insertion loss
DE102004032175A1 (en) Apparatus and method for transmitting / receiving electromagnetic RF signals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50312777

Country of ref document: DE

Date of ref document: 20100715

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20100623

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100723

Year of fee payment: 8

Ref country code: FI

Payment date: 20100714

Year of fee payment: 8

Ref country code: FR

Payment date: 20100805

Year of fee payment: 8

Ref country code: IT

Payment date: 20100723

Year of fee payment: 8

Ref country code: SE

Payment date: 20100715

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100903

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100722

Year of fee payment: 8

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: EADS DEUTSCHLAND G.M.B.H.

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101004

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

26N No opposition filed

Effective date: 20110303

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50312777

Country of ref document: DE

Effective date: 20110302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100730

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110801

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50312777

Country of ref document: DE

Effective date: 20120201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110730

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100730

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101203

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100913