EP1537326B1 - Fuel-injection valve for internal combustion engines - Google Patents

Fuel-injection valve for internal combustion engines Download PDF

Info

Publication number
EP1537326B1
EP1537326B1 EP03761365A EP03761365A EP1537326B1 EP 1537326 B1 EP1537326 B1 EP 1537326B1 EP 03761365 A EP03761365 A EP 03761365A EP 03761365 A EP03761365 A EP 03761365A EP 1537326 B1 EP1537326 B1 EP 1537326B1
Authority
EP
European Patent Office
Prior art keywords
valve
fuel injection
depressions
injection valve
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03761365A
Other languages
German (de)
French (fr)
Other versions
EP1537326A1 (en
Inventor
Markus Ohnmacht
Werner Teschner
Ulrich Bothe
Ruediger Bohnsack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1537326A1 publication Critical patent/EP1537326A1/en
Application granted granted Critical
Publication of EP1537326B1 publication Critical patent/EP1537326B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1873Valve seats or member ends having circumferential grooves or ridges, e.g. toroidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/162Means to impart a whirling motion to fuel upstream or near discharging orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1866Valve seats or member ends having multiple cones

Definitions

  • the invention is based on a fuel injection valve for internal combustion engines, as is known from the document DE 190 31 264 A1 is known.
  • the fuel injection valve comprises a valve body in which a piston-shaped valve needle is arranged to be longitudinally displaceable in a bore.
  • the valve needle has at its combustion chamber end a valve sealing surface, which also includes a conical surface.
  • the valve needle interacts with its valve sealing surface with a conical valve seat in such a way that, when the valve needle is lifted from the valve seat, fuel flows from a pressure space between the valve sealing surface and the valve seat to at least one injection opening. If the valve needle is in contact with the valve seat, this influx of fuel to the injection openings is interrupted.
  • the known fuel injection valve in this case has the particular disadvantage that it may come between the valve sealing surface and the valve seat to excessive friction and thus high wear, which significantly affects the life of the fuel injection valve.
  • the fuel which is located between the valve sealing surface and the valve seat must first be displaced. Because both the valve seat and the valve sealing surface due to their smooth surface promote easy drainage of the displaced fuel, the valve needle strikes relatively hard on the valve seat, whereby during the life of the fuel injection valve, excessive wear can occur in this area.
  • valve seat and valve sealing surface Another mechanism for increased wear between valve seat and valve sealing surface, which occurs when the fuel injection valve is closed, based on pressure oscillations of the valve body in the region of the valve seat. This is due to the fact that the fuel which flows between the valve sealing surface and the valve seat through to the injection openings is abruptly stopped by the closing of the valve needle. The kinetic energy of the fuel is converted into compression work, so that a pressure surge is generated, which triggers a gradually decaying pressure wave.
  • the pressure wave in this case causes a periodic widening of the valve body in the region of the valve seat and thus a slight relative movement of the valve seat and valve needle, which over time leads to increased wear in the valve seat area.
  • JP 2000265927 describes a fuel injection valve with a valve needle, wherein on the conical surface of the valve needle a plurality of depressions are formed distributed over the circumference, and wherein at least one recess has a different depth at two locations.
  • valve sealing surface comprises at least one conical surface, on which a plurality of depressions are formed distributed over the circumference, which have a non-constant depth. It can also be provided that such depressions are formed on the valve seat or both on the conical surface of the valve sealing surface and on the valve seat.
  • the displaced by the closing movement of the valve needle Fuel can not flow through the depressions as quickly as they cause a turbulence of the flow. This leaves between the valve sealing surface and the valve seat, a fuel cushion, which dampens the impact of the valve needle on the valve seat.
  • this turbulence can be optimized so that a relatively small absolute depth of the wells is sufficient to achieve the desired effect.
  • the depressions cause more fuel to remain between the valve sealing face and the valve seat and thus a sufficient lubricating film is always present which significantly reduces the wear between the valve sealing face and the valve seat during pressure oscillations in the area of the valve seat.
  • At least a part of the recesses is triangular.
  • Particularly advantageous here is the formation of isosceles triangles, wherein the depth of the depressions at the top of the isosceles triangle is the lowest and at the bottom highest.
  • the tip of the triangle advantageously points either in the flow direction of the fuel or counter to the flow direction, depending on where the depression is mounted on the valve sealing surface.
  • At least a portion of the recesses is formed as a trapezoid or has the shape of a slot. Both forms have proven to be beneficial to the desired degree of turbulence to reach in the region of the valve seat or the valve sealing surface.
  • the bottom of the recesses is flat and has an inclination relative to the surroundings of the recess. But it may also be advantageous to form the bottom of the wells arched, which with the help of modern manufacturing techniques, in particular the processing with a laser, readily possible.
  • the turbulence can be additionally optimized by appropriate shaping of the soil.
  • FIG. 1 a fuel injection valve is shown in its essential section in longitudinal section.
  • the fuel injection valve has a valve body 1, in which a bore 3 is formed.
  • the bore 3 is delimited at its combustion-chamber-side end by a conical valve seat 9, from which a plurality of injection openings 11 depart and connect the valve seat 9 to the combustion chamber of the internal combustion engine.
  • a piston-shaped valve needle 5 is arranged longitudinally displaceably, which is guided with a guided portion 15 sealingly in the combustion chamber facing away portion of the bore 3.
  • the valve needle 5 tapers, starting from the guided section 15, to the combustion chamber to form a pressure shoulder 13 and merges at its combustion chamber end into a substantially conical valve sealing surface 7.
  • a ring-channel-shaped pressure chamber 19 which is radially expanded at the level of the pressure shoulder 13.
  • This radial extension of the pressure chamber 19 opens an extending in the valve body 1 inlet channel 25 through which the pressure chamber 19 can be filled with fuel under high pressure.
  • the valve needle 5 is acted upon at its combustion-chamber-side end by a closing force which presses the valve needle 5 in the direction of the valve seat 7.
  • the closing force can be generated for example by a spring or a hydraulic device and can be variable in time or even constant.
  • the movement of the valve needle 5 is effected by the ratio of two forces, namely, on the one hand, the closing force on the combustion chamber facing away from the end of the valve needle 5 and the other by hydraulic forces on the pressure shoulder 13 and on parts of the valve sealing surface 7, which are opposite to the closing force. If the hydraulic forces predominate, the valve needle 5 with its valve sealing surface 7 moves away from the valve seat 9 and fuel can flow from the pressure space 19 between the valve sealing surface 7 and the valve seat 9 to the injection openings 11, from where the fuel flows into the combustion chamber of the internal combustion engine is injected.
  • the closing force predominates on the valve needle 5, be it that the closing force is increased or that the hydraulic force decreases by throttling the fuel supply in the pressure chamber 19, so the valve needle 5 moves back into contact with the valve seat 9, so that another Injection of fuel through the injection openings 11 is interrupted.
  • FIG. 2 shows an enlargement of the designated II section of FIG. 1
  • the valve sealing surface 7 comprises a first conical surface 30 and a second conical surface 32, which are separated from each other by an annular groove 21.
  • the opening angle of the first conical surface 30 is smaller than the opening angle of the conical valve seat 9, while the second conical surface 32 has an opening angle which is greater than the opening angle of the valve seat 9.
  • a first sealing edge 23 is formed and at the transition of the annular groove 21 to the second conical surface 32, a second sealing edge 24.
  • a plurality of recesses 40 are formed, which are exemplified here in various forms. Which shapes of the recesses 40 are respectively selected and how many recesses 40 are arranged in which orientation on the conical surfaces 30, 32 depends on the flow conditions in the individual fuel injection valve.
  • a triangular depression 140 is formed, which has the shape of an isosceles triangle. The tip of the triangular depression 140 points in the direction of the injection openings 11, that is to say in the flow direction of the fuel.
  • the orientation of the triangular-shaped depression 140 may also be rotated, as in the case of the triangular-shaped depression 240, in which the point of the isosceles triangle points away from the injection openings 11.
  • two triangular depressions 40 are shown on the second conical surface 32, the tips of which point away from the injection openings 11.
  • a trapezoidal recess 340 is also shown as a further embodiment, wherein the short side of the mutually parallel sides facing the injection openings 11.
  • the first conical surface 30 shows a slot-shaped depression 440, whose ends are rounded and whose sides are parallel to each other.
  • Corresponding depressions 40 are also shown on the second conical surface 32 in different orientations, although orientations other than those shown here are possible for all recesses 140, 240, 340, 440.
  • FIG. 3a shows a triangular recess 40, which is an isosceles triangle with a base 44 and a Tip 46 is formed.
  • the length of the base side 44 is b and the height of the isosceles triangle, so the distance of the tip 46 from the base side 44, is denoted by a.
  • FIG. 3b shows the same recess 40 in longitudinal section, so that the height profile is clear.
  • the recess 40 has a bottom 42 which is flat and has its maximum depth t at the base 44, while at the top 46 the depth is 0 mm. At different locations, the recess 40 thus has a respective different depth t.
  • the maximum depth of the recesses 40 is less than 0.2 mm, preferably less than 0.05 mm.
  • FIG. 4a shows for comparison again in FIG. 3b shown course of the bottom surface 42, in which results in the longitudinal section of the triangular recess 140, a wedge.
  • FIG. 4b shows a different course of the bottom surface 42, in which on the base side 44, no steep drop is provided, but also a chamfer, so that the bottom surface 42 consists of two part levels with different inclination.
  • Figure 4c shows a further embodiment in which the bottom surface 42 consists of two oblique sections with different inclination and a flat base.
  • FIG. 4d shows a similar course as Fig. 4a However, here is the bottom surface 42 concave and not flat. Also curved is the bottom surface 42 in the embodiment of Figure 4e However, the vault here is concave.
  • the recesses 40 as shown in the drawing, can be introduced by various methods.
  • the laser treatment is particularly suitable, in which depressions of various shapes can be produced.

Abstract

An improved fuel injection valve for an IC engine has the tapering end of the fuel control needle provided with a number of recesses of varying depth and shape. This traps small amounts of fuel to provide a cushioning effect when the valve shuts off. Some of the recesses are triangular with a depth varying from a deep end near the base of the shape to a minimum at the apex, pointing to the tip or away from the tip of the needle. The bottom profile of the recesses can be linearly sloping of curved, to create localised turbulence as the valve shuts off. Other suitable shapes include rectangles and oblongs.

Description

Stand der TechnikState of the art

Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen aus, wie es aus der Schrift DE 190 31 264 A1 bekannt ist. Das Kraftstoffeinspritzventil umfasst einen Ventilkörper, in dem in einer Bohrung eine kolbenförmige Ventilnadel längsverschiebbar angeordnet ist. Die Ventilnadel weist an ihrem brennraumseitigen Ende eine Ventildichtfläche auf, welche auch eine Konusfläche umfasst. Die Ventilnadel wirkt mit ihrer Ventildichtfläche mit einem konischen Ventilsitz zusammen und zwar in der Weise, dass bei vom Ventilsitz abgehobener Ventilnadel Kraftstoff aus einem Druckraum zwischen der Ventildichtfläche und dem Ventilsitz hindurch zu wenigstens einer Einspritzöffnung strömt. Ist die Ventilnadel in Anlage am Ventilsitz, so wird dieser Zustrom von Kraftstoff zu den Einspritzöffnungen unterbrochen.The invention is based on a fuel injection valve for internal combustion engines, as is known from the document DE 190 31 264 A1 is known. The fuel injection valve comprises a valve body in which a piston-shaped valve needle is arranged to be longitudinally displaceable in a bore. The valve needle has at its combustion chamber end a valve sealing surface, which also includes a conical surface. The valve needle interacts with its valve sealing surface with a conical valve seat in such a way that, when the valve needle is lifted from the valve seat, fuel flows from a pressure space between the valve sealing surface and the valve seat to at least one injection opening. If the valve needle is in contact with the valve seat, this influx of fuel to the injection openings is interrupted.

Das bekannte Kraftstoffeinspritzventil weist hierbei insbesondere den Nachteil auf, dass es zwischen der Ventildichtfläche und dem Ventilsitz zu einer übermäßigen Reibung und damit zu einem hohen Verschleiß kommen kann, was die Lebensdauer des Kraftstoffeinspritzventils erheblich beeinträchtigt. Bei der Schließbewegung der Ventilnadel, also bei deren Bewegung in Anlage am Ventilsitz, muss der Kraftstoff, der sich zwischen der Ventildichtfläche und dem Ventilsitz befindet, zuerst verdrängt werden. Da sowohl der Ventilsitz als auch die Ventildichtfläche aufgrund ihrer glatten Oberfläche ein leichtes Abfließen des verdrängten Kraftstoffs begünstigen, schlägt die Ventilnadel relativ hart auf dem Ventilsitz auf, wodurch während der Lebensdauer des Kraftstoffeinspritzventils ein übergroßer Verschleiß in diesem Bereich auftreten kann.The known fuel injection valve in this case has the particular disadvantage that it may come between the valve sealing surface and the valve seat to excessive friction and thus high wear, which significantly affects the life of the fuel injection valve. During the closing movement of the valve needle, ie during its movement in contact with the valve seat, the fuel which is located between the valve sealing surface and the valve seat must first be displaced. Because both the valve seat and the valve sealing surface due to their smooth surface promote easy drainage of the displaced fuel, the valve needle strikes relatively hard on the valve seat, whereby during the life of the fuel injection valve, excessive wear can occur in this area.

Ein weiterer Mechanismus für erhöhten Verschleiß zwischen Ventilsitz und Ventildichtfläche, der bei geschlossenem Kraftstoffeinspritzventil auftritt, beruht auf Druckschwingungen des Ventilkörpers im Bereich des Ventilsitzes. Dies kommt dadurch zustande, dass der Kraftstoff, der zwischen der Ventildichtfläche und dem Ventilsitz hindurch zu den Einspritzöffnungen fließt, durch das Schließen der Ventilnadel abrupt abgestoppt wird. Die kinetische Energie des Kraftstoffs wird in Kompressionsarbeit umgewandelt, so dass ein Druckstoß erzeugt wird, der eine erst nach und nach abklingende Druckwelle auslöst. Die Druckwelle bewirkt hierbei ein periodisches Aufweiten des Ventilkörpers im Bereich des Ventilsitzes und damit eine leichte Relativbewegung vom Ventilsitz und Ventilnadel, was mit der Zeit zu einem erhöhten Verschleiß im Ventilsitzbereich führt.Another mechanism for increased wear between valve seat and valve sealing surface, which occurs when the fuel injection valve is closed, based on pressure oscillations of the valve body in the region of the valve seat. This is due to the fact that the fuel which flows between the valve sealing surface and the valve seat through to the injection openings is abruptly stopped by the closing of the valve needle. The kinetic energy of the fuel is converted into compression work, so that a pressure surge is generated, which triggers a gradually decaying pressure wave. The pressure wave in this case causes a periodic widening of the valve body in the region of the valve seat and thus a slight relative movement of the valve seat and valve needle, which over time leads to increased wear in the valve seat area.

Dokument JP 2000265927 beschreibt ein Kraftstoffeinspritzventil mit einer Ventilnadel, wobei an der Konusfläche der Ventilnadel mehrere Vertiefungen über den Umfang verteilt ausgebildet sind, und wobei wenigstens eine Vertiefung an zwei Stellen eine unterschiedliche Tiefe aufweist.document JP 2000265927 describes a fuel injection valve with a valve needle, wherein on the conical surface of the valve needle a plurality of depressions are formed distributed over the circumference, and wherein at least one recess has a different depth at two locations.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Kraftstoffeinspritzventil mit den kennzeichnenden Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass der Verschleiß zwischen Ventilsitz und Ventildichtfläche mit einfachen Mitteln erheblich reduziert wird. Hierzu umfasst die Ventildichtfläche wenigstens eine Konusfläche, an der mehrere Vertiefungen über den Umfang verteilt ausgebildet sind, die eine nicht konstante Tiefe aufweisen. Ebenso kann es vorgesehen sein, dass derartige Vertiefungen am Ventilsitz oder sowohl an der Konusfläche der Ventildichtfläche als auch am Ventilsitz ausgebildet sind. Der durch die Schließbewegung der Ventilnadel verdrängte Kraftstoff kann durch die Vertiefungen nicht mehr so schnell abfließen, da diese eine Verwirbelung der Strömung verursachen. Hierdurch verbleibt zwischen der Ventildichtfläche und dem Ventilsitz ein Kraftstoffpolster, welches das Aufschlagen der Ventilnadel auf dem Ventilsitz dämpft. Durch eine nicht konstante Tiefe der Vertiefungen lässt sich diese Verwirbelung optimieren, so dass eine relativ kleine absolute Tiefe der Vertiefungen ausreicht, um den gewünschten Effekt zu erzielen. Darüber hinaus bewirken die Vertiefungen bei geschlossenem Kraftstoffeinspritzventil, dass mehr Kraftstoff zwischen der Ventildichtfläche und dem Ventilsitz verbleibt und so stets ein ausreichender Schmierfilm vorhanden ist, der bei Druckschwingungen im Bereich des Ventilsitzes den Verschleiß zwischen Ventildichtfläche und Ventilsitz deutlich vermindert.The fuel injection valve according to the invention with the characterizing features of claim 1 has the advantage over that the wear between the valve seat and valve sealing surface is considerably reduced by simple means. For this purpose, the valve sealing surface comprises at least one conical surface, on which a plurality of depressions are formed distributed over the circumference, which have a non-constant depth. It can also be provided that such depressions are formed on the valve seat or both on the conical surface of the valve sealing surface and on the valve seat. The displaced by the closing movement of the valve needle Fuel can not flow through the depressions as quickly as they cause a turbulence of the flow. This leaves between the valve sealing surface and the valve seat, a fuel cushion, which dampens the impact of the valve needle on the valve seat. By a non-constant depth of the wells, this turbulence can be optimized so that a relatively small absolute depth of the wells is sufficient to achieve the desired effect. Moreover, when the fuel injection valve is closed, the depressions cause more fuel to remain between the valve sealing face and the valve seat and thus a sufficient lubricating film is always present which significantly reduces the wear between the valve sealing face and the valve seat during pressure oscillations in the area of the valve seat.

Durch die Ausgestaltungen gemäß den Unteransprüchen sind vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung möglich.Due to the embodiments according to the subclaims advantageous embodiments of the subject invention are possible.

In einer ersten vorteilhaften Ausgestaltung ist zumindest ein Teil der Vertiefungen dreieckförmig ausgebildet. Besonders vorteilhaft ist hierbei die Ausbildung von gleichschenkligen Dreiecken, wobei die Tiefe der Vertiefungen an der Spitze des gleichschenkligen Dreiecks am geringsten und an der Grundseite am höchsten ist. Die Spitze des Dreiecks weist hierbei in vorteilhafter Weise entweder in Strömungsrichtung des Kraftstoffs oder entgegen der Strömungsrichtung, je nachdem, wo die Vertiefung auf der Ventildichtfläche angebracht ist.In a first advantageous embodiment, at least a part of the recesses is triangular. Particularly advantageous here is the formation of isosceles triangles, wherein the depth of the depressions at the top of the isosceles triangle is the lowest and at the bottom highest. In this case, the tip of the triangle advantageously points either in the flow direction of the fuel or counter to the flow direction, depending on where the depression is mounted on the valve sealing surface.

In einer weiteren vorteilhaften Ausgestaltung ist zumindest ein Teil der Vertiefungen als Trapez ausgebildet oder hat die Form eines Langlochs. Beide Formen haben sich als vorteilhaft erwiesen, um den gewünschten Grad an Verwirbelung im Bereich des Ventilsitzes bzw. der Ventildichtfläche zu erreichen.In a further advantageous embodiment, at least a portion of the recesses is formed as a trapezoid or has the shape of a slot. Both forms have proven to be beneficial to the desired degree of turbulence to reach in the region of the valve seat or the valve sealing surface.

In einer weiteren vorteilhaften Ausgestaltung ist der Boden der Vertiefungen eben ausgebildet und weist gegenüber der Umgebung der Vertiefung eine Neigung auf. Es kann aber auch vorteilhaft sein, den Boden der Vertiefungen gewölbt auszubilden, was mit Hilfe moderner Fertigungstechniken, insbesondere der Bearbeitung mit einem Laser, ohne weiteres möglich ist. So lässt sich die Verwirbelung zusätzlich durch eine entsprechende Formgebung des Bodens optimieren.In a further advantageous embodiment, the bottom of the recesses is flat and has an inclination relative to the surroundings of the recess. But it may also be advantageous to form the bottom of the wells arched, which with the help of modern manufacturing techniques, in particular the processing with a laser, readily possible. Thus, the turbulence can be additionally optimized by appropriate shaping of the soil.

Weitere vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Beschreibung und der Zeichnung entnehmbar.Further advantageous embodiments of the subject invention are the description and the drawings can be removed.

Zeichnungdrawing

In der Zeichnung sind verschiedene Ausführungsbeispiele des erfindungsgemäßen Kraftstoffeinspritzventils dargestellt. Es zeigt

Figur 1
ein Kraftstoffeinspritzventil in seinem wesentlichen Bereich im Längsschnitt,
Figur 2
eine Vergrößerung des mit II bezeichneten Ausschnitts von Figur 1, wobei exemplarisch verschiedene Vertiefungen an der Ventildichtfläche ausgebildet sind,
Figur 3
eine Vergrößerung einer dreieckförmigen Vertiefung,
Figur 3b
einen Querschnitt durch die Vertiefung,
Figur 4a, Figur 4b, Figur 4c,
Figur 4d und Figur 4e
zeigen weitere Ausführungsbeispiele von Vertiefungen, insbesondere weitere Ausgestaltungen der Bodenfläche.
In the drawing, various embodiments of the fuel injection valve according to the invention are shown. It shows
FIG. 1
a fuel injection valve in its essential area in longitudinal section,
FIG. 2
a magnification of the designated II section of FIG. 1 , wherein exemplary different depressions are formed on the valve sealing surface,
FIG. 3
an enlargement of a triangular depression,
FIG. 3b
a cross section through the recess,
4a, 4b, 4c,
FIG. 4d and FIG. 4e
show further embodiments of wells, in particular further embodiments of the bottom surface.

Beschreibung der AusführungsbeispieleDescription of the embodiments

In Figur 1 ist ein Kraftstoffeinspritzventil in seinem wesentlichen Ausschnitt im Längsschnitt dargestellt. Das Kraftstoffeinspritzventil weist einen Ventilkörper 1 auf, in dem eine Bohrung 3 ausgebildet ist. Die Bohrung 3 wird an ihrem brennraumseitigen Ende von einem konischen Ventilsitz 9 begrenzt, von dem mehrere Einspritzöffnungen 11 abgehen und den Ventilsitz 9 mit dem Brennraum der Brennkraftmaschine verbinden. In der Bohrung 3 ist eine kolbenförmige Ventilnadel 5 längsverschiebbar angeordnet, die mit einem geführten Abschnitt 15 dichtend im brennraumabgewandten Abschnitt der Bohrung 3 geführt ist. Die Ventilnadel 5 verjüngt sich, ausgehend vom geführten Abschnitt 15, dem Brennraum zu unter Bildung einer Druckschulter 13 und geht an ihrem brennraumseitigen Ende in eine im wesentlichen konische Ventildichtfläche 7 über. Zwischen der Wand der Bohrung 3 und der Ventilnadel 5 verbleibt ein ringkanalförmiger Druckraum 19, der auf Höhe der Druckschulter 13 radial erweitert ist. In diese radiale Erweiterung des Druckraums 19 mündet ein im Ventilkörper 1 verlaufender Zulaufkanal 25, über den der Druckraum 19 mit Kraftstoff unter hohem Druck befüllt werden kann. Die Ventilnadel 5 wird an ihrem brennraumseitigen Ende von einer Schließkraft beaufschlagt, die die Ventilnadel 5 in Richtung des Ventilsitzes 7 drückt. Die Schließkraft kann beispielsweise durch eine Feder oder eine hydraulische Vorrichtung erzeugt werden und kann zeitlich variabel oder auch konstant sein. Die Bewegung der Ventilnadel 5 erfolgt durch das Verhältnis zweier Kräfte, nämlich zum einen der Schließkraft auf das brennraumabgewandte Ende der Ventilnadel 5 und zum anderen durch hydraulische Kräfte auf die Druckschulter 13 und auf Teile der Ventildichtfläche 7, die der Schließkraft entgegengerichtet sind. Überwiegen die hydraulischen Kräfte, so bewegt sich die Ventilnadel 5 mit ihrer Ventildichtfläche 7 vom Ventilsitz 9 weg und Kraftstoff kann aus dem Druckraum 19 zwischen der Ventildichtfläche 7 und dem Ventilsitz 9 hindurch zu den Einspritzöffnungen 11 fließen, von wo der Kraftstoff in den Brennraum der Brennkraftmaschine eingespritzt wird. Überwiegt hingegen die Schließkraft auf die Ventilnadel 5, sei es, dass die Schließkraft erhöht wird oder dass die hydraulische Kraft durch eine Drosselung der Kraftstoffzufuhr im Druckraum 19 absinkt, so fährt die Ventilnadel 5 wieder zurück in Anlage an den Ventilsitz 9, so dass eine weitere Einspritzung von Kraftstoff durch die Einspritzöffnungen 11 unterbrochen wird.In FIG. 1 a fuel injection valve is shown in its essential section in longitudinal section. The fuel injection valve has a valve body 1, in which a bore 3 is formed. The bore 3 is delimited at its combustion-chamber-side end by a conical valve seat 9, from which a plurality of injection openings 11 depart and connect the valve seat 9 to the combustion chamber of the internal combustion engine. In the bore 3, a piston-shaped valve needle 5 is arranged longitudinally displaceably, which is guided with a guided portion 15 sealingly in the combustion chamber facing away portion of the bore 3. The valve needle 5 tapers, starting from the guided section 15, to the combustion chamber to form a pressure shoulder 13 and merges at its combustion chamber end into a substantially conical valve sealing surface 7. Between the wall of the bore 3 and the valve needle 5 remains a ring-channel-shaped pressure chamber 19 which is radially expanded at the level of the pressure shoulder 13. In this radial extension of the pressure chamber 19 opens an extending in the valve body 1 inlet channel 25 through which the pressure chamber 19 can be filled with fuel under high pressure. The valve needle 5 is acted upon at its combustion-chamber-side end by a closing force which presses the valve needle 5 in the direction of the valve seat 7. The closing force can be generated for example by a spring or a hydraulic device and can be variable in time or even constant. The movement of the valve needle 5 is effected by the ratio of two forces, namely, on the one hand, the closing force on the combustion chamber facing away from the end of the valve needle 5 and the other by hydraulic forces on the pressure shoulder 13 and on parts of the valve sealing surface 7, which are opposite to the closing force. If the hydraulic forces predominate, the valve needle 5 with its valve sealing surface 7 moves away from the valve seat 9 and fuel can flow from the pressure space 19 between the valve sealing surface 7 and the valve seat 9 to the injection openings 11, from where the fuel flows into the combustion chamber of the internal combustion engine is injected. In contrast, the closing force predominates on the valve needle 5, be it that the closing force is increased or that the hydraulic force decreases by throttling the fuel supply in the pressure chamber 19, so the valve needle 5 moves back into contact with the valve seat 9, so that another Injection of fuel through the injection openings 11 is interrupted.

Figur 2 zeigt eine Vergrößerung des mit II bezeichneten Ausschnitts von Figur 1. Die Ventildichtfläche 7 umfasst eine erste Konusfläche 30 und eine zweite Konusfläche 32, die voneinander durch eine Ringnut 21 getrennt sind. Der Öffnungswinkel der ersten Konusfläche 30 ist hierbei kleiner als der Öffnungswinkel des konischen Ventilsitzes 9, während die zweite Konusfläche 32 einen Öffnungswinkel aufweist, der größer als der Öffnungswinkel des Ventilsitzes 9 ist. Am Übergang der ersten Konusfläche 30 zur Ringnut 21 ist eine erste Dichtkante 23 ausgebildet und am Übergang der Ringnut 21 zur zweiten Konusfläche 32 eine die zweite Dichtkante 24. In Schließstellung des Kraftstoffeinspritzventils, also wenn die Ventilnadel 5 am Ventilsitz 9 aufliegt, kommt sowohl die erste Dichtkante 23 als auch die zweite Dichtkante 24 bedingt durch eine leichte elastische Verformung von Ventilnadel 5 bzw. Ventilkörper 1 am Ventilsitz 9 zur Anlage, wobei die Flächenpressung im Bereich der ersten Dichtkante 23 höher ist als im Bereich der zweiten Dichtkante 24. Deshalb hebt bei der Öffnungshubbewegung der Ventilnadel 5 zuerst die zweite Dichtkante 24 vom Ventilsitz 9 ab und erst danach die erste Dichtkante 23. FIG. 2 shows an enlargement of the designated II section of FIG. 1 , The valve sealing surface 7 comprises a first conical surface 30 and a second conical surface 32, which are separated from each other by an annular groove 21. The opening angle of the first conical surface 30 is smaller than the opening angle of the conical valve seat 9, while the second conical surface 32 has an opening angle which is greater than the opening angle of the valve seat 9. At the transition of the first conical surface 30 to the annular groove 21, a first sealing edge 23 is formed and at the transition of the annular groove 21 to the second conical surface 32, a second sealing edge 24. In the closed position of the fuel injection valve, so when the valve needle 5 rests on the valve seat 9, both comes the first Sealing edge 23 and the second sealing edge 24 due to a slight elastic deformation of the valve needle 5 or valve body 1 on the valve seat 9 to the plant, the surface pressure in the region of the first sealing edge 23 is higher than in the region of the second sealing edge 24. Therefore raises in the Opening stroke of the valve needle 5 first the second sealing edge 24 from the valve seat 9 and only then the first sealing edge 23rd

Auf der ersten Konusfläche 30 und auf der zweiten Konusfläche 32 sind in Figur 2 mehrere Vertiefungen 40 ausgebildet, die hier exemplarisch in verschiedenen Formen ausgeführt sind. Welche Formen der Vertiefungen 40 jeweils gewählt wird und wie viele Vertiefungen 40 in welcher Orientierung auf den Konusflächen 30, 32 angeordnet sind, hängt von den Strömungsverhältnissen im einzelnen Kraftstoffeinspritzventil ab. Auf der ersten Konusfläche 30 ist eine dreieckförmige Vertiefung 140 ausgebildet, die die Form eines gleichschenkligen Dreiecks hat. Die Spitze der dreieckförmigen Vertiefung 140 weist in Richtung der Einspritzöffnungen 11, also in Strömungsrichtung des Kraftstoffs. Die Orientierung der dreieckförmigen Vertiefung 140 kann aber auch gedreht sein, so wie bei der dreieckförmigen Vertiefung 240, bei der die Spitze des gleichschenkligen Dreiecks von den Einspritzöffnungen 11 wegzeigt. Entsprechend sind auf der zweiten Konusfläche 32 zwei dreieckförmige Vertiefungen 40 dargestellt, deren Spitzen von den Einspritzöffnungen 11 wegzeigen.On the first cone surface 30 and on the second cone surface 32 are in FIG. 2 a plurality of recesses 40 are formed, which are exemplified here in various forms. Which shapes of the recesses 40 are respectively selected and how many recesses 40 are arranged in which orientation on the conical surfaces 30, 32 depends on the flow conditions in the individual fuel injection valve. On the first conical surface 30, a triangular depression 140 is formed, which has the shape of an isosceles triangle. The tip of the triangular depression 140 points in the direction of the injection openings 11, that is to say in the flow direction of the fuel. However, the orientation of the triangular-shaped depression 140 may also be rotated, as in the case of the triangular-shaped depression 240, in which the point of the isosceles triangle points away from the injection openings 11. Correspondingly, two triangular depressions 40 are shown on the second conical surface 32, the tips of which point away from the injection openings 11.

Auf der ersten Konusfläche 30 ist außerdem als weiteres Ausführungsbeispiel eine trapezförmige Vertiefung 340 gezeigt, wobei die kurze Seite der zueinander parallelen Seiten den Einspritzöffnungen 11 zugewandt ist. Daneben zeigt die erste Konusfläche 30 eine langlochförmige Vertiefung 440, deren Enden gerundet und deren Seiten zueinander parallel sind. Entsprechende Vertiefungen 40 sind auch auf der zweiten Konusfläche 32 in verschiedener Orientierung gezeigt, wobei auch andere Orientierungen als die hier gezeigten bei sämtlichen Vertiefungen 140, 240, 340, 440 möglich sind.On the first conical surface 30, a trapezoidal recess 340 is also shown as a further embodiment, wherein the short side of the mutually parallel sides facing the injection openings 11. In addition, the first conical surface 30 shows a slot-shaped depression 440, whose ends are rounded and whose sides are parallel to each other. Corresponding depressions 40 are also shown on the second conical surface 32 in different orientations, although orientations other than those shown here are possible for all recesses 140, 240, 340, 440.

Figur 3a zeigt eine dreieckförmige Vertiefung 40, die als gleichschenkliges Dreieck mit einer Grundseite 44 und einer Spitze 46 ausgebildet ist. Die Länge der Grundseite 44 ist mit b und die Höhe des gleichschenkligen Dreiecks, also der Abstand der Spitze 46 von der Grundseite 44, ist mit a bezeichnet. Figur 3b zeigt dieselbe Vertiefung 40 im Längsschnitt, so dass das Höhenprofil deutlich wird. Die Vertiefung 40 weist einen Boden 42 auf, der eben ausgebildet ist und an der Grundseite 44 seine maximale Tiefe t hat, während an der Spitze 46 die Tiefe 0 mm beträgt. An verschiedenen Stellen weist die Vertiefung 40 also eine jeweils unterschiedliche Tiefe t auf. Durch dieses Höhenprofil der Vertiefung 40 ergibt sich eine maximale Verwirbelung bei recht kleiner Tiefe t, so dass die Ventilnadel 5 durch die Vertiefungen 40 nur unwesentlich mechanisch geschwächt wird. Die maximale Tiefe der Vertiefungen 40 beträgt weniger als 0,2 mm, vorzugsweise weniger als 0,05 mm. FIG. 3a shows a triangular recess 40, which is an isosceles triangle with a base 44 and a Tip 46 is formed. The length of the base side 44 is b and the height of the isosceles triangle, so the distance of the tip 46 from the base side 44, is denoted by a. FIG. 3b shows the same recess 40 in longitudinal section, so that the height profile is clear. The recess 40 has a bottom 42 which is flat and has its maximum depth t at the base 44, while at the top 46 the depth is 0 mm. At different locations, the recess 40 thus has a respective different depth t. By this height profile of the recess 40 results in a maximum turbulence at a fairly small depth t, so that the valve needle 5 is only slightly weakened by the wells 40 mechanically. The maximum depth of the recesses 40 is less than 0.2 mm, preferably less than 0.05 mm.

Neben dem Tiefenprofil, das Figur 3b zeigt, sind auch andere Tiefenprofile möglich. Figur 4a zeigt zum Vergleich noch einmal den in Figur 3b dargestellten Verlauf der Bodenfläche 42, bei der sich im Längsschnitt der dreieckförmigen Vertiefung 140 ein Keil ergibt. Figur 4b zeigt einen anderen Verlauf der Bodenfläche 42, bei der an der Grundseite 44 kein steiler Abfall vorgesehen ist, sondern ebenfalls eine Anschrägung, so dass die Bodenfläche 42 aus zwei Teilebenen mit unterschiedlicher Neigung besteht. Figur 4c zeigt ein weiteres Ausführungsbeispiel, bei dem die Bodenfläche 42 aus zwei schrägen Teilstücken mit unterschiedlicher Neigung besteht und aus einer flachen Grundfläche. Figur 4d zeigt einen ähnlichen Verlauf wie Fig. 4a, jedoch ist hier die Bodenfläche 42 konkav gewölbt und nicht eben ist. Ebenso gewölbt ist die Bodenfläche 42 beim Ausführungsbeispiel der Figur 4e, jedoch ist die Wölbung hier konkav.In addition to the depth profile, the FIG. 3b shows, other depth profiles are possible. FIG. 4a shows for comparison again in FIG. 3b shown course of the bottom surface 42, in which results in the longitudinal section of the triangular recess 140, a wedge. FIG. 4b shows a different course of the bottom surface 42, in which on the base side 44, no steep drop is provided, but also a chamfer, so that the bottom surface 42 consists of two part levels with different inclination. Figure 4c shows a further embodiment in which the bottom surface 42 consists of two oblique sections with different inclination and a flat base. FIG. 4d shows a similar course as Fig. 4a However, here is the bottom surface 42 concave and not flat. Also curved is the bottom surface 42 in the embodiment of Figure 4e However, the vault here is concave.

Die Vertiefungen 40, wie sie in der Zeichnung dargestellt sind, lassen sich mit verschiedenen Verfahren einbringen.The recesses 40, as shown in the drawing, can be introduced by various methods.

Neben dem Elektroerodieren eignet sich vor allem die Laser-Behandlung, bei der Vertiefungen verschiedenster Form hergestellt werden können.In addition to electroerodating, the laser treatment is particularly suitable, in which depressions of various shapes can be produced.

Claims (12)

  1. Fuel injection valve for internal combustion engines, having a valve body (1) in which a piston-shaped valve needle (5) is arranged in a longitudinally movable manner in a bore (3), which valve needle (5) has a valve sealing surface (7) which comprises at least one conical surface (30; 32), with the valve needle (5) interacting, by means of its valve sealing surface (7), with a conical valve seat (9) which is formed in the valve body (1), such that when the valve needle (5) is raised up from the valve seat (9), fuel flows out of a pressure chamber (19) between the conical surface (7) and the valve seat (9) through at least one injection opening (11), and with a plurality of depressions (40; 140; 240; 340; 440) being formed on the conical surface (7) and/or on the valve seat (9) so as to be distributed over the circumference, with at least one depression (40; 140; 240; 340; 440) having a different depth at two points, characterized in that the maximum depth (t) of the depressions (40; 140; 240; 340; 440) is less than 0.05 mm.
  2. Fuel injection valve according to Claim 1, characterized in that at least some of the depressions (40; 140; 240) are of triangular design.
  3. Fuel injection valve according to Claim 2, characterized in that the triangular depressions (40; 140; 240) correspond to an isosceles triangle.
  4. Fuel injection valve according to Claim 3, characterized in that the depressions (40; 140; 240) have a smaller depth (t) at the tip (46) of the isosceles triangle than at the base side (44).
  5. Fuel injection valve according to Claim 3, characterized in that the depressions (40; 140; 240) have a smaller depth (t) at the base side (44) than at the tip (46).
  6. Fuel injection valve according to Claim 3, characterized in that the tip (46) of the triangle points in the flow direction of the fuel.
  7. Fuel injection valve according to Claim 3, characterized in that the tip (46) of the triangle points counter to the flow direction of the fuel.
  8. Fuel injection valve according to Claim 1, characterized in that at least some of the depressions (40; 340) have the shape of a trapezium.
  9. Fuel injection valve according to Claim 1, characterized in that at least some of the depressions (40; 440) have the shape of a slot.
  10. Fuel injection valve according to Claim 1, characterized in that the depressions (40) have a depth of zero at one edge and have the maximum depth at the opposite edge.
  11. Fuel injection valve according to Claim 10, characterized in that the base (42) of the depressions (40) is of planar design.
  12. Fuel injection valve according to Claim 10, characterized in that the base (42) of the depressions (40) is curved.
EP03761365A 2002-09-04 2003-04-24 Fuel-injection valve for internal combustion engines Expired - Lifetime EP1537326B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10240827A DE10240827A1 (en) 2002-09-04 2002-09-04 Fuel injection valve for IC engine has recesses in the tapering head of the flow control needle t provide a cushioning effect when closing off the fuel flow
DE10240827 2002-09-04
PCT/DE2003/001333 WO2004027255A1 (en) 2002-09-04 2003-04-24 Fuel-injection valve for internal combustion engines

Publications (2)

Publication Number Publication Date
EP1537326A1 EP1537326A1 (en) 2005-06-08
EP1537326B1 true EP1537326B1 (en) 2009-07-08

Family

ID=31724318

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03761365A Expired - Lifetime EP1537326B1 (en) 2002-09-04 2003-04-24 Fuel-injection valve for internal combustion engines

Country Status (4)

Country Link
EP (1) EP1537326B1 (en)
AT (1) ATE435972T1 (en)
DE (2) DE10240827A1 (en)
WO (1) WO2004027255A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010000754A1 (en) * 2010-01-08 2011-07-14 Robert Bosch GmbH, 70469 Fuel injector
FR3052192B1 (en) * 2016-06-03 2021-02-26 Continental Automotive France DEVICE FOR INJECTING A FLUID UNDER PRESSURE
GB2551169B (en) * 2016-06-08 2019-12-25 Delphi Tech Ip Ltd Fuel injector nozzle
GB2613396B (en) * 2021-12-02 2024-03-20 Delphi Tech Ip Ltd Fuel injector suitable for gaseous fuel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142051A (en) * 1983-12-28 1985-07-27 Toyota Motor Corp Fuel injection valve for internal-combustion engine
JPH10184495A (en) * 1996-12-24 1998-07-14 Zexel Corp Fuel injection control method by variable nozzle hole type fuel injection nozzle
JPH11280610A (en) * 1998-03-30 1999-10-15 Isuzu Motors Ltd Fuel injection nozzle
JP3817959B2 (en) * 1999-03-16 2006-09-06 トヨタ自動車株式会社 Fuel injection nozzle
DE10005009A1 (en) * 2000-02-04 2001-08-09 Daimler Chrysler Ag Seated-hole nozzle for air-compressing internal combustion engine; has point of discontinuity between nozzle body and nozzle needle, to generate turbulence
DE10031264A1 (en) 2000-06-27 2002-01-17 Bosch Gmbh Robert Fuel injection valve for IC engines with even fuel supply to all injection openings even if valve member is misaligned
JP2002250259A (en) * 2001-02-23 2002-09-06 Toyota Motor Corp Fuel injection nozzle and method of manufacturing the same
DE10149277A1 (en) * 2001-10-05 2003-04-24 Siemens Ag Fuel injection valve, for an IC motor, has grooves at the conical tip of the valve needle matching the injection openings in the valve body

Also Published As

Publication number Publication date
WO2004027255A1 (en) 2004-04-01
ATE435972T1 (en) 2009-07-15
DE10240827A1 (en) 2004-03-18
DE50311689D1 (en) 2009-08-20
EP1537326A1 (en) 2005-06-08

Similar Documents

Publication Publication Date Title
EP1567763B1 (en) Fuel injection valve for internal combustion engines
AT513054B1 (en) Length adjustable connecting rod
EP1546547B1 (en) Fuel injection valve for internal combustion engines
WO2002001065A1 (en) Fuel injection valve for internal combustion engines
EP3317558B1 (en) Damping valve
EP1891324B1 (en) Fuel injection valve for internal combustion engines
WO2003078824A1 (en) Fuel injection valve for internal combustion engines
EP1509693B1 (en) Fuel injection valve for internal combustion engines
WO2005078273A1 (en) High pressure pump, in particular for a fuel injection device in an internal combustion engine
EP1373715B1 (en) Fuel-injection valve for internal combustion engines
EP1537326B1 (en) Fuel-injection valve for internal combustion engines
WO2004016943A1 (en) Fuel-injection valve for internal combustion engines
DE10205218A1 (en) Valve for controlling a connection in a high-pressure liquid system, in particular a fuel injector for an internal combustion engine
EP0704022A1 (en) Fuel injection nozzle for internal combustion engines
DE102008000695A1 (en) Impact damping mechanism for magnetic valve of internal combustion engine, has radial projection arranged at valve needle, and stop washer movably arranged between two lifting stops with respect to valve needle
EP1952012B1 (en) Injector
DE10318989A1 (en) Fuel injection valve, for an IC motor, has a ring groove at the valve needle in a constant hydraulic link with the fuel-filled pressure zone and its downstream edge acting a sealing edge, to reduce wear at the valve seat
DE10237003A1 (en) Fuel injection valve for internal combustion engines
DE10209116A1 (en) Method of manufacturing a fuel injector
DE102004028209A1 (en) Fuel injection valve
WO2004085824A1 (en) Fuel-injection valve for internal combustion engines
WO2004057180A1 (en) Fuel injection valve for internal combustion engines
WO2002086307A1 (en) Fuel injection device for an internal combustion engine
WO2001057394A1 (en) Fuel injection valve for internal combustion engines
WO2003046368A1 (en) Fuel injection valve for internal combustion engines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): BG CH CY CZ DE FR GB LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 50311689

Country of ref document: DE

Date of ref document: 20090820

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091019

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091008

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

26N No opposition filed

Effective date: 20100409

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100506

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100426

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091009

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100424

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100424

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100424

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120626

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50311689

Country of ref document: DE

Effective date: 20131101