EP1534755B1 - Generation of surface coating diversity - Google Patents

Generation of surface coating diversity Download PDF

Info

Publication number
EP1534755B1
EP1534755B1 EP03718551A EP03718551A EP1534755B1 EP 1534755 B1 EP1534755 B1 EP 1534755B1 EP 03718551 A EP03718551 A EP 03718551A EP 03718551 A EP03718551 A EP 03718551A EP 1534755 B1 EP1534755 B1 EP 1534755B1
Authority
EP
European Patent Office
Prior art keywords
copolymer
constituent
substrate
synthon
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03718551A
Other languages
German (de)
French (fr)
Other versions
EP1534755A4 (en
EP1534755A1 (en
Inventor
Michael C Barden
Peter A Kambouris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bio-Layer Pty Ltd
Anteo Technologies Pty Ltd
Original Assignee
Bio-Layer Pty Ltd
Bio Layer Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bio-Layer Pty Ltd, Bio Layer Pty Ltd filed Critical Bio-Layer Pty Ltd
Publication of EP1534755A1 publication Critical patent/EP1534755A1/en
Publication of EP1534755A4 publication Critical patent/EP1534755A4/en
Application granted granted Critical
Publication of EP1534755B1 publication Critical patent/EP1534755B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/02Peptides being immobilised on, or in, an organic carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/08Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F261/00Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00
    • C08F261/06Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/003Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/14Solid phase synthesis, i.e. wherein one or more library building blocks are bound to a solid support during library creation; Particular methods of cleavage from the solid support
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/14Solid phase synthesis, i.e. wherein one or more library building blocks are bound to a solid support during library creation; Particular methods of cleavage from the solid support
    • C40B50/18Solid phase synthesis, i.e. wherein one or more library building blocks are bound to a solid support during library creation; Particular methods of cleavage from the solid support using a particular method of attachment to the solid support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/38Graft polymerization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/005Beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/0061The surface being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00612Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00623Immobilisation or binding
    • B01J2219/00626Covalent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00632Introduction of reactive groups to the surface
    • B01J2219/00637Introduction of reactive groups to the surface by coating it with another layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00639Making arrays on substantially continuous surfaces the compounds being trapped in or bound to a porous medium
    • B01J2219/00641Making arrays on substantially continuous surfaces the compounds being trapped in or bound to a porous medium the porous medium being continuous, e.g. porous oxide substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00736Non-biologic macromolecules, e.g. polymeric compounds

Definitions

  • the present invention relates to surface coating technology.
  • the invention relates to a method for generating a library of different surface coatings on a substrate, to a method for optimising a substrate surface for a solid phase application and arrays or beads possessing discrete regions of particular optimised surface coatings.
  • SPR Surface plasmon resonance
  • mass spectrometry also is now widely employed for the analysis of biological macromolecules. These methods typically involve immobilization of a protein on a surface of substrate where it is then exposed to a ligand binding interaction. Following ligand binding (or non-binding) the molecule is desorbed from the surface and into a spectrometer using a laser (see, e.g. Merchant and Weinberger, "Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry," Electrophoresis 21: 1164-1177 (2000 )). As in the SPR experiment, the success of the mass spectrometry experiment depends largely on the interaction between the immobilized protein and the surface. In view of the thousands of proteins with different surface interactions, there is clearly a need for a large number of different substrate surfaces in order for mass spectrometry to be applied successfully to the high throughput analysis of the proteome.
  • WO 00/12575 discloses a method for parallel and combinatory synthesis of compounds bound to a continuous polymeric solid phase supporting material.
  • US 6,403,368 discloses an on-spot hydrophilic enhanced slide/microarray.
  • WO 02/40171 discloses a device and method for the separation of a metal-containing solids mixture.
  • US 5,922,545 discloses methods for identifying peptides and single-chain antibodies that bind predetermined receptors or epitopes.
  • the inability to provide a diverse array of surface coatings stands as an impediment to development in solid phase biological technologies such as biological assays and diagnostics, and biomaterials.
  • solid phase biological technologies such as biological assays and diagnostics, and biomaterials.
  • Such an impediment also extends across a broad spectrum of other technologies, ranging from solid-phase chemical synthesis, catalysis development and separation and purification technologies.
  • the present invention provides a method of generating a library of different surface coatings on a substrate comprising:
  • the present invention provides a method of optimizing a substrate surface for a solid-phase application involving immobilization of a molecule comprising:
  • the present invention provides a biological molecule detection unit capable of detecting at least two biological molecules, said unit comprising a substrate having a plurality of surface coatings wherein at least two of said coatings are different, and tailored to recognise, bind to or associate with a particular biological molecule.
  • a biological molecule detection unit capable of detecting at least two biological molecules, said unit comprising a substrate having a plurality of surface coatings wherein at least two of said coatings are different, and tailored to recognise, bind to or associate with a particular biological molecule.
  • the present invention provides a method for generating a library of different surface coatings on a substrate which can be advantageously used as part of a surface discovery system.
  • the library is generated using a unique synthon approach that provides an architectural framework from which the specific surface coatings can be realised.
  • the present invention fills a critical gap in solid surface technology by providing a high-throughput platform for the rational generation and exploration of surface coatings with novel molecular and macroscopic properties.
  • the diverse combinatorial libraries of surface coatings that may be generated in a high-throughput manner using the synthon-based approach disclosed herein may be applied across a broad spectrum of technologies, ranging from solid-phase chemical synthesis, catalysis development, separation and purification technologies, biological assays and diagnostics, and biomaterials development.
  • the term "synthon” is used to refer to a fundamental chemical unit, or building block, which provides an architectural framework to design and develop a diverse array of surface coatings on a substrate.
  • the synthon comprises three basic elements and can simplistically be represented as B-S-F, wherein B is a copolymer of at least one monomeric constituent P and at least one monomeric constituent A, S is a spacer unit and F is a functional group capable of acting as a site for further chemical modification of the surface.
  • the spacer unit S is attached to constituent A of copolymer B, and the synthon has at least one point of diversity selected from P, A, S and F.
  • the space unit and the functional group form a "functional tether" that may be modified further with chemical entities.
  • Simple combinatorial chemical variation of the four points of diversity (i.e. constituent P, constituent A, spacer unit, and functional group) of the synthon described above allows one to generate potentially thousands of unique but related surfaces.
  • Systematic variation of the constituent A, constituent P, spacer unit and functional group allows generation of libraries of different surface coatings that span a spectrum of microscopic and macroscopic properties. These libraries of surfaces may be further explored using a variety of analysis techniques to discover the optimal surface for a variety of applications. Consequently, the synthon-based approach to generating surface coating diversity described herein provides a platform akin to combinatorial synthesis of small molecules and peptide libraries.
  • the synthon further comprises a control agent C which may be optionally attached to copolymer B, as represented by -[P-A]-.
  • the control agent C may be used as a means to prepare copolymer B under living/controlled polymerization conditions, or alternatively as a means to modify copolymer B.
  • Preferred control agents include, but are not limited to, RAFT control agents, ATRP control agents, and nitroxide control agents.
  • the use of a control agent advantageously provides a means to carefully control and design the molecular architecture of copolymer B, for example by controlling molecular weight distribution and/or distribution of monomeric units within the copolymer chain.
  • the diversity is derived solely from the spacer unit S. In another preferred embodiment, the diversity is derived solely from the functional group F. In yet another preferred embodiment, the diversity is derived from both the spacer unit S and the functional group F.
  • control agent C may be used as the start site for living-controlled polymerization reactions. Consequently, the backbone coating may be modified by living-controlled polymerization independent of modifications at the spacer attached to the active constituent of the backbone.
  • diversity may be achieved by utilizing orthogonal reaction strategies and/or combining mixtures of elements in building the synthons.
  • the present invention allows construction of libraries comprising preferably at least 10, more preferably at least 100, still more preferably at least 1000, most preferably at least 10,000 different surface coatings.
  • the library in accordance with the present invention is prepared in a multiplex format, and the library is also used in a multiplex format.
  • the present invention involves applying backbone coating(s) of the selected copolymer B onto a substrate.
  • the backbone coating provides the macroscopic design element in the method and is preferably covalently bound to the underlying substrate.
  • the backbone coating is bound to the underlying substrate through well-known methods of polymer grafting, or other methods of coating a solid substrate such as dip coating, plasma polymerization, vapor deposition, stamp printing, gamma irradiation, electron beam exposure, thermal and photochemical radiation.
  • copolymer B comprises at least one monomeric constituent P and at least one monomeric constituent A. These constituents may be viewed as monomeric units within the copolymer B.
  • the copolymer B may also comprise other monomeric units.
  • the backbone coating may comprise more than one A constituent and more than one P constituent.
  • the A and P constituents may be selected from a wide spectrum of compounds well-known in the art. Preferred are those compounds amenable to grafting or other methods of coating a solid substrate (e.g. dip coating, plasma polymerization, vapor deposition, stamp printing, gamma irradiation, electron beam exposure, thermal and photochemical radiation).
  • the backbone coating may be attached to the underlying substrate through either the A or P constituent.
  • both constituents may engage in bonding interactions with the substrate.
  • constituent A The role of constituent A is to provide a point for future diversity and would be represented by a functional group that is well known in the art to under go a vast number of chemical transformations, such as an amine, hydroxyl, anhydride, ester, carboxylic acid, ketone, epoxide, isocyanate and so on.
  • Many well-known chemical monomers may be employed as A constituents in the formation of a synthon backbone coating. Selection of a particular set of A constituents may depend on the P constituents selected and the desired chemistry for applying the backbone coating to the substrate.
  • constituent A comprises a chemical moiety, or substituent group that may be chemically modified with a spacer compound (see described below).
  • gamma-initiated free-radical grafting one could employ any of the following monomers as constituent A in the backbone coating: hydroxyethyl methacrylate, maleic anhydride, N-hydroxysuccinimide methacrylate ester, methacrylic acid, diacetone acrylamide, glycidyl methacrylate, PEG methacrylate.
  • more than one different A constituents may be present in the same backbone coating.
  • the coating may be made using a mixture of two constituent A monomers. Once prepared, using well-known orthogonal approaches to chemical transformations, it is possible to differentially modify each of the different A constituents in the presence of the others, in a sequential and predetermined manner.
  • the A constituent comprises a chemical moiety, or substituent group that is amenable to surface grafting methods known in the art.
  • Table 1 lists an exemplary selection of chemical monomers that may be used to provide the A constituents in the present invention.
  • the compounds in this table are not intended to be limiting. Many common chemical variants of these compounds, as well as, other compounds not listed here but well-known in the art of surface modification may also be used.
  • copolymer B comprises a constituent A derived from the polymerised residue of maleic anhydride.
  • Table 1 Selection of A Constituents ACTIVE 1 2 3 4 A B C D
  • constituent A acts primarily as the point of attachment of the spacer
  • constituent P is modification of molecular or macroscopic environment of the surface coating.
  • a set of P constituents may be selected that modify the charge or the hydrophilicity of the surface coating.
  • Modifications to P constituents in a three dimensional stable network forming a surface coating allows determination of optimal surface properties for solid-phase applications. For example determination of a surface that allows binding of non-contiguous epitopes of a biomolecule so that they are available for a binding assay.
  • constituent P also may act as a spacer unit for the active composition of the coating, in order to distribute constituent A alternating, randomly, statistically or in a gradient fashion throughout the coating.
  • constituent P may be provided by well known chemical monomers (preferably those that are commercially available) such as: styrene, dimethyl acrylamide, acrylonitrile, N,N dimethyl (or diethyl) ethyl methacrylate, 2-methacryloyloxy-ethyl-dimethyl-3-sulfopropyl-ammounium hydroxide, and methoxy PEG methacrylate.
  • copolymer B comprises a P constituent B derived from the polymerised residue of styrene.
  • constituent P comprises a chemical moiety, or substituent group that is amenable to surface grafting methods known in the art.
  • Table 2 below lists a selection of chemical monomers that may be used to provide the P constituents of the present invention.
  • the compounds in this table are not intended to be limiting. Many common chemical variants of these compounds, as well as, other compounds not listed here but well-known in the art of surface modification may also be used.
  • Table 2 Selection of P Constituents Passive 1 2 3 4 5 A B C D
  • the desired macroscopic property of a surface coating for a selected solid phase application may be derived by in silico analysis of a range of synthon structures. Based on the in silico results, a passive constituent monomer with the chemical features necessary to generate the macroscopic property may be synthesized. Alternatively, the appropriate chemical features of the passive constituent may also be derived by in situ chemical transformation of an already applied backbone coating. In preferred embodiments, such in situ transformations of the backbone P constituent are carried out in an orthogonal reaction scheme in order to maintain the integrity of constituent A.
  • the synthon backbone coating may be applied to the substrate using any of the vast assortment of surface modifications methods present in the art (e.g. dip coating, plasma polymerization, vapor deposition, stamp printing, gamma irradiation, electron beam exposure, thermal and photochemical radiation).
  • the backbone coating is polymerized from the constituent monomers on the solid substrate using chemistry well-known in the art.
  • chemistry well-known in the art.
  • a wide range of polymerization processes present in the art may be utilized.
  • controlled and/or living polymerization techniques of cationic, anionic, radical such as NMP, ATP, ATRP, RAFT, Iniferter
  • condensation such as ROMP and ADMET
  • Non-controlled methods of polymerization well known in the art may also be utilized with this invention.
  • the backbone coating may be provided by methods known to afford living polymerization.
  • the end groups of such living polymers have the ability to be further transformed, either by addition of a monomer to extend the macromolecule with the same monomer, a mixture of monomers or new monomeric compositions.
  • the end groups may be modified using any of a variety of organic chemistry transformations well-known in the art of small molecule manipulation.
  • living-controlled polymerization may be used to further modify the backbone coating.
  • Control agents and methods of conducting living-controlled polymerization are well-known in the art. Methods of living-controlled polymerization and re-initiation on the surfaces of non-functionalized solid substrates is described in co-pending U.S. patent application 10/109,777 filed March 28, 2002 . Also, see, e.g. Canadian Patent applications 2,341,387 and 2,249,955 which disclose methods of living-controlled polymerization on solid polymer substrates.
  • the backbone coating may be applied to the substrate as a polymer solution, comprising macromers that will allow tethering by complementary chemistry to the surface of the substrate or encourage entanglement of the polymer in solution with the substrate.
  • the reactive units of the macromer may either be present at the end groups, or spaced throughout the backbone of the macromer in a random, block, or gradient fashion.
  • the backbone coating is polymerised from constituent monomers to provide an alternating or block copolymer.
  • the alternating, or substantially alternating character, of the copolymer is believed to provide an important spatial arrangement of the P and A constituents which facilitates good surface coating of the substrate.
  • the alternating copolymer has an alternating character defined by greater than 70 % of consecutive comonomer residue units being alternate between residues of the first comonomer and the second comonomer, more preferably greater than 90%.
  • the block nature of the copolymer may also vary in an alternating fashion.
  • the backbone coating is is a copolymer of maleic anhydride and styrene.
  • the spacer group provides a synthetic "handle" by which functional groups may be attached to the A constituent of the backbone coating.
  • spacer spacer molecule
  • spacer unit spacer unit
  • functional tether is used to refer to the combined moiety of a spacer molecule modified with the desired functional group for the synthon.
  • the spacer molecule may be represented by the generic structure shown in Scheme 2: .
  • both X and Y comprise chemical moieties or substituent groups that may be chemically modified independently, sequentially or under orthogonal conditions.
  • X may chemically react with the active constituent A to attach the spacer to the backbone.
  • Y may be chemically modified with a desired functional group F.
  • Typical species may include for example, spacer molecules wherein X is the residue of an amino, hydroxyl, thiol, carboxylic acid, anhydrides, isocyanate, sulfonyl chloride, sulfonic anhydride, chloroformate, ketone, or aldehyde; Y is the same as defined for X; and Q is a linear or branched divalent organic group; and X and Y are not reactive with each other or Q.
  • Q is selected from optionally substituted C 1 to C 20 alkylene, optionally substituted C 2 to C 20 alkenylene, optionally substituted C 3 to C 20 cycloalkylene, optionally substituted C 2 to C 20 alkynylene and optionally substituted C 6 to C 20 arylene, wherein one or more carbon atoms may be substituted with a heteroatom selected from O, S or N.
  • a group may or may not be further substituted with one or more groups selected from, but not limited to, alkyl, alkenyl, alkynyl, aryl, halo, haloalkyl, haloalkenyl, haloalkynyl, haloaryl, hydroxy, alkoxy, alkenyloxy, aryloxy, benzyloxy, haloalkoxy, haloalkenyloxy, acetyleno, carboximidyl, haloaryloxy, isocyano, cyano, formyl, carboxyl, nitro, nitroalkyl, nitroalkenyl, nitroalkynyl, nitroaryl, alkylamino, dialkylamino, alkenylamino, alkynylamino, arylamino, diarylamino, benzylamino, imino, alkylimine, alkenylimine, alkenylimine, alkenylim
  • aryl and heteroaryl refer to any substituent which includes or consists of one or more aromatic or heteroaromatic ring respectively, and which is attached via a ring atom.
  • the rings may be mono or polycyclic ring systems, although mono or bicyclic 5 or 6 membered rings are preferred.
  • suitable rings include but are not limited to benzene, biphenyl, terphenyl, quaterphenyl, naphthalene, tetrahydronaphthalene, 1-benzylnaphthalene, anthracene, dihydroanthracene, benzanthracene, dibenzanthracene, phenanthracene, perylene, pyridine, 4-phenylpyridine, 3-phenylpyridine, thiophene, benzothiophene, naphthothiophene, thianthrene, furan, benzofuran, pyrene, isobenzofuran, chromene, xanthene, phenoxathiin, pyrrole, imidazole, pyrazole, pyrazine, pyrimidine, pyridazine, indole, indolizine, isoindole, purine, quinoline, isoquinoline, phthala
  • alkyl used either alone or in compound words such as “alkenyloxyalkyl”, “alkylthio”, “alkylamino” and “dialkylamino” denotes straight chain, branched or cyclic alkyl, preferably C 1-10 alkyl or cycloalkyl.
  • straight chain and branched alkyl examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, amyl, isoamyl, sec-amyl, 1,2-dimethylpropyl, 1,1-dimethyl-propyl, hexyl, 4-methylpentyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, 3,3-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 1,2,2,-trimethylpropyl, 1,1,2-trimethylpropyl, heptyl, 5-methoxyhexyl, 1-methylhexyl, 2,2-dimethylpentyl, 3,3-dimethylpentyl, 4,4-dimethylpentyl, 1,2-dimethylpentyl
  • cyclic alkyl examples include mono- or polycyclic alkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl and the like.
  • alkoxy denotes straight chain or branched alkoxy, preferably C 1-10 alkoxy.
  • alkoxy include methoxy, ethoxy, n-propoxy, isopropoxy and the different butoxy isomers.
  • alkenyl denotes groups formed from straight chain, branched or cyclic alkenes including ethylenically mono-, di- or poly-unsaturated alkyl or cycloalkyl groups as previously defined, preferably C 2-10 alkenyl.
  • alkenyl examples include vinyl, allyl, 1-methylvinyl, butenyl, iso-butenyl, 3-methyl-2-butenyl, 1-pentenyl, cyclopentenyl, 1-methyl-cyclopentenyl, 1-hexenyl, 3-hexenyl, cyclohexenyl, 1-heptenyl, 3-heptenyl, 1-octenyl, cyclooctenyl, 1-nonenyl, 2-nonenyl, 3-nonenyl, 1-decenyl, 3-decenyl, 1,3-butadienyl, 1-4,pentadienyl, 1,3-cyclopentadienyl, 1,3-hexadienyl, 1,4-hexadienyl, 1,3-cyclohexadienyl, 1,4-cyclohexadienyl, 1,3-cycloheptadienyl, 1,3,5-cycloheptatrien
  • alkynyl denotes groups formed from straight chain, branched or cyclic alkyne including those structurally similar to the alkyl and cycloalkyl groups as previously defined, preferably C 2-10 alkynyl.
  • alkynyl include ethynyl, 2-propynyl and 2-or 3-butynyl.
  • acyl either alone or in compound words such as “acyloxy”, “acylthio", “acylamino” or “diacylamino” denotes carbamoyl, aliphatic acyl group and acyl group containing an aromatic ring, which is referred to as aromatic acyl or a heterocyclic ring which is referred to as heterocyclic acyl, preferably C 1-10 acyl.
  • acyl examples include carbamoyl; straight chain or branched alkanoyl such as formyl, acetyl, propanoyl, butanoyl, 2-methylpropanoyl, pentanoyl, 2,2-dimethylpropanoyl, hexanoyl, heptanoyl, octanoyl, nonanoyl, decanoyl, undecanoyl, dodecanoyl, tridecanoyl, tetradecanoyl, pentadecanoyl, hexadecanoyl, heptadecanoyl, octadecanoyl, nonadecanoyl and icosanoyl; alkoxycarbonyl such as methoxycarbonyl, ethoxycarbonyl, t-butoxycarbonyl, t-pentyloxycarbonyl and heptyloxycarbonyl; cycloalkyl
  • phenylacetyl phenylpropanoyl, phenylbutanoyl, phenylisobutylyl, phenylpentanoyl and phenylhexanoyl
  • naphthylalkanoyl e.g. naphthylacetyl, naphthylpropanoyl and naphthylbutanoyl
  • aralkenoyl such as phenylalkenoyl (e.g.
  • phenylpropenoyl, phenylbutenoyl, phenylmethacryloyl, phenylpentenoyl and phenylhexenoyl and naphthylalkenoyl e.g. naphthylpropenoyl, naphthylbutenoyl and naphthylpentenoyl
  • aralkoxycarbonyl such as phenylalkoxycarbonyl
  • benzyloxycarbonyl aryloxycarbonyl such as phenoxycarbonyl and napthyloxycarbonyl; aryloxyalkanoyl such as phenoxyacetyl and phenoxypropionyl; arylcarbamoyl such as phenylcarbamoyl; arylthiocarbamoyl such as phenylthiocarbamoyl; arylglyoxyloyl such as phenylglyoxyloyl and naphthylglyoxyloyl; arylsulfonyl such as phenylsulfonyl and napthylsulfonyl; heterocycliccarbonyl; heterocyclicalkanoyl such as thienylacetyl, thienylpropanoyl, thienylbutanoyl, thienylpentanoyl, thienylhexanoyl, thiazolylace
  • the spacer molecule may have a branched structure whereby multiple functional groups may be attached at the ends of the branches.
  • a spacer molecule may be attached, then modified with more than one functional group.
  • the spacer molecule is a linear chain molecule and a functional tether is formed by modifying the end of the chain distal from the site of attachment to the constituent A of the synthon.
  • glycol oligomer chains provide a relatively rigid linear structure, whereas simple hydrocarbons adopt more folded conformations.
  • These differences in spacer geometry also may vary with chain length or the presence of charged groups in the spacer molecule.
  • These differences in geometry provided by the spacer molecule properties directly affects the orientation of the functional group with respect to the backbone and thereby affects the overall macroscopic properties of the surface coating. Modification of these properties may greatly affect the complementary or antagonistic interactions between the surface and a biomolecule, cell or other chemical entity immobilized thereon.
  • Scheme 3 illustrates the formation of a backbone coating on a substrate and subsequent attachment of a spacer.
  • the backbone coating is applied by polymerization of constituent A, maleic anhydride, and constituent P, styrene.
  • the spacer unit features an amine at one end that forms a covalent linkage to constituent A resulting in a maleimide.
  • the spacer unit is a residue of a diamine, more preferably an alkyl diamine. It is particularly preferred that the spacer unit S is a residue of 1.5-diaminopentane or N-(3-aminopropyl)-1,3-propanediamine.
  • the functional group may serve different roles in various embodiments.
  • the functional group may act as a site for further chemical modification of the surface.
  • the functional group is capped with a polymerization initiator, the possibility exists to add another level of synthon diversity.
  • the functional group F is a group capable of binding or chemically reacting with a biological molecule or component.
  • the functional group F also preferably comprises a primary or secondary amine group.
  • the functional group on each of the four coatings may serve as the primary site for a complementary binding interaction.
  • the four coatings in a desired solid phase binding assay one may determine which surface is optimal.
  • new libraries of related synthons may be generated to further optimize the surface for the desired application in an iterative fashion. For example, the next iteration may vary only the spacer length.
  • synthons may be generated with functional groups exhibiting a range of molecular diversity in order to find the optimal surface for binding a complementary molecular species such as a receptor or other large biomolecule.
  • a library of synthons may be generated comprising a range of functional groups in order to find the optimal surface coating for binding the ⁇ -adrenergic receptor in a surface plasmon resonance experiment.
  • Scheme 4 illustrates the high-throughput advantage afforded by some embodiments of the synthon-based approached.
  • generation of surface diversity on solid phases has been limited by the difficulty of developing chemical methods for grafting new coatings onto solid substrates.
  • Prior methods have focused on utilizing solution reactions to generate a diverse library of candidate compounds for coating a substrate. These methods have encountered a bottleneck in getting the solution-phase compounds coated onto a solid-phase substrate. This bottleneck results from the general lack of development of the science of grafting materials onto solids to form coatings.
  • the present invention provides a high-throughput solution to generating surface diversity by avoiding this bottleneck.
  • libraries of diverse surfaces may be generated from a single backbone coating applied by a well-characterized grafting procedure. Subsequently, diversity may be introduced to the solid phase surface in a combinatorial manner by varying the spacer and functional groups structures through well-known synthetic routes.
  • High-throughput generation of molecular diversity for detecting complementary binding interactions, as well as, for further chemical modification may be achieved by modifying the functional group on a relatively simple synthon backbone-spacer configuration.
  • H 2 N-S 1 -X is a symmetrical diamine such as H 2 N-(CH 2 ) 6 - NH 2
  • a large number of functional groups with a range of functional and molecular diversity may be added.
  • the synthon-based approach to generation of diverse surface coatings may be carried out using well-known or readily-constructed free radical polymerization technology.
  • This embodiment is particularly well-suited to generating synthon surface coatings on polymeric substrates such as polyolefins.
  • the polymeric substrate such as polypropylene or
  • the polymeric substrate such as polypropylene or
  • the manner by which this initial coating is a generated is well known in the art, gamma grafting, where by the initiation requirements for the graft polymerisation to occur is from a cobalt-60 source, or the like.
  • the combinatorial advantages of the present synthon-based surface discovery system are independent of the nature of the base substrate material or how the synthon is applied to the surface. Hence surface diversity may be explored across a wide range of substrates.
  • the substrate used in accordance with present invention is generally a solid and provides an integral surface or plurality of surfaces upon which the different surface coating(s) may be applied.
  • the substrate is selected from glass, silicon, metals, and organic polymers, other synthetic or natural materials, and combinations thereof.
  • the substrate may for example be provided in the form of a microscope slide, microtitre plate, porous membrane, pipette tip, tube or a plurality of beads.
  • the substrate is an organic polymer.
  • organic polymers include, but are not limited to, polytetrafluoroethylene, polystyrene, polypropylene, polyethylene, polyvinylidenefluoride and polymethylmethacrylate.
  • the substrate may be porous, non-porous, and/or any geometric shape, e.g. bead, or flat.
  • porous polymeric substrates with co-continuous architecture useful with the present invention are described in co-pending US patent application no. 10/052,907 filed January 17, 2002 , which is hereby incorporated by reference herein.
  • the substrate is an organic polymer in the form of a plurality of beads.
  • the beads are labelled such that a particular coating can be related to a particular bead or subgroup of beads.
  • Suitable polymeric beads for use as a substrate in accordance with the present invention include, but is not limited to, LuminexTM beads.
  • compositions and methods allow surface diversity to be explored in a high-throughput fashion by, for example, building different synthons in an array format on a single substrate.
  • a variety of multiplex formats such as arrays or beads may be used.
  • a single synthon backbone coating may be applied across the full substrate surface.
  • different spacer units or functional group variants may be generated in different localized regions on the substrate.
  • a "region" of a substrate includes a point, area or other location on the surface of the substrate. Each different surface coated on the substrate occupies discrete regions on the substrate.
  • photolithographic or micromirror methods may be used to spatially direct light-induced chemical modifications of spacer units or functional groups resulting in attachment at specific localized regions on the surface of the substrate.
  • Light-directed methods of controlling reactivity and immobilizing chemical compounds on solid substrates are well-known in the art and described in U.S. Patent Nos. 4,562,157 , 5,143,854 , 5,556,961 , 5,968,740 , and 6,153,744 , and PCT publication WO 99/42813 , each of which is hereby incorporated by reference herein.
  • plural localized synthon generation on a single substrate may be achieve by precise deposition of chemical reagents.
  • Methods for achieving high spatial resolution in depositing small volumes of a liquid reagent on a solid substrate are disclosed in U.S Patent Nos. 5,474,796 and 5,807,522 , both of which are hereby incorporated by reference herein.
  • array may or may not require the identification of each different surface coating in terms of co-ordinates for its location.
  • An array may be in a pattern or be random and may comprise two or more coatings, or the same coating in different regions on the same substrate.
  • the underlying substrate may be uniform in its ability to accept a surface coating. Or the substrate may have regions with different abilities to bind specific surface coatings resulting in a spatial pattern depending on the coating.
  • Each of these surfaces may potentially create an optimum environment or have optimal properties for a particular solid phase application. However, the greater the number of diverse surfaces in a library requires more screening for each particular application.
  • the surface coatings of the present invention may be screened for optimal performance in a solid phase application of interest by methods well known in the art.
  • screening may involve detecting specific binding of cells to the surface and consequently may utilize flow cytometry as, for example, described by Needels et al. (1993).
  • screening methods useful with the present invention include any of the great number of isotopic and non-isotopic labeling and detection methods well-known in the chemical and biochemical assay art.
  • a library of surface coatings of the present invention may be screened for the ability to bind a specific peptide in an active configuration on the surface.
  • An active configuration refers to an orientation of the molecule on the surface coating whereby the molecule may be specifically detected with a selected probe molecule, e.g. a fluorescently coupled antibody that specifically binds the molecule.
  • spectroscopic methods well-known in the art may be used to determine directly whether a molecule is bound to a surface coating in an desired configuration.
  • Spectroscopic methods include e.g., UV-VIS, NMR, EPR, IR, Raman, mass spectrometry and other methods adapted to surface analysis well-known in the art.
  • the present invention may be employed to generate optimal surface coatings for immobilized nucleic acids.
  • These coatings may be used in any of a large number of well-known hybridization assays where nucleic acids are immobilized on a surface of a substrate, e.g. genotyping, polymorphism detection, gene expression analysis, fingerprinting, and other methods of DNA- or RNA-based sample analysis or diagnosis.
  • Various aspects of the present invention may be conducted in an automated or semi-automated manner, generally with the assistance of well-known data processing methods.
  • Computer programs and other data processing methods well known in the art may be used to store information including e.g. surface coating library chemical and macroscopic properties.
  • Data processing methods well known in the art may be used to read input data covering the desired characteristics.
  • data processing methods well known in the art may be used to control the processes involved in the present invention, including e.g applying or polymerizing the backbone coating on the substrate; control of chemical reactions involved in further generating the synthon; and/or the reactions and interactions occurring in, within or between a population or array of surface coatings on a substrate.
  • the ring closure of the amic acid was effected by heating the material from step 1 of example 2 prepared above, at 60C in DMF in the presence of acetic anhydride and sodium acetate for 4 hours. The plastic cylinders were then washed extensively to afford the ring closed, grafted imide.
  • the removal of the amine protection group was performed under standard acid deprotection conditions by placing a sample of the plastic cylinders prepared above in example 2, step 2 were placed in a 20% Trifluoroacetic acid in dichloromethane for 2 hours. The deprotected, acidified samples were than washed extensively with dichloromethane prior to neutralization.
  • step 3 were treated with 5% triethyl amine in a 1:1 dimethyl formamide / dichloromethane, for 20 minutes, then washed extensively with dimethyl formamide and dichloromethane, prior to drying and determination of amine activity as described in Example 3, below.
  • Step 1 Preparation of Maleic Anhydride / Syrene Graft Co-polymer on PFA disks.
  • Maleic anhydride/Styrene was covalently attached onto a tetrafluoroethylene-perfluoroalkyl-vinylether copolymer (PFA) disk using the ⁇ -irradition technique.
  • PFA tetrafluoroethylene-perfluoroalkyl-vinylether copolymer
  • Three thousand PFA disks (6 mm diameter x 0.8 mm thickness) were immersed in 150 mL 20% maleic anhydride in ethyl acetate (w/v) and 150 mL 20% styrene in ethyl acetate (v/v) containing 0.010 M HCl in dioxane in a 500 mL glass bottle.
  • the solution was degassed by bubbling with N 2(g) for 10 min.
  • the glass bottle was sealed with a Teflon screw cap and ⁇ -irradiated with a 60 CO source.
  • the grafted disks were thoroughly washed with DMF and CH 2 Cl 2 to remove residual monomer and non-grafted co-polymer and dried overnight under vacuum at 30°C. After drying, the disks were weighed to give an average mass change of 0.92% per disk (1.94 ⁇ g/mm 2 ).
  • Step 2 Reaction of Maleic Anhydride / Styrene Graft System with Primary Amines.
  • Step 3 Cyclization of Mixed System to give Syrene / Maleimide Graft Co-polymer.
  • Mixed amide-carboxylic acid-styrene PFA disks 50 disks derived from primary amines were treated with toluene (50 mL), acetic anhydride (0.25 M), and sodium acetate (0.025 M) before heating to 80°C overnight. After 16 h, the vial was drained of reagent and the disks washed with toluene, DMF, and then CH 2 Cl 2 before drying under vacuum to afford the library of styrene/maleimide surfaces, generated from one initial surface.
  • Step 1 Preparation of Maleic Anhydride / Styrene Graft Co-polymer on PFA disks.
  • Maleic anhydride/Styrene was covalently attached onto a tetrafluoroethylene-perfluoroalkyl-vinylether copolymer (PFA) disk using the ⁇ -irradition technique.
  • PFA tetrafluoroethylene-perfluoroalkyl-vinylether copolymer
  • Three thousand PFA disks (6 mm diameter x 0.8 mm thickness) were immersed in 150 mL 20% maleic anhydride in ethyl acetate (w/v) and 150 mL 20% styrene in ethyl acetate (v/v) containing 0.010 M HCl in dioxane in a 500 mL glass bottle.
  • the solution was degassed by bubbling with N 2(g) for 10 min.
  • the glass bottle was sealed with a Teflon screw cap and ⁇ -irradiated with a 60 Co source.
  • the grafted disks were thoroughly washed with DMF and CH 2 Cl 2 to remove residual monomer and non-grafted co-polymer and dried overnight under vacuum at 30°C. After drying, the disks were weighed to give an average mass change of 0.92% per disk (1.94 ⁇ g/mm 2 ).
  • Step 2 Reaction of Maleic Anhydride / Styrene Graft System with Diamines on Disk 1943 PFA discs grafted with maleic anhydride/styrene from Step 1 were then split into 29 batches of 67 discs. Each batch was treated with a different diamine (0.5 M in DMF) from Table 4 to give, after washing, 29 different mixed (amide-carboxylic acid-phenyl) intermediates containing free amines. Table 4. List of Diamine Spacers for Maleimide Library No. Diamine No.
  • Step 3 Reaction of Mixed (Amide-carboxylic acid-phenyl) Amine Intermediates with Carboxylic Acids.
  • Step 4 Cyclization of Mixed System to give Styrene / Maleimide Graft Co-polymer.
  • Mixed amide-carboxylic acid-styrene PFA disks from step 3 (50 disks) were treated with acetic anhydride (0.25 M) and sodium acetate (0.025 M) in toluene before heating to 80°C overnight. After 16 h, the vial was drained of reagent and the disks washed with toluene, DMF, and then CH 2 Cl 2 before drying under vacuum to afford the library of styrene/maleimide surfaces, generated from one initial surface.
  • Step 1 Preparation of Maleic Anhydride / Styrene Graft Co-polymer on microscope slide.
  • a procedure for applying a Synthon Coating in a microarray format can be accomplished as follows: A microscope slide of dimensions 2.5 x 7.5 x 0.1 cm, prepared from the injection molding of tetrafluoroethylene-perfluoroalkyl-vinylether copolymer (PFA), can be masked to create an array of 16 x 250 um circular spots. Treatment of the masked slide with heptane plasma (5 min, 20 W, 10 -3 torr) followed by removal of the mask yields a PFA slide consisting of 16 x 250 um thinly coated heptane spots.
  • PFA tetrafluoroethylene-perfluoroalkyl-vinylether copolymer
  • UV irradiation of the slide in the presence of benzophenone (0.05 M) in methanol followed by simultaneous polymerization and grafting of maleic anhydride (1.75 M) and styrene (1.75 M) in ethyl acetate selectively derivatizes the heptane layer to give arrayed spots that are densely functionalised with anhydride groups.
  • Step 2 Reaction of Maleic Anhydride / Styrene Graft Slide with Primary Amines.
  • Step 3 Cyclization of Mixed System to give Styrene / Maleimide Graft Co-polymer.
  • XPS and ATR spectra were acquired and indicated that each transformation had been performed. Further, the assemble library of maleimides on a microarray was screened against anti Rabbit IgG, and a spectrum of very low to very high protein bindings events were observed.
  • Step 1 Preparation of Maleic Anhydride / Styrene Graft Co-polymer on microscope slide.
  • a procedure for applying a Synthon Coating in a microarray format can be accomplished as follows: A microscope slide of dimensions 2.5 x 7.5 x 0.1 cm, prepared from the injection molding of tetrafluoroethylene-perfluoroalkyl-vinylether copolymer (PFA), can be masked to create an array of 16 x 250 um circular spots. Treatment of the masked slide with heptane plasma (5 min, 20 W, 10 -3 torr) followed by removal of the mask yields a PFA slide consisting of 16 x 250 um thinly coated heptane spots.
  • PFA tetrafluoroethylene-perfluoroalkyl-vinylether copolymer
  • UV irradiation of the slide in the presence of benzophenone (0.05 M) in methanol followed by simultaneous polymerization and grafting of maleic anhydride (1.75 M) and styrene (1.75 M) in ethyl acetate selectively derivatizes the heptane layer to give arrayed spots that are densely functionalised with anhydride groups.
  • Step 2 Reaction of Maleic Anhydride / Styrene Graft Slide with Secondary Amines.
  • XPS and ATR spectra were acquired and indicated that each transformation had been performed. Further, the assemble library of mixed (amide-carboxylic acid-phenyl) systems from secondary amines on microarray was screened against anti Rabbit IgG, and a spectrum of very low to very high protein bindings events were observed.
  • Step 1 Preparation of Maleic Anhydride / Styrene Graft Co-polymer on microscope slide.
  • a procedure for applying a Synthon Coating in a microarray format can be accomplished as follows: A microscope slide of dimensions 2.5 x 7.5 x 0.1 cm, prepared from the injection molding of tetrafluoroethylene-perfluoroalkyl-vinylether copolymer (PFA), can be masked to create an array of 16 x 250 um circular spots. Treatment of the masked slide with heptane plasma (5 min, 20 W, 10 -3 torr) followed by removal of the mask yields a PFA slide consisting of 16 x 250 um thinly coated heptane spots.
  • PFA tetrafluoroethylene-perfluoroalkyl-vinylether copolymer
  • UV irradiation of the slide in the presence of benzophenone (0.05 M) in methanol followed by simultaneous polymerization and grafting of maleic anhydride (1.75 M) and styrene (1.75 M) in ethyl acetate selectively derivatizes the heptane layer to give arrayed spots that are densely functionalised with anhydride groups.
  • Step 2 Reaction of Maleic Anhydride / Styrene Graft Slide with Secondary Amines.
  • a PFA slide grafted with 16 maleic anhydride/styrene spots was elaborated with 16 different secondary amines (0.5 M, Table 7 above) dissolved in DMF via robotic printing. Washing of the slide with dimethylformamide followed by 1% acetic acid in dimethylformamide gives 16 x 250 um different mixed (amide-carboxylic acid-styrene) spots on the PFA slide.
  • Step 3 Reaction of Mixed (amide-carboxylic acid-phenyl) System with Diamine.
  • Step 4 Reaction of Mixed (2°-Amide-1°-amide-phenyl) Amine Intermediates with Carboxylic Acids.
  • step 3 The thirty slides from step 3 above were each treated with a solution of 3-iodo-4-methylbenzoic acid (0.25 M), 1-hydroxy-7-azabenztriazole (0.25 M), and diisopropylethylamine (0.5 M) in DMF. The reaction mixtures were agitated overnight before washing with DMF and methylene chloride to remove excess reagent.
  • XPS and ATR spectra were acquired and indicated that each transformation had been performed. Further, the assemble library of mixed (amide-amide-phenyl) system on a microarray was screened against anti Rabbit IgG, and a spectrum of very low to very high protein bindings events were observed.
  • Inhibitor free styrene (86.4 mmol), maleic anhydride (86.4 mmol), and initiator AIBN (0.1mmo were mixed together in 1,4-Dioxane (48ml) in a polymerisation ampoule and sealed with a rubber septum.
  • the solution was degassed by nitrogen sparging then allowed to polymerise at 60°C in a temperature controlled oil bath. After an appropriate time interval the polymerisation was stopped by precipitation into a 10-fold excess of methanol.
  • the copolymer was collected by filtration and purified once by reprecipitation into methanol from DMF.
  • Step 1 A 100uL bead suspension of 5 micron, carboxylated was washed once with 2mls of Millipore water. The suspension was spun down and the bead plug resuspended into 1ml of a 1 wt% solution of PEI (Aldrich, 750K). The PEI was allowed to adsorb for 30 minutes with occasional gentle shaking and subsequently washed vigorously 3 times with Millipore water and spun down to a bead plug.
  • PEI Aldrich, 750K
  • the PEI coated beads were then resuspended in 1ml of 1% hydrolysed Synthon Coating Polymer 1 (described above) and allowed to adsorb for 30min with occasional gentle shaking The beads were then washed 3 times with Millipore water with each washing step including 20min of gentle shaking and spun down to a bead plug.
  • Step 2 To effect the next coating stage, the spun down bead plugs with the PEI and adsorbed Synthon Coating Polymer were resuspended into 1ml of a 5mg/ml EDC water solution and after 1min, 25uL of the 1,5 pentyl diamine was added. The samples were shaken briefly and the coupling reaction was allowed to proceed for 2 hrs with occasional gentle shaking. As the beads tended to clump during this process, they were redispersed with a short stints in the ultrasonic bath. The diamine coupled beads were then washed exhaustively with Millipore water 5 times and spun down to a bead plug.
  • amine modified beads were resuspended into 1ml of water and 200uL of the, 3-iodo-4-methylbenzoic acid, sulfo-NHS ester ( ⁇ 10mg/ml of DMF) was added. The reaction was left to proceed for 2hrs and were then exhaustively washed 5 times with Millipore water. It should be noted that this modification can be effected by any number of diamines (or other multi-amine building block) and carboxylic acids, to allow the generation of libraries of modified encoded beads from the single Synthon Coating Polymer modified bead.
  • Step 1 A 100uL bead suspension of 5 micron, carboxylated was washed once with 2mls of Millipore water. The suspension was spun down and the bead plug resuspended into 1ml of a 1 wt% solution of PEI (Aldrich, 750K). The PEI was allowed to adsorb for 30 minutes with occasional gentle shaking and subsequently washed vigorously 3 times with Millipore water and spun down to a bead plug.
  • PEI Aldrich, 750K
  • the covalent attachment of the Synthon Coating Polymer to the PEI coated beads was performed by resuspending the PEI beads in 1ml of 1% Synthon Coating Polymer (preparation described above) that had been activated with EDC, and the reaction allowed to proceed for 30min with occasional gentle shaking. The beads were then washed 3 times with Millipore water with each washing step including 20min of gentle shaking and spun down to a bead plug.
  • Step 2 To effect the next coating stage, the spun down bead plugs with the PEI and adsorbed Synthon Coating Polymer were resuspended into 1ml of a 5mg/ml EDC water solution and after 1min, 25uL of the 1,5 pentyl diamine was added. The samples were shaken briefly and the coupling reaction was allowed to proceed for 2 hrs with occasional gentle shaking. As the beads tended to clump during this process, they were redispersed with a short stints in the ultrasonic bath. The diamine coupled beads were then washed exhaustively with Millipore water 5 times and spun down to a bead plug.
  • amine modified beads were resuspended into 1ml of water and 200uL of the, 3-iodo-4-methylbenzoic acid, sulfo-NHS ester ( ⁇ 10mg/ml of DMF) was added. The reaction was left to proceed for 2hrs and were then exhaustively washed 5 times with Millipore water. It should be noted that this modification can be effected by any number of diamines (or other multi-amine building block) and carboxylic acids, to allow the generation of libraries of modified encoded beads from the single Synthon Coating Polymer modified bead.
  • Encoded Carboxylated beads employed in the assay were acquired from Luminex, and treated with Step 1 of the Absorption of the Synthon Coating Polymer described above. 5.0 X10 6 microspheres were transferred to a 15mL microcentrifuge tube, spun down to a pellet and resuspended in 5mL of 0.1M MES, pH 4.5 making sure to vortex and sonicate beads well.
  • 0.2 nmol of capture oligo probes (2mL of 1:10 of stock in dH20) was added to the beads, followed by a fresh aliquot of 10mg/mL EDC in dH20 (2.5mL). The reaction was allowed to proceed for 30 minutes at room temperature in the dark, prior to washing and charging the vessel with another fresh solution of 2.5mL of EDC. This solution was also incubated for 30 minutes at room temperature in the dark, then washed with 1.0mL of 0.02% Tween-20. The suspension was centrifuged for 1 minute to produce pellet and the supernatant carefully removed. The beads were then washed with 1.0mL of 0.1 % SDS, centrifuged for 1 minute to produce pellet and the supernatant carefully removed. The beads were then finally suspended in 100mL of TE, at pH 8.0 and stored at 2-8°C in complete darkness.
  • the coupled beads were then resuspended 1.5 X TMAC buffer and distributed to a sample or background well on the PCR plate.
  • the amplified biotinylated DNA was then added and TE, pH 8.0 added to make a total of 17mL.
  • the solutions were gently pipet up and down to mix.
  • the samples were covered with plate sealer and place in thermocycler under a program that is set at 95°C (denaturing step) for 5 minutes and then 52°C (hybridization step) for 15 minutes.
  • the plate was then spun ( 3 2250 x g, 3 minutes) and the supernatant carefully removed, and the plate placed back into the PCR at 52°C.
  • 75mL of reporter solution was then added to each well, mixed gently and incubate at 52°C for 5 minutes prior to analysis via a Luminex machine, to afford an improved signal to noise over the non-modified Encoded Carboxylated beads.
  • Step 1 200uL of a 1wt% PEI (Aldrich, 750K) was added to the wells of a 96 well microtitre plate (Maxisorp, Nunc) and allowed to stand at room temperature for 60 min. The wells were then washed 5 times with Millipore water. 200uL of a 1wt% Synthon Coating Polymer (preparation described above) was added to the wells and the interaction allowed to proceed for 60 min. The wells were then washed 5 times with Millipore water.
  • PEI Aldrich, 750K
  • Step 2 200uL of a 5vol% 1,5 pentyl diamine in 5mg/ml EDC water solution was added to the wells and coupling allowed to proceed for 2hrs, and then the wells were washed 5 times with Millipore water. 200uL of a coupling solution comprising 5mg/ml EDC and 5mg/ml 3-iodo-4-methyl-benzoic acid in DMSO was added to the wells and allowed to proceed for 2 hours after which the wells were washed twice with fresh DMSO then 5 times with Millipore water.
  • this modification can be effected by any number of diamines (or other multi-amine building block) and carboxylic acids, to allow the generation of libraries of modified microtitre plate wells from a single Synthon Coating Polymer modified bead.
  • Step 1 200uL of a 1wt% Synthon Coating Polymer (preparation described above) was added to the wells NHS active plate, DNA-BIND (Corning) and ReactiBind plate (Piece) and the reaction allowed to proceed for 60 min. The wells were then washed 5 times with Millipore water.
  • Step 2 200uL of a 5vol% 1,5 pentyl diamine in 5mg/ml EDC water solution was added to the wells and coupling allowed to proceed for 2hrs, and then the wells were washed 5 times with Millipore water. 200uL of a coupling solution comprising 5mg/ml EDC and 5mg/ml 3-iodo-4-methyl-benzoic acid in DMSO was added to the wells and allowed to proceed for 2 hours after which the wells were washed twice with fresh DMSO then 5 times with Millipore water.
  • this modification can be effected by any number of diamines (or other multi-amine building block) and carboxylic acids, to allow the generation of libraries of modified microtitre plate wells from a single Synthon Coating Polymer modified bead.
  • XPS spectra were acquired and indicated that each transformation had been performed.
  • the modified plates could then be employed in standard immunoassay protocols for ELISA and other diagnostic procedures.
  • Step 1 Activation of the Membrane with a Grafted Synthon Polymer
  • Immobilon-P SQ PVDF membrane (Millipore) were placed into a 700 ml beaker.
  • the beaker was filled with a 1.5M ethyl acetate solution of 1:1 Styrene and Maleic anhydride, degassed by nitrogen purging and sealed.
  • the solution was then irradiated in a gamma cell for 100 min.
  • the irradiated membranes were removed from the polymerisation solution and washed with a large excess of ethyl acetate. Once washing was complete, the membranes were dried under high vacuum overnight and stored in a low humidity cupboard.
  • a standard solution of the amine in THF (100 ml, 0.25 M, 0.025 mol) was prepared for each amine used. Grafted PVDF membranes were cut to a size of 10 x 10 cm, and placed in a large Petrie dish. The 100 ml amine solution was then carefully poured into the Petri dish, ensuring that the membrane was fully wet. The Petri dishes were then sealed with lids and allowed to agitate (very slowly) overnight at room temperature. The reaction solution was removed from the petri dish and the membranes washed with THF, dried under vacuum overnight and stored in the low humidity cupboard.
  • this modification can be effected by any number of amines (or other multi-amine building block) to allow the generation of libraries of modified PVDF membranes from a single grafted Synthon Polymer modified membrane.
  • XPS and ATR spectra were acquired and indicated that each transformation had been performed.
  • the modified plates could then be employed in standard electroblotting protocols for western blotting applications to increase the amount of captured protein available for immunoassay.
  • Step 1 Preparation of Library on Desired Format:
  • a library of different but related surfaces are assembled in the desired format (microarray, bead, plated, etc) for the application, employing the methods described above.
  • Step 2 Screening of the Assembled Library
  • the assembled libraries are screened against the desired target for the desired application such as a biological screen for kinases, Rabbit IgG, cytokines or a synthetic screen for reaction optimizations, or the like.
  • the outcome from this screen would be to identify the optimum surface for the said desired application, in a rapid and cost effective manner.
  • a second, more focused library is then assembled with the knowledge from the first and the screen repeated until the desired level of signal is obtained. More than one surface from each screen may afford a signal of the desired level.
  • Step 3 Generation of a Synthon coating for a Desired Specific Application.
  • the identified surface can then be assembled by any means required, that affords the surface in a timely and cost effective manner. Further, the outcomes of a number of screening events can be assembled onto one surface, such as a microarray, resulting in a multiplex platform having, or consisting of multiple elements or parts to do more than one experiment.

Abstract

This invention relates to a surface discovery system and high-throughput combinatorial synthesis methods for generating large numbers of diverse surface coatings on solid substrates. The system is built upon a synthon which comprises at least three elements: a chemical backbone coating on the solid substrate that comprises a copolymer (B) of at least one passive constituent (P) and at least one active constituent (A); a spacer unit (S) separating the backbone from a functional group; and a functional group (F). The methods comprise the following steps: 1) selecting a plurality of synthons so that each synthon has at least two points of diversity selected from P, A, S and F; 2) applying copolymer B onto a substrate; and 3) attaching a combination of S and F to constituent A of copolymer B. Steps 2) and 3) are performed such that different synthons are generated on localized regions of the substrate.

Description

    FIELD OF THE INVENTION
  • The present invention relates to surface coating technology. In particular, the invention relates to a method for generating a library of different surface coatings on a substrate, to a method for optimising a substrate surface for a solid phase application and arrays or beads possessing discrete regions of particular optimised surface coatings.
  • BACKGROUND OF THE INVENTION
  • Current surface coating technology provides a relatively limited number of established surfaces that may be used in new solid-phase chemical or biochemical applications. The lack of established surfaces stems primarily from the difficulty associated with the generation of different surface coatings. While large numbers of chemically diverse compounds may now be generated in solution without too much difficulty, the ability to graft these molecules on to a solid phase and create a large number of surface coatings has proven a much more difficult problem to solve. In particular, the chemistry of grafting molecules onto solid phases to create surface coatings is highly unpredictable, and has to date remained more an art than a science.
  • There are numerous applications where a diverse range of novel surface coatings would be particularly advantageous, for example in the area of solid phase biological assays. With the number of novel proteins growing each day, there is growing need for novel solid phase surfaces that are compatible with the immobilization of these complex macromolecules. Despite this need, in practice there are to date relatively few solid surfaces available across the wide range of solid phase applications used to study biological molecules. For example, in the area of capture and display of biomolecules each commercial supplier has its own particular solid phase surface embodiment that is prescribed across a broad range of specific applications. One specific example is a surface generated using the well-established PEG chemistry as described in an article by Ruiz-Taylor et al. ("Monolayers of derivatized poly(L-lysine)-grafted poly(ethylene glycol) on metal oxides as a class of biomolecular interfaces," PNAS USA 98: 852-857 (2001)). Another example is the relatively new boronic acid complex chemistry used to prepare surfaces for immobilization of proteins described by Stolowitz et al. ("Phenylboronic Acid-Salicylhydroxamic Acid Bioconjugates. 1. A Novel Boronic Acid Complex for Protein Immobilization," Bioconjugate Chemistry 12: 229-239 (2001)).
  • Surface plasmon resonance (SPR) has now been widely adopted as a technique for detecting protein-ligand and protein-protein binding interactions. However the utility of SPR with a particular protein system depends greatly on the vagaries of how that macromolecule binds to the surface of the solid substrate when immobilized. If a particular SPR surface causes a protein of interest to bind in an orientation that is unfavorable for detecting ligand binding, there are only a handful of alternative surfaces with a limited range of binding properties from which to choose (see, e.g. Rich and Myszka "Advances in surface plasmon resonance biosensor analysis," Current Opinion in Biotechnology 11: 54-61 (2000)).
  • Similarly, mass spectrometry also is now widely employed for the analysis of biological macromolecules. These methods typically involve immobilization of a protein on a surface of substrate where it is then exposed to a ligand binding interaction. Following ligand binding (or non-binding) the molecule is desorbed from the surface and into a spectrometer using a laser (see, e.g. Merchant and Weinberger, "Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry," Electrophoresis 21: 1164-1177 (2000)). As in the SPR experiment, the success of the mass spectrometry experiment depends largely on the interaction between the immobilized protein and the surface. In view of the thousands of proteins with different surface interactions, there is clearly a need for a large number of different substrate surfaces in order for mass spectrometry to be applied successfully to the high throughput analysis of the proteome.
  • WO 00/12575 discloses a method for parallel and combinatory synthesis of compounds bound to a continuous polymeric solid phase supporting material.
  • US 6,403,368 discloses an on-spot hydrophilic enhanced slide/microarray.
  • WO 02/40171 discloses a device and method for the separation of a metal-containing solids mixture.
  • US 6,346,413 discloses synthetic strategies for the creation of large scale chemical diversity.
  • US 5,922,545 discloses methods for identifying peptides and single-chain antibodies that bind predetermined receptors or epitopes.
  • US 6,329,209 discloses arrays of protein-capture agents.
  • Accordingly, the inability to provide a diverse array of surface coatings stands as an impediment to development in solid phase biological technologies such as biological assays and diagnostics, and biomaterials. Such an impediment also extends across a broad spectrum of other technologies, ranging from solid-phase chemical synthesis, catalysis development and separation and purification technologies.
  • SUMMARY OF THE INVENTION
  • In one aspect, the present invention provides a method of generating a library of different surface coatings on a substrate comprising:
    1. a) selecting a surface coating synthon of formula B-S-F, wherein B is a copolymer of at least one monomeric constituent P and at least one monomeric constituent A, S is a spacer unit and F is a functional group that is capable of acting as a site for further chemical modification of the surface, wherein S is attached to a monomeric constituent A of copolymer B, and wherein the synthon has at least one point of diversity selected from P, A, S and F;
    2. b) applying backbone coating(s) of the selected copolymer B onto a substrate;
    3. c) attaching the selected combination(s) of spacer unit S and functional group F to constituent A of copolymer B according to said selected synthon;
    wherein steps b) and c) are performed such that surface coatings according to the synthon are generated on localised regions of the substrate, thereby providing said library of different surface coatings on the substrate.
  • In another aspect, the present invention provides a method of optimizing a substrate surface for a solid-phase application involving immobilization of a molecule comprising:
    1. a) generating a library of different surface coatings on a substrate by a method comprising:
      1. 1) selecting a surface coating synthon of formula B-S-F, wherein B is a copolymer of at least one monomeric constituent P and at least one monomeric constituent A, S is a spacer unit and F is a functional group is capable of acting as a site for further chemical modification of the surface, wherein S is attached to constituent A of copolymer B, and wherein the synthon has at least one point of diversity selected from P, A, S and F;
      2. 2) applying backbone coating(s) of the selected copolymer B onto a substrate;
      3. 3) attaching the selected combination(s) of spacer unit S and functional group F to constituent A of copolymer B according to said selected synthon;
      wherein steps 2) and 3) are performed such that surface coatings according to the synthon are generated on localised regions of the substrate, thereby providing said library of different surface coatings on the substrate;
    2. b) exposing at least two of the surface coatings in the library to the molecule to be immobilized; and
    3. c) determining which of the at least two surfaces results in better performance of the immobilized molecule in the solid-phase application.
  • In a further aspect, the present invention provides a biological molecule detection unit capable of detecting at least two biological molecules, said unit comprising a substrate having a plurality of surface coatings wherein at least two of said coatings are different, and tailored to recognise, bind to or associate with a particular biological molecule. A person skilled in the art would be able to adapt the methods described herein to prepare such a detection unit.
  • The present invention provides a method for generating a library of different surface coatings on a substrate which can be advantageously used as part of a surface discovery system. The library is generated using a unique synthon approach that provides an architectural framework from which the specific surface coatings can be realised.
  • The present invention fills a critical gap in solid surface technology by providing a high-throughput platform for the rational generation and exploration of surface coatings with novel molecular and macroscopic properties. The diverse combinatorial libraries of surface coatings that may be generated in a high-throughput manner using the synthon-based approach disclosed herein may be applied across a broad spectrum of technologies, ranging from solid-phase chemical synthesis, catalysis development, separation and purification technologies, biological assays and diagnostics, and biomaterials development.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS The Synthon
  • As used herein the term "synthon" is used to refer to a fundamental chemical unit, or building block, which provides an architectural framework to design and develop a diverse array of surface coatings on a substrate. The synthon comprises three basic elements and can simplistically be represented as B-S-F, wherein B is a copolymer of at least one monomeric constituent P and at least one monomeric constituent A, S is a spacer unit and F is a functional group capable of acting as a site for further chemical modification of the surface. The spacer unit S is attached to constituent A of copolymer B, and the synthon has at least one point of diversity selected from P, A, S and F.
  • Together, the space unit and the functional group form a "functional tether" that may be modified further with chemical entities. Simple combinatorial chemical variation of the four points of diversity (i.e. constituent P, constituent A, spacer unit, and functional group) of the synthon described above allows one to generate potentially thousands of unique but related surfaces. Systematic variation of the constituent A, constituent P, spacer unit and functional group allows generation of libraries of different surface coatings that span a spectrum of microscopic and macroscopic properties. These libraries of surfaces may be further explored using a variety of analysis techniques to discover the optimal surface for a variety of applications. Consequently, the synthon-based approach to generating surface coating diversity described herein provides a platform akin to combinatorial synthesis of small molecules and peptide libraries.
  • Although combinatorial approaches to generating molecular diversity have been employed to generate new lead compounds in the drug discovery process, these strategies have not to date been employed in the search for novel surface coatings that exhibit advantageous properties. Indeed, the standard solid phase combinatorial chemistry approaches used in drug discovery focus on generating variety in the small molecule properties and avoid diversity in the solid phase to which it is attached. The solid phase is viewed simply as a convenient handle to be disposed of after cleavage of the small molecule. Consequently, there has been little systematic exploration of solid phase surfaces and how their properties may be varied to optimize solid phase applications.
  • Together, the space unit and the functional group form a "functional tether" that may be modified further with chemical entities. Scheme 1 below illustrates a more detailed representation of a potential structure of the synthon.
    Figure imgb0001
  • In scheme 1, the synthon further comprises a control agent C which may be optionally attached to copolymer B, as represented by -[P-A]-. The control agent C may be used as a means to prepare copolymer B under living/controlled polymerization conditions, or alternatively as a means to modify copolymer B. Preferred control agents include, but are not limited to, RAFT control agents, ATRP control agents, and nitroxide control agents. The use of a control agent advantageously provides a means to carefully control and design the molecular architecture of copolymer B, for example by controlling molecular weight distribution and/or distribution of monomeric units within the copolymer chain.
  • Simple combinatorial variation of the four points of diversity (i.e. passive constituent P, constituent A, spacer unit, and functional group) that form the basic synthon described above allows one to generate potentially thousands of unique but related surfaces. In one preferred embodiment, the diversity is derived solely from the spacer unit S. In another preferred embodiment, the diversity is derived solely from the functional group F. In yet another preferred embodiment, the diversity is derived from both the spacer unit S and the functional group F.
  • In a relatively simple example, starting with one backbone coating on a base material (i.e. where the P and A constituents are kept constant) treatment with at least ten spacer unit S variants, and 10 different transformations of the functional group F, results in 100 different surfaces.
  • Of course, greater numbers of diverse compounds may be achieved if a control agent C is incorporated as another point of diversity. The control agent may be used as the start site for living-controlled polymerization reactions. Consequently, the backbone coating may be modified by living-controlled polymerization independent of modifications at the spacer attached to the active constituent of the backbone.
  • Additionally, diversity may be achieved by utilizing orthogonal reaction strategies and/or combining mixtures of elements in building the synthons.
  • Advantageously, the present invention allows construction of libraries comprising preferably at least 10, more preferably at least 100, still more preferably at least 1000, most preferably at least 10,000 different surface coatings.
  • Preferably, the library in accordance with the present invention is prepared in a multiplex format, and the library is also used in a multiplex format.
  • The Backbone Coating and its Parameters
  • The present invention involves applying backbone coating(s) of the selected copolymer B onto a substrate. The backbone coating provides the macroscopic design element in the method and is preferably covalently bound to the underlying substrate. In a preferred embodiment, the backbone coating is bound to the underlying substrate through well-known methods of polymer grafting, or other methods of coating a solid substrate such as dip coating, plasma polymerization, vapor deposition, stamp printing, gamma irradiation, electron beam exposure, thermal and photochemical radiation.
  • As the backbone coating, copolymer B comprises at least one monomeric constituent P and at least one monomeric constituent A. These constituents may be viewed as monomeric units within the copolymer B. The copolymer B may also comprise other monomeric units. In some embodiments, the backbone coating may comprise more than one A constituent and more than one P constituent. As described in greater detail below, the A and P constituents may be selected from a wide spectrum of compounds well-known in the art. Preferred are those compounds amenable to grafting or other methods of coating a solid substrate (e.g. dip coating, plasma polymerization, vapor deposition, stamp printing, gamma irradiation, electron beam exposure, thermal and photochemical radiation).
  • Generally, the backbone coating may be attached to the underlying substrate through either the A or P constituent. In some embodiments, both constituents may engage in bonding interactions with the substrate.
  • Constituent A
  • The role of constituent A is to provide a point for future diversity and would be represented by a functional group that is well known in the art to under go a vast number of chemical transformations, such as an amine, hydroxyl, anhydride, ester, carboxylic acid, ketone, epoxide, isocyanate and so on. Many well-known chemical monomers may be employed as A constituents in the formation of a synthon backbone coating. Selection of a particular set of A constituents may depend on the P constituents selected and the desired chemistry for applying the backbone coating to the substrate.
  • Generally, constituent A comprises a chemical moiety, or substituent group that may be chemically modified with a spacer compound (see described below).
  • For example, in an embodiment where gamma-initiated free-radical grafting is employed, one could employ any of the following monomers as constituent A in the backbone coating: hydroxyethyl methacrylate, maleic anhydride, N-hydroxysuccinimide methacrylate ester, methacrylic acid, diacetone acrylamide, glycidyl methacrylate, PEG methacrylate.
  • In an alternative embodiment, more than one different A constituents may be present in the same backbone coating. For example, the coating may be made using a mixture of two constituent A monomers. Once prepared, using well-known orthogonal approaches to chemical transformations, it is possible to differentially modify each of the different A constituents in the presence of the others, in a sequential and predetermined manner.
  • In preferred embodiments the A constituent comprises a chemical moiety, or substituent group that is amenable to surface grafting methods known in the art.
  • Table 1 below lists an exemplary selection of chemical monomers that may be used to provide the A constituents in the present invention. The compounds in this table are not intended to be limiting. Many common chemical variants of these compounds, as well as, other compounds not listed here but well-known in the art of surface modification may also be used.
  • Preferably, copolymer B comprises a constituent A derived from the polymerised residue of maleic anhydride. Table 1: Selection of A Constituents
    ACTIVE 1 2 3 4
    A
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
    Figure imgb0005
    B
    Figure imgb0006
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009
    C
    Figure imgb0010
    Figure imgb0011
    Figure imgb0012
    Figure imgb0013
    D
    Figure imgb0014
    Figure imgb0015
    Figure imgb0016
    Figure imgb0017
  • Constituent P
  • Whereas constituent A acts primarily as the point of attachment of the spacer, the primary role of constituent P is modification of molecular or macroscopic environment of the surface coating. For example, a set of P constituents may be selected that modify the charge or the hydrophilicity of the surface coating. Modifications to P constituents in a three dimensional stable network forming a surface coating allows determination of optimal surface properties for solid-phase applications. For example determination of a surface that allows binding of non-contiguous epitopes of a biomolecule so that they are available for a binding assay.
  • Further, constituent P also may act as a spacer unit for the active composition of the coating, in order to distribute constituent A alternating, randomly, statistically or in a gradient fashion throughout the coating.
  • The chemistry of constituent P may be provided by well known chemical monomers (preferably those that are commercially available) such as: styrene, dimethyl acrylamide, acrylonitrile, N,N dimethyl (or diethyl) ethyl methacrylate, 2-methacryloyloxy-ethyl-dimethyl-3-sulfopropyl-ammounium hydroxide, and methoxy PEG methacrylate. Preferably, copolymer B comprises a P constituent B derived from the polymerised residue of styrene.
  • In preferred embodiments constituent P comprises a chemical moiety, or substituent group that is amenable to surface grafting methods known in the art.
  • Table 2 below lists a selection of chemical monomers that may be used to provide the P constituents of the present invention. The compounds in this table are not intended to be limiting. Many common chemical variants of these compounds, as well as, other compounds not listed here but well-known in the art of surface modification may also be used. Table 2: Selection of P Constituents
    Passive 1 2 3 4 5
    A
    Figure imgb0018
    Figure imgb0019
    Figure imgb0020
    Figure imgb0021
    Figure imgb0022
    B
    Figure imgb0023
    Figure imgb0024
    Figure imgb0025
    Figure imgb0026
    Figure imgb0027
    C
    Figure imgb0028
    Figure imgb0029
    Figure imgb0030
    Figure imgb0031
    Figure imgb0032
    D
    Figure imgb0033
    Figure imgb0034
    Figure imgb0035
    Figure imgb0036
    Figure imgb0037
  • In an alternative embodiment, the desired macroscopic property of a surface coating for a selected solid phase application may be derived by in silico analysis of a range of synthon structures. Based on the in silico results, a passive constituent monomer with the chemical features necessary to generate the macroscopic property may be synthesized. Alternatively, the appropriate chemical features of the passive constituent may also be derived by in situ chemical transformation of an already applied backbone coating. In preferred embodiments, such in situ transformations of the backbone P constituent are carried out in an orthogonal reaction scheme in order to maintain the integrity of constituent A.
  • Application of the Backbone Coating
  • Generally, the synthon backbone coating may be applied to the substrate using any of the vast assortment of surface modifications methods present in the art (e.g. dip coating, plasma polymerization, vapor deposition, stamp printing, gamma irradiation, electron beam exposure, thermal and photochemical radiation).
  • In one embodiment, the backbone coating is polymerized from the constituent monomers on the solid substrate using chemistry well-known in the art. A wide range of polymerization processes present in the art may be utilized. For example, controlled and/or living polymerization techniques of cationic, anionic, radical (such as NMP, ATP, ATRP, RAFT, Iniferter), condensation, and metathesis (such as ROMP and ADMET) all may be used. Non-controlled methods of polymerization well known in the art may also be utilized with this invention.
  • In one preferred embodiment, the backbone coating may be provided by methods known to afford living polymerization. By definition, the end groups of such living polymers have the ability to be further transformed, either by addition of a monomer to extend the macromolecule with the same monomer, a mixture of monomers or new monomeric compositions. Also, the end groups may be modified using any of a variety of organic chemistry transformations well-known in the art of small molecule manipulation.
  • In embodiments where the synthon includes a control agent (C) end group on the backbone, living-controlled polymerization may be used to further modify the backbone coating. Control agents and methods of conducting living-controlled polymerization are well-known in the art. Methods of living-controlled polymerization and re-initiation on the surfaces of non-functionalized solid substrates is described in co-pending U.S. patent application 10/109,777 filed March 28, 2002 . Also, see, e.g. Canadian Patent applications 2,341,387 and 2,249,955 which disclose methods of living-controlled polymerization on solid polymer substrates.
  • Alternatively, the backbone coating may be applied to the substrate as a polymer solution, comprising macromers that will allow tethering by complementary chemistry to the surface of the substrate or encourage entanglement of the polymer in solution with the substrate. In the case of a macromer solution, the reactive units of the macromer may either be present at the end groups, or spaced throughout the backbone of the macromer in a random, block, or gradient fashion.
  • Preferably, the backbone coating is polymerised from constituent monomers to provide an alternating or block copolymer. The alternating, or substantially alternating character, of the copolymer is believed to provide an important spatial arrangement of the P and A constituents which facilitates good surface coating of the substrate. Those skilled in the art will understand the degree of regularity necessary in order for a copolymer to be considered of alternating character. It is preferred that the alternating copolymer has an alternating character defined by greater than 70 % of consecutive comonomer residue units being alternate between residues of the first comonomer and the second comonomer, more preferably greater than 90%. The block nature of the copolymer may also vary in an alternating fashion.
  • Preferably, the backbone coating is is a copolymer of maleic anhydride and styrene.
  • The Spacer
  • The spacer group provides a synthetic "handle" by which functional groups may be attached to the A constituent of the backbone coating.
  • As used herein, the term "spacer," "spacer molecule" and "spacer unit" are used interchangeably. As used herein, the term "functional tether" is used to refer to the combined moiety of a spacer molecule modified with the desired functional group for the synthon.
  • In one preferred embodiment, the spacer molecule may be represented by the generic structure shown in Scheme 2: . Scheme 2

            X-Q-Y

  • Generally, both X and Y comprise chemical moieties or substituent groups that may be chemically modified independently, sequentially or under orthogonal conditions. For example, X may chemically react with the active constituent A to attach the spacer to the backbone. Subsequently, Y may be chemically modified with a desired functional group F.
  • Typical species may include for example, spacer molecules wherein X is the residue of an amino, hydroxyl, thiol, carboxylic acid, anhydrides, isocyanate, sulfonyl chloride, sulfonic anhydride, chloroformate, ketone, or aldehyde; Y is the same as defined for X; and Q is a linear or branched divalent organic group; and X and Y are not reactive with each other or Q. Preferably Q is selected from optionally substituted C1 to C20 alkylene, optionally substituted C2 to C20 alkenylene, optionally substituted C3 to C20 cycloalkylene, optionally substituted C2 to C20 alkynylene and optionally substituted C6 to C20 arylene, wherein one or more carbon atoms may be substituted with a heteroatom selected from O, S or N.
  • By "optionally substituted" is meant that a group may or may not be further substituted with one or more groups selected from, but not limited to, alkyl, alkenyl, alkynyl, aryl, halo, haloalkyl, haloalkenyl, haloalkynyl, haloaryl, hydroxy, alkoxy, alkenyloxy, aryloxy, benzyloxy, haloalkoxy, haloalkenyloxy, acetyleno, carboximidyl, haloaryloxy, isocyano, cyano, formyl, carboxyl, nitro, nitroalkyl, nitroalkenyl, nitroalkynyl, nitroaryl, alkylamino, dialkylamino, alkenylamino, alkynylamino, arylamino, diarylamino, benzylamino, imino, alkylimine, alkenylimine, alkynylimino, arylimino, benzylimino, dibenzylamino, acyl, alkenylacyl, alkynylacyl, arylacyl, acylamino, diacylamino, acyloxy, alkylsulphonyloxy, arylsulphenyloxy, heterocyclyl, heterocycloxy, heterocyclamino, haloheterocyclyl, alkylsulphonyl, arylsulphonyl, alkylsolphinyl, arylsulphinyl, carboalkoxy, alkylthio, benzylthio, acylthio, sulphonamido, sulfanyl, sulfo and phosphorus-containing groups, alkoxysilyl, silyl, alkylsilyl, alkylalkoxysilyl, phenoxysilyl, alkylphenoxysilyl, alkoxyphenoxysilyl, arylphenoxysilyl, allophanyl, guanidino, hydantoyl, ureido, and ureylene. A carbon atom is considered to be substituted if it has a double bond to a heteroatom, such as oxygen, sulfur or nitrogen to form a carbonyl, thiocarbonyl or imine group, respectively.
  • In the above definitions the terms "aryl" and "heteroaryl" refer to any substituent which includes or consists of one or more aromatic or heteroaromatic ring respectively, and which is attached via a ring atom. The rings may be mono or polycyclic ring systems, although mono or bicyclic 5 or 6 membered rings are preferred. Examples of suitable rings include but are not limited to benzene, biphenyl, terphenyl, quaterphenyl, naphthalene, tetrahydronaphthalene, 1-benzylnaphthalene, anthracene, dihydroanthracene, benzanthracene, dibenzanthracene, phenanthracene, perylene, pyridine, 4-phenylpyridine, 3-phenylpyridine, thiophene, benzothiophene, naphthothiophene, thianthrene, furan, benzofuran, pyrene, isobenzofuran, chromene, xanthene, phenoxathiin, pyrrole, imidazole, pyrazole, pyrazine, pyrimidine, pyridazine, indole, indolizine, isoindole, purine, quinoline, isoquinoline, phthalazine, quinoxaline, quinazoline, pteridine, carbazole, carboline, phenanthridine, acridine, phenanthroline, phenazine, isothiazole, isooxazole, phenoxazine and the like, each of which may be optionally substituted.
  • In the above definitions, the term "alkyl", used either alone or in compound words such as "alkenyloxyalkyl", "alkylthio", "alkylamino" and "dialkylamino" denotes straight chain, branched or cyclic alkyl, preferably C1-10 alkyl or cycloalkyl. Examples of straight chain and branched alkyl include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, amyl, isoamyl, sec-amyl, 1,2-dimethylpropyl, 1,1-dimethyl-propyl, hexyl, 4-methylpentyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, 3,3-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 1,2,2,-trimethylpropyl, 1,1,2-trimethylpropyl, heptyl, 5-methoxyhexyl, 1-methylhexyl, 2,2-dimethylpentyl, 3,3-dimethylpentyl, 4,4-dimethylpentyl, 1,2-dimethylpentyl, 1,3-dimethylpentyl, 1,4-dimethyl-pentyl, 1,2,3,-trimethylbutyl, 1,1,2-trimethylbutyl, 1,1,3-trimethylbutyl, octyl, 6-methylheptyl, 1-methylheptyl, 1,1,3,3-tetramethylbutyl, nonyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-methyl-octyl, 1-, 2-, 3-, 4- or 5-ethylheptyl, 1-, 2- or 3-propylhexyl, decyl, 1-, 2-, 3-, 4-, 5-, 6-, 7- and 8-methylnonyl, 1-, 2-, 3-, 4-, 5- or 6-ethyloctyl, 1-, 2-,3-or 4-propylheptyl, undecyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-methyldecyl, 1-, 2-, 3-, 4-, 5-, 6-or 7-ethylnonyl, 1-, 2-, 3-, 4- or 5-propyloctyl, 1-, 2- or 3-butylheptyl, 1-pentylhexyl, dodecyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9- or 10-methylundecyl, 1-, 2-, 3-, 4-, 5-, 6-, 7- or 8-ethyldecyl, 1-, 2-, 3-, 4-, 5- or 6-propylnonyl, 1-, 2-, 3- or 4-butyloctyl, 1-2-pentylheptyl and the like. Examples of cyclic alkyl include mono- or polycyclic alkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl and the like.
  • In the above definitions the term "alkoxy" denotes straight chain or branched alkoxy, preferably C1-10 alkoxy. Examples of alkoxy include methoxy, ethoxy, n-propoxy, isopropoxy and the different butoxy isomers.
  • The term "alkenyl" denotes groups formed from straight chain, branched or cyclic alkenes including ethylenically mono-, di- or poly-unsaturated alkyl or cycloalkyl groups as previously defined, preferably C2-10 alkenyl. Examples of alkenyl include vinyl, allyl, 1-methylvinyl, butenyl, iso-butenyl, 3-methyl-2-butenyl, 1-pentenyl, cyclopentenyl, 1-methyl-cyclopentenyl, 1-hexenyl, 3-hexenyl, cyclohexenyl, 1-heptenyl, 3-heptenyl, 1-octenyl, cyclooctenyl, 1-nonenyl, 2-nonenyl, 3-nonenyl, 1-decenyl, 3-decenyl, 1,3-butadienyl, 1-4,pentadienyl, 1,3-cyclopentadienyl, 1,3-hexadienyl, 1,4-hexadienyl, 1,3-cyclohexadienyl, 1,4-cyclohexadienyl, 1,3-cycloheptadienyl, 1,3,5-cycloheptatrienyl and 1,3,5,7-cyclooctatetraenyl.
  • The term "alkynyl" denotes groups formed from straight chain, branched or cyclic alkyne including those structurally similar to the alkyl and cycloalkyl groups as previously defined, preferably C2-10 alkynyl. Examples of alkynyl include ethynyl, 2-propynyl and 2-or 3-butynyl.
  • The term "acyl" either alone or in compound words such as "acyloxy", "acylthio", "acylamino" or "diacylamino" denotes carbamoyl, aliphatic acyl group and acyl group containing an aromatic ring, which is referred to as aromatic acyl or a heterocyclic ring which is referred to as heterocyclic acyl, preferably C1-10 acyl. Examples of acyl include carbamoyl; straight chain or branched alkanoyl such as formyl, acetyl, propanoyl, butanoyl, 2-methylpropanoyl, pentanoyl, 2,2-dimethylpropanoyl, hexanoyl, heptanoyl, octanoyl, nonanoyl, decanoyl, undecanoyl, dodecanoyl, tridecanoyl, tetradecanoyl, pentadecanoyl, hexadecanoyl, heptadecanoyl, octadecanoyl, nonadecanoyl and icosanoyl; alkoxycarbonyl such as methoxycarbonyl, ethoxycarbonyl, t-butoxycarbonyl, t-pentyloxycarbonyl and heptyloxycarbonyl; cycloalkylcarbonyl such as cyclopropylcarbonyl, cyclobutylcarbonyl, cyclopentylcarbonyl and cyclohexylcarbonyl; alkylsulfonyl such as methylsulfonyl and ethylsulfonyl; alkoxysulfonyl such as methoxysulfonyl and ethoxysulfonyl; aroyl such as benzoyl, toluoyl and naphthoyl; aralkanoyl such as phenylalkanoyl (e.g. phenylacetyl, phenylpropanoyl, phenylbutanoyl, phenylisobutylyl, phenylpentanoyl and phenylhexanoyl) and naphthylalkanoyl (e.g. naphthylacetyl, naphthylpropanoyl and naphthylbutanoyl; aralkenoyl such as phenylalkenoyl (e.g. phenylpropenoyl, phenylbutenoyl, phenylmethacryloyl, phenylpentenoyl and phenylhexenoyl and naphthylalkenoyl (e.g. naphthylpropenoyl, naphthylbutenoyl and naphthylpentenoyl); aralkoxycarbonyl such as phenylalkoxycarbonyl (e.g. benzyloxycarbonyl); aryloxycarbonyl such as phenoxycarbonyl and napthyloxycarbonyl; aryloxyalkanoyl such as phenoxyacetyl and phenoxypropionyl; arylcarbamoyl such as phenylcarbamoyl; arylthiocarbamoyl such as phenylthiocarbamoyl; arylglyoxyloyl such as phenylglyoxyloyl and naphthylglyoxyloyl; arylsulfonyl such as phenylsulfonyl and napthylsulfonyl; heterocycliccarbonyl; heterocyclicalkanoyl such as thienylacetyl, thienylpropanoyl, thienylbutanoyl, thienylpentanoyl, thienylhexanoyl, thiazolylacetyl, thiadiazolylacetyl and tetrazolylacetyl; heterocyclicalkenoyl such as heterocyclicpropenoyl, heterocyclicbutenoyl, heterocyclicpentenoyl and heterocyclichexenoyl; and heterocyclicglyoxyloyl such as thiazolylglyoxyloyl and thienylglyoxyloyl.
  • In alternative embodiments, the spacer molecule may have a branched structure whereby multiple functional groups may be attached at the ends of the branches.
  • Generally, there are two ways in which the spacer S may be incorporated into the synthon:
    1. (1) A spacer molecule with a desired functional group already attached to at least one end is chemically coupled to the backbone.
    2. (2) A spacer molecule is attached to the constituent A. Then in a separate synthetic step, the spacer molecule is further modified to attach a desired functional group.
  • In some embodiments, a spacer molecule may be attached, then modified with more than one functional group.
  • In one embodiment the spacer molecule is a linear chain molecule and a functional tether is formed by modifying the end of the chain distal from the site of attachment to the constituent A of the synthon.
  • By modifying the chemical or structural properties of the spacer molecule it is possible to generate synthons with a range of macroscopic coating properties. For example, glycol oligomer chains provide a relatively rigid linear structure, whereas simple hydrocarbons adopt more folded conformations. These differences in spacer geometry also may vary with chain length or the presence of charged groups in the spacer molecule. These differences in geometry provided by the spacer molecule properties directly affects the orientation of the functional group with respect to the backbone and thereby affects the overall macroscopic properties of the surface coating. Modification of these properties may greatly affect the complementary or antagonistic interactions between the surface and a biomolecule, cell or other chemical entity immobilized thereon.
  • Scheme 3 below illustrates the formation of a backbone coating on a substrate and subsequent attachment of a spacer.
    Figure imgb0038
  • In Scheme 3, the backbone coating is applied by polymerization of constituent A, maleic anhydride, and constituent P, styrene. The spacer unit features an amine at one end that forms a covalent linkage to constituent A resulting in a maleimide.
  • Preferably the spacer unit is a residue of a diamine, more preferably an alkyl diamine. It is particularly preferred that the spacer unit S is a residue of 1.5-diaminopentane or N-(3-aminopropyl)-1,3-propanediamine.
  • The Functional Group
  • The functional group may serve different roles in various embodiments. For example, the functional group may act as a site for further chemical modification of the surface. In the instance, where the functional group is capped with a polymerization initiator, the possibility exists to add another level of synthon diversity.
  • In Scheme 4 below, a spacer with an amine moiety provides the site for chemical modification with four different functional groups thereby resulting in four different, but related synthon surface coatings.
    Figure imgb0039
  • Preferably, the functional group F is a group capable of binding or chemically reacting with a biological molecule or component. The functional group F also preferably comprises a primary or secondary amine group.
  • Screening for Surface Optimization
  • In scheme 4, the functional group on each of the four coatings may serve as the primary site for a complementary binding interaction. By screening the four coatings in a desired solid phase binding assay, one may determine which surface is optimal. Subsequently, based on the best of the four synthons shown in Scheme 4, new libraries of related synthons may be generated to further optimize the surface for the desired application in an iterative fashion. For example, the next iteration may vary only the spacer length. Hence, synthons may be generated with functional groups exhibiting a range of molecular diversity in order to find the optimal surface for binding a complementary molecular species such as a receptor or other large biomolecule. For example, a library of synthons may be generated comprising a range of functional groups in order to find the optimal surface coating for binding the β-adrenergic receptor in a surface plasmon resonance experiment.
  • High-Throughput Advantage
  • Morever, Scheme 4 illustrates the high-throughput advantage afforded by some embodiments of the synthon-based approached. As mentioned in the Background of the Invention, generation of surface diversity on solid phases has been limited by the difficulty of developing chemical methods for grafting new coatings onto solid substrates. Prior methods have focused on utilizing solution reactions to generate a diverse library of candidate compounds for coating a substrate. These methods have encountered a bottleneck in getting the solution-phase compounds coated onto a solid-phase substrate. This bottleneck results from the general lack of development of the science of grafting materials onto solids to form coatings.
  • As shown in Scheme 4, the present invention provides a high-throughput solution to generating surface diversity by avoiding this bottleneck. Instead, in preferred embodiments, libraries of diverse surfaces may be generated from a single backbone coating applied by a well-characterized grafting procedure. Subsequently, diversity may be introduced to the solid phase surface in a combinatorial manner by varying the spacer and functional groups structures through well-known synthetic routes.
  • High-throughput generation of molecular diversity for detecting complementary binding interactions, as well as, for further chemical modification may be achieved by modifying the functional group on a relatively simple synthon backbone-spacer configuration. As shown in Schemes 5 and 6 below, when H2N-S1-X is a symmetrical diamine such as H2N-(CH2)6- NH2, a large number of functional groups with a range of functional and molecular diversity may be added.
    Figure imgb0040
    Figure imgb0041
  • Incorporation of Grafting and Polymerization Methods
  • In a preferred embodiment, the synthon-based approach to generation of diverse surface coatings may be carried out using well-known or readily-constructed free radical polymerization technology. This embodiment is particularly well-suited to generating synthon surface coatings on polymeric substrates such as polyolefins. In preferred embodiments, the polymeric substrate such as polypropylene or , may be already be coated with sytreneic, (meth)acrylic, (meth)acrylamides, or other related graft coatings. The manner by which this initial coating is a generated is well known in the art, gamma grafting, where by the initiation requirements for the graft polymerisation to occur is from a cobalt-60 source, or the like.
  • The Substrate
  • The combinatorial advantages of the present synthon-based surface discovery system are independent of the nature of the base substrate material or how the synthon is applied to the surface. Hence surface diversity may be explored across a wide range of substrates. The substrate used in accordance with present invention is generally a solid and provides an integral surface or plurality of surfaces upon which the different surface coating(s) may be applied. Preferably, the substrate is selected from glass, silicon, metals, and organic polymers, other synthetic or natural materials, and combinations thereof.
  • The substrate may for example be provided in the form of a microscope slide, microtitre plate, porous membrane, pipette tip, tube or a plurality of beads.
  • Preferably, the substrate is an organic polymer. Suitable organic polymers include, but are not limited to, polytetrafluoroethylene, polystyrene, polypropylene, polyethylene, polyvinylidenefluoride and polymethylmethacrylate.
  • Further, the substrate may be porous, non-porous, and/or any geometric shape, e.g. bead, or flat. A variety of porous polymeric substrates with co-continuous architecture useful with the present invention are described in co-pending US patent application no. 10/052,907 filed January 17, 2002 , which is hereby incorporated by reference herein.
  • In a preferred embodiment of the invention the substrate is an organic polymer in the form of a plurality of beads. Preferably, the beads are labelled such that a particular coating can be related to a particular bead or subgroup of beads. Suitable polymeric beads for use as a substrate in accordance with the present invention include, but is not limited to, Luminex™ beads.
  • Multiplexed Applications
  • The present compositions and methods allow surface diversity to be explored in a high-throughput fashion by, for example, building different synthons in an array format on a single substrate. A variety of multiplex formats such as arrays or beads may be used. For example, a single synthon backbone coating may be applied across the full substrate surface. Then different spacer units or functional group variants may be generated in different localized regions on the substrate.
  • As used herein, a "region" of a substrate includes a point, area or other location on the surface of the substrate. Each different surface coated on the substrate occupies discrete regions on the substrate.
  • In one preferred embodiment, photolithographic or micromirror methods may be used to spatially direct light-induced chemical modifications of spacer units or functional groups resulting in attachment at specific localized regions on the surface of the substrate. Light-directed methods of controlling reactivity and immobilizing chemical compounds on solid substrates are well-known in the art and described in U.S. Patent Nos. 4,562,157 , 5,143,854 , 5,556,961 , 5,968,740 , and 6,153,744 , and PCT publication WO 99/42813 , each of which is hereby incorporated by reference herein.
  • Alternatively, plural localized synthon generation on a single substrate may be achieve by precise deposition of chemical reagents. Methods for achieving high spatial resolution in depositing small volumes of a liquid reagent on a solid substrate are disclosed in U.S Patent Nos. 5,474,796 and 5,807,522 , both of which are hereby incorporated by reference herein.
  • The term "array" may or may not require the identification of each different surface coating in terms of co-ordinates for its location. An array may be in a pattern or be random and may comprise two or more coatings, or the same coating in different regions on the same substrate. The underlying substrate may be uniform in its ability to accept a surface coating. Or the substrate may have regions with different abilities to bind specific surface coatings resulting in a spatial pattern depending on the coating.
  • Screening of Diverse Surface Environments
  • Surface coatings prepared using the synthon-based approach of the present invention may find use in a wide range of solid phase applications. The generation of a combinatorial selection of surface coatings provides a spectrum of molecular and macroscopic surface properties. The method provides a diversity of surface environments as shown in Scheme 7 below:
    Figure imgb0042
  • Each of these surfaces may potentially create an optimum environment or have optimal properties for a particular solid phase application. However, the greater the number of diverse surfaces in a library requires more screening for each particular application.
  • Generally, the surface coatings of the present invention may be screened for optimal performance in a solid phase application of interest by methods well known in the art. For example, such screening may involve detecting specific binding of cells to the surface and consequently may utilize flow cytometry as, for example, described by Needels et al. (1993).
  • Other screening methods useful with the present invention include any of the great number of isotopic and non-isotopic labeling and detection methods well-known in the chemical and biochemical assay art. For example, a library of surface coatings of the present invention may be screened for the ability to bind a specific peptide in an active configuration on the surface. An active configuration refers to an orientation of the molecule on the surface coating whereby the molecule may be specifically detected with a selected probe molecule, e.g. a fluorescently coupled antibody that specifically binds the molecule.
  • Alternatively, spectroscopic methods well-known in the art may be used to determine directly whether a molecule is bound to a surface coating in an desired configuration. Spectroscopic methods include e.g., UV-VIS, NMR, EPR, IR, Raman, mass spectrometry and other methods adapted to surface analysis well-known in the art.
  • Examples of biological compounds that may be screened for binding in the proper configuration on surface coating generated by the synthon-based approach of the present invention include, e.g. agonists and antagonists for cell membrane receptors, toxins, venoms, viral epitopes, hormones, sugars, cofactors, peptides, enzyme substrates, drugs inclusive of opiates and steroids, proteins including antibodies, monoclonal antibodies, antisera reactive with specific antigenic determinants, nucleic acids, lectins, polysaccharides, cellular membranes and organelles.
  • In addition, the present invention may be employed to generate optimal surface coatings for immobilized nucleic acids. These coatings may be used in any of a large number of well-known hybridization assays where nucleic acids are immobilized on a surface of a substrate, e.g. genotyping, polymorphism detection, gene expression analysis, fingerprinting, and other methods of DNA- or RNA-based sample analysis or diagnosis.
  • Various aspects of the present invention may be conducted in an automated or semi-automated manner, generally with the assistance of well-known data processing methods. Computer programs and other data processing methods well known in the art may be used to store information including e.g. surface coating library chemical and macroscopic properties. Data processing methods well known in the art may be used to read input data covering the desired characteristics.
  • Alternatively, or in addition, data processing methods well known in the art may be used to control the processes involved in the present invention, including e.g applying or polymerizing the backbone coating on the substrate; control of chemical reactions involved in further generating the synthon; and/or the reactions and interactions occurring in, within or between a population or array of surface coatings on a substrate.
  • The invention will now be described with reference to non-limiting examples. However it is to be understood that the particularity of the following description of the invention is not to supersede the generality of the invention previously described.
  • EXAMPLES 1. Generation of a maleic anhydride (MAn)-styrene backbone coating on a polymeric solid substrate.
  • Figure imgb0043
  • Scheme 8, above, illustrates the reaction carried out in generating the backbone coating. Plastic hollow cylinders, measuring 6mm in length, 3 mm in diameter were pre-radiated in air at room temperature (1.8 KGy/h for 7 hours). A 40% (v/v) solution of styrene and maleic anhydride, present in mole equivalent proportions, in toluene was prepared and the added to the irradiated plastic cylinders. The mixture was then purge with nitrogen gas for 5 minutes via a septum and heated, with agitation at 60 C for 6 hours. The plastic cylinders were then isolated from the polymerised solution, washed thoroughly to remove non-grafted polymer and dried to constant weight.
  • 2. Attachment and subsequent deprotection of tert-butyl carbamate (BOC) protected diamines spacer units to MAn-Sty backbone coating. Step 1: Ring Opening with Amines (see Scheme 9, below)
  • Figure imgb0044
  • A 1:1 DMF / Dioxane solution comprising an excess equivalents of the protected diamine was charged with plastic cylinders prepared above in example 1. A 6x excess DIEA was added to the solution and the solution left to react at 60C for 2 hours, after which the plastic cylinders where isolated from the reaction mixture and washed thoroughly. Spectroscopic evidence (ATR and Raman) established the disappearance of the anhydride.
  • Step 2: Ring closure to the Imide (see Scheme 10, below)
  • Figure imgb0045
  • The ring closure of the amic acid was effected by heating the material from step 1 of example 2 prepared above, at 60C in DMF in the presence of acetic anhydride and sodium acetate for 4 hours. The plastic cylinders were then washed extensively to afford the ring closed, grafted imide.
  • Step 3: Liberating the Amine (see Scheme 11, below)
  • Figure imgb0046
  • The removal of the amine protection group was performed under standard acid deprotection conditions by placing a sample of the plastic cylinders prepared above in example 2, step 2 were placed in a 20% Trifluoroacetic acid in dichloromethane for 2 hours. The deprotected, acidified samples were than washed extensively with dichloromethane prior to neutralization.
  • Step 4: Neutralization of grafted amine (see Scheme 12, below)
  • Figure imgb0047
  • The acidified samples prepared above in example 2, step 3 were treated with 5% triethyl amine in a 1:1 dimethyl formamide / dichloromethane, for 20 minutes, then washed extensively with dimethyl formamide and dichloromethane, prior to drying and determination of amine activity as described in Example 3, below.
  • 3. Determination of Amine Activity.
  • A sample of the grafted material prepared above in example 2, step 4, were treated with an excess of Fmoc-β-Ala-OH in dichloromethane, in the presence of diisopropyl carbodiimide. The Fmoc from the coupled Fmoc-β-Ala-OH to the pendant amine on the plastic cylinder was then cleaved by exposure of the plastic cylinders to a 20% solution piperidine in dimethyl formamide and the liberated Fmoc detected spectrophotometrically, to afford a concentration of active amines on the graft of 0.108 micromoles.
  • 4. Synthon Coating: Disks Examples I. Library of Maleimides
  • Step 1. Preparation of Maleic Anhydride/ Syrene Graft Co-polymer on PFA disks. Maleic anhydride/Styrene was covalently attached onto a tetrafluoroethylene-perfluoroalkyl-vinylether copolymer (PFA) disk using the γ-irradition technique. Three thousand PFA disks (6 mm diameter x 0.8 mm thickness) were immersed in 150 mL 20% maleic anhydride in ethyl acetate (w/v) and 150 mL 20% styrene in ethyl acetate (v/v) containing 0.010 M HCl in dioxane in a 500 mL glass bottle. The solution was degassed by bubbling with N2(g) for 10 min. The glass bottle was sealed with a Teflon screw cap and γ-irradiated with a 60CO source. The grafted disks were thoroughly washed with DMF and CH2Cl2 to remove residual monomer and non-grafted co-polymer and dried overnight under vacuum at 30°C. After drying, the disks were weighed to give an average mass change of 0.92% per disk (1.94 µg/mm2).
  • Step 2: Reaction of Maleic Anhydride/Styrene Graft System with Primary Amines.
  • A 50 mL glass vial was charged with maleic anhydride/styrene grafted PFA disks (100 disks) and 20 mL of primary amine (1 M, Table 3) in DMF before the vial was sealed and shaken overnight. After 16 h, the solution was removed and the disks washed with DMF and CH2Cl2 before drying under vacuum to give the mixed (amide-carboxylic acid-phenyl) system. Table 3. List of Primary Amines for Disks
    No. Amine No. Amine
    1 2-(Aminomethyl)-18-crown-6 25 CYCLOHEXANEMETHYLAMINE
    2 4-METHOXYPHENETHYLAMINE 26 5-AMINO-1-PENTANOL
    3 Benzylamine 27 ISOPentylamine
    4 N-Acetylethylenediamine 28 1-(3-AMINOPROPYL)IMIDAZOLE
    5 Undecyclamine 29 2-Methoxyethylamine
    6 1-NAPHTHALENEMETHYLAMINE 30 Ethanol amine
    7 1-(2-AMINOETHYL)PYRROLIDINE 31 3-Aminopropionitrile
    8 2-(2-Aminoethoxy)ethanol 32 3-Methoxypropylamine
    9 Tetrahydrofurfuryl amine 33 3-FLUOROBENZYLAMINE
    10 2-(2-CHLOROPHENYL)ETHYLAMINE 34 3,4,5-Trimethoxybenzylamine
    11 Propylamine 35 4-Methoxybenzylamine
    12 2-(aminomethyl)pyridine 36 2-Amino-1-propene-1,1,3-tricarbonitrile
    13 3,4-DIMETHOXYPHENETHYLAMINE 37 p-Aminophenyl-beta-D-glucopyranoside
    14 3-PHENYL-1-PROPYLAMINE 38 D-Glucosamine hydrochloride
    15 4-CHLOROBENZYLAMINE 39 p-Aminophenyl-beta-D-galactopyranoside
    16 1-(2-AMINOETHYL)PIPERIDINE 40 Bis-homotris
    17 4-PHENYLBUTYLAMINE 41 3-(Diethylamino)propylamine
    18 4-AMINO-I-BUTANOL 42 2-METHOXYBENZYLAMINE
    19 4-FLUOROBENZYLAMINE 43 Isobutylamine
    20 6-AMINO-1-HEXANOL 44 BUTYLAMINE
    21 DECYLAMINE 45 4- (TRIFLUOROMETHYL)BENZYLAMINE
    22 NONYLAMINE 46 3,5-DIMETHOXYBENZYLAMINE
    23 Octylamine 47 3-FLUOROPHENETHYLAMINE
    24 VERATRYLAMINE 48 Pentylamine
  • Step 3: Cyclization of Mixed System to give Syrene/Maleimide Graft Co-polymer. Mixed amide-carboxylic acid-styrene PFA disks (50 disks) derived from primary amines were treated with toluene (50 mL), acetic anhydride (0.25 M), and sodium acetate (0.025 M) before heating to 80°C overnight. After 16 h, the vial was drained of reagent and the disks washed with toluene, DMF, and then CH2Cl2 before drying under vacuum to afford the library of styrene/maleimide surfaces, generated from one initial surface.
  • At each stage in the coating assembly, XPS and ATR spectra were acquired and indicated that each transformation had been performed. Further, the assembled library of maleimides on disks was screened against anti Rabbit IgG, and a spectrum of very low to very high protein bindings events were observed.
  • II. Library of Maleimides with Diamine Spacers and Capping Groups
  • Step 1. Preparation of Maleic Anhydride/Styrene Graft Co-polymer on PFA disks. Maleic anhydride/Styrene was covalently attached onto a tetrafluoroethylene-perfluoroalkyl-vinylether copolymer (PFA) disk using the γ-irradition technique. Three thousand PFA disks (6 mm diameter x 0.8 mm thickness) were immersed in 150 mL 20% maleic anhydride in ethyl acetate (w/v) and 150 mL 20% styrene in ethyl acetate (v/v) containing 0.010 M HCl in dioxane in a 500 mL glass bottle. The solution was degassed by bubbling with N2(g) for 10 min. The glass bottle was sealed with a Teflon screw cap and γ-irradiated with a 60Co source. The grafted disks were thoroughly washed with DMF and CH2Cl2 to remove residual monomer and non-grafted co-polymer and dried overnight under vacuum at 30°C. After drying, the disks were weighed to give an average mass change of 0.92% per disk (1.94 µg/mm2).
  • Step 2: Reaction of Maleic Anhydride/Styrene Graft System with Diamines on Disk 1943 PFA discs grafted with maleic anhydride/styrene from Step 1 were then split into 29 batches of 67 discs. Each batch was treated with a different diamine (0.5 M in DMF) from Table 4 to give, after washing, 29 different mixed (amide-carboxylic acid-phenyl) intermediates containing free amines. Table 4. List of Diamine Spacers for Maleimide Library
    No. Diamine No. Diamine
    1 Ethylenediamine 16 Pentaethylenehexamine
    2 1,4-Diaminobutane 17 1,4-Bis(3-aminopropyl)piperazine
    3 1,12-Diaminododecane 18 2,2'-Oxybis(ethylamine) dihydrochloride
    4 1,5-Diaminopentane 19 3,3'-Diamino-N-methyldipropylamine
    5 1,3-Diaminopropane 20 2,2'-Dimethyl-1,3-diaminopropane
    6 Diethylenetriamine 21 N,N'-Bis(2-aminoethyl)-1,3-propanediamine
    7 Dipropylenetriamine 22 2,2'-(Ethylenedioxy)bis(ethylamine)
    8 Tetraethylenepentamine 23 DAB((PA)4 Generation 1.0
    9 Triethylenetetramine 24 DAB((PA)4 Generation 2.0
    10 1,3-Cyclohexanebis(methylamine) 25 p-Xylylenediamine
    11 1,9-Diaminononane 26 O,O'-Bis(3-aminopropyl)polyethylenediamine
    12 4,9-Dioxa-1,12-dodecanediamine 27 Polyethylenimine
    13 N,N'-Bis(3-aminopropyl)ethylenediamine 28 1,7-Diaminoheptane
    14 Bis(hexamethylene)triamine 29 4,7,10-Trioxa-1,13-trideanediamine
    15 Tris(2-aminoethyl)amine
  • Step 3: Reaction of Mixed (Amide-carboxylic acid-phenyl) Amine Intermediates with Carboxylic Acids.
  • Each batch of diamines from step 2 was split into 67 different separate discs. Each disc was treated with a different carboxylic acid from Table 5 in a Table 5. List of Carboxylic Acid Capping Groups for Maleimide Library
    No. Acid No. Acid
    1 BOC-3-(1-naphthyl)-L-alanine 35 2-Norbornane acetic acid
    2 N(alpha)-BOC-L-lysine (Fmoc) 36 2,3,4-Trimethoxybenzoic acid
    3 D-Tyrosine 37 2-HYDROXY-1-NAPHTHOIC ACID
    4 O-tert-Butyl-L-serine (Fmoc) 38 4-TERT-BUTYLCYCLOHEXANECARBOXYLIC ACID
    5 FMOC-L-glutamic acid 5-benzyl ester 39 2-Thiopheneacetic acid
    6 D-Phenylalanine (BOC) 40 2-Biphenylcarboxylic acid
    7 BOC-L-Tyrosine 41 3,4-Diaminobenzoic acid
    8 L-Tyrosine (BOC) 42 DIETHYLPHOSPHONOACETIC ACID
    9 N-Benzyloxycarbonyl-L-tyrosine 43 Flufenamic acid
    10 FMOC-L-Phenylalanine 44 TRIDECANOIC ACID
    11 N-(9-FLUORENYLMETHOXYCARBONYL)-L-PROLINE 45 (1R,3R,4R,5R)-(-)-QUINIC ACID
    12 N-alpha-Carbobenzyloxy-L-tryptophan 46 2,2-Bis(hydroxymethyl)propionic acid
    13 N-CBZ-L-METHIONINE 47 p-Toloyl chloride
    14 N-FMOC-(L-ALANINE-OH)-H2O 48 Propionic anhydride
    15 N-Carbobenzyloxy-L-proline 49 3-Mercaptopropionic acid
    16 2-(DIPHENYLPHOSPHINO)BENZOIC ACID 50 Gibberellic acid
    17 1-Pyrenebutyric acid 51 Z-L-leucyl-L-alanine
    18 (1S)-(-)-CAMPHANIC chloride 52 R(+)-N-(alpha-Methylbenzyl)phthalic acid monoamide
    19 2,3,4,5-Tetrafluorobenzoyl chloride 53 (+)-mono-(1S)-Menthyl phthalate
    20 Docosanoic acid 54 R(-)-2-Oxothiazolidine-4-carboxylic acid
    21 2,6-Difluorophenylacetic acid 55 9H-Fluorene-9-carboxylic acid
    22 Piperonyloyl chloride 56 Orotic acid anhydrous
    23 2,3,4-TRIHYDROXYBENZOIC ACID 57 BOC-L-leucine
    24 Pentafluorobenzoyl chloride 58 15-Hydroxypentadecanoic acid
    25 4-METHOXYCYCLOHEXANECARBOXYLI C ACID 59 ACEMETACIN
    26 3-Iodo-4-methylbenzoic acid 60 N-T-BOC-S-TRITYL-L-CYSTEINE
    27 4-Octyloxybenzoic acid 61 URACIL-4-ACETIC ACID
    28 Cyanoacetic acid 62 (+/-)-4-METHYLOCTANOIC ACID
    29 2-METHYL-1-CYCLOHEXANECARBOXYLIC ACID 63 N-ALPHA-T-BOC-NEPSILON-CBZ-L-LYSINE
    30 N-TRITYLGLYCINE 64 Indomethacin
    31 3-Phenoxybenzoic acid 65 N-BENZOYL-BETA-ALANINE
    32 3-Indolebutyric acid 66 N-ACETYL-L-TRYPTOPHAN
    33 3,5-Diisopropylsalicylic acid 67 MEFENAMIC ACID
    34 4-Methylvaleric acid
    solution of DMF, 1-hydroxy-7-azabenztriazole (0.25 M), and diisopropylethylamine (0.5 M). The reaction was agitated overnight before washing with DMF and methylene chloride to remove excess reagent.
  • Step 4: Cyclization of Mixed System to give Styrene/Maleimide Graft Co-polymer. Mixed amide-carboxylic acid-styrene PFA disks from step 3 (50 disks) were treated with acetic anhydride (0.25 M) and sodium acetate (0.025 M) in toluene before heating to 80°C overnight. After 16 h, the vial was drained of reagent and the disks washed with toluene, DMF, and then CH2Cl2 before drying under vacuum to afford the library of styrene/maleimide surfaces, generated from one initial surface.
  • At each stage in the coating assembly, XPS and ATR spectra were acquired and indicated that each transformation had been performed. Further, the assemble library of maleimides with diamine spacers and dapping groups on disks was screened against anti Rabbit IgG, and a spectrum of very low to very high protein bindings were observed.
  • 5. Synthon Coating: Microarray Examples I. Library of Maleimides Step 1. Preparation of Maleic Anhydride/Styrene Graft Co-polymer on microscope slide.
  • A procedure for applying a Synthon Coating in a microarray format can be accomplished as follows: A microscope slide of dimensions 2.5 x 7.5 x 0.1 cm, prepared from the injection molding of tetrafluoroethylene-perfluoroalkyl-vinylether copolymer (PFA), can be masked to create an array of 16 x 250 um circular spots. Treatment of the masked slide with heptane plasma (5 min, 20 W, 10-3 torr) followed by removal of the mask yields a PFA slide consisting of 16 x 250 um thinly coated heptane spots. UV irradiation of the slide in the presence of benzophenone (0.05 M) in methanol followed by simultaneous polymerization and grafting of maleic anhydride (1.75 M) and styrene (1.75 M) in ethyl acetate selectively derivatizes the heptane layer to give arrayed spots that are densely functionalised with anhydride groups.
  • Step 2: Reaction of Maleic Anhydride/Styrene Graft Slide with Primary Amines.
  • Primary amine containing compounds (0.5 M) dissolved in DMF readily attach to the surface upon robotic printing of nanolitre droplets to each spot via ring opening of the anhydride. Each spot of 3 slides from step 1 were treated with a different primary amine (Table 6) to give three microarrays of 16 different mixed (amide-carboxylic acid-phenyl) intermediates. The arrays were washed exhaustively with DMF, CH2Cl2, and 1% acetic acid in DMF before drying under vacuum. Table 6. List of Primary Amines for Microarray
    No. Amine No. Amine
    1 2-(Aminomethyl)-18-crown-6 25 CYCLOHEXANEMETHYLAMINE
    2 4-METHOXYPHENETHYLAMINE 26 5-AMINO-1-PENTANOL
    3 Benzylamine 27 ISOPentylamine
    4 N-Acetylethylenediamine 28 1-(3-AMINOPROPYL)IMIDAZOLE
    5 Undecyclamine 29 2-Methoxyethylamine
    6 1-NAPHTHALENEMETHYLAMINE 30 Ethanol amine
    7 1-(2-AMINOETHYL)PYRROLIDINE 31 3-Aminopropionitrile
    8 2-(2-Aminoethoxy)ethanol 32 3-Methoxypropylamine
    9 Tetrahydrofurfuryl amine 33 3-FLUOROBENZYLAMINE
    10 2-(2-CHLOROPHENYL)ETHYLAMINE 34 3,4,5-Trimedioxybenzylamine
    11 Propylamine 35 4-Methoxybenzylamine
    12 2-(aminomethyl)pyridine 36 2-Amino-1-propene-1,1,3-tricarbonitrile
    13 3,4-DIMETHOXYPHENETHYLAMINE 37 p-Aminophenyl-beta-D-glucopyranoside
    14 3-PHENYL-1-PROPYLAMINE 38 D-Glucosamine hydrochloride
    15 4-CHLOROBENZYLAMINE 39 p-Aminophenyl-beta-D-galactopyranoside
    16 1-(2-AMINOETHYL)PIPERIDINE 40 Bis-homotris
    17 4-PHENYLBUTYLAMINE 41 3-(Diethylamino)propylamine
    18 4-AMINO-1-BUTANOL 42 2-METHOXYBENZYLAMINE
    19 4-FLUOROBENZYLAMINE 43 Isobutylamine
    20 6-AMINO-1-HEXANOL 44 BUTYLAMINE
    21 DECYLAMINE 45 4-(TRIFLUOROMETHYL)BENZYLAMINE
    22 NONYLAMINE 46 3,5-DIMETHOXYBENZYLAMINE
    23 Octylamine 47 3-FLUOROPHENETHYLAMINE
    24 VERATRYLAMINE 48 Pentylamine
  • Step 3: Cyclization of Mixed System to give Styrene/Maleimide Graft Co-polymer.
  • Subsequent dehydration of the entire array using acetic anhydride (0.25 M) and sodium acetate (0.025 M) at 80°C in toluene gives arrays of 16 different surface bound maleimides/styrene co-polymers.
  • At each stage in the coating assembly, XPS and ATR spectra were acquired and indicated that each transformation had been performed. Further, the assemble library of maleimides on a microarray was screened against anti Rabbit IgG, and a spectrum of very low to very high protein bindings events were observed.
  • II. Library of Mixed (amide-carboxylic acid-phenyl) Systems from Secondary Amines on Microarray. Step 1. Preparation of Maleic Anhydride/Styrene Graft Co-polymer on microscope slide.
  • A procedure for applying a Synthon Coating in a microarray format can be accomplished as follows: A microscope slide of dimensions 2.5 x 7.5 x 0.1 cm, prepared from the injection molding of tetrafluoroethylene-perfluoroalkyl-vinylether copolymer (PFA), can be masked to create an array of 16 x 250 um circular spots. Treatment of the masked slide with heptane plasma (5 min, 20 W, 10-3 torr) followed by removal of the mask yields a PFA slide consisting of 16 x 250 um thinly coated heptane spots. UV irradiation of the slide in the presence of benzophenone (0.05 M) in methanol followed by simultaneous polymerization and grafting of maleic anhydride (1.75 M) and styrene (1.75 M) in ethyl acetate selectively derivatizes the heptane layer to give arrayed spots that are densely functionalised with anhydride groups.
  • Step 2: Reaction of Maleic Anhydride/Styrene Graft Slide with Secondary Amines.
  • A PFA slide grafted with 16 maleic anhydride/styrene spots was elaborated with 16 different secondary amines (0.5 M, Table 7) dissolved in DMF via robotic printing. Washing of the slide with dimethylformamide followed by 1% acetic acid in dimethylformamide gives 16 x 250 um different mixed (amide-carboxylic acid-styrene) spots on the PFA slide. Table 7. List of Secondary Amines for Microarray
    No. Secondary Amine No. Secondary Amine
    1 Dimethylamine 9 4-Piperidinone monohydrate hydrochloride
    2 3,3-Iminodipropionitrile 10 1-Acetylpiperazine
    3 Morpholine 11 1,2,3,4-Tetrahydroisoquinoline
    4 Bis(2-methoxyethyl)amine 12 Pyrrolidinone
    5 Piperidine 13 N-Methylpropargyl amine
    6 Diethyl amine 14 N, N, N'-Trimethylethylenedianine
    7 N-Benzylmethylamine 15 Thiomorpholine
    8 1-Methylpiperazine 16 Nipecotamide
  • At each stage in the coating assembly, XPS and ATR spectra were acquired and indicated that each transformation had been performed. Further, the assemble library of mixed (amide-carboxylic acid-phenyl) systems from secondary amines on microarray was screened against anti Rabbit IgG, and a spectrum of very low to very high protein bindings events were observed.
  • III. Library of Mixed (amide-amide-phenyl) System on Microscope Slide Step 1. Preparation of Maleic Anhydride/Styrene Graft Co-polymer on microscope slide.
  • A procedure for applying a Synthon Coating in a microarray format can be accomplished as follows: A microscope slide of dimensions 2.5 x 7.5 x 0.1 cm, prepared from the injection molding of tetrafluoroethylene-perfluoroalkyl-vinylether copolymer (PFA), can be masked to create an array of 16 x 250 um circular spots. Treatment of the masked slide with heptane plasma (5 min, 20 W, 10-3 torr) followed by removal of the mask yields a PFA slide consisting of 16 x 250 um thinly coated heptane spots. UV irradiation of the slide in the presence of benzophenone (0.05 M) in methanol followed by simultaneous polymerization and grafting of maleic anhydride (1.75 M) and styrene (1.75 M) in ethyl acetate selectively derivatizes the heptane layer to give arrayed spots that are densely functionalised with anhydride groups.
  • Step 2: Reaction of Maleic Anhydride/Styrene Graft Slide with Secondary Amines.
  • A PFA slide grafted with 16 maleic anhydride/styrene spots was elaborated with 16 different secondary amines (0.5 M, Table 7 above) dissolved in DMF via robotic printing. Washing of the slide with dimethylformamide followed by 1% acetic acid in dimethylformamide gives 16 x 250 um different mixed (amide-carboxylic acid-styrene) spots on the PFA slide.
  • Step 3: Reaction of Mixed (amide-carboxylic acid-phenyl) System with Diamine.
  • Twenty-nine copies of the slide in step 2 were treated with DMAP (10 mol %), 1,3-diisopropyl carbodiimide (0.25 M), and N-hydroxysuccinimide (0.15M) in DMF. After washing with DMF, the slides were separated and each treated with a different diamine from Table 6 above. After several hours, the slides were washed with DMF and allowed to dry under vacuum to give microarrays of mixed (2°-Amide-1°-amide-phenyl)amine systems. Hence, all slides contain the same 16 secondary amines, one for each spot, but each slide contains a different diamine, wherein all spots on a given slide have the same diamine.
  • Step 4: Reaction of Mixed (2°-Amide-1°-amide-phenyl) Amine Intermediates with Carboxylic Acids.
  • The thirty slides from step 3 above were each treated with a solution of 3-iodo-4-methylbenzoic acid (0.25 M), 1-hydroxy-7-azabenztriazole (0.25 M), and diisopropylethylamine (0.5 M) in DMF. The reaction mixtures were agitated overnight before washing with DMF and methylene chloride to remove excess reagent.
  • At each stage in the coating assembly, XPS and ATR spectra were acquired and indicated that each transformation had been performed. Further, the assemble library of mixed (amide-amide-phenyl) system on a microarray was screened against anti Rabbit IgG, and a spectrum of very low to very high protein bindings events were observed.
  • 6. Synthon Coating: Carboxylated Polymer Bead Examples Synthon Coating Polymer
  • Inhibitor free styrene (86.4 mmol), maleic anhydride (86.4 mmol), and initiator AIBN (0.1mmo were mixed together in 1,4-Dioxane (48ml) in a polymerisation ampoule and sealed with a rubber septum. The solution was degassed by nitrogen sparging then allowed to polymerise at 60°C in a temperature controlled oil bath. After an appropriate time interval the polymerisation was stopped by precipitation into a 10-fold excess of methanol. The copolymer was collected by filtration and purified once by reprecipitation into methanol from DMF. The alternating copolymer was characterised my GPC: Mw=270 000.
  • 0.5 grams of the afforded polymer was dispersed into 50ml of Millipore water and hdrolyzed at 80°C with shaking over 5 days to afford the Synthon Coating Polymer, that is employed in the bead and plate examples below.
  • A) Absorption of the Synthon Coating Polymer
  • Step 1: A 100uL bead suspension of 5 micron, carboxylated was washed once with 2mls of Millipore water. The suspension was spun down and the bead plug resuspended into 1ml of a 1 wt% solution of PEI (Aldrich, 750K). The PEI was allowed to adsorb for 30 minutes with occasional gentle shaking and subsequently washed vigorously 3 times with Millipore water and spun down to a bead plug. The PEI coated beads were then resuspended in 1ml of 1% hydrolysed Synthon Coating Polymer 1 (described above) and allowed to adsorb for 30min with occasional gentle shaking The beads were then washed 3 times with Millipore water with each washing step including 20min of gentle shaking and spun down to a bead plug.
  • Step 2: To effect the next coating stage, the spun down bead plugs with the PEI and adsorbed Synthon Coating Polymer were resuspended into 1ml of a 5mg/ml EDC water solution and after 1min, 25uL of the 1,5 pentyl diamine was added. The samples were shaken briefly and the coupling reaction was allowed to proceed for 2 hrs with occasional gentle shaking. As the beads tended to clump during this process, they were redispersed with a short stints in the ultrasonic bath. The diamine coupled beads were then washed exhaustively with Millipore water 5 times and spun down to a bead plug. These amine modified beads were resuspended into 1ml of water and 200uL of the, 3-iodo-4-methylbenzoic acid, sulfo-NHS ester (∼10mg/ml of DMF) was added. The reaction was left to proceed for 2hrs and were then exhaustively washed 5 times with Millipore water. It should be noted that this modification can be effected by any number of diamines (or other multi-amine building block) and carboxylic acids, to allow the generation of libraries of modified encoded beads from the single Synthon Coating Polymer modified bead.
  • At each stage in the coating assembly, XPS spectra were acquired and indicated that each transformation had been performed. This process was performed on a number of beads sets from Bangs Laboratories (L020621N ,L020325G& Dyed: L011009A) and Luminex (L100-C124-01)
  • B) Covalent Attachment of the Synthon Coating Polymer
  • Step 1: A 100uL bead suspension of 5 micron, carboxylated was washed once with 2mls of Millipore water. The suspension was spun down and the bead plug resuspended into 1ml of a 1 wt% solution of PEI (Aldrich, 750K). The PEI was allowed to adsorb for 30 minutes with occasional gentle shaking and subsequently washed vigorously 3 times with Millipore water and spun down to a bead plug. The covalent attachment of the Synthon Coating Polymer to the PEI coated beads was performed by resuspending the PEI beads in 1ml of 1% Synthon Coating Polymer (preparation described above) that had been activated with EDC, and the reaction allowed to proceed for 30min with occasional gentle shaking. The beads were then washed 3 times with Millipore water with each washing step including 20min of gentle shaking and spun down to a bead plug.
  • Step 2: To effect the next coating stage, the spun down bead plugs with the PEI and adsorbed Synthon Coating Polymer were resuspended into 1ml of a 5mg/ml EDC water solution and after 1min, 25uL of the 1,5 pentyl diamine was added. The samples were shaken briefly and the coupling reaction was allowed to proceed for 2 hrs with occasional gentle shaking. As the beads tended to clump during this process, they were redispersed with a short stints in the ultrasonic bath. The diamine coupled beads were then washed exhaustively with Millipore water 5 times and spun down to a bead plug. These amine modified beads were resuspended into 1ml of water and 200uL of the, 3-iodo-4-methylbenzoic acid, sulfo-NHS ester (∼10mg/ml of DMF) was added. The reaction was left to proceed for 2hrs and were then exhaustively washed 5 times with Millipore water. It should be noted that this modification can be effected by any number of diamines (or other multi-amine building block) and carboxylic acids, to allow the generation of libraries of modified encoded beads from the single Synthon Coating Polymer modified bead.
  • At each stage in the coating assembly, XPS spectra were acquired and indicated that each transformation had been performed. This process was performed on a number of beads sets from Bangs Laboratories (L020621N ,L020325G& Dyed: L011009A) and Luminex (L 100-C 124-01)
  • C) Multiplex Bead Based Assay
  • Encoded Carboxylated beads employed in the assay were acquired from Luminex, and treated with Step 1 of the Absorption of the Synthon Coating Polymer described above. 5.0 X106 microspheres were transferred to a 15mL microcentrifuge tube, spun down to a pellet and resuspended in 5mL of 0.1M MES, pH 4.5 making sure to vortex and sonicate beads well.
  • 0.2 nmol of capture oligo probes (2mL of 1:10 of stock in dH20) was added to the beads, followed by a fresh aliquot of 10mg/mL EDC in dH20 (2.5mL). The reaction was allowed to proceed for 30 minutes at room temperature in the dark, prior to washing and charging the vessel with another fresh solution of 2.5mL of EDC. This solution was also incubated for 30 minutes at room temperature in the dark, then washed with 1.0mL of 0.02% Tween-20. The suspension was centrifuged for 1 minute to produce pellet and the supernatant carefully removed. The beads were then washed with 1.0mL of 0.1 % SDS, centrifuged for 1 minute to produce pellet and the supernatant carefully removed. The beads were then finally suspended in 100mL of TE, at pH 8.0 and stored at 2-8°C in complete darkness.
  • The coupled beads were then resuspended 1.5 X TMAC buffer and distributed to a sample or background well on the PCR plate. The amplified biotinylated DNA was then added and TE, pH 8.0 added to make a total of 17mL. The solutions were gently pipet up and down to mix. The samples were covered with plate sealer and place in thermocycler under a program that is set at 95°C (denaturing step) for 5 minutes and then 52°C (hybridization step) for 15 minutes. The plate was then spun (32250 x g, 3 minutes) and the supernatant carefully removed, and the plate placed back into the PCR at 52°C. 75mL of reporter solution was then added to each well, mixed gently and incubate at 52°C for 5 minutes prior to analysis via a Luminex machine, to afford an improved signal to noise over the non-modified Encoded Carboxylated beads.
  • 7. Coating of a Multi-well Plate A) Non-Reactive Microtitre Plate
  • Step 1: 200uL of a 1wt% PEI (Aldrich, 750K) was added to the wells of a 96 well microtitre plate (Maxisorp, Nunc) and allowed to stand at room temperature for 60 min. The wells were then washed 5 times with Millipore water. 200uL of a 1wt% Synthon Coating Polymer (preparation described above) was added to the wells and the interaction allowed to proceed for 60 min. The wells were then washed 5 times with Millipore water.
  • Step 2: 200uL of a 5vol% 1,5 pentyl diamine in 5mg/ml EDC water solution was added to the wells and coupling allowed to proceed for 2hrs, and then the wells were washed 5 times with Millipore water. 200uL of a coupling solution comprising 5mg/ml EDC and 5mg/ml 3-iodo-4-methyl-benzoic acid in DMSO was added to the wells and allowed to proceed for 2 hours after which the wells were washed twice with fresh DMSO then 5 times with Millipore water.
  • It should be noted that this modification can be effected by any number of diamines (or other multi-amine building block) and carboxylic acids, to allow the generation of libraries of modified microtitre plate wells from a single Synthon Coating Polymer modified bead.
  • At each stage in the coating assembly, XPS spectra were acquired and indicated that each transformation had been performed. The modified plates could then be employed in standard immunoassay protocols for ELISA and other diagnostic procedures
  • B) Reactive Microtitre Plate
  • Step 1: 200uL of a 1wt% Synthon Coating Polymer (preparation described above) was added to the wells NHS active plate, DNA-BIND (Corning) and ReactiBind plate (Piece) and the reaction allowed to proceed for 60 min. The wells were then washed 5 times with Millipore water.
  • Step 2: 200uL of a 5vol% 1,5 pentyl diamine in 5mg/ml EDC water solution was added to the wells and coupling allowed to proceed for 2hrs, and then the wells were washed 5 times with Millipore water. 200uL of a coupling solution comprising 5mg/ml EDC and 5mg/ml 3-iodo-4-methyl-benzoic acid in DMSO was added to the wells and allowed to proceed for 2 hours after which the wells were washed twice with fresh DMSO then 5 times with Millipore water.
  • It should be noted that this modification can be effected by any number of diamines (or other multi-amine building block) and carboxylic acids, to allow the generation of libraries of modified microtitre plate wells from a single Synthon Coating Polymer modified bead.
  • At each stage in the coating assembly, XPS spectra were acquired and indicated that each transformation had been performed. The modified plates could then be employed in standard immunoassay protocols for ELISA and other diagnostic procedures.
  • 8. Coating of PVDF Membrane Step 1: Activation of the Membrane with a Grafted Synthon Polymer
  • Four, 10 x 20 cm pieces of Immobilon-PSQ PVDF membrane (Millipore) were placed into a 700 ml beaker. The beaker was filled with a 1.5M ethyl acetate solution of 1:1 Styrene and Maleic anhydride, degassed by nitrogen purging and sealed. The solution was then irradiated in a gamma cell for 100 min. The irradiated membranes were removed from the polymerisation solution and washed with a large excess of ethyl acetate. Once washing was complete, the membranes were dried under high vacuum overnight and stored in a low humidity cupboard.
  • Step 2: Modification of the Membrane
  • A standard solution of the amine in THF (100 ml, 0.25 M, 0.025 mol) was prepared for each amine used. Grafted PVDF membranes were cut to a size of 10 x 10 cm, and placed in a large Petrie dish. The 100 ml amine solution was then carefully poured into the Petri dish, ensuring that the membrane was fully wet. The Petri dishes were then sealed with lids and allowed to agitate (very slowly) overnight at room temperature. The reaction solution was removed from the petri dish and the membranes washed with THF, dried under vacuum overnight and stored in the low humidity cupboard.
  • It should be noted that this modification can be effected by any number of amines (or other multi-amine building block) to allow the generation of libraries of modified PVDF membranes from a single grafted Synthon Polymer modified membrane.
  • At each stage in the coating assembly, XPS and ATR spectra were acquired and indicated that each transformation had been performed. The modified plates could then be employed in standard electroblotting protocols for western blotting applications to increase the amount of captured protein available for immunoassay.
  • 9. Synthon Coating: Determining the Optimium Coating for a Desired Specific Application Step 1: Preparation of Library on Desired Format:
  • A library of different but related surfaces are assembled in the desired format (microarray, bead, plated, etc) for the application, employing the methods described above.
  • Step 2: Screening of the Assembled Library
  • The assembled libraries are screened against the desired target for the desired application such as a biological screen for kinases, Rabbit IgG, cytokines or a synthetic screen for reaction optimizations, or the like. The outcome from this screen would be to identify the optimum surface for the said desired application, in a rapid and cost effective manner.
  • If the desired level of signal is not attained from the first screen of the libraries, a second, more focused library is then assembled with the knowledge from the first and the screen repeated until the desired level of signal is obtained. More than one surface from each screen may afford a signal of the desired level.
  • Step 3: Generation of a Synthon coating for a Desired Specific Application.
  • Having determined the optimum surface for the desired application, the identified surface can then be assembled by any means required, that affords the surface in a timely and cost effective manner. Further, the outcomes of a number of screening events can be assembled onto one surface, such as a microarray, resulting in a multiplex platform having, or consisting of multiple elements or parts to do more than one experiment.
  • Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

Claims (42)

  1. A method of generating a library of different surface coatings on a substrate comprising:
    a) selecting a surface coating synthon of formula B-S-F, wherein B is a copolymer of at least one monomeric constituent P and at least one monomeric constituent A, S is a spacer unit and F is a functional group that is capable of acting as a site for further chemical modification of the surface, wherein S is attached to a monomeric constituent A of copolymer B, and wherein the synthon has at least one point of diversity selected from P, A, S and F;
    b) applying backbone coating(s) of the selected copolymer B onto a substrate;
    c) attaching the selected combination(s) of spacer unit S and functional group F to constituent A of copolymer B according to said selected synthon;
    wherein steps b) and c) are performed such that surface coatings according to the synthon are generated on localised regions of the substrate, thereby providing said library of different surface coatings on the substrate.
  2. The method according to claim 1, wherein the substrate is selected from an organic polymer, glass, silicon, metal and combinations thereof.
  3. The method according to claim 1, wherein the substrate is in the form of a microscope slide, microtitre plate, porous membrane, pipette tip, tube or a plurality of beads.
  4. The method according to claim 2, wherein the substrate is an organic polymer.
  5. The method according to claim 4, wherein the organic polymer is selected from polytetrafluoroethylene, polystyrene, polypropylene, polyethylene, polyvinylidenefluoride and polymethylmethacrylate.
  6. The method according to claim 4, wherein the organic polymer is in the form of a plurality of beads.
  7. The method according to claim 6, wherein the beads are labelled such that a particular coating can be related to a particular bead or subgroup of beads.
  8. The method according to claim 7, wherein the beads are Luminex™ beads.
  9. The method according to any one of claims 1 to 8, wherein the library comprises at least 10 different surface coatings.
  10. The method according to any one of claims 1 to 8, wherein the library comprises at least 100 different surface coatings.
  11. The method according to any one of claims 1 to 8, wherein the library comprises at least 1,000 different surface coatings.
  12. The method according to any one of claims I to 8, wherein the library comprises at least 10,000 different surface coatings.
  13. The method according to any one of claim 1 to 12, wherein constituent A of copolymer B is a polymerised residue of a compound selected from those listed in Table 1 of this specification.
  14. The method according to claim 13, wherein constituent A of copolymer B is a polymerised residue of maleic anhydride.
  15. The method according to any one of claims 1 to 14, wherein constituent P of copolymer B is a polymerised residue of a compound selected from those listed in Table 2 of this specification.
  16. The method according to claim 15, wherein constituent P of copolymer B is a polymerised residue of styrene.
  17. The method according to any one of claims 1 to 16, wherein copolymer B is an alternating copolymer.
  18. The method according to any one of claims 1 to 17, wherein copolymer B is a block copolymer of constituent A and the passive constituent P.
  19. The method according to any one of claims 1 to 18, wherein copolymer B is a copolymer of maleic anhydride and styrene.
  20. The method according to any one of claims 1 to 19, wherein copolymer B further comprises a control agent C.
  21. The method according to claim 20, wherein the control agent is selected from a RAFT control agent, an ARTP control agent and a nitroxide control agent.
  22. The method according to any one of claims 1 to 21, wherein the spacer unit S has the structure:

            X_Q_Y

    wherein X is the residue of an amino, hydroxyl, thiol, carboxylic acid, anhydride, isocyanate, sulfonyl chloride, sulfonic anhydride, chloroformate, ketone or aldehyde moiety; Y is the same as defined for X; and Q is a divalent organic group, and wherein X and Y are not reactive with each other or Q.
  23. The method according to claim 22, wherein Q is selected from optionally substituted C1 to C20 alkylene, optionally substituted C2 to C20 alkynylene, optionally substituted C2 to C20 alkynylene and optionally substituted C6 to C20 arylene, wherein one or more carbon atoms may be substituted with a heteroatom selected from O, S or N.
  24. The method according to claim 22 or claim 23, wherein the spacer unit S is a residue of a diamine.
  25. The method according to claim 24, wherein the spacer unit S is a residue of an alkyl diamine.
  26. The method according to claim 25, wherein the spacer unit S is a residue of 1,5-diaminopentane or N-(3-aminopropyl)-1,3-propanediamine.
  27. The method according to any one of claims 1 to 26, wherein the functional group F is a group capable of binding or chemically reacting with a biological molecule or component.
  28. The method according to claim 27, wherein the functional group F comprises a primary or secondary amine group.
  29. The method according to any one of claims 1 to 28, wherein the synthon has, within constituent A, constituent P, the spacer unit S and the functional group F, a sole point of diversity in the selection of the spacer unit S.
  30. The method according to any one of claims 1 to 28, wherein the synthon has, within constituent A, constituent P, the spacer unit S and the functional group F, a sole point of diversity in the selection of the functional group F.
  31. The method according to any one of claims 1 to 28, wherein the synthon has, within constituent A, constituent P, the spacer unit S and the functional group F, two points of diversity in the selection of the spacer unit S and the functional group F.
  32. The method according to any one of claims 1 to 31, wherein the backbone coating(s) of copolymer B are applied onto the substrate by grafting, or other methods of coating selected from dip coating, plasma polymerisation, vapor deposition, stamp printing, gamma irradiation, electron beam exposure, and thermal and photochemical radiation.
  33. The method according to any one of claims 1 to 32, wherein the selected combination(s) of spacer unit S and functional group F are attached by:
    1) attaching the spacer unit S to copolymer B and then attaching the functional group F to the attached spacer group S; or
    2) attaching the spacer unit S to copolymer B, wherein the spacer unit S already has the functional group F attached to it.
  34. The method according to any one of claims 1 to 33, wherein the backbone coating(s) of selected copolymer B is applied onto localised regions of the substrate.
  35. The method according to claim 34, wherein the backbone coating(s) of selected copolymer B is applied to a plurality of beads.
  36. The method according to any one of claims 1 to 33, wherein the backbone coating(s) of selected copolymer B is applied to the surface of the substrate, and the selected combination(s) of spacer unit S and functional group F are attached to the copolymer B in localised regions.
  37. The method according to any one of claims 1 to 36, wherein the surface coatings according to the synthon which are generated on localised regions of the substrate are spatially resolved.
  38. A method of optimizing a substrate surface for a solid-phase application involving immobilization of a molecule comprising:
    a) generating a library of different surface coatings on a substrate by a method comprising:
    1) selecting a surface coating synthon of formula B-S-F, wherein B is a copolymer of at least one monomeric constituent P and at least one monomeric constituent A, S is a spacer unit and F is a function group that is capable of acting as a site for further chemical modification of the surface, wherein S is attached to constituent A of copolymer B, and wherein the synthon has at least one point of diversity selected from P, A, S and F;
    2) applying backbone coating(s) of the selected copolymer B onto a substrate;
    3) attaching the selected combination(s) of spacer unit S and functional group F to constituent A of copolymer B according to said selected synthon;
    wherein steps 2) and 3) are performed such that surface coatings according to the synthon are generated on localised regions of the substrate, thereby providing said library of different surface coatings on the substrate;
    b) exposing at least two of the surface coatings in the library to the molecule to be immobilized; and
    c) determining which of the at least two surfaces results in better performance of the immobilized molecule in the solid-phase application.
  39. The method of claim 38 wherein the solid-phase application involves immobilization of a biological molecule or a biological molecule analog selected from proteins, peptides, peptide nucleic acids, nucleic acids, non-natural nucleic acids, oligonucleotides and carbohydrates.
  40. The method according to claim 38, wherein the solid-phase application involves detecting binding of a ligand to an immobilised biological molecule.
  41. A method of performing solid phase application comprising immobilising a molecule on a substrate surface optimized by the method of claim 38.
  42. A method of tailoring a surface coating to recognise, bind to or associate with a particular molecule comprising:
    a) generating a library of different surface coatings on a substrate by a method comprising:
    1) selecting a surface coating synthon of formula B-S-F, wherein B is a copolymer of at least one monomeric constituent P and at least one monomeric constituent A, S is a spacer unit and F is a functional group that is capable of acting as a site for further chemical modification of the surface, wherein S is attached to constituent A of copolymer B, and wherein the synthon has at least one point of diversity selected from P, A, S and F;
    2) applying backbone coating(s) of the selected copolymer B onto a substrate;
    3) attaching the selected combination(s) of spacer unit S and functional group F to constituent A of copolymer B according to said selected synthon;
    wherein steps 2) and 3) are performed such that surface coatings according to the synthon are generated on localised regions of the substrate, thereby providing said library of different surface coatings on the substrate;
    b) exposing at least two of the surface coatings in the library to the particular molecule; and
    c) determining which of the at least two surfaces best recognises, binds to or associates with the particular molecule.
EP03718551A 2002-05-10 2003-05-09 Generation of surface coating diversity Expired - Lifetime EP1534755B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US37996602P 2002-05-10 2002-05-10
US379966P 2002-05-10
PCT/AU2003/000566 WO2003095494A1 (en) 2002-05-10 2003-05-09 Generation of surface coating diversity

Publications (3)

Publication Number Publication Date
EP1534755A1 EP1534755A1 (en) 2005-06-01
EP1534755A4 EP1534755A4 (en) 2005-08-17
EP1534755B1 true EP1534755B1 (en) 2011-10-12

Family

ID=29420591

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03718551A Expired - Lifetime EP1534755B1 (en) 2002-05-10 2003-05-09 Generation of surface coating diversity

Country Status (6)

Country Link
US (1) US8273403B2 (en)
EP (1) EP1534755B1 (en)
AT (1) ATE528320T1 (en)
AU (1) AU2003222676B2 (en)
ES (1) ES2373714T3 (en)
WO (1) WO2003095494A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2373714T3 (en) 2002-05-10 2012-02-08 Bio-Layer Pty Limited GENERATION OF DIVERSITY OF SURFACE COATINGS.
WO2006002472A1 (en) 2004-07-02 2006-01-12 Bio-Layer Pty Ltd Use of metal complexes
US8795782B2 (en) 2006-08-18 2014-08-05 Commonwealth Scientific And Industrial Research Organisation Polymeric coatings and methods for forming them
JP5567337B2 (en) * 2006-08-18 2014-08-06 コモンウェルス サイエンティフィック アンドインダストリアル リサーチ オーガナイゼーション Polymer coatings and methods for forming them
WO2008070222A2 (en) * 2006-08-21 2008-06-12 Cytotrend Biotech Engineering Limited Usa Inc A method of surface plasmon resonance (spr) technology to detect genomic disorders for prenatal diagnosis
WO2008036465A2 (en) * 2006-09-18 2008-03-27 CMED Technologies Ltd. Office of Walkers Limited A method to assess cancer susceptibility and differential diagnosis of metastases of unknown primary tumors
WO2008036470A2 (en) * 2006-09-19 2008-03-27 Cmed Technologies Ltd. A method for screening of infectious agents in blood
WO2008070223A2 (en) * 2006-09-21 2008-06-12 Cmed Technologies Ltd. A method to remove repetitive sequences from human dna
US20100047815A1 (en) * 2006-09-21 2010-02-25 Cmed Technologies Ltd. Method to detect tumor markers and diagnosis of undifferentiated tumors
WO2008066982A2 (en) * 2006-09-25 2008-06-05 Cmed Technologies Ltd. A method of surface plasmon resonance (spr) technology to detect genomic aberrations in patients with chronic lymphocytic leukemia
WO2008082710A2 (en) * 2006-09-25 2008-07-10 Cmed Technologies Ltd. A method of surface plasmon resonance (spr) technology to detect genomic aberrations in patients with multiple myeloma
US8158342B2 (en) * 2006-09-25 2012-04-17 Cmed Technologies Ltd. Method for the identification of human immunodeficiency virus related antibodies in blood
WO2008085554A2 (en) * 2006-09-25 2008-07-17 Cmed Technologies Ltd. A method to detect virus related immunologigal markers for the diagnosis of hepatitis b virus infection
US20100041018A1 (en) * 2006-09-25 2010-02-18 Cmed Technologies Ltd. Method to detect virus related immunological markers for the diagnosis of hepatitis c virus infection
US20100047789A1 (en) * 2006-09-25 2010-02-25 Cmed Technologies Ltd. Method of surface plasmon resonance (spr) to detect genomic disorders for postnatal diagnosis
WO2008067008A2 (en) * 2006-09-27 2008-06-05 Cmed Technologies Ltd. A method for the quantitative evaluation of sex hormones in a serum sample
US20100021930A1 (en) * 2006-09-27 2010-01-28 Cmed Technologies Ltd. Application of surface plasmon resonance technology to maternal serum screening for congenital birth defects
WO2008066997A2 (en) * 2006-09-27 2008-06-05 Cmed Technologies Ltd. A method for quantitative measurement of cardiac biochemical markers
WO2008066996A2 (en) * 2006-09-27 2008-06-05 Cmed Technologies Ltd. A method to detect treponema pallidum immunological markers for the diagnosis of syphilis
WO2008070241A2 (en) * 2006-09-27 2008-06-12 Cmed Technologies Ltd. A method to measure serum biomarkers for the diagnosis of liver fibrosis
US8158343B2 (en) * 2006-09-27 2012-04-17 Cmed Technologies Ltd. Method to detect virus related immunological markers for the diagnosis of respiratory tract infections
WO2008067007A2 (en) * 2006-09-28 2008-06-05 Cmed Technologies Ltd. A method for quantitative measurement of thyroid homrones and related antibodies in a serum sample
US8110408B2 (en) * 2006-09-28 2012-02-07 Cmed Technologies Ltd. Method for quantitative detection of diabetes related immunological markers
EP2193206A4 (en) 2007-10-04 2011-02-02 Cmed Technologies Ltd Application of surface plasmon resonance technology for detecting and genotyping hpv
WO2015116795A1 (en) * 2014-01-31 2015-08-06 Siemens Healthcare Diagnostics Inc. Paramagnetic supports for use as assay reagents
US9548188B2 (en) 2014-07-30 2017-01-17 Lam Research Corporation Method of conditioning vacuum chamber of semiconductor substrate processing apparatus

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE561742A (en) 1956-10-18
GB935013A (en) 1959-05-27 1963-08-21 Bx Plastics Ltd Process for manufacturing graft copolymers of polyolefines and styrene
GB1006622A (en) 1962-07-18 1965-10-06 Toyo Rayon Co Ltd Method of improving the surface properties of polypropylene film
US3362942A (en) 1965-02-23 1968-01-09 Du Pont Process for polymerizing and curing methyl methacrylate monomer-polymer sirups in thepresence of metal salts of hemi-peresters of maleic acid
US3849172A (en) 1968-08-23 1974-11-19 Uniroyal Inc Electrolessly plateable polymeric composition
IL49685A (en) * 1976-05-31 1978-10-31 Technion Res & Dev Foundation Specific binding assay method for determining the concentration of materials and reagent means therefor
JPS54160474A (en) 1978-06-09 1979-12-19 Kansai Paint Co Ltd Modification of surface of high polymer base
NZ199916A (en) 1981-03-11 1985-07-12 Unilever Plc Low density polymeric block material for use as carrier for included liquids
JPS6214905A (en) 1985-07-15 1987-01-23 Fuji Photo Film Co Ltd Process of manufacturing microporous
US4771110A (en) 1986-02-04 1988-09-13 Air Products And Chemicals, Inc. Polymeric materials having controlled physical properties and processes for obtaining these
US4799931A (en) 1986-05-14 1989-01-24 Lindstrom Richard L Intracorneal lens
US5108776A (en) 1987-04-10 1992-04-28 University Of Florida Ocular implants and methods for their manufacture
GB8709688D0 (en) 1987-04-24 1987-05-28 Unilever Plc Porous material
US5244799A (en) 1987-05-20 1993-09-14 Anderson David M Preparation of a polymeric hydrogel containing micropores and macropores for use as a cell culture substrate
US5238613A (en) 1987-05-20 1993-08-24 Anderson David M Microporous materials
NL8702448A (en) 1987-10-14 1989-05-01 Dyneema Vof SURFACE TREATMENT OF POLYOLEFINE ARTICLES.
FR2629916B1 (en) 1988-04-08 1992-09-04 Hoechst Behring Applic Pharmac SOLID SUPPORT FOR IMMUNOLOGICAL DIAGNOSIS, PROCESS FOR THEIR TREATMENT AND APPLICATION TO IMMUNOLOGICAL DIAGNOSIS
JPH01275639A (en) 1988-04-28 1989-11-06 Agency Of Ind Science & Technol Surface modification
JP2611338B2 (en) 1988-06-20 1997-05-21 日本ビクター株式会社 Conductive polymer material
WO1990002749A1 (en) 1988-09-01 1990-03-22 Forskningscenter Risø Peptide synthesis method and solid support for use in the method
WO1990007575A1 (en) 1988-12-30 1990-07-12 Anderson David M Stabilized microporous materials and hydrogel materials
ES2075200T3 (en) 1989-02-23 1995-10-01 Chemfab Corp IMPROVED FILMS AND LAMINATES CONTAINING POLYIMIDE AND FLUOROPOLYMER.
US5080924A (en) 1989-04-24 1992-01-14 Drexel University Method of making biocompatible, surface modified materials
US6346413B1 (en) * 1989-06-07 2002-02-12 Affymetrix, Inc. Polymer arrays
JPH0365341A (en) 1989-08-04 1991-03-20 Mitsui Petrochem Ind Ltd Laminate
GB8925302D0 (en) 1989-11-09 1989-12-28 Nat Res Dev Gas-permeable contact lens
JP3102039B2 (en) 1990-03-14 2000-10-23 住友化学工業株式会社 Surface treatment method and coating method for thermoplastic resin molded products
EP0480643B1 (en) 1990-10-10 1996-05-22 Minnesota Mining And Manufacturing Company Graft copolymers and graft copolymer/protein compositions
US5130343A (en) 1991-03-13 1992-07-14 Cornell Research Foundation, Inc. Process for producing uniform macroporous polymer beads
US5344701A (en) 1992-06-09 1994-09-06 Minnesota Mining And Manufacturing Company Porous supports having azlactone-functional surfaces
US5583211A (en) 1992-10-29 1996-12-10 Beckman Instruments, Inc. Surface activated organic polymers useful for location - specific attachment of nucleic acids, peptides, proteins and oligosaccharides
US5384265A (en) 1993-03-26 1995-01-24 Geo-Centers, Inc. Biomolecules bound to catalytic inorganic particles, immunoassays using the same
DK72493D0 (en) * 1993-06-18 1993-06-18 Risoe Forskningscenter SOLID SUPPORTS FOR USE IN PEPTIDE SYNTHESIS AND ASSAYS
EP0721458B1 (en) * 1993-09-28 2000-05-17 Beckman Coulter, Inc. Biopolymer synthesis utilizing surface activated, organic polymers
US5922545A (en) * 1993-10-29 1999-07-13 Affymax Technologies N.V. In vitro peptide and antibody display libraries
JP3585175B2 (en) 1994-03-04 2004-11-04 ポール・フィルトレイション・アンド・セパレイションズ・グループ・インコーポレイテッド Synthetic polymer membrane with large pores
US5683800A (en) 1994-10-28 1997-11-04 The Dow Chemical Company Surface-modified post-crosslinked adsorbents and a process for making the surface modified post-crosslinked adsorbents
JPH08259716A (en) 1995-03-22 1996-10-08 Japan Atom Energy Res Inst Method for modifying surface of fluoropolymer by irradiation with light with aliphatic amine
WO1997002310A1 (en) 1995-06-30 1997-01-23 Commonwealth Scientific And Industrial Research Organisation Improved surface treatment of polymers
JP2776340B2 (en) 1995-11-08 1998-07-16 日本電気株式会社 Fingerprint feature extraction device
US5807937A (en) 1995-11-15 1998-09-15 Carnegie Mellon University Processes based on atom (or group) transfer radical polymerization and novel (co) polymers having useful structures and properties
US5691431A (en) 1996-01-18 1997-11-25 Exxon Chemical Patents Inc. Cationic polymerization catalyzed by lewis acid catalysts supported on porous polymer substrate
WO1997035905A1 (en) 1996-03-27 1997-10-02 Novartis Ag Process for manufacture of a porous polymer by use of a porogen
ATE207082T1 (en) 1996-06-12 2001-11-15 Univ Warwick POLYMERIZATION CATALYST AND PROCESS
WO1998000435A2 (en) 1996-07-03 1998-01-08 President And Fellows Of Harvard College Oligonucleotide linker and techniques involving immobilized and linked oligonucleotides
US5789487A (en) 1996-07-10 1998-08-04 Carnegie-Mellon University Preparation of novel homo- and copolymers using atom transfer radical polymerization
US6136274A (en) 1996-10-07 2000-10-24 Irori Matrices with memories in automated drug discovery and units therefor
FR2754535A1 (en) 1996-10-16 1998-04-17 Atochem Elf Sa GRAFTED POLYMERS WITH CONTROLLED VISCOSITY
ATE201031T1 (en) 1997-04-14 2001-05-15 Degussa METHOD FOR MODIFYING THE SURFACE OF POLYMER SUBSTRATES BY GRAFT POLYMERIZATION
US6226603B1 (en) 1997-06-02 2001-05-01 The Johns Hopkins University Method for the prediction of binding targets and the design of ligands
US6013459A (en) 1997-06-12 2000-01-11 Clinical Micro Sensors, Inc. Detection of analytes using reorganization energy
GB9725455D0 (en) 1997-12-02 1998-01-28 Univ Warwick Supported polymerisation catalyst
US5976813A (en) 1997-12-12 1999-11-02 Abbott Laboratories Continuous format high throughput screening
US5932102A (en) * 1998-01-12 1999-08-03 Schering Corporation Immobilized metal, affinity chromatography
JP3608941B2 (en) 1998-04-03 2005-01-12 株式会社ユポ・コーポレーション Surface treatment method for thermoplastic resin film
ATE275977T1 (en) 1998-04-13 2004-10-15 Massachusetts Inst Technology COMB POLYMERS FOR REGULATING CELL SURFACE INTERACTION
CA2277372C (en) 1998-07-13 2011-03-15 Tran Quang Minh Affinity immobilised metal resins
US6406921B1 (en) * 1998-07-14 2002-06-18 Zyomyx, Incorporated Protein arrays for high-throughput screening
DE19838241A1 (en) 1998-08-22 2000-02-24 Henrik Boettcher Modification of solid surfaces, useful for the control of adhesion and surface reactivity comprises a living/controlled radical polymerization initiated by compounds bound to the solid surface.
DE59914221D1 (en) * 1998-08-28 2007-04-12 Poly An Ges Zur Herstellung Vo METHOD FOR PRODUCING POLYMERIC SOLID PHASE CARRIER
BR9913707A (en) 1998-09-15 2001-06-05 Nat Power Plc Water-based graft
CA2249955A1 (en) 1998-10-13 2000-04-13 James E. Guillet Graft polymerization process
AU5629600A (en) 1999-06-23 2001-01-09 Warner-Lambert Company Solid-supported initiators and functional polymers for use in organic synthesis and combinatorial chemistry
AT408227B (en) 1999-07-22 2001-09-25 Wolfgang Dr Kern METHOD FOR MODIFYING POLYMER SURFACES
GB9923347D0 (en) * 1999-10-05 1999-12-08 Univ Manchester Processing apparatus and method
DE60016449T2 (en) 1999-10-27 2005-12-08 Novartis Ag COATING PROCESS
JP4431233B2 (en) 1999-11-30 2010-03-10 テルモ株式会社 Honeycomb structure and method for preparing the same, and film and cell culture substrate using the structure
FR2805268B1 (en) 2000-02-23 2005-03-25 Atofina THERMOREVERSIBLE POLYMERS WITH MITROXIDE FUNCTIONS
JP2001261758A (en) 2000-03-17 2001-09-26 Kawamura Inst Of Chem Res Resin composite having coconinuous structure and method for producing the same
US6562411B2 (en) * 2000-05-24 2003-05-13 Agfa-Gevaert Combinatorial coating for developing novel materials
AUPQ859000A0 (en) 2000-07-06 2000-07-27 Commonwealth Scientific And Industrial Research Organisation Apparatus for surface engineering
TW513485B (en) * 2000-07-10 2002-12-11 Ind Tech Res Inst On-spot hydrophilic enhanced slide and preparation thereof
DE10056658C1 (en) * 2000-11-15 2002-07-04 Steinert Gmbh Elektromagnetbau Device and method for separating a solid mixture containing metals
JP2002155228A (en) 2000-11-24 2002-05-28 Dainippon Ink & Chem Inc Printing ink for polyolefin film
AUPR224600A0 (en) 2000-12-21 2001-01-25 Polymerat Pty Ltd Novel polymers
AUPR404801A0 (en) 2001-03-28 2001-04-26 Polymerat Pty Ltd A method of polymerization
US20030003223A1 (en) 2001-04-07 2003-01-02 The Regents Of The University Of California Methods and compositions for binding histidine-containing proteins to substrates
AU2002258734A1 (en) 2001-04-13 2002-10-28 Wyeth Holdings Corporation Removal of bacterial endotoxin in a protein solution by immobilized metal affinity chromatography
EP1397372B1 (en) 2001-06-21 2008-05-07 Clontech Laboratories, Inc. Water-soluble polymeric metal ion affinity compositions and methods for using the same
WO2003042249A2 (en) 2001-11-12 2003-05-22 Novo Nordisk A/S Peptide purification by means of metal ion affinity chromatography
WO2003087310A2 (en) 2002-04-04 2003-10-23 California Institute Of Technology Directed protein docking algorithm
JP4273311B2 (en) 2002-04-26 2009-06-03 株式会社シノテスト Method and reagent for measuring substance to be measured in sample
ES2373714T3 (en) 2002-05-10 2012-02-08 Bio-Layer Pty Limited GENERATION OF DIVERSITY OF SURFACE COATINGS.
JP4092394B2 (en) 2002-05-23 2008-05-28 独立行政法人産業技術総合研究所 Nucleic acid sorting sensor chip
JP3839359B2 (en) 2002-06-14 2006-11-01 東洋鋼鈑株式会社 Chemically modified solid support and use thereof
FR2842826B1 (en) 2002-07-25 2006-01-20 Centre Nat Rech Scient PROCESS FOR PRODUCING BIOLOGICAL CHIPS
WO2004055518A1 (en) 2002-12-18 2004-07-01 Astrazeneca Ab Inositol phosphate detection assays
US7881871B2 (en) 2003-12-12 2011-02-01 Bio-Layer Pty Limited Method for designing surfaces
JP4253634B2 (en) * 2004-11-30 2009-04-15 富士フイルム株式会社 Digital camera
GB0620406D0 (en) 2006-10-13 2006-11-22 Glaxo Group Ltd Novel compounds

Also Published As

Publication number Publication date
WO2003095494A1 (en) 2003-11-20
US8273403B2 (en) 2012-09-25
EP1534755A4 (en) 2005-08-17
ATE528320T1 (en) 2011-10-15
AU2003222676A1 (en) 2003-11-11
AU2003222676B2 (en) 2009-04-23
ES2373714T3 (en) 2012-02-08
EP1534755A1 (en) 2005-06-01
US20060083858A1 (en) 2006-04-20

Similar Documents

Publication Publication Date Title
EP1534755B1 (en) Generation of surface coating diversity
JP4903224B2 (en) Support for analyte assay and method for producing and using the same
JP4741499B2 (en) Binding of molecules to the surface
CN107076739B (en) Reversible surface functionalization
JP5005869B2 (en) Epoxide polymer surface
US7250253B1 (en) Immobilization of molecules on surfaces via polymer brushes
EP1701785A1 (en) Modified molecular arrays
JP2002535013A (en) Replicatable probe array
JP4184089B2 (en) Substrate, preparation and use
JP4510080B2 (en) PNA chip using plastic substrate coated with epoxy group-containing polymer, method for producing the PNA chip, and method for detecting single base gene mutation using the PNA chip
KR101333405B1 (en) Crosslinked polymers with amine binding groups
JP2015533903A (en) Polymer having orthogonal reactive group and use thereof
US7932213B2 (en) Small molecule printing
US7459316B2 (en) Molecularly-imprinted chemical detection device and method
JP4534818B2 (en) Polymer compound for biomaterial and polymer solution using the same
KR20050014409A (en) Substrate for immobilizing physiological material, and a method of preparing the same
KR100498288B1 (en) Nucleic acid microarray and manufacturing method thereof
TWI245771B (en) Micro-region selectively activating hydrophobic chip and its preparing method
KR20050023753A (en) Substrate for immobilizing physiological material, and a method of preparing the same
KR20040055442A (en) Nucleic acid microarray reproduced by using polymerization reaction and manufacturing method thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

A4 Supplementary search report drawn up and despatched

Effective date: 20050705

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60338735

Country of ref document: DE

Effective date: 20111201

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111012

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2373714

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120208

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 528320

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120213

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120113

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120112

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

26N No opposition filed

Effective date: 20120713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60338735

Country of ref document: DE

Effective date: 20120713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030509

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

Ref country code: CH

Ref legal event code: PFA

Owner name: ANTEO TECHNOLOGIES PTY LTD., AU

Free format text: FORMER OWNER: BIO-LAYER PTY LIMITED, AU

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ANTEO TECHNOLOGIES PTY LTD.

Effective date: 20150212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60338735

Country of ref document: DE

Owner name: ANTEO TECHNOLOGIES PTY LTD., BRISBANE, AU

Free format text: FORMER OWNER: BIO-LAYER PTY. LTD., BRISBANE, QUEENSLAND, AU

Effective date: 20111013

Ref country code: DE

Ref legal event code: R081

Ref document number: 60338735

Country of ref document: DE

Owner name: ANTEO TECHNOLOGIES PTY LTD., BRISBANE, AU

Free format text: FORMER OWNER: BIO-LAYER PTY. LTD., BRISBANE, QUEENSLAND, AU

Effective date: 20150202

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: ANTEO TECHNOLOGIES PTY LTD, AU

Effective date: 20150209

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160525

Year of fee payment: 14

Ref country code: ES

Payment date: 20160530

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160523

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170516

Year of fee payment: 15

Ref country code: DE

Payment date: 20170530

Year of fee payment: 15

Ref country code: GB

Payment date: 20170530

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170509

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60338735

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180509

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181201