EP1532158B1 - Neutral metallic dendrimer complexes - Google Patents

Neutral metallic dendrimer complexes Download PDF

Info

Publication number
EP1532158B1
EP1532158B1 EP03791036A EP03791036A EP1532158B1 EP 1532158 B1 EP1532158 B1 EP 1532158B1 EP 03791036 A EP03791036 A EP 03791036A EP 03791036 A EP03791036 A EP 03791036A EP 1532158 B1 EP1532158 B1 EP 1532158B1
Authority
EP
European Patent Office
Prior art keywords
group
light
organometallic dendrimer
organometallic
dendrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03791036A
Other languages
German (de)
French (fr)
Other versions
EP1532158A1 (en
Inventor
Ifor David William Samuel
Paul Leslie Burn
Shih-Chun Lo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of St Andrews
Oxford University Innovation Ltd
Original Assignee
University of St Andrews
Oxford University Innovation Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of St Andrews, Oxford University Innovation Ltd filed Critical University of St Andrews
Publication of EP1532158A1 publication Critical patent/EP1532158A1/en
Application granted granted Critical
Publication of EP1532158B1 publication Critical patent/EP1532158B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • This invention relates to dendrimers, a process for forming them, and their use in electro-optic devices, in particular light-emitting devices.
  • OLEDs organic light-emitting diodes
  • EL organic electroluminescent
  • an OLED comprises a thin organic layer or stack of organic layers sandwiched between two electrodes, such that when a voltage is applied visible or other light is emitted. At least one of the electrodes must be transparent to light. For display applications the light must of course be visible to the eye, and therefore at least one of the electrodes must be transparent to visible light.
  • Dendrimers are branched macromolecules with a core and attached dendrons (also called dendrites).
  • Dendrons are branched structures comprising branching units and optionally linking units. The generation of a dendron is defined by the number of sets of branching points; see Figure 1 .
  • Dendrons of a higher generation, or order can be composed of the same structural units (branching and linking units) but have an additional level of branching, i.e. an additional repetition of these branching and linking units. Alternatively higher generations can have an additional level of branching but different branching and linking units at the higher generation. There can be surface groups on the periphery of the dendrons.
  • Light-emitting dendrimers typically have a luminescent core and in many cases at least partially conjugated dendrons. Further examples of light-emitting dendrimers include those found in P. W. Wang, et al Adv. Mater., 1996, 8, 237 ; M. Halim, et al Adv. Mater., 1999, 11, 371 ; A. W. Freeman, et al J. Am. Chem. Soc., 2000, 122, 12385 ; A. Adronov, et al Chem. Comm., 2000, 1701 .; C. C. Kwok, et al Macromolecules, 2001, 34, 6821 .
  • Light-emitting dendrimers have the advantage over light-emitting polymers that the light-emitting properties and the processing properties can be independently optimised as the nature of the core, dendrons and surface groups can be independently altered. For example, the emission colour of a dendrimer can be changed by simply changing the core.
  • Such light-emitting dendrimers can be useful in electro-optic devices, particularly OLEDs.
  • Organometallic dendrimers have previously been used in OLED applications as a single component in a film (i.e. a neat film) or in a blend with a molecular material or in a blend of more than one dendrimer of different type (i.e. different cores), e.g. J.M. Lupton et al. Adv. Funct. Mater., 2001, 11, 287 and J. P. J. Markham, et al Appl. Phys. Lett., 2002, 80, 2645 .
  • the photoluminescence quantum yield of the second generation, 2 is higher than for the first, 1, but both are less than when the measurement is carried out in dilute solution where dendrimer intermolecular interactions are not present.
  • the dendrons are attached to one component of the bidentate ligand, namely the phenyl ring, and the facial ( fac ) isomers are formed. This combination leaves one face of the core unprotected by dendrons allowing potentially detrimental core-core interactions.
  • the present invention relates to organometallic dendrimers that are neutral, i.e. those in which the ligands directly coordinated/bonded to the metal balance the charge.
  • the dendrimer structure can be changed.
  • One way of doing this is to attach more than one dendron to more than one ligand complexed to the metal cation.
  • a dendron could be attached to both the phenyl and pyridyl rings and then two or more of these ligands complexed to the metal cation.
  • the organometallic dendrimers contain more than one dendron attached to each ligand.
  • a second way of controlling the intermolecular core-core interactions is by using different isomers. For example, for an octahedral fac -iridium (III) complex with 2-phenylpyridine ligands with dendrons attached to the phenyl rings one face of the core is not protected by the dendron. By using the meridinal ( mer ) isomer the dendrons are more evenly distributed around the core and as a consequence the core is more protected by the dendrons.
  • the present invention relates to dendrimers, processes of preparing them and opto-electronic devices, in particular OLEDs, containing them, that solve some of the problems in the prior art.
  • the invention seeks to overcome the intermolecular interactions that are detrimental for OLED performance.
  • the present invention accordingly provides a charge-neutral organometallic dendrimer of formula (II): M-[X(DENDRITE(-Q) a ) y ] x Y z (II) in which M represents a metal cation, x represents an integer of 2 or more, y represents an integer of 2 or more, each X which may be the same or different represents a mono-, bi- or tri-dentate coordinating group, z represents 0 or an integer of 1 or more, and each Y which may be the same or different represents a coordinating group, the total of (b.x) + (c.z) being equal to the number of coordination sites on M, wherein b is the number of coordination sites on X and c is the number of coordination sites on Y; each DENDRITE which may be the same or different represents a dendritic molecular structure bonded to a group X, wherein each X terminates in the first single bond which is connected to a branching group or branching atom
  • the present invention also provides an organic light-emitting device comprising, in sequence, layers of an optional substrate, an electrode, a first optional charge-transporting layer, a light-emissive layer, a second optional charge-transporting layer and a counter electrode, wherein at least one of the light-emissive layer, first optional charge-transporting layer and second optional charge-transporting layers is a film comprising an organometallic dendrimer according to the invention.
  • the light-emissive layer is a film comprising an organometallic dendrimer according to the invention.
  • the film comprising the organometallic dendrimer may contain one or more additional species, which may comprise light-emitting dopants, charge-transporting species and/or additional molecular, dendritic and/or polymeric materials.
  • the present invention is directed towards controlling intermolecular core-core interactions of organometallic cored dendrimers by controlling the number of dendrons attached to the core and their spatial distribution and the use of these dendrimer in OLEDs.
  • one or more surface groups may be attached at distal ends of the dendrons.
  • the core of the dendrimers terminates at the first single bond attached to a branching group or branching atom of the dendron.
  • the branching group or branching atom is an aryl or heteroaryl group or N to which more than one branching chain is attached.
  • the ligands attached to the metal cation must be such that the co-ordination requirements of the metal cation are fulfilled and the organometallic dendrimer is neutral, i.e., no extra counter-anions are required to balance the charge of the dendrimer. The presence of counter-anions can be detrimental to device performance.
  • the metal cation chosen can give rise to fluorescent or phosphorescent dendrimers although phosphorescent dendrimers are preferred. Phosphorescence can be observed from metal complexes of some d and f block elements and dendrimer based on iridium, platinum, and rhenium are preferred. Rhodium may also be used.
  • the ligands attached to the metal can be mono-, di- or tri-dentate with bidentate being preferred.
  • an organometallic dendrimer is one in which at least one organic ligand is coordinated to the metal.
  • Such dendrimers do not necessarily contain a metal-carbon bond, because the organic ligand may be coordinated to the metal through an atom other than carbon, e.g. a nitrogen atom.
  • dendrimers which contain at least one metal-carbon bond are preferred.
  • at least one of the dendrons is attached to a ligand that is bonded to the metal via at least one metal-carbon bond.
  • the dendron may be attached to a ligand that is part of a cyclometallated ring.
  • the dendrimers are preferably of the type disclosed in WO-A-02/66552 or in WO-A-03/79736 , to which reference should be made for further details, but possessing at least two DENDRITE groups and being of formula (II) as defined above.
  • Each DENDRITE which may be the same or different, preferably represents an inherently at least partially conjugated dendritic molecular structure comprising aryl and/or heteroaryl groups or nitrogen and, optionally, vinyl or acetylenyl groups connected via sp 2 or sp hybridised carbon atoms of said (hetero)aryl, vinyl and acetylenyl groups or via single bonds between N and (hetero)aryl groups, each coordinating group X terminating in the first single bond which is connected to an sp 2 hybridised (ring) carbon atom of the first (hetero)aryl group or nitrogen to which more than one at least partially conjugated dendritic branch is attached, said ring carbon atom or N forming part of said DENDRITE.
  • an inherently at least partially conjugated dendritic structure is one in which there is conjugation between the groups making up the dendritic structure, but the ⁇ system is not necessarily fully delocalised. The delocalisation of they system is dependent on the regiochemistry of the attachments.
  • Such dendritic structures can also be termed conjugated dendritic structures.
  • At least one DENDRITE represents a dendritic molecular structure comprising at least one nitrogen atom which forms part of an aromatic ring system or is directly bonded to at least two aromatic groups, e.g. of the type described in WO-A-03/79736 , each coordinating group X terminating in the single bond to the first nitrogen atom or aromatic ring to which more than one dendritic chain is attached, said nitrogen atom or ring forming part of said DENDRITE.
  • Z 1 is such that the 5 or 6 membered aryl or heteroaryl ring which can optionally be part of a fused ring system is selected from phenyl, pyridyl, thiophenyl, naphthyl, anthryl, phenanthryl, benzamidazolyl, carbazolyl, fluorenyl, pyrimidinyl, pyrazinyl, pyridazinyl, quinolinyl, isoquinolinyl, quinoxalinyl, benzothiophenyl, phthalazinyl, quinazolinyl, imidazolyl, pyrazolinyl, oxazolinyl, oxadiazolinyl, triazolyl, triazinyl, thiadiazolyl, benzimidazolyl, benzoxazolyl, phenanthridinyl, furyl and benzothiophenyl.
  • Z 2 is such that the 5 or 6 membered aryl or heteroaryl ring which can optionally be part of a fused ring system is selected from pyridine, pyrimidine, pyrazine, pyridazine, quinoline, isoquinoline, quinoxaline, phthalazine, quinazoline, naphtholidine, cinnoline, pyrimidine, phenanthroline, imidazole, pyrazole, oxazole, oxadiazole, triazole, pyrimidine, phenanthroline, imidazole, pyrazole, oxazole, oxadiazole, triazole, thiadiazole, benzimidazole, benzoxazole, benzthiazole and phenanthridine.
  • Suitable optional substituents on the (hetero)aryl rings include halo, alkyl (C1 to 15), haloalkyl (e.g. CF 3 , CF 2 CF 3 ), alkyloxy, aryloxyaryl, alkyloxyaryl, aryl, alkylaryl, cyano, amino, dialkylamino, diarylamino, alkylthio, arylthio, sulfinyl, sulfonyl, aryloxy, alkylarylamino, benzylic alcohol and aldehyde.
  • halo alkyl (C1 to 15)
  • haloalkyl e.g. CF 3 , CF 2 CF 3
  • alkyloxy, aryloxyaryl, alkyloxyaryl, aryl, alkylaryl cyano, amino, dialkylamino, diarylamino, alkylthio, arylthio, sulfiny
  • Preferred ligands Y include ligands of formula (IV): in which Z 1 and Z 2 are as defined above and * represents a bond to M.
  • Other preferred ligands Y include ⁇ -diketonates, 2-carboxylpyridines, such as picolinic acid, triarylphosphines, such as triphenylphosphine, trialkylphosphines, ethylenediamine, cyanide, carbon monoxide and carbon monosulfide.
  • the dendrons can comprise non-conjugated units, a combination of conjugated and non-conjugated units, e.g. as in Fréchet type dendrons, or conjugated units.
  • a dendrimer that contains more than one dendron can have a combination of these types although conjugated dendrons are preferred.
  • the dendrons do not contain oxygen atoms in the linking units, although oxygen atoms may be present in the surface groups.
  • the conjugated dendrons comprise branching and optionally linking units.
  • Branching groups have three or more attachments.
  • the branching units can be aryl and/or heteroaryl units and/or a nitrogen atom.
  • Linking units can be aryl, heteroaryl, vinyl or acetylenyl.
  • the aryl or heteroaryl units can be fused ring systems.
  • the organometallic dendrimers with conjugated dendrons can be formed in two main ways.
  • the dendron can be attached to the ligand and then the ligand can be attached to the metal cation in the desired arrangement for the organometallic dendrimers herein described as part of the invention.
  • the ligand or ligands with suitable reactive moieties which may be the same or different can be complexed to the metal cation and the complex so formed can then be reacted with one or more dendrons with suitable reactive functionality at their foci.
  • the complementary component can contain a group such as a boronic acid, boronate ester, stannane, or vinylic or acetylenyl group such that the two can be coupled using palladium catalysis.
  • a boronic acid such as bromine or iodine
  • stannane such as stannane
  • vinylic or acetylenyl group such that the two can be coupled using palladium catalysis.
  • more than one dendron is attached to a ligand in the final dendrimer one or more can be added to the ligand before complexation to the metal cation with the remaining dendrons being added after complexation to a point of the ligand that carries a suitable reactive moiety.
  • the organometallic dendrimers are capable of emitting visible light.
  • the organometallic dendrimers have charge-transporting properties. It should be noted that the dendrimer that emit light can also transport charge. Also some organometallic dendrimers can emit light at wavelengths suitable for optical communications.
  • the surface groups Q are preferably of the type disclosed in WO-A-02/66552 , to which reference should be made for further details. Suitable surface groups include branched and unbranched alkyl, especially t-butyl, branched and unbranched alkoxy, for example 2-ethylhexyloxy, hydroxy, alkylsilane, carboxy, carbalkoxy, and vinyl.
  • a more comprehensive list includes a further-reactable alkene, (meth)acrylate, sulphur-containing, or silicon-containing group; sulphonyl group; polyether group; C 1 -to-C 15 alkyl (preferably t-butyl) group; amine group; mono-, di- or tri-C 1 -to-C 15 alkyl amine group; -COOR group wherein R is hydrogen mono-, di- or tri-C 1 -to-C 15 alkyl amine group; -COOR group wherein R is hydrogen or C 1 -to-C 15 alkyl; -OR group wherein R is hydrogen, aryl, or C 1 -to-C 15 alkyl or alkenyl; -O 2 SR group wherein R is C 1 -to-C 15 alkyl or alkenyl; -SR group wherein R is aryl, or C 1 -to-C 15 alkyl or alkenyl; and -SiR 3 group wherein the
  • t -butyl and alkoxy groups are used. Different surface groups may be present on different dendrons or different distal groups of a dendron.
  • the distal groups of the dendron to which the surface groups are attached are preferably (hetero)aryl groups. Where t -butyl groups are the surface groups attached to phenyl rings it is preferable that more than one is attached to each of the distal phenyl units.
  • the surface groups of the organometallic dendrimers are generally selected so that the dendrimer blend is soluble in solvents suitable for solution processing, e.g. THF, toluene, chloroform, chlorobenzene, xylenes and alcoholic solvents such as methanol.
  • solvents suitable for solution processing e.g. THF, toluene, chloroform, chlorobenzene, xylenes and alcoholic solvents such as methanol.
  • the surface groups can also be chosen such that the dendrimer can be patterned.
  • a crosslinkable group can be chosen, which can be crosslinked upon irradiation or by chemical reaction.
  • the surface groups can comprise protecting groups that can be removed to leave crosslinkable groups.
  • the properties of dendrimers make them ideal for solution processing.
  • the dendrimers can be dissolved in a solvent, the solution deposited onto a substrate, and the solvent removed to leave a solid film.
  • Conventional solution-processing techniques can be used, for example spin-coating, printing (e.g. ink-jet printing) and dip-coating.
  • a solid film containing the organometallic dendrimers can be either fluorescent or phosphorescent.
  • the solid film is preferably formed on one side of a substrate and the thickness of the solid film is preferably less than 2 microns.
  • the present invention also provides an OLED incorporating a solid film comprising one or more of the organometallic dendrimers.
  • an organic light-emitting or electroluminescent device can be formed from a light-emitting layer sandwiched between two electrodes, at least one of which is transparent to the emitted light. Often there are one or more hole-transporting layers between the anode and the light-emitting layer and/or one or more electron-transporting layers between the light-emitting layer and the cathode.
  • the film comprising the organometallic dendrimer forms the light-emitting layer in an OLED. It is particularly preferred that the dendrimers are the light-emitting species in this light-emitting layer.
  • the film comprising the organometallic dendrimer forms a charge-transporting layer in an OLED.
  • Such a device can have a conventional arrangement comprising a transparent substrate layer, e.g. a glass or PET layer, a transparent electrode layer, a light-emitting layer and a second electrode.
  • the anode which is generally transparent, is preferably made from indium tin oxide (ITO) although other similar materials including indium oxide/tin oxide, tin oxide/antimony, zinc oxide/aluminium, gold and platinum can also be used, as can conducting polymers such as PANI (polyaniline) or PEDOT/PSS.
  • the cathode is normally made of a low work function metal or alloy such as Al, Ca, Mg, Li or MgAl or optionally with an additional layer of LiF.
  • the substrate may be made of an opaque material such as silicon and light is emitted through the opposing electrode.
  • the OLED devices may be actively or passively addressed.
  • a solution containing the organometallic dendrimer can be applied over a transparent electrode layer, the solvent evaporated and then subsequent charge-transporting layers can be applied.
  • the thickness of the dendrimer layer in the OLED is typically 10nm to 1000nm, preferably no more than 200nm, more preferably 30nm to 120nm.
  • An OLED device incorporating an emissive layer comprising the organometallic dendrimer may optionally have an adjacent first and/or second charge-transporting layer.
  • organometallic dendrimers it has been found that it is particularly beneficial to have a hole-blocking/electron-transporting layer between the light-emitting dendrimer layer and the cathode.
  • Suitable materials for such a hole-blocking/electron-transporting layer include 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 1,3,5- tris [2-N-phenylbenzimidazolyl)benzene (TPBI), 2-biphenyl-5(4'- t -butylphenyl)oxadiazole (PBD), aluminium tris (8-hydroxyquinolate) (Alq), and aluminium bis (2-methyl-8-quinolato)-4-phenylphenolate (BAlq).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • TPBI 1,3,5- tris
  • TPBI 1,3,5- tris
  • TPBI 2-N-phenylbenzimidazolyl)benzene
  • PBD 2-biphenyl-5(4'- t -butylphenyl)oxadiazole
  • Alq aluminium tris (8-
  • additional emissive (fluorescent or phosphorescent) or charge-transporting species may optionally be added to the layer of the organometallic dendrimers to improve device characteristics, e.g. efficiency and lifetime. It may further be of benefit to include one or more other molecular and/or dendrimeric and/or polymeric species in the blend of dendrimers to give improved performance.
  • additional components form a part of the total blend from 95 to 5 mol%.
  • the additional components form greater than 50%, more preferably greater than 70%, by weight of the blend.
  • the additional molecular, dendritic or polymeric species can transport charge in their own right, for example a conjugated polymer or dendrimer.
  • additional components form less than 50%, more preferably less than 30%, by weight of the blend.
  • additional charge-transporting components for use with the light-emitting dendrimers include TPBI, PBD, BCP, 4,4'- bis (N-carbazole)biphenyl (CBP), 4,4',4"- tris ( N- carbazolyl)triphenylamine (TCTA), and tris -4-( N -3-methylphenyl- N- phenyl)phenylamine (MTDATA), and substituted derivatives thereof.
  • dendrimers can also be used in other device applications such as photovoltaic cells which can contain one or more layers. When used in photovoltaic cells the dendrimers must be capable of absorbing light and/or transporting charge.
  • the dendrimer may be used as a homogeneous layer in a photovoltaic device or blended with other molecular and/or dendritic and/or polymeric materials. The dendrimer may be used in one or more layers of the photovoltaic device.
  • 3,5-dibromobenzaldehyde (16.1 g, 61.0 mmol) was added to a cold (ice-water bath) solution of tert -butoxide (13.0 g, 116 mmol), (1,3-dioxolan-2-ylmethyl)tri-n-butylphosphine bromide salt (4.5 M, 32 cm 3 , 144 mmol) in 400 cm 3 of ether under argon.
  • the mixture was stirred at 0-2 °C for 2 h.
  • 1.0M HCl (aq) 300 cm 3 ) was added to the mixture.
  • the reaction was gradually warmed to room temperature and stirred at room temperature for 21h. The two layers were separated.
  • the aqueous layer was extracted with ether (3 x 200 cm 3 ).
  • the organic layer and the ether extracts were combined, washed with brine (1 x 300 cm 3 ) and dried over anhydrous magnesium sulfate. The solvents were completely removed to leave a yellow solid.
  • the mixture was allowed to cool to ambient temperature and then diluted with water (5 cm 3 ) and ether (6 cm 3 ). The two phases were separated. The aqueous layer was extracted with ether (3 x 5 cm 3 ). The organic layer and the ether extracts were combined, washed with brine (1 x 10 cm 3 ) and dried over anhydrous magnesium sulfate. The solvents were completely removed. The residue was purified by column sulfate. The solvents were completely removed.
  • the aqueous layer was extracted with ether (3 x 6 cm 3 ). The organic layer and the ether extracts were combined, washed with brine (1 x 18 cm 3 ) and dried over anhydrous sodium sulfate. The solvents were completely removed.
  • a mixture of the ligand A-5 (200 mg, 0.178 mmol), Ir(acac) 3 (12.4 mg, 0.025 mmol) and glycerol (1 cm 3 ) was degassed and then heated with heating mantle at 220 °C for 14 h. The mixture was allowed to cool to ambient temperature. The mixture was dissolved into acetone (8 cm 3 ) and DCM (3 cm 3 ). The solution was left to stand and the layer containing the dendrimer was separated from the glycerol layer.
  • Tris (dibenzylideneacetone)di-palladium (0) [Pd 2 (dba) 3 ] (198 mg, 0.217 mmol) and tri- tert -butylphosphine (10% in hexane, 4.4 cm 3 ) were added to a degassed (Schlenk line, evacuated and then back-filled with argon) mixture of 3,6-di[4'-(2"-ethylhexyloxy)phenyl]carbazole DEHP-Car (2.50 g, 4.34 mmol), 1-bromo-3-iodobenzene (4.91 g, 17.4 mmol), sodium tert -butoxide (834 mg, 8.68 mmol), and distilled toluene (12 cm 3 ).
  • the mixture was degassed again before being heated at reflux with bath temperature of 110 °C under argon for 63 h.
  • the resultant was allowed to cool to room temperature and diluted with H 2 O (20 cm 3 ) and ether (25 cm 3 ).
  • the two phases were separated.
  • the aqueous layer was extracted with ether (3 x 20 cm 3 ).
  • the organic layer and the ether extracts were combined, washed with brine (1 x 40 cm 3 ) and dried over anhydrous sodium sulfate. The solvents were completely removed to leave an orange oil.
  • the two phases were separated.
  • the aqueous layer was extracted with ether (3 x 10 cm 3 ).
  • the organic layer and the ether extracts were combined, washed with brine (1 x 30 cm 3 ) and dried over anhydrous sodium sulfate and the solvents were completely removed.
  • the photoluminescence quantum yields (PLQYs) of thin films of A-8 and B-4 were measured and found to be 32% and 70% respectively. This should be compared to the PLQYs of first, IrppyD1, (22%) and second, IrppyD2, (31 %) generation dendrimers that have the same dendrons attached to only the same position of the phenyl ring of the ligand ( J. P. J. Markham, et al Appl. Phys. Lett., 2002, 80, 2645 ). That is, putting a second first generation dendron onto the ligands improves the PLQY by 50-140%. This demonstrates that the invention controls the undesirable intermolecular interactions.
  • a two layer device was prepared with A-8 by the following method.
  • the ITO on glass was cleaned using an Emitech plasma Asher. O 2 flow rate was set to 10, RF power to 70 watts and duration of cleaning was 4 min. Substrates were then loaded into a spin-coater straight away and A-8 in chloroform at a concentration of 10 mg/ml was spin-coated at 2000 rpm for 60 sec.
  • the device was completed by sequential evaporation of TPBI, LiF, and A1 to give a device structure of: ITO/ A-8 /TPBI(50nm)/LiF(0.9nm)/Al(60nm).
  • the device properties are shown in Figures 7 to 10 ; the maximum efficiency was 22 lm/W at 3.5V.
  • a two layer device was prepared with B-4 that had the structure ITO / B-4 /TPBI/ LiF 90.8 nm) / Al (100 nm). It was fabricated using the same procedures used for the device containing A-8 , although the dendrimer was spin-coated from a 20 mg/ml solution at 2000 rpm. The maximum efficiency of this device was 38 lm/W. At 100 cd/m 2 and 4.8 V the EQE was 13.2%, 45 cd/A and power efficiency was 30 lm/W.
  • the efficiency of the device containing B-4 is even higher than the efficiency of the device containing A-8 . It should be noted that both dendrimers can be used as a single component in the light emitting layer and do not need to be blended with a host material to give high efficiency devices which further illustrates the advantages of the current invention.

Abstract

A charge-neutral organometallic dendrimer is described, said dendrimer having the formula (I): CORE-[DENDRITE(-Q)a]n(I) in which CORE represents a group of formula MXxYz, in which M represents a metal cation, x represents an integer of 1 or more, each X which may be the same or different represents a mono-, bi- or tri-dentate coordinating group, z represents 0 or an integer of 1 or more, and each Y which may be the same or different represents a coordinating group, the total of (b.x)+(c.z) being equal to the number of coordination sites on M, wherein b is the number of coordination sites on X and c is the number of coordination sites on Y; n represents an integer of 2 or more; each DENDRITE which may be the same or different represents a dendritic molecular structure bonded to a group X; a represents 0 or an integer of 1 or more; and each Q which may be the same or different represents a surface group; CORE terminating in the first single bond which is connected to a branching group or branching atom of DENDRITE; which dendrimer has a structure in which no hemisphere of a notional sphere centered on M and containing the dendrimer is devoid of a said first single bond.

Description

  • This invention relates to dendrimers, a process for forming them, and their use in electro-optic devices, in particular light-emitting devices.
  • Background
  • Organic light-emitting diodes (OLEDs), also known as organic electroluminescent (EL) devices, are an emerging display technology. In essence an OLED comprises a thin organic layer or stack of organic layers sandwiched between two electrodes, such that when a voltage is applied visible or other light is emitted. At least one of the electrodes must be transparent to light. For display applications the light must of course be visible to the eye, and therefore at least one of the electrodes must be transparent to visible light.
  • There are two principal techniques that can be used to deposit the organic layers in an OLED: thermal evaporation and solution processing. Solution processing has the potential to be the lower cost technique due to its potentially greater throughput and ability to handle large substrate sizes. Significant work has been undertaken to develop appropriate materials, particularly polymers. More recently phosphorescent organometallic dendrimers that are luminescent in the solid state have been shown to have great promise as solution processible light-emitting materials in OLEDs (S.-C. Lo, et al Adv. Mater., 2002, 13, 975; J. P. J. Markham, et al Appl. Phys. Lett., 2002, 80, 2645). Although progress has been made in the development of solution processible OLEDs there is still the need for OLEDs with improved efficiency and lifetime.
  • Dendrimers are branched macromolecules with a core and attached dendrons (also called dendrites). Dendrons are branched structures comprising branching units and optionally linking units. The generation of a dendron is defined by the number of sets of branching points; see Figure 1. Dendrons of a higher generation, or order, can be composed of the same structural units (branching and linking units) but have an additional level of branching, i.e. an additional repetition of these branching and linking units. Alternatively higher generations can have an additional level of branching but different branching and linking units at the higher generation. There can be surface groups on the periphery of the dendrons.
  • Light-emitting dendrimers typically have a luminescent core and in many cases at least partially conjugated dendrons. Further examples of light-emitting dendrimers include those found in P. W. Wang, et al Adv. Mater., 1996, 8, 237; M. Halim, et al Adv. Mater., 1999, 11, 371; A. W. Freeman, et al J. Am. Chem. Soc., 2000, 122, 12385; A. Adronov, et al Chem. Comm., 2000, 1701.; C. C. Kwok, et al Macromolecules, 2001, 34, 6821. Light-emitting dendrimers have the advantage over light-emitting polymers that the light-emitting properties and the processing properties can be independently optimised as the nature of the core, dendrons and surface groups can be independently altered. For example, the emission colour of a dendrimer can be changed by simply changing the core. Such light-emitting dendrimers can be useful in electro-optic devices, particularly OLEDs.
  • Other physical properties, such as viscosity, may also make dendrimers more easily tailored to the available manufacturing processes than polymers. Organometallic dendrimers have previously been used in OLED applications as a single component in a film (i.e. a neat film) or in a blend with a molecular material or in a blend of more than one dendrimer of different type (i.e. different cores), e.g. J.M. Lupton et al. Adv. Funct. Mater., 2001, 11, 287 and J. P. J. Markham, et al Appl. Phys. Lett., 2002, 80, 2645.
  • Intermolecular interactions play an important role in the opto-electronic properties of organic light-emitting and transport materials. Close contact and good order can lead to high charge mobilities but can also give rise to reduced emission due to the formation of excited state dimers. In previous work we have shown that intermolecular interactions can be controlled by the generation of the dendrons attached to a dendrimer (J. M. Lupton, et al Phys. Rev. B, 2001, 63, 5206; J. P. J. Markham, et al Appl. Phys. Lett., 2002, 80, 2645). However, we have found that for organometallic dendrimers that contain only one dendron per ligand that generation does not always give adequate control over intermolecular interactions. For example, for the iridium based dendrimers in J. P. J. Markham, et al Appl. Phys. Lett., 2002, 80, 2645 (see Figure 2), the photoluminescence quantum yield of the second generation, 2, is higher than for the first, 1, but both are less than when the measurement is carried out in dilute solution where dendrimer intermolecular interactions are not present. For iridium dendrimers 1 and 2 the dendrons are attached to one component of the bidentate ligand, namely the phenyl ring, and the facial (fac) isomers are formed. This combination leaves one face of the core unprotected by dendrons allowing potentially detrimental core-core interactions.
  • There are known dendrimers based on tris ruthenium 2,2'-bipyridine cores in V. Balzani, et al Coord. Chem. Rev. 2001, 291-221, 545. In these dendrimers two dendrons are attached to each 2,2'-bipyridine ligand at the 4 and 4' positions. However 2,2'-bipyridine is a neutral ligand, and these dendritic complexes have a net positive charge which has to be balanced by an associated counter-ion, typically PF6 -. The three bipyridine ligands fill the coordination sphere of Ru, so the counter-ion is not part of the inner coordination sphere of the metal, but is more loosely associated. In OLED applications it is undesirable to have unbound counter-ions, as these may be able to migrate under the influence of the applied field, which could be detrimental to the OLED device stability. The present invention relates to organometallic dendrimers that are neutral, i.e. those in which the ligands directly coordinated/bonded to the metal balance the charge.
  • We have discovered that these disadvantageous core-core interactions that are detrimental to OLEDs can be overcome by changing the dendrimer structure. One way of doing this is to attach more than one dendron to more than one ligand complexed to the metal cation. For example, for an octahedral fac-iridium (III) complex with 2-phenylpyridine ligands a dendron could be attached to both the phenyl and pyridyl rings and then two or more of these ligands complexed to the metal cation. In this embodiment of the invention, the organometallic dendrimers contain more than one dendron attached to each ligand.
  • A second way of controlling the intermolecular core-core interactions is by using different isomers. For example, for an octahedral fac-iridium (III) complex with 2-phenylpyridine ligands with dendrons attached to the phenyl rings one face of the core is not protected by the dendron. By using the meridinal (mer) isomer the dendrons are more evenly distributed around the core and as a consequence the core is more protected by the dendrons.
  • The present invention relates to dendrimers, processes of preparing them and opto-electronic devices, in particular OLEDs, containing them, that solve some of the problems in the prior art. In particular, the invention seeks to overcome the intermolecular interactions that are detrimental for OLED performance.
  • Summary of the invention
  • The present invention accordingly provides a charge-neutral organometallic dendrimer of formula (II):

            M-[X(DENDRITE(-Q)a)y]xYz     (II)

    in which M represents a metal cation, x represents an integer of 2 or more, y represents an integer of 2 or more, each X which may be the same or different represents a mono-, bi- or tri-dentate coordinating group, z represents 0 or an integer of 1 or more, and each Y which may be the same or different represents a coordinating group, the total of (b.x) + (c.z) being equal to the number of coordination sites on M, wherein b is the number of coordination sites on X and c is the number of coordination sites on Y; each DENDRITE which may be the same or different represents a dendritic molecular structure bonded to a group X, wherein each X terminates in the first single bond which is connected to a branching group or branching atom of DENDRITE; a represents 0 or an integer of 1 or more; and each Q which may be the same or different represents a surface group.
  • In formula (II), when X is a mono-dentate coordinating group, b is 1; when X is a bi-dentate coordinating group, b is 2; and when X is a tri-dentate coordinating group, b is 3.
  • The present invention also provides an organic light-emitting device comprising, in sequence, layers of an optional substrate, an electrode, a first optional charge-transporting layer, a light-emissive layer, a second optional charge-transporting layer and a counter electrode, wherein at least one of the light-emissive layer, first optional charge-transporting layer and second optional charge-transporting layers is a film comprising an organometallic dendrimer according to the invention.
  • Preferably the light-emissive layer is a film comprising an organometallic dendrimer according to the invention.
  • The film comprising the organometallic dendrimer may contain one or more additional species, which may comprise light-emitting dopants, charge-transporting species and/or additional molecular, dendritic and/or polymeric materials.
  • Detailed description of the invention
  • The present invention is directed towards controlling intermolecular core-core interactions of organometallic cored dendrimers by controlling the number of dendrons attached to the core and their spatial distribution and the use of these dendrimer in OLEDs.
  • In all of the embodiments of the invention, one or more surface groups may be attached at distal ends of the dendrons. The core of the dendrimers terminates at the first single bond attached to a branching group or branching atom of the dendron. Typically the branching group or branching atom is an aryl or heteroaryl group or N to which more than one branching chain is attached. The ligands attached to the metal cation must be such that the co-ordination requirements of the metal cation are fulfilled and the organometallic dendrimer is neutral, i.e., no extra counter-anions are required to balance the charge of the dendrimer. The presence of counter-anions can be detrimental to device performance.
  • The metal cation chosen can give rise to fluorescent or phosphorescent dendrimers although phosphorescent dendrimers are preferred. Phosphorescence can be observed from metal complexes of some d and f block elements and dendrimer based on iridium, platinum, and rhenium are preferred. Rhodium may also be used.
  • The ligands attached to the metal can be mono-, di- or tri-dentate with bidentate being preferred.
  • It is to be understood that, in the context of the present invention, an organometallic dendrimer is one in which at least one organic ligand is coordinated to the metal. Such dendrimers do not necessarily contain a metal-carbon bond, because the organic ligand may be coordinated to the metal through an atom other than carbon, e.g. a nitrogen atom. However, dendrimers which contain at least one metal-carbon bond are preferred. Preferably at least one of the dendrons is attached to a ligand that is bonded to the metal via at least one metal-carbon bond. For example the dendron may be attached to a ligand that is part of a cyclometallated ring.
  • The dendrimers are preferably of the type disclosed in WO-A-02/66552 or in WO-A-03/79736 , to which reference should be made for further details, but possessing at least two DENDRITE groups and being of formula (II) as defined above.
  • Each DENDRITE, which may be the same or different, preferably represents an inherently at least partially conjugated dendritic molecular structure comprising aryl and/or heteroaryl groups or nitrogen and, optionally, vinyl or acetylenyl groups connected via sp2 or sp hybridised carbon atoms of said (hetero)aryl, vinyl and acetylenyl groups or via single bonds between N and (hetero)aryl groups, each coordinating group X terminating in the first single bond which is connected to an sp2 hybridised (ring) carbon atom of the first (hetero)aryl group or nitrogen to which more than one at least partially conjugated dendritic branch is attached, said ring carbon atom or N forming part of said DENDRITE.
  • In this context an inherently at least partially conjugated dendritic structure is one in which there is conjugation between the groups making up the dendritic structure, but the π system is not necessarily fully delocalised. The delocalisation of they system is dependent on the regiochemistry of the attachments. Such dendritic structures can also be termed conjugated dendritic structures.
  • In one embodiment, at least one DENDRITE represents a dendritic molecular structure comprising at least one nitrogen atom which forms part of an aromatic ring system or is directly bonded to at least two aromatic groups, e.g. of the type described in WO-A-03/79736 , each coordinating group X terminating in the single bond to the first nitrogen atom or aromatic ring to which more than one dendritic chain is attached, said nitrogen atom or ring forming part of said DENDRITE.
  • In a preferred embodiment the dendrimers are of formula (III):
    Figure imgb0001
    in which M is a metal cation with formal charge r+, Z1 and Z2 are groups required to complete 5 or 6 membered aryl or heteroaryl rings which can be optionally substituted, DENDRITE1 and DENDRITE2 are dendrons, Y is a neutral or anionic ligand, and each Y can be the same or different if z is greater than 1, x is 2 or 3, z is 0, 1, 2, or 3, and the dendrimer is neutral such that r = (p.x) + (q.z).
  • It is preferred that Z1 is such that the 5 or 6 membered aryl or heteroaryl ring which can optionally be part of a fused ring system is selected from phenyl, pyridyl, thiophenyl, naphthyl, anthryl, phenanthryl, benzamidazolyl, carbazolyl, fluorenyl, pyrimidinyl, pyrazinyl, pyridazinyl, quinolinyl, isoquinolinyl, quinoxalinyl, benzothiophenyl, phthalazinyl, quinazolinyl, imidazolyl, pyrazolinyl, oxazolinyl, oxadiazolinyl, triazolyl, triazinyl, thiadiazolyl, benzimidazolyl, benzoxazolyl, phenanthridinyl, furyl and benzothiophenyl. It is preferred that Z2 is such that the 5 or 6 membered aryl or heteroaryl ring which can optionally be part of a fused ring system is selected from pyridine, pyrimidine, pyrazine, pyridazine, quinoline, isoquinoline, quinoxaline, phthalazine, quinazoline, naphtholidine, cinnoline, pyrimidine, phenanthroline, imidazole, pyrazole, oxazole, oxadiazole, triazole, pyrimidine, phenanthroline, imidazole, pyrazole, oxazole, oxadiazole, triazole, thiadiazole, benzimidazole, benzoxazole, benzthiazole and phenanthridine. Suitable optional substituents on the (hetero)aryl rings include halo, alkyl (C1 to 15), haloalkyl (e.g. CF3, CF2CF3), alkyloxy, aryloxyaryl, alkyloxyaryl, aryl, alkylaryl, cyano, amino, dialkylamino, diarylamino, alkylthio, arylthio, sulfinyl, sulfonyl, aryloxy, alkylarylamino, benzylic alcohol and aldehyde.
  • Preferred ligands Y include ligands of formula (IV):
    Figure imgb0002
    in which Z1 and Z2 are as defined above and * represents a bond to M. Other preferred ligands Y include β-diketonates, 2-carboxylpyridines, such as picolinic acid, triarylphosphines, such as triphenylphosphine, trialkylphosphines, ethylenediamine, cyanide, carbon monoxide and carbon monosulfide.
  • The dendrons can comprise non-conjugated units, a combination of conjugated and non-conjugated units, e.g. as in Fréchet type dendrons, or conjugated units. A dendrimer that contains more than one dendron can have a combination of these types although conjugated dendrons are preferred. Preferably at least one conjugated dendron is present. It is also further preferred that two or more ligands have conjugated dendrons attached and it is further preferred that all the ligands have conjugated dendrons attached. Preferably the dendrons do not contain oxygen atoms in the linking units, although oxygen atoms may be present in the surface groups.
  • The conjugated dendrons comprise branching and optionally linking units. Branching groups have three or more attachments. The branching units can be aryl and/or heteroaryl units and/or a nitrogen atom. Linking units can be aryl, heteroaryl, vinyl or acetylenyl. The aryl or heteroaryl units can be fused ring systems. When conjugated dendrons are used, different bonding arrangements and/or generation can be used so that asymmetric dendrimers are formed. Commonly it is advantageous for invention, in which the dendrons are more evenly distributed around the core, many of the advantages of high generation dendrimers can be achieved at a lower generation, which simplifies synthesis of the materials.
  • The organometallic dendrimers with conjugated dendrons can be formed in two main ways. The dendron can be attached to the ligand and then the ligand can be attached to the metal cation in the desired arrangement for the organometallic dendrimers herein described as part of the invention. Alternatively the ligand or ligands with suitable reactive moieties which may be the same or different can be complexed to the metal cation and the complex so formed can then be reacted with one or more dendrons with suitable reactive functionality at their foci. When the ligand or dendron contains a halide such as bromine or iodine the complementary component can contain a group such as a boronic acid, boronate ester, stannane, or vinylic or acetylenyl group such that the two can be coupled using palladium catalysis. Where more than one dendron is attached to a ligand in the final dendrimer one or more can be added to the ligand before complexation to the metal cation with the remaining dendrons being added after complexation to a point of the ligand that carries a suitable reactive moiety.
  • In a preferred embodiment the organometallic dendrimers are capable of emitting visible light. In an alternative embodiment the organometallic dendrimers have charge-transporting properties. It should be noted that the dendrimer that emit light can also transport charge. Also some organometallic dendrimers can emit light at wavelengths suitable for optical communications.
  • The surface groups Q are preferably of the type disclosed in WO-A-02/66552 , to which reference should be made for further details. Suitable surface groups include branched and unbranched alkyl, especially t-butyl, branched and unbranched alkoxy, for example 2-ethylhexyloxy, hydroxy, alkylsilane, carboxy, carbalkoxy, and vinyl. A more comprehensive list includes a further-reactable alkene, (meth)acrylate, sulphur-containing, or silicon-containing group; sulphonyl group; polyether group; C1-to-C15 alkyl (preferably t-butyl) group; amine group; mono-, di- or tri-C1-to-C15 alkyl amine group; -COOR group wherein R is hydrogen mono-, di- or tri-C1-to-C15 alkyl amine group; -COOR group wherein R is hydrogen or C1-to-C15 alkyl; -OR group wherein R is hydrogen, aryl, or C1-to-C15 alkyl or alkenyl; -O2SR group wherein R is C1-to-C15 alkyl or alkenyl; -SR group wherein R is aryl, or C1-to-C15 alkyl or alkenyl; and -SiR3 group wherein the R groups are the same or different and are hydrogen, C1-to-C15 alkyl or alkenyl, or -SR' group (R' is aryl or C1-to-C15 alkyl or alkenyl), aryl, or heteroaryl. Typically t-butyl and alkoxy groups are used. Different surface groups may be present on different dendrons or different distal groups of a dendron. The distal groups of the dendron to which the surface groups are attached are preferably (hetero)aryl groups. Where t-butyl groups are the surface groups attached to phenyl rings it is preferable that more than one is attached to each of the distal phenyl units.
  • The surface groups of the organometallic dendrimers are generally selected so that the dendrimer blend is soluble in solvents suitable for solution processing, e.g. THF, toluene, chloroform, chlorobenzene, xylenes and alcoholic solvents such as methanol. The surface groups can also be chosen such that the dendrimer can be patterned. For example, a crosslinkable group can be chosen, which can be crosslinked upon irradiation or by chemical reaction. Alternatively, the surface groups can comprise protecting groups that can be removed to leave crosslinkable groups.
  • The properties of dendrimers make them ideal for solution processing. The dendrimers can be dissolved in a solvent, the solution deposited onto a substrate, and the solvent removed to leave a solid film. Conventional solution-processing techniques can be used, for example spin-coating, printing (e.g. ink-jet printing) and dip-coating. A solid film containing the organometallic dendrimers can be either fluorescent or phosphorescent. The solid film is preferably formed on one side of a substrate and the thickness of the solid film is preferably less than 2 microns.
  • The present invention also provides an OLED incorporating a solid film comprising one or more of the organometallic dendrimers. In its simplest form, an organic light-emitting or electroluminescent device can be formed from a light-emitting layer sandwiched between two electrodes, at least one of which is transparent to the emitted light. Often there are one or more hole-transporting layers between the anode and the light-emitting layer and/or one or more electron-transporting layers between the light-emitting layer and the cathode. In one preferred embodiment the film comprising the organometallic dendrimer forms the light-emitting layer in an OLED. It is particularly preferred that the dendrimers are the light-emitting species in this light-emitting layer. In an alternative embodiment the film comprising the organometallic dendrimer forms a charge-transporting layer in an OLED.
  • Such a device can have a conventional arrangement comprising a transparent substrate layer, e.g. a glass or PET layer, a transparent electrode layer, a light-emitting layer and a second electrode. The anode, which is generally transparent, is preferably made from indium tin oxide (ITO) although other similar materials including indium oxide/tin oxide, tin oxide/antimony, zinc oxide/aluminium, gold and platinum can also be used, as can conducting polymers such as PANI (polyaniline) or PEDOT/PSS. The cathode is normally made of a low work function metal or alloy such as Al, Ca, Mg, Li or MgAl or optionally with an additional layer of LiF. In an alternative configuration, the substrate may be made of an opaque material such as silicon and light is emitted through the opposing electrode. The OLED devices may be actively or passively addressed.
  • For a typical OLED device, as described above where the organometallic dendrimer is emissive, a solution containing the organometallic dendrimer can be applied over a transparent electrode layer, the solvent evaporated and then subsequent charge-transporting layers can be applied. The thickness of the dendrimer layer in the OLED is typically 10nm to 1000nm, preferably no more than 200nm, more preferably 30nm to 120nm. When a hole transport layer is incorporated between the anode and the emissive organometallic dendrimer containing layer the hole transport material must not be removed to a significant extent during the solution deposition.
  • An OLED device incorporating an emissive layer comprising the organometallic dendrimer may optionally have an adjacent first and/or second charge-transporting layer. In our work on organometallic dendrimers, it has been found that it is particularly beneficial to have a hole-blocking/electron-transporting layer between the light-emitting dendrimer layer and the cathode. Suitable materials for such a hole-blocking/electron-transporting layer are known and include 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 1,3,5-tris[2-N-phenylbenzimidazolyl)benzene (TPBI), 2-biphenyl-5(4'-t-butylphenyl)oxadiazole (PBD), aluminium tris(8-hydroxyquinolate) (Alq), and aluminium bis(2-methyl-8-quinolato)-4-phenylphenolate (BAlq).
  • Furthermore, additional emissive (fluorescent or phosphorescent) or charge-transporting species may optionally be added to the layer of the organometallic dendrimers to improve device characteristics, e.g. efficiency and lifetime. It may further be of benefit to include one or more other molecular and/or dendrimeric and/or polymeric species in the blend of dendrimers to give improved performance. In one embodiment such additional components form a part of the total blend from 95 to 5 mol%. In another embodiment the additional components form greater than 50%, more preferably greater than 70%, by weight of the blend. In that embodiment it is preferred that the additional molecular, dendritic or polymeric species can transport charge in their own right, for example a conjugated polymer or dendrimer. In a further embodiment the additional components form less than 50%, more preferably less than 30%, by weight of the blend. For example, additional charge-transporting components for use with the light-emitting dendrimers include TPBI, PBD, BCP, 4,4'-bis(N-carbazole)biphenyl (CBP), 4,4',4"-tris(N-carbazolyl)triphenylamine (TCTA), and tris-4-(N-3-methylphenyl-N-phenyl)phenylamine (MTDATA), and substituted derivatives thereof.
  • Such dendrimers can also be used in other device applications such as photovoltaic cells which can contain one or more layers. When used in photovoltaic cells the dendrimers must be capable of absorbing light and/or transporting charge. The dendrimer may be used as a homogeneous layer in a photovoltaic device or blended with other molecular and/or dendritic and/or polymeric materials. The dendrimer may be used in one or more layers of the photovoltaic device.
  • The invention will be described in the Examples that follow, with reference to the accompanying drawings, wherein:
    • Figure 1 shows a schematic diagram of a second generation dendrimer A and a higher-order (third generation) dendrimer B.
    • Figure 2 shows first generation (1) and second generation (2) facial isomers of iridium based dendrimers with dendrons attached only to the phenyl rings of the ligands.
    • Figure 3 shows a reaction scheme for the preparation of a first generation dendritic ligand in which dendrons are attached to both the phenyl and pyridine rings of a phenylpyridine ligand (Examples 1 to 6).
    • Figure 4 shows a reaction scheme for two methods of the preparation of a first generation iridium dendrimer using the ligand prepared in Figure 3. (One method is described in Example 7.)
    • Figure 5 shows an alternative reaction scheme for the preparation of a first generation iridium dendrimer B-4 (Examples 8 to 10).
    • Figure 6 shows a reaction scheme for the preparation of first generation iridium dendrimers containing more than one kind of dendron (Examples 11 to 14).
    • Figure 7 shows the electroluminescence spectrum of dendrimer A-8.
    • Figure 8 shows the external efficiency of an OLED device containing dendrimers A-8.
    • Figure 9 shows the luminous efficiency of an OLED device containing dendrimer A-8.
    • Figure 10 shows the external quantum efficiency of an OLED device containing dendrimer A-8.
    A-1 3-(3',5'-dibromophenyl)-2-propenal
  • 3,5-dibromobenzaldehyde (16.1 g, 61.0 mmol) was added to a cold (ice-water bath) solution of tert-butoxide (13.0 g, 116 mmol), (1,3-dioxolan-2-ylmethyl)tri-n-butylphosphine bromide salt (4.5 M, 32 cm3, 144 mmol) in 400 cm3 of ether under argon. The mixture was stirred at 0-2 °C for 2 h. 1.0M HCl(aq) (300 cm3) was added to the mixture. The reaction was gradually warmed to room temperature and stirred at room temperature for 21h. The two layers were separated. The aqueous layer was extracted with ether (3 x 200 cm3). The organic layer and the ether extracts were combined, washed with brine (1 x 300 cm3) and dried over anhydrous magnesium sulfate. The solvents were completely removed to leave a yellow solid. The solid was purified by column chromatography of silica gel using ethyl acetate-light petroleum (40-60°C) as eluent to give 3.36 g (19%) of A-1 as a colourless solid; δH(200 MHz; CDCl3) 6.68 (1 H, dd, J 7.4 & 16 Hz, vinylH), 7.33 (1H, d, J 16 Hz, vinylH), 7.33 (2 H, m, ArH), 7.63 (1 H, m, ArH), and 9.72 (1 H, d, J 7.6 Hz, CHO); m/z [CI(NH3)] 306, 308, 310 (MNH4 +), and 288, 290, 292 (M+).
  • Example 2 A-2 3-{3',5'-Di[4"-(2"'-ethylhexyloxy)phenyl]phenyl}-2-propenal
  • A mixture of the boronic compound G0-BX 2 prepared in accordance with Example 4 of WO-A-02/67343 (647 mg, 2.59 mmol), 3-(3',5'-dibromophenyl)-2-propenal A-1 (326 mg, 1.24 mmol), tetrakis(triphenylphosphine) palladium (0) (91 mg, 0.079 mmol), 2 M Na2CO3(aq) (1.0cm3), EtOH (1.0 cm3) and toluene (3.5 cm3) was degassed and then heated at reflux (with bath temperature of 106°C) under argon for 18h. The mixture was allowed to cool to ambient temperature and then diluted with water (5 cm3) and ether (6 cm3). The two phases were separated. The aqueous layer was extracted with ether (3 x 5 cm3).The organic layer and the ether extracts were combined, washed with brine (1 x 10 cm3) and dried over anhydrous magnesium sulfate. The solvents were completely removed. The residue was purified by column sulfate. The solvents were completely removed. The residue was purified by column chromatography over silica gel using DCM-light petroleum (0:1 to 1:30 and 1:10) as eluent to give 607 mg (100%) of A-2 as a light yellow oil; δH(200 MHz; CDCl3) 0.80-1.05 (12 H, m, Me), 1.24-1.64 (16 H, m, CH2), 1.68-1.88 (2 H, m, CH), 3.91 (4 H, m, ArOCH2), 6.84 (1 H, dd, J 7.8 & 16 Hz, vinylH), 7.20 (1 H, d, J 16 Hz, vinylH), 7.58 (4 H, m, ArH), 7.67 (2 H, m, ArH), 7.79 (1 H, m, ArH), and 9.77 (1 H, d, J 16 Hz, CHO); mlz [APCI+] 541 (MH+).
  • Example 3 A-3
  • Pyridine (6 cm3) was added to a mixture of 3-bromophenylacylbromide (956 mg, 3.44 mmol) and 44 cm3 of acetone. The reaction was stirred at room temperature for 2 h and the solvent was removed under reduced pressure. The resulting precipitate was washed with ether (4 x 10 cm3) and dried under reduced pressure to leave 1.18 g (96%) of A-3 as a light pink/cream solid.
  • Example 4 A-4 2-(3'-Bromophenyl)-4-{3",5"-di[4"-(2""-ethylhexyloxy)phenyl]phenyl}-pyridine
  • Ammonium acetate (5.97 g, 77.5 mmol) was added to a mixture of the 3-{3',5'-di[4"-(2"'-ethylhexyloxy)phenyl]phenyl}-2-propenal (607 mg, 1.12 mmol), the pyridinium salt A-3 (481 mg, 1.35 mmol) and 12 cm3 of ethanol. The mixture was stirred and heated at a 90 °C oil bath for 5 h under argon. The mixture was diluted with water (10 cm3) and extracted with DCM (4 x 15 cm3). The DCM extracts were combined, washed with brine (1 x 30 cm3), dried (Na2SO4) and the solvent was removed to leave a light brown oil. The oil was purified by column chromatography over silica gel using DCM-light petroleum (0:1 1 to 1:40) as eluent to give 292 mg (36%) of A-4 as a light yellow oil; δH(200 MHz; CDCl3) 0.78-1.04 (12 H, m, Me), 1.17-1.64 (16 H, m, CH2), 1.67-1.88 (2 H, m, CH), 3.92 (4 H, m, ArOCH2), 7.01 (4 H, m, ArH), 7.08-8.03 (13 H, m, ArH & PyH), 8.25 (1 H, m, ArH), and 8.78 (1 H, m, PyH); m/z
  • Example 5 A-5 4-{3',5'-Di[4"-(2"'-ethylhexylox)phenyl]phenyl}-2-(3""-(3""',5""'-di[4"""-(2"""'-ethylhexyloxy)phenyl]phenyl}phenyl)-pyridine
  • A mixture of the boronic compound G1-BX 2 prepared in accordance with Example 6 of WO-A-02/67343 (1.19 mg, 1.66 mmol), aryl bromide A-4 (1.14 g, 2.16 mmol), tetrakis(triphenylphosphine) palladium (0) (134 mg, 0.116 mmol), 2 M Na2CO3(aq) (2.0 cm3), EtOH (2.0 cm3) and toluene (7 cm3) was degassed and then heated at reflux (with bath temperature of 105 °C) under argon for 86 h. The mixture was allowed to cool to ambient temperature. The two layers were separated. The aqueous layer was extracted with ether (3 x 6 cm3). The organic layer and the ether extracts were combined, washed with brine (1 x 18 cm3) and dried over anhydrous sodium sulfate. The solvents were completely removed. The residue was purified by column chromatography over silica gel using DCM-light petroleum (0:1 to 1: 10) as eluent to give 755 mg (41%) of A-5 as a light yellow oil; λmax/nm (thin film) 270; δH(200 MHz; CDCl3) 0.80-1.08 (24 H, m, Me), 1.22-1.65 (32 H, m, CH2), 1.69-1.91 (4 H, m, CH), 3.92 (8 H, m, ArOCH2), 6.92-7.12 (8 H, m, ArH), 7.51-7.83 (16 H, m, PyH & ArH), 8.03-8.12 (3 H, m, PyH & ArH), 8.41 (1H, m, ArH), and 8.83 (1 H, m, PyH); m/z [APCI+] 1122, 1123, 1124, 1125, 1126 (M+).
  • Example 6 A-6 4-bromo-2-(3'-bromophenyl)-pyridine
  • A mixture of 2,4-dibromopyridine (3.30 g, 13.9 mmol), 3-bromophenylboronic acid (3.69 g 16.7 mmol), tetrakis(triphenylphosphine) palladium (0) (643 mg, 0.557 mmol), 2 M Na2CO3(aq) (12 cm3), EtOH (12 cm3) and toluene (40 cm3) was degassed and then heated at reflux with a bath temperature of 110°C under argon for 3.5 days. The reaction was allowed to cool and the two phases were separated. The aqueous layer was extracted with ether (3 x 13 cm3). The organic layer and the ether extracts were combined, washed with brine (1 x 30 cm3) and dried over anhydrous sodium layer was extracted with ether (3 x 13 cm3). The organic layer and the ether extracts were combined, washed with brine (1 x 30 cm3) and dried over anhydrous sodium sulfate. The solvents were completely removed to leave a black brown oil. The oil was purified by column chromatography over silica gel using DCM-light petroleum (0:1 to 1:10) as eluent to give 1.03 g (24%) of A-6 as a white solid; δH(200 MHz; CDCl3) 7.36 (1 H, m, ArH), 7.45 (1 H, m, PyH), 7.58 (1 H, m, ArH), 7.89 (2 H, m, PyH & ArH), 8.16 (1 H, m, ArH), and 8.52 (1 H, m, PyH); m/z [APCI+] 311, 314, 316 (MH+).
  • Example 7 A-8 Fac tris[4-{3',5'-di[4"-(2"'-ethylhexyloxy)phenyl]phenyl}-2-(3""-{3""',5""'-di[4"""-(2"""'-ethylhexloxy)phenyl]phenyl}phenyl)-pyridine] iridium (III)
  • A mixture of the ligand A-5 (200 mg, 0.178 mmol), Ir(acac)3 (12.4 mg, 0.025 mmol) and glycerol (1 cm3) was degassed and then heated with heating mantle at 220 °C for 14 h. The mixture was allowed to cool to ambient temperature. The mixture was dissolved into acetone (8 cm3) and DCM (3 cm3). The solution was left to stand and the layer containing the dendrimer was separated from the glycerol layer. The mixture was evaporated to about 4 cm3 and purified by column chromatography over silica gel using light petroleum as eluent to give 9 mg (10%) of A-8 as a yellow orange solid; λmax/nm (thin film) 277; δH(400 MHz; CDCl3) 0.87-1.02 (72 H, m, Me), 1.24-1.62 (96 H, m, CH2), 1.69-1.83 (12 H, m, CH), 3.80-3.97 (24 H, m, ArOCH2), 6.90-7.07 (24 H, m, ArH), 7.23 (3 H, m, PyH), 7.32-7.93 (51 H, m, ArH & PyH), 8.14 (3 H, m, PyH), and 8.34 (3 H, m, PyH); m/z [MALDI] 3560, 3561, 3562, 3563, 3564, 3565, 3567, 3568 (M+).
  • Example 8 B-1 5-bromo-2-(3'-bromophenyl)-pyridine
  • A mixture of 2,5-dibromopyridine (4.33 g, 17.7 mmol), 3-bromophenylboronic acid (4.70 g, 21.3 mmol), tetrakis(triphenylphosphine) palladium (0) (800 mg, 0.692 mmol), 2 M Na2CO3(aq) (18 cm3), EtOH (18 cm3) and toluene (50 cm3) was degassed and heated at reflux with a bath temperature of 105 °C under argon for 23 h. The reaction was allowed to cool and the two phases were separated. The aqueous layer was extracted with ether (3 x 15 cm3). The organic layer and the ether extracts were combined, washed with brine (1 x 40 cm3) and dried over anhydrous sodium sulfate. The solvents were completely removed to leave an orange oil. The oil was purified by column chromatography over silica gel using DCM-light petroleum (0:1 to 1:10) as eluent to give 2.50 g (45%) of B-1 as a pale yellow solid; δH(200 MHz; CDCl3) 7.26-7.42 (1 H, m, ArH), 7.57 (2 H, m, PyH & ArH), 7.88 (2 H, m, PyH & ArH), 8.14 (1 H, m, ArH), and 8.74 (1 H, m, PyH); m/z [CI(NH3)] 312, 314, 316 (MH+).
  • Example 9 B-3 Fac tris[5-bromo-2-(3'-bromophenyl)-pyridine] iridium (III)
  • A mixture of the 5-bromo-2-(3'-bromophenyl)pyridine (1.00 g, 3.20 mmol), iridium chloride tri-hydrate (250 mg, 0.709 mmol), H2O (6.3 cm3) and 2-ethoxyethanol (19 cm3) was heated at reflux with a bath temperature of 127 °C under a nitrogen flow for 24 h before being cooled. A light orange yellow solid precipitated from the mixture. The liquid was removed from the mixture to leave a precipitate. The precipitate was washed with 90% of EtOH (3 x 10 cm3) and then EtOH (1 x 10 cm3). The solid was dried to give 656 mg of a yellow orange solid as the desired product and the excess ligand.
  • A mixture of the above yielded products (656 mg), 5-bromo-2-(3'-bromophenyl)-pyridine B-1 (696 mg, 2.22 mmol) and silver trifluoromethanesulfonate (220 mg, 0.856 mmol) was heated with a bath temperature of 160-163 °C for a week under argon. The reaction was then allowed to cool to room temperature to give a brown solid. The solid was purified by column chromatography over silica gel with ethyl acetate-light petroleum (0:1 to 1:20) as eluent to give 495 mg of the excess ligand, MHz; CDCl3) 6.55 (1 H, m, ArH), 6.95 (1H, m, PyH), 7.54 (1 H, m, ArH), and 7.71-7.89 (3 H, m, ArH & PyH); m/z [APCI+] 1126, 1127, 1128, 1129, 1130, 1131, 1132 (MH+).
  • Example 10 B-4 Fac tris[5-{3',5'-di[4"-(2"'-ethylhexyloxy)phenyl]phenyl}-2-(3""-{3""',5""'-di[4"""-(2"""'-ethylhexyloxy)phenyl]phenyl}phenyl)-pyridine] iridium (III)
  • A mixture of the boronic compound G1-BX 2 prepared in accordance with Example 6 of WO-A-02/67343 (1.26 g, 0.858 mmol), tris[5-bromo-2-(3'-bromophenyl)pyridine] iridium (III) (178 mg, 0.158 mmol), tetrakis(triphenylphosphine) palladium (0) (36 mg, 0.032 mmol), 2M Na2CO3(aq) (1.0 cm3), EtOH (1.0 cm3) and toluene (3.0 cm3) was degassed and then heated at reflux with a bath temperature of 105°C under argon for 64 h: The mixture was allowed to cool. The mixture was purified by column chromatography over silica gel using DCM-light petroleum (0:1 1 to 1:30) as eluent and then chromatotron using DCM-light petroleum (1:30) as eluent to give 30 mg (5%) of B-4 as a orange solid; δH(200 MHz; CDCl3) 0.77-1.08 (72 H, m, Me), 1.15-1.86 (108 H, m, CH2 & CH), 3.69 (12 H, m, ArOCH2), 3.89 (12 H, m, ArOCH2), 6.68 (12 H, m, ArH), 7.00 (12 H, m; ArH), and 7.22-8.32 (60 H, m, ArH & PyH); m/z [MALDI] 3562, 3563, 3564, 3567, 3568 (M+).
  • Example 11 DEHP-Car 3,6-Di[4'-(2"-ethylhexyloxy)phenyl]carbazole
  • A mixture of 3,6-dibromocarbazole(12.0 g, 37.1 mmol), the boronic compound G0-BX 2 prepared in accordance with Example 4 of WO-A-02/67343 (24.1 g, 96.4 mmol), tetrakis(triphenylphosphine) palladium (0) (800 mg, 0.692 mmol), 2 M Na2CO3(aq) (40 cm3), EtOH (40 cm3) and toluene (100 cm3) was degassed and then heated at reflux (with bath temperature of 100°C) under argon for 42 h. The mixture was allowed to cool and diluted with H2O (30 cm3) and ether (40 cm3). The two heated at reflux (with bath temperature of 100°C) under argon for 42 h. The mixture was allowed to cool and diluted with H2O (30 cm3) and ether (40 cm3). The two layers were separated. The aqueous layer was extracted with ether (3 x 40 cm3). The organic layer and the ether extracts were combined, washed with brine (1 x 50 cm3) and dried (Na2SO4) and filtered. The solvents were completely removed and the residue was purified by column chromatography over silica using ethyl acetate-light petroleum (0:1 to 1:10) and DCM-ethyl acetate-light petroleum (4:1:20) as eluent to give 14.7 g (69%) of DEHP-Car ; m/z [APCI+] 576 (M+).
  • Example 12 C-1 3-{3',6'-Di[4"-(2"'-ethylhexyloxy)phenyl]carbazolyl}phenyl bromide
  • Tris(dibenzylideneacetone)di-palladium (0) [Pd2(dba)3] (198 mg, 0.217 mmol) and tri-tert-butylphosphine (10% in hexane, 4.4 cm3) were added to a degassed (Schlenk line, evacuated and then back-filled with argon) mixture of 3,6-di[4'-(2"-ethylhexyloxy)phenyl]carbazole DEHP-Car (2.50 g, 4.34 mmol), 1-bromo-3-iodobenzene (4.91 g, 17.4 mmol), sodium tert-butoxide (834 mg, 8.68 mmol), and distilled toluene (12 cm3). The mixture was degassed again before being heated at reflux with bath temperature of 110 °C under argon for 63 h. The resultant was allowed to cool to room temperature and diluted with H2O (20 cm3) and ether (25 cm3). The two phases were separated. The aqueous layer was extracted with ether (3 x 20 cm3). The organic layer and the ether extracts were combined, washed with brine (1 x 40 cm3) and dried over anhydrous sodium sulfate. The solvents were completely removed to leave an orange oil. The mixture was purified by column chromatography over silica gel using DCM-light petroleum (0:1 to 1:10) as eluent to give 1.65 g (52%) of C-1 as a light orange oil; δH(200 MHz; CDCl3) 0.80-1.06 (12 H, m, Me), 1.26-1.68 (16 H, m, CH2), 1.71-1.89 (2 H, m, CH), 3.93 (4 H, m, ArOCH2), 7.04 (4 H, m, ArH), 7.42-7.74 (11 H, m, ArH & CarH), 7.80 (1 H, m, ArH), and 8.33 (2 H, m, CarH); m/z [APCI+] 730, 731, 732, 733, 734 (MH+).
  • Example 13 C-2 2-(3-{3',6'-Di[4"-(2"'-ethylhexyloxy)phenyl]carbazolyl}phenyl)-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)
  • Tert-butyl lithium (1.7 M, 2.1 cm3, 3.59 mmol) was added to a cold (dry-ice/acetone bath) solution of aryl bromide C-1 (1.64 g, 2.24 mmol) in 13 cm3 of anhydrous THF under an argon atmosphere. The mixture was stirred at -78°C for 1 h and then 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.9 cm3) was added rapidly to the cold mixture. The reaction was stirred at -78 °C for 2 h before being removed from the dry-ice/acetone bath. The mixture was then stirred at room temperature for 18 h and then quenched with H2O (8 cm3). The two phases were separated. The aqueous layer was extracted with ether (3 x 10 cm3). The organic layer and the ether extracts were combined, washed with brine (1 x 30 cm3) and dried over anhydrous sodium sulfate and the solvents were completely removed. Purification by column chromatography over silica gel using DCM-light petroleum (0:1 to 1:0) as eluent gave 554 mg (32%) of C-2 as a light brown oil; δH(200 MHz; CDCl3) 0.83-1.03 (12 H, m, Me), 1.24-1.68 (28 H, m, CH2 & Me), 1.68-1.88 (2 H, m, CH), 3.92 (4 H, m, ArOCH2), 7.03 (4 H, m, ArH), 7.40-8.04 (12 H, m, CarH & ArH), and 8.33 (2 H, m, CarH); m/z [APCI+] 776, 777, 778, 779, 780 (M+).
  • Example 14 C-3 4-Bromo-2-(3'-{3",6"-di[4"'-(2""-ethylhexyloxy)phenyl]carbazolyl}phenyl)pyridine
  • A mixture of the bororate C-2 (500 mg, 0.643 mmol), 2,4-dibromopyridine (152 mg, 0.643 mmol), tetrakis(triphenylphosphine) palladium (0) (52 mg, 0.045 mmol), 2 M Na2CO3(aq) (0.8 cm3), EtOH (0.8 cm3) and toluene (2 cm3) was degassed and then heated at reflux with a bath temperature of 110°C under argon for 45 h. The mixture was allowed to cool. The two phases were separated. The aqueous layer was extracted with ether (3 x 4 cm3). The organic layer and the ether extracts were combined, washed with brine (1 x 7 cm3) and dried over anhydrous sodium sulfate and the solvents were completely removed. Purification by column chromatography over silica gel using DCM-light petroleum (0:1 to 1:0) as eluent gave 140 mg (27%) of C-3 as a light brown solid; δH(200 MHz; CDCl3) 0.82-1.07 (12 H, m, Me), 1.23-1.68 (16 H, m, CH2), 1.69-1.88 (2 H, m, CH), 3.93 (4 H, m, ArOCH2), 7.04 (4 H, m, ArH), 7.43-7.83 (11 H, m, CarH & ArH), 7.97 (1 H, m, PyH), 8.11 (1 H, m, PyH), 8.36 ((2 H, m, CarH), and 8.54 (1 H, m, PyH); m/z [APCI+] 805, 806, 807, 808, 809 (M+).
  • Example 15 Photophysical and device properties
  • The photoluminescence quantum yields (PLQYs) of thin films of A-8 and B-4 were measured and found to be 32% and 70% respectively. This should be compared to the PLQYs of first, IrppyD1, (22%) and second, IrppyD2, (31 %) generation dendrimers that have the same dendrons attached to only the same position of the phenyl ring of the ligand (J. P. J. Markham, et al Appl. Phys. Lett., 2002, 80, 2645). That is, putting a second first generation dendron onto the ligands improves the PLQY by 50-140%. This demonstrates that the invention controls the undesirable intermolecular interactions. A further demonstration of this is that the PLQY of a solution of B-4 in toluene is 75%, which is comparable to the thin film PLQY, and shows that there is very little quenching of luminescence in the solid state. Given the relative difficulty of synthesising higher generations this is a significant improvement on the prior art. A further practical advantage is that the dendrimers do not need blending with a host material to have a high PLQY and high EL device efficiency.
  • A two layer device was prepared with A-8 by the following method. The ITO on glass was cleaned using an Emitech plasma Asher. O2 flow rate was set to 10, RF power to 70 watts and duration of cleaning was 4 min. Substrates were then loaded into a spin-coater straight away and A-8 in chloroform at a concentration of 10 mg/ml was spin-coated at 2000 rpm for 60 sec. The device was completed by sequential evaporation of TPBI, LiF, and A1 to give a device structure of: ITO/ A-8 /TPBI(50nm)/LiF(0.9nm)/Al(60nm). The device properties are shown in Figures 7 to 10; the maximum efficiency was 22 lm/W at 3.5V. The C/E coordinates are x = 0.5, y = 0.5. These results should be compared to the first generation dendrimer (IrppyD1) with only one dendron attached to each ligand. In a device configuration of ITO/IrppyD1/BCP/LiF/Al the maximum efficiency was 0.14 lm/W (0.47 cd/A) at 9.5 V (S.-C. Lo, et al Adv. Mater., 2002, 13, 975). Although the electron transport/hole blocking layers are different they would not be expected to give over two orders of magnitude difference in this case. This further illustrates the surprising improvements given by the present invention.
  • A two layer device was prepared with B-4 that had the structure ITO / B-4 /TPBI/ LiF 90.8 nm) / Al (100 nm). It was fabricated using the same procedures used for the device containing A-8 , although the dendrimer was spin-coated from a 20 mg/ml solution at 2000 rpm. The maximum efficiency of this device was 38 lm/W. At 100 cd/m2 and 4.8 V the EQE was 13.2%, 45 cd/A and power efficiency was 30 lm/W. The CIE coordinates of the emission are x = 0.47, and y = 0.52 which is slightly blue shifted relative to A-8 due to the different attachment position of the dendron on the pyridine ring. The efficiency of the device containing B-4 is even higher than the efficiency of the device containing A-8 . It should be noted that both dendrimers can be used as a single component in the light emitting layer and do not need to be blended with a host material to give high efficiency devices which further illustrates the advantages of the current invention.

Claims (21)

  1. A charge-neutral organometallic dendrimer of formula (II):

            M-[X(DENDRITE(-Q)a)y]xYz     (II)

    in which M represents a metal cation, x represents an integer of 2 or more, y represents an integer of 2 or more, each X which may be the same or different represents a mono-, bi- or tri-dentate coordinating group, z represents 0 or an integer of 1 or more, and each Y which may be the same or different represents a coordinating group, the total of (b.x) + (c.z) being equal to the number of coordination sites on M, wherein b is the number of coordination sites on X and c is the number of coordination sites on Y; each DENDRITE which may be the same or different represents a dendritic molecular structure bonded to a group X, wherein each X terminates in the first single bond which is connected to a branching group or branching atom of DENDRITE; a represents 0 or an integer of 1 or more; and each Q which may be the same or different represents a surface group.
  2. An organometallic dendrimer according to claim 1 wherein x is 3 and z is 0.
  3. An organometallic dendrimer according to claim 1 or claim 2 that contains one or two inherently at least partially conjugated dendrons.
  4. An organometallic dendrimer according to claim 1 or claim 2 that contains at least three inherently at least partially conjugated dendrons.
  5. An organometallic dendrimer according to claim 1 or claim 2 that contains all at least inherently partially conjugated dendrons.
  6. An organometallic dendrimer according to any one of claims 1 to 5 that is luminescent in the solid state.
  7. An organometallic dendrimer according to claim 6 wherein the dendrimer is phosphorescent in the solid state and emits from a metal to ligand charge transfer state.
  8. An organometallic dendrimer according to any one of the preceding claims wherein each DENDRITE represents an inherently at least partially conjugated dendritic molecular structure comprising aryl and/or heteroaryl groups or nitrogen and, optionally, vinyl or acetylenyl groups connected via sp2 or sp hybridised carbon atoms of said (hetero)aryl, vinyl and acetylenyl groups or via single bonds between N and (hetero)aryl groups, each coordinating group X terminating in the first single bond which is connected to an sp2 hybridised (ring) carbon atom of the first (hetero)aryl group or nitrogen to which more than one at least partially conjugated dendritic branch is attached, said ring carbon atom or N forming part of said DENDRITE.
  9. An organometallic dendrimer according to any one of the preceding claims wherein at least one DENDRITE represents a dendritic molecular structure comprising at least one nitrogen atom which forms part of an aromatic ring system or is directly bonded to at least two aromatic groups, each coordinating group X terminating in the single bond to the first nitrogen atom or atomatic ring to which more than one dendritic chain is attached, said nitrogen atom or ring forming part of said DENDRITE.
  10. An organometallic dendrimer according to any one of the preceding claims wherein at least one Q is a surface group selected from a further-reactable alkene, (meth)acrylate, sulphur-containing, or silicon-containing group; a sulphonyl group; a polyether group; C1-to-C15 alkyl group; an amine group; a mono-, di- or tri-C1-to-C15 alkyl amine group; a -COOR group wherein R is hydrogen or C1-to-C15 alkyl; an -OR group wherein R is hydrogen, aryl, or C1-to-C15 alkyl or alkenyl; an -O2SR group wherein R is C1-to-C15 alkyl or alkenyl; an -SR group wherein R is aryl, or C1-to-C15 alkyl or alkenyl; and an -SiR3 group wherein the R groups are the same or different and are hydrogen, C1-to-C15 alkyl or alkenyl, or -SR' group (R' is aryl or C1- to -C15 alkyl or alkenyl), aryl, or heteroaryl.
  11. An organometallic dendrimer according to any one of claims 1 to 10 wherein the metal cation is iridium, rhenium or platinum.
  12. An organometallic dendrimer according to any one of the preceding claims wherein at least one DENDRITE is attached to a coordinating group X that is bonded to M via at least one metal-carbon bond.
  13. A film consisting essentially of an organometallic dendrimer according to any one of claims 1 to 12, or comprising an organometallic dendrimer according to any one of claims 1 to 12 and one or more molecular, dendritic or polymeric compounds.
  14. A film according to claim 13 wherein the film comprises an organometallic dendrimer and one or more molecular, dendritic or polymeric compounds, and wherein the molar ratio of the organometallic dendrimer to the other component or components is from 1:1 to 100:1.
  15. An organic light-emitting device comprising, in sequence, layers of an optional substrate, an electrode, a first optional charge-transporting layer, a light-emissive layer, a second optional charge-transporting layer and a counter electrode, wherein at least one of the light-emissive layer, first optional charge-transporting layer and second optional charge-transporting layers is a film comprising an organometallic dendrimer according to any one of claims 1 to 12 or a film according to claim 13 or 14.
  16. A device according to claim 15 wherein the light-emissive layer is a film comprising an organometallic dendrimer according to any one of claims 1 to 12 or a film according to claim 13 or 14.
  17. A device according to claim 15 or 16 wherein the light-emissive layer comprises an emissive dopant, as additional component.
  18. A device according to any one of claims 15 to 17 wherein the light-emissive layer comprises one or more charge-transporting species, as additional component.
  19. A device according to any one of claims 15 to 18 wherein the light-emissive layer comprises a molecular or dendritic species, as additional component.
  20. A device according to any one of claims 15 to 19 wherein the light-emissive layer comprises a polymer, as additional component.
  21. A photovoltaic device that comprises at least a layer of a film comprising an organometallic dendrimer according to any one of claims 1 to 12 or a film according to claim 13 or claim 14.
EP03791036A 2002-08-28 2003-08-28 Neutral metallic dendrimer complexes Expired - Lifetime EP1532158B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0219987 2002-08-28
GBGB0219987.5A GB0219987D0 (en) 2002-08-28 2002-08-28 Intramolecular interactions in organometallics
PCT/GB2003/003725 WO2004020448A1 (en) 2002-08-28 2003-08-28 Neutral metallic dendrimer complexes

Publications (2)

Publication Number Publication Date
EP1532158A1 EP1532158A1 (en) 2005-05-25
EP1532158B1 true EP1532158B1 (en) 2008-10-15

Family

ID=9943092

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03791036A Expired - Lifetime EP1532158B1 (en) 2002-08-28 2003-08-28 Neutral metallic dendrimer complexes

Country Status (11)

Country Link
US (2) US7799917B2 (en)
EP (1) EP1532158B1 (en)
JP (2) JP4801350B2 (en)
KR (1) KR101011661B1 (en)
CN (1) CN100354285C (en)
AT (1) ATE411328T1 (en)
AU (1) AU2003259375A1 (en)
DE (1) DE60324156D1 (en)
GB (1) GB0219987D0 (en)
HK (1) HK1076111A1 (en)
WO (1) WO2004020448A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8728631B2 (en) 2003-09-12 2014-05-20 Sumitomo Chemical Company, Limited Dendrimer compound and organic luminescent device employing the same

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0220092D0 (en) * 2002-08-29 2002-10-09 Isis Innovation Reactive dendrimers
GB0219987D0 (en) * 2002-08-28 2002-10-09 Isis Innovation Intramolecular interactions in organometallics
GB0311234D0 (en) 2003-05-16 2003-06-18 Isis Innovation Organic phosphorescent material and organic optoelectronic device
GB0411572D0 (en) * 2004-05-24 2004-06-23 Cambridge Display Tech Ltd Light-emitting device
WO2005124890A1 (en) * 2004-06-09 2005-12-29 E.I. Dupont De Nemours And Company Electrolumineschent iridium complex and devices made with such compound
DE102004032527A1 (en) 2004-07-06 2006-02-02 Covion Organic Semiconductors Gmbh Electroluminescent polymers
TWI385193B (en) * 2004-12-07 2013-02-11 Sumitomo Chemical Co Polymer material and element using same
GB2439867B (en) * 2005-03-15 2009-11-11 Isis Innovation Light emitting highly branched dendrimers
US7344583B2 (en) * 2005-03-31 2008-03-18 3M Innovative Properties Company Methods of making metal particles within cored dendrimers
US9118020B2 (en) 2006-04-27 2015-08-25 Global Oled Technology Llc Electroluminescent devices including organic eil layer
WO2008036700A2 (en) 2006-09-19 2008-03-27 3M Innovative Properties Company Templated metal oxide particles and methods of making
US8778508B2 (en) * 2006-12-08 2014-07-15 Universal Display Corporation Light-emitting organometallic complexes
US8119255B2 (en) 2006-12-08 2012-02-21 Universal Display Corporation Cross-linkable iridium complexes and organic light-emitting devices using the same
US8519130B2 (en) * 2006-12-08 2013-08-27 Universal Display Corporation Method for synthesis of iriduim (III) complexes with sterically demanding ligands
JP5446096B2 (en) 2007-02-06 2014-03-19 住友化学株式会社 Composition and light-emitting device using the composition
JP5358962B2 (en) 2007-02-06 2013-12-04 住友化学株式会社 Composition and light-emitting device using the composition
JP2008218987A (en) 2007-02-06 2008-09-18 Sumitomo Chemical Co Ltd Composition and light-emitting element using the same
JP2008218986A (en) 2007-02-06 2008-09-18 Sumitomo Chemical Co Ltd Composition and light-emitting element using the same
JP2008218988A (en) 2007-02-06 2008-09-18 Sumitomo Chemical Co Ltd Composition and light-emitting element using the same
KR101634508B1 (en) * 2007-03-08 2016-06-28 유니버셜 디스플레이 코포레이션 Phosphorescent materials
US9130177B2 (en) 2011-01-13 2015-09-08 Universal Display Corporation 5-substituted 2 phenylquinoline complexes materials for light emitting diode
JP5458890B2 (en) * 2007-11-08 2014-04-02 コニカミノルタ株式会社 Organic electroluminescence element, display device and lighting device
JP2010031250A (en) 2008-06-23 2010-02-12 Sumitomo Chemical Co Ltd Composition and light-emitting element using the composition
JP2010034528A (en) 2008-06-23 2010-02-12 Sumitomo Chemical Co Ltd Composition and light-emitting element using the same
JP2010031248A (en) 2008-06-23 2010-02-12 Sumitomo Chemical Co Ltd Composition and light-emitting element using the composition
JP2010031249A (en) 2008-06-23 2010-02-12 Sumitomo Chemical Co Ltd Composition and light-emitting element using the composition
KR20110018376A (en) 2008-06-23 2011-02-23 스미또모 가가꾸 가부시키가이샤 Composition and light-emitting element using the composition
JP5544775B2 (en) 2008-07-29 2014-07-09 住友化学株式会社 Composition containing phosphorescent compound and light emitting device using the composition
US8993754B2 (en) 2009-08-27 2015-03-31 National Institute Of Advanced Industrial Science And Technology Iridium complex and light emitting material formed from same
WO2011024761A1 (en) 2009-08-27 2011-03-03 住友化学株式会社 Metal complex composition and complex polymer
TWI538561B (en) 2009-10-22 2016-06-11 住友化學股份有限公司 Organic electro-luminescence element
US20120326103A1 (en) * 2009-11-27 2012-12-27 Shuk Kwan Mak Functionalized triplet emitters for electro-luminescent devices
US9478744B2 (en) 2010-11-30 2016-10-25 Sumitomo Chemical Company, Limited High molecular compound, method for producing same, and light-emitting element
US10008677B2 (en) 2011-01-13 2018-06-26 Universal Display Corporation Materials for organic light emitting diode
EP2543685A1 (en) * 2011-07-08 2013-01-09 cynora GmbH Method for covalent binding of a metal compound to a polymer
CN104981498B (en) * 2015-01-23 2016-12-07 太原理工大学 Hyperbranched white-light conjugated polymer and its preparation method and application
CN108658948A (en) * 2017-03-29 2018-10-16 中国科学院长春应用化学研究所 A kind of dendroid organometallic complex, preparation method and application
US11476430B2 (en) * 2018-10-15 2022-10-18 Universal Display Corporation Organic electroluminescent materials and devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002044189A1 (en) * 2000-11-30 2002-06-06 Canon Kabushiki Kaisha Luminescent element and display

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20001694A0 (en) 2000-07-20 2000-07-20 Asm Microchemistry Oy A method for growing a thin film on a substrate
JP3943015B2 (en) 2000-08-10 2007-07-11 トラスティーズ オブ ボストン カレッジ Recyclable metathesis catalyst
DE60239730D1 (en) 2001-02-20 2011-05-26 Isis Innovation METAL CONTAINING DENDRIMERE
DE10116962A1 (en) 2001-04-05 2002-10-10 Covion Organic Semiconductors Rhodium and iridium complexes
JP4220767B2 (en) * 2001-12-04 2009-02-04 日本放送協会 Organic compounds, organic EL devices and displays
JP4424996B2 (en) 2002-03-18 2010-03-03 イシス イノベイション リミテッド Phosphorescent dendrimer
GB0219987D0 (en) * 2002-08-28 2002-10-09 Isis Innovation Intramolecular interactions in organometallics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002044189A1 (en) * 2000-11-30 2002-06-06 Canon Kabushiki Kaisha Luminescent element and display
EP1348711A1 (en) * 2000-11-30 2003-10-01 Canon Kabushiki Kaisha Luminescent element and display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8728631B2 (en) 2003-09-12 2014-05-20 Sumitomo Chemical Company, Limited Dendrimer compound and organic luminescent device employing the same
US9966532B2 (en) 2003-09-12 2018-05-08 Sumitomo Chemical Company, Limited Dendrimer compound and organic luminescent device employing the same
US10854818B2 (en) 2003-09-12 2020-12-01 Sumitomo Chemical Company, Limited Dendrimer compound and organic luminescent device employing the same

Also Published As

Publication number Publication date
US7799917B2 (en) 2010-09-21
AU2003259375A1 (en) 2004-03-19
ATE411328T1 (en) 2008-10-15
AU2003259375A8 (en) 2004-03-19
KR20050059115A (en) 2005-06-17
DE60324156D1 (en) 2008-11-27
JP2011046740A (en) 2011-03-10
HK1076111A1 (en) 2006-01-06
CN100354285C (en) 2007-12-12
KR101011661B1 (en) 2011-01-31
WO2004020448A1 (en) 2004-03-11
US20110127496A1 (en) 2011-06-02
US20060119254A1 (en) 2006-06-08
CN1694891A (en) 2005-11-09
JP5509045B2 (en) 2014-06-04
JP4801350B2 (en) 2011-10-26
EP1532158A1 (en) 2005-05-25
JP2005537321A (en) 2005-12-08
GB0219987D0 (en) 2002-10-09
US8536333B2 (en) 2013-09-17

Similar Documents

Publication Publication Date Title
EP1532158B1 (en) Neutral metallic dendrimer complexes
Tang et al. Molecular Design of Luminescent Gold (III) Emitters as Thermally Evaporable and Solution-Processable Organic Light-Emitting Device (OLED) Materials: Focus Review
Lo et al. A light‐blue phosphorescent dendrimer for efficient solution‐processed light‐emitting diodes
JP5730957B2 (en) Stable OLED material and device with improved stability
JP4343838B2 (en) Organic light emitting materials and devices
EP1763902B1 (en) Stable and efficient electroluminescent materials
EP1491074B1 (en) Phosphorescent dendrimers for use in light-emitting devices
CN109438520B (en) Cyclometallated tetradentate Pt (II) complexes
EP2424953B1 (en) Iridium complex with methyl-d3 substitution
JP5030798B2 (en) Use of solution-processed organometallic complexes and solution-processed organometallic complexes in electroluminescent devices
Subeesh et al. Phenanthroimidazole derivative as an easily accessible emitter for non-doped light-emitting electrochemical cells
JP2008528646A (en) Metal complex
Beucher et al. Highly efficient green solution processable organic light-emitting diodes based on a phosphorescent κ3-(N^ C^ C) gold (iii)-alkynyl complex
WO2005013388A2 (en) Materials and structures for enhancing the performance of organic light emitting devices
JP2006513278A6 (en) Organic light emitting materials and devices
JP2009504695A (en) Metal complex
WO2004029134A1 (en) Fluorene-containing dendrimers
WO2009005272A2 (en) Organometallic complex compounds for organic light emitting display device and organic light emitting display device including the same
KR20070112823A (en) Solution processed organometallic complexes and their use in electroluminescent devices

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050304

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1076111

Country of ref document: HK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 51/00 20060101ALI20080417BHEP

Ipc: C07F 15/00 20060101AFI20080417BHEP

Ipc: H05B 33/00 20060101ALI20080417BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60324156

Country of ref document: DE

Date of ref document: 20081127

Kind code of ref document: P

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1076111

Country of ref document: HK

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090115

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090316

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090115

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

26N No opposition filed

Effective date: 20090716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60324156

Country of ref document: DE

Owner name: OXFORD UNIVERSITY INNOVATION LIMITED, GB

Free format text: FORMER OWNERS: ISIS INNOVATION LTD., SUMMERTOWN, OXFORD, GB; THE UNIVERSITY COURT OF THE UNIVERSITY OF ST. ANDREWS, ST. ANDREWS, GB

Ref country code: DE

Ref legal event code: R081

Ref document number: 60324156

Country of ref document: DE

Owner name: THE UNIVERSITY COURT OF THE UNIVERSITY OF ST. , GB

Free format text: FORMER OWNERS: ISIS INNOVATION LTD., SUMMERTOWN, OXFORD, GB; THE UNIVERSITY COURT OF THE UNIVERSITY OF ST. ANDREWS, ST. ANDREWS, GB

Ref country code: DE

Ref legal event code: R082

Ref document number: 60324156

Country of ref document: DE

Representative=s name: LORENZ SEIDLER GOSSEL RECHTSANWAELTE PATENTANW, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 60324156

Country of ref document: DE

Owner name: CAMBRIDGE DISPLAY TECHNOLOGY LIMITED, GODMANCH, GB

Free format text: FORMER OWNERS: ISIS INNOVATION LTD., SUMMERTOWN, OXFORD, GB; THE UNIVERSITY COURT OF THE UNIVERSITY OF ST. ANDREWS, ST. ANDREWS, GB

Ref country code: DE

Ref legal event code: R082

Ref document number: 60324156

Country of ref document: DE

Representative=s name: GRUENECKER PATENT- UND RECHTSANWAELTE PARTG MB, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60324156

Country of ref document: DE

Owner name: CAMBRIDGE DISPLAY TECHNOLOGY LIMITED, GODMANCH, GB

Free format text: FORMER OWNERS: OXFORD UNIVERSITY INNOVATION LIMITED, OXFORD, OXFORDSHIRE, GB; THE UNIVERSITY COURT OF THE UNIVERSITY OF ST. ANDREWS, ST. ANDREWS, GB

Ref country code: DE

Ref legal event code: R082

Ref document number: 60324156

Country of ref document: DE

Representative=s name: GRUENECKER PATENT- UND RECHTSANWAELTE PARTG MB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 60324156

Country of ref document: DE

Owner name: CAMBRIDGE DISPLAY TECHNOLOGY LIMITED, GODMANCH, GB

Free format text: FORMER OWNERS: OXFORD UNIVERSITY INNOVATION LIMITED, OXFORD, GB; THE UNIVERSITY COURT OF THE UNIVERSITY OF ST. ANDREWS, ST. ANDREWS, GB

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180726

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190828

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210713

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60324156

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230301