EP1529947B1 - Damping device and method for the suppression of torsional vibrations in a drivetrain - Google Patents

Damping device and method for the suppression of torsional vibrations in a drivetrain Download PDF

Info

Publication number
EP1529947B1
EP1529947B1 EP04105189A EP04105189A EP1529947B1 EP 1529947 B1 EP1529947 B1 EP 1529947B1 EP 04105189 A EP04105189 A EP 04105189A EP 04105189 A EP04105189 A EP 04105189A EP 1529947 B1 EP1529947 B1 EP 1529947B1
Authority
EP
European Patent Office
Prior art keywords
model
state variable
internal combustion
combustion engine
drivetrain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04105189A
Other languages
German (de)
French (fr)
Other versions
EP1529947A1 (en
Inventor
Julian Baumann
Thomas Schlegl
Dara Daniel Torkzadeh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1529947A1 publication Critical patent/EP1529947A1/en
Application granted granted Critical
Publication of EP1529947B1 publication Critical patent/EP1529947B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1412Introducing closed-loop corrections characterised by the control or regulation method using a predictive controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1423Identification of model or controller parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque

Definitions

  • the invention relates to a damping device according to the preamble of claim 1 and a damping method according to the preamble of claim 9.
  • One known way of suppressing the vibrations and their negative effects is to filter out the vibration from a measurement signal recorded by a speed sensor on the internal combustion engine, and to apply a counter-torque to the vibration by the internal combustion engine.
  • the signal of the speed sensor is filtered with a low-pass filter and phase-shifted.
  • the method described has the disadvantage that it must be operated near the stability limit in order to to be effective.
  • the problem here is in particular that the damping torque is applied at a frequency corresponding to the torsional resonance frequency. Therefore, even small errors in the calculation of the counter torque or small changes in the mechanical behavior of the drive train may lead to instabilities.
  • the mechanical properties of the drive train generally change over the life of a motor vehicle, for example, it comes to wear on gears or to a change in the elastic properties of shaft couplings.
  • a further disadvantage of the method is that it is only possible to react to already existing vibrations, so the damping only starts when the high load for the drive train is already present.
  • EP 0 924 421 A discloses, as the closest prior art, a fuel injection control device which determines a basic fuel injection amount depending on the state of the internal combustion engine. Further, it is proposed to use a correction means for predicting a torsional vibration of the output shaft system of the internal combustion engine by the subsequent fuel injection based on the basic fuel injection amount to set the actually injected fuel amount, so that a torsional vibration is suppressed. Furthermore, it is proposed to detect an actual torsional vibration of the output shaft system and to adjust the injected fuel quantity accordingly.
  • EP 1 260 693 A discloses a control system for an internal combustion engine in which a prediction means and a bandpass filter are used to predict a resonance torsional vibration of the drive train. The prediction is used to vary the amount of fuel injected or the ignition timing so that no resonance torsional vibration occurs.
  • the invention is therefore based on the object with the least possible effort to suppress vibrations in the drive train, in particular high loads on the drive train and jerky movements of the vehicle to be avoided.
  • the object is achieved with a damping device according to claim 1 and a damping method according to claim 9.
  • the invention is based on the physical knowledge that the internal combustion engine, the drive train or the rotational speed sensor have a dead time which makes the regulation of damping torques for suppressing torsional vibrations in the drive train more difficult. For example, an increased fuel supply does not directly lead to an increased driving torque of the internal combustion engine, since the fuel quantity is injected clocked into the combustion chambers, whereby time losses occur.
  • a predictive element is used in the context of the invention to provide a mechanical state variable to determine the drive train in response to a manipulated variable.
  • This has the advantage that the manipulated variable can be determined as a function of the determined mechanical state variable and the internal combustion engine is controlled with the manipulated variable modified in this way.
  • the excitation of torsional vibrations is already suppressed.
  • the manipulated variable for the internal combustion engine can be, for example, the amount of fuel supplied to the internal combustion engine. However, it is also conceivable to influence other variables, such as the throttle position.
  • the mechanical state variable is preferably the time variation of the torsion of the drive train again to distinguish torsional vibrations clearly from the other normal in operation loads.
  • the device according to the invention preferably takes into account the set transmission ratio of the transmission and other translations in the drive train.
  • the damping device may comprise a signal input for receiving a signal representing the transmission ratio of the transmission.
  • the predictive element has a model of the internal combustion engine and the drive train in order to determine the mechanical state variable.
  • a model has the advantage that it allows a mathematical prediction of the mechanical response to given controls.
  • the model contained in the predictive element according to the invention is essentially free of dead time. Since, in particular, the internal combustion engine has a dead time due to the combustion process, this has the advantage of gaining time. If the actual response of the powertrain to the manipulated variable is waited for before a control intervention, then further oscillation-stimulating effects can occur during the dead time that elapses Pulses are given by the manipulated variable, without being regulated against it. If, on the other hand, the response is calculated in a timely manner, ie as fast as the computing unit of the model permits, then torsional vibrations can be suppressed already in the initial stage or the excitation of torsional vibrations can be suppressed.
  • the output of the predictive element is connected to the input of a transmission element which itself is connected on the output side to the actuator in order to influence the manipulated variable on the basis of the state variable determined with the model.
  • the transmission member thus suppresses a vibration that would occur if the actuator controls the internal combustion engine with a control variable that was the basis of the calculation with the model of the drive train.
  • the transmission element determines that the mechanical state variable output by the model reflects an oscillation, it counteracts this oscillation before this oscillation can actually occur.
  • the transmission element has a P-element or a PD-element.
  • the P-element changes the manipulated variable in a proportional dependence on the determined state variable. It thus corresponds to a known P-controller, which has a proportional transmission behavior. Since the determination of the state variable by the predictive member has substantially no dead time, a stable suppression of vibrations in the drive train is achieved with the proportional transfer characteristic of the P-member.
  • a PD element can be used, which modifies the manipulated variable additionally or exclusively in a function of the temporal change of the determined state variable.
  • the transmission behavior of the PD element essentially corresponds to that of a PD controller.
  • the PD element causes a phase advance of the manipulated variable with respect to the determined state variable, whereby a stabilization is achieved.
  • the damping device has a control loop for adapting the predictive element.
  • the predictive element can be adapted to changing conditions.
  • the predictive member can be changed depending on a change in the mechanical properties of the drive train so that it can reliably predict the response of the drive train to a control of the internal combustion engine with a manipulated variable after a change in the mechanical properties of the drive train.
  • the adaptation can be, for example, to change the parameters of the two-mass oscillator.
  • the control loop supports the model states. Thus, perturbations and model inaccuracies can be corrected immediately, which increases the quality of the prediction of the predictor.
  • the damping device has a measuring device for measuring the state variable of the drive train.
  • the damping device receives information about the actual response of the drive train and the internal combustion engine to a control with a manipulated variable, which is preferably known to the damping device.
  • the measuring device may include an angular velocity sensor on a driven wheel, such as the angular velocity sensor of an existing anti-lock braking system (ABS). If, in addition, the rotational speed of the internal combustion engine and the transmission ratio of the drive train are taken into account, a change with time of the torsion of the drive train can thus be determined.
  • ABS anti-lock braking system
  • angular velocity sensors can also be used in the region of the transmission or at another point of the drive train, as a result of which torsional vibrations in the drive train can be detected more precisely. It is also conceivable, the torsion of the drive train, for example with strain gauges or magnetostrictive sensors.
  • the measuring device for measuring the rotational speed of a wheel may, for example, have a dead time since it must wait for a certain angular rotation of the wheel before the next measuring mark reaches a measuring point of the measuring device.
  • the damping device comprises a dead time element for simulating the dead time of the internal combustion engine, the drive train or the measuring device. If the deadtime element is connected on the input side to the predictive element, a state variable subject to deadtime can be calculated from the state variable determined by the predictor element.
  • the attenuation device is provided with information about the state variable predicted by the predictor element at a point in time at which this state variable should actually occur on the drive train.
  • the dead time is simulated as a function of the rotational speed of the internal combustion engine.
  • the dead time may be indirectly linearly dependent on the speed. The consideration of the speed has the advantage that the dead time can be determined more precisely.
  • a comparison of the measured state variable with the calculated state variable subject to dead time is made. This makes it possible to detect whether the state variable determined by the model of the predictive element is in agreement with the state variable actually occurring on the drive train. This represents a quality control of the model of the predictor member.
  • the comparator unit can be both the Check phase position as well as the amplitude of the calculated dead-time state variable.
  • an adaptation unit is connected to the output of the comparator unit.
  • This adaptation unit has the task of adapting the predictive element as a function of the comparison of the measured state variable with the calculated, deadtime-dependent state variable. For example, if the adaptation unit determines that the predictor member predicts a slight torsional vibration, but actually occurs significantly larger on the powertrain, then the adaptation unit may influence the powertrain model so that the amplitude of the predicted response is greater in future calculations.
  • the adaptation unit does not adapt the model of the drive train and the internal combustion engine directly to a first error detection but integrates the occurring errors over a longer period of time, for example over minutes, hours or also weeks and months.
  • the adaptation unit can detect whether the mechanical behavior of the drive train changes over a longer period of time and accordingly adapt the model of the drive train and the internal combustion engine.
  • the adaptation unit influences individual parameters of the model of the predictive member, such as the damping or the spring stiffness of a two-mass oscillator. Advantages can also result from a support of the model states by the adaptation unit. This also allows short-term model corrections that improve the predictive behavior of the model.
  • the control loop preferably contains the predictive element, the deadtime element, the measuring device, the comparison element and the adaptation unit.
  • an adaptation unit for adapting the deadtime element can additionally be provided, if it is determined the calculated dead-time state variable has a constant phase shift compared to the measured state variable.
  • the damping device preferably has a brake signal input. This has the advantage that the damping device can perform the suppression of the torsional vibrations in response to a brake signal.
  • the damping device can be switched without function in order to prevent fuel supply to the internal combustion engine by the damping device.
  • the mechanical model of the drive train is adapted to a braking intervention, for example, if an anti-slip regulation makes a braking intervention on a drive wheel.
  • the damping device according to the invention has an input for receiving an accelerator pedal signal, wherein the suppression of the torsional vibrations in dependence on the accelerator pedal signal can be made.
  • Special advantages result from the consideration of the temporal change of the accelerator pedal position.
  • the damping device can be operated with different parameters than when the accelerator pedal signal decreases.
  • the internal combustion engine with the drive train may have different dead times for changes in the desired torque in different directions.
  • the damping device is disabled, since it may be assumed that the driver wants to initiate a strong deceleration of the vehicle.
  • the invention further comprises a motor controller with a damping device in one of the claimed embodiments.
  • a motor control is particularly suitable for controlling the internal combustion engine so that wear-increasing load peaks and jerking movements in the longitudinal direction of the vehicle are avoided.
  • the invention comprises a damping method according to claim 9, which can be carried out for example with one of the described damping devices.
  • the rotational speed of the internal combustion engine is determined to suppress torsional vibrations in the drive train of the internal combustion engine and repeatedly determines the state variable with a predetermined time interval, wherein the time interval is determined in dependence on the speed of the internal combustion engine.
  • the fuel quantity to be injected is calculated at shorter intervals than at lower speeds. Therefore, it is advantageous if the state quantity representing the torsional vibrations of the drive train is calculated at higher speeds at shorter intervals in order to adjust the amount of fuel to be injected.
  • the state variable is determined before each injection process. This can be avoided that an injection process is performed, could be excited with the torsional vibrations. Alternatively, however, it may also be sufficient to calculate the state variable in an internal combustion engine having a plurality of combustion chambers only before each injection process of a specific combustion chamber. This has the advantage that less computing capacity is needed. Under certain circumstances, a determination of the state variable in even greater intervals may be useful.
  • FIG. 1 schematically shows a control circuit equivalent circuit diagram in which an internal combustion engine 1 is controlled by an actuating device 2.
  • the manipulated variable with which the internal combustion engine 1 is driven by the actuator 2
  • the fuel quantity m of an injection process in fact, the control device 2 can control further parameters of the internal combustion engine 1, for example the throttle valve position.
  • the internal combustion engine 1 drives the wheels of a vehicle via a drive train 3.
  • the drive train 3 comprises a plurality of shafts, a transmission, a differential and joints for torque transmission between the individual components.
  • the drive train 3 is driven by the internal combustion engine 1 with the moment M IST .
  • the control device 2 the amount of fuel m according to the specification of the driving torque M 'SOLL an internal combustion engine. 1
  • the adjusting device 2 uses a control method which is well known to the person skilled in the art in various embodiments.
  • the damping device comprises a predictor member 4, which contains a model of the internal combustion engine 1 and of the drive train 3.
  • the model is a torsional oscillator with two mass moments of inertia and a torsion spring damper between the two mass moments of inertia.
  • a moment of inertia corresponds to the mass moment of inertia of the moving Parts of the internal combustion engine 1.
  • the torsion spring element represents the drive train 3 with its components.
  • the second moment of inertia of the model corresponds to the driven wheels and the mass of the vehicle, which enter with a radius of inertia corresponding to the radius of the wheels in the calculation of the second moment of inertia.
  • the predictor member 4 calculates therefrom on the basis of the model the angular velocity of the shaft of the internal combustion engine 1 to which the drive train 3 is connected, and the angular velocity of the driven wheels.
  • the model takes into account the set transmission ratio of the transmission.
  • the output of the predictor 4 contains a signal representing the difference ⁇ MODEL of the described angular velocities.
  • the difference ⁇ MODEL corresponds to the time variation of the torsion of the drive train 3 between the internal combustion engine 1 and driven wheels.
  • a damping torque M CORRECTION corresponding to the torsional variable ⁇ MODEL which represents the time variation of the torsion, is calculated according to a classical mechanical damping of a PD element 5.
  • the PD element 5 corresponds to a known PD controller, wherein the ratios for the proportional and the differential part are adapted in experiments. In this case, a larger proportion of D acts stabilizing.
  • the correction factor M CORRECTION calculated by the PD element 5 is added to a torque M SOLL of the internal combustion engine 1 given by the driver in an adder 6.
  • the result of this addition is the torque M ' SOLL , which represents the input signal for the actuator 2 and the predictor 4.
  • more and more improved torque specifications M ' SOLL can be calculated by several iterative steps.
  • the illustrated damping device suppresses torsional vibrations in the drive train 3 in a particularly effective manner, since it is not critical to stability as a control method due to dead times in the control loop.
  • the internal combustion engine 1 has a dead time, which is mainly due to the burning process.
  • the dead time of the internal combustion engine 1 is at a speed of 800 revolutions per minute (rpm) about 40 ms.
  • the dead time is indirectly proportional to the speed. Due to this dead time, a measurement of the mechanical response of the drive train 2 and the internal combustion engine 1 to the manipulated variable m of the adjusting device 2 is possible only after this dead time.
  • the predictor member 4 with the model of the drive train 3 and the internal combustion engine 1 substantially no dead time.
  • the period of time after which the response to the input variable M ' SOLL is ready at the signal output of the predictive element 4 depends only on the computing speed of the predictive element 4.
  • the time span is far shorter than the dead time of the internal combustion engine 1. Therefore, a timely calculation of a correction torque M CORRECTION is possible.
  • the measuring device 7 comprises a rotational speed sensor on the internal combustion engine 1, which measures the rotational speed of the internal combustion engine 1, and rotational speed sensors on each driven wheel. Usually, in a motor vehicle, the rotational speeds of the internal combustion engine 1 and the wheels are measured anyway, for example in the context of traction control.
  • the measuring device 7 calculates from the signals of the individual speed sensors, the time change ⁇ IST the torsion of the drive train 2.
  • a comparator unit 9 the time change ⁇ ' MODEL of the torsion of the drive train 3 calculated with the dead time element 8 and the predictive element 4 is compared with the measured time change ⁇ IST of the torsion of the drive train 3.
  • the result of this comparison represents the error of the prediction of the predictive element 4.
  • the error serves as an input variable for an adaptation unit 10, which has the task of adapting the model of the predictive element 4. This is done by parameter adjustment, for example, the spring and damping constants of the two-mass oscillator model. This ensures that the predictive element 4 continues to correctly predict the response of the drive train 3 to a drive torque M ' SOLL, even if the mechanical properties of the internal combustion engine 1 and of the drive train 3 are changed.
  • FIG. 2 shows a damping method according to the invention. It begins with the specification of a desired motor drive torque M SOLL by the driver. In the next step, the mechanical response of the powertrain and the engine to the desired engine drive torque M SOLL is calculated. The result is the state quantity ⁇ MODEL , which represents the temporal variation of the driveline torsion. In this case, the torsion of the drive train between the internal combustion engine and the driven wheels is calculated.
  • a correction torque M CORRECTION is calculated, which is calculated by simply multiplying the state variable ⁇ MODEL by a constant P. Since the state variable ⁇ MODEL represents the temporal change of the torsion of the drive train, M CORRECTION corresponds to a mechanical damping torque .
  • the input quantity M ' TARGET is calculated for determining the amount of fuel supplied.
  • the adjusting device of the internal combustion engine is accordingly controlled with M ' SOLL in the next step.
  • the state quantity ⁇ MODEL is recalculated on the basis of the drive torque M ' SOLL .
  • a prediction is made about the future actual response of the system consisting of the internal combustion engine and the drive train to the drive with M ' TARGET .
  • a dead time is simulated to the calculated state variable, which corresponds to the actual dead time of the internal combustion engine.
  • the result of this simulation is a dead-time state quantity ⁇ ' MODEL , which corresponds to the actual time change of the driveline torsion, if the state quantity was correctly predicted.
  • the next step is to measure the actual time change of the driveline torsion ⁇ IST . If, in the subsequent comparison of the measured and the predicted size, it turns out that the prediction is wrong, a parameter adaptation of the model is made.
  • the method After the parameter adjustment or immediately after the comparison, if the comparison has shown that the prediction was correct, it is checked whether the internal combustion engine should be turned off. If this is not the case, the method returns to the first step and polls a new desired torque M SOLL of the driver. Otherwise, the internal combustion engine is turned off and the process is terminated.
  • the invention is not limited to the embodiment described above and the method described.

Description

Die Erfindung betrifft eine Dämpfungseinrichtung gemäß dem Oberbegriff des Anspruchs 1 und ein Dämpfungsverfahren gemäß dem Oberbegriff des Anspruchs 9.The invention relates to a damping device according to the preamble of claim 1 and a damping method according to the preamble of claim 9.

Durch technische Verbesserungen insbesondere bei der Direkteinspritztechnik konnte die Dynamik der Leistungsentfaltung von Brennkraftmaschinen deutlich gesteigert werden. Dadurch kommt es zu ausgeprägten Lastsprüngen in Antriebssträngen von Kraftfahrzeugen, die diese Brennkraftmaschinen zum Antrieb verwenden. Lastsprünge stellen eine breite Anregung im Frequenzbereich für das schwingungsfähige System Antriebsstrang dar. Dadurch können niederfrequente Torsionsschwingungen im Antriebsstrang ausgelöst werden. Die Eigenform der tiefsten Torsionsschwingung besteht dabei aus einer Winkelverdrehung des Motors gegenüber den angetriebenen Rädern. Eine solche Schwingung macht sich besonders als Ruckeln in Längsrichtung des Fahrzeugs bemerkbar und reduziert die Fahrbarkeit des Kraftfahrzeugs beträchtlich. Des Weiteren stellen diese Schwingungen wie auch die Lastsprünge selbst eine hohe Belastung für den Antriebsstrang dar, wodurch der Verschleiß erhöht wird und es zu Materialermüdungen kommen kann.Through technical improvements, especially in the direct injection technology, the dynamics of the power delivery of internal combustion engines could be significantly increased. This leads to pronounced load jumps in drive trains of motor vehicles which use these internal combustion engines for driving. Load jumps represent a wide excitation in the frequency range for the oscillatory drive train system. This allows low-frequency torsional vibrations in the drive train to be triggered. The eigenform of the deepest torsional vibration consists of an angular rotation of the motor relative to the driven wheels. Such a vibration is particularly noticeable as jerking in the longitudinal direction of the vehicle and significantly reduces the drivability of the motor vehicle. Furthermore, these vibrations as well as the load jumps themselves constitute a high load on the drive train, whereby the wear is increased and it can come to material fatigue.

Eine bekannte Möglichkeit, die Schwingungen und deren negative Auswirkungen zu unterdrücken, besteht darin, die Schwingung aus einem von einem Drehzahlsensor an der Brennkraftmaschine aufgenommenen Messsignal herauszufiltern, und durch die Brennkraftmaschine ein Gegendrehmoment zur Schwingung aufzubringen. Dazu wird das Signal des Drehzahlsensors mit einem Tiefpass gefiltert und phasenverschoben.One known way of suppressing the vibrations and their negative effects is to filter out the vibration from a measurement signal recorded by a speed sensor on the internal combustion engine, and to apply a counter-torque to the vibration by the internal combustion engine. For this purpose, the signal of the speed sensor is filtered with a low-pass filter and phase-shifted.

Das beschriebene Verfahren weist jedoch den Nachteil auf, dass es nahe der Stabilitätsgrenze betrieben werden muss, um wirksam zu sein. Problematisch ist hierbei insbesondere, dass das Dämpfungsdrehmoment mit einer Frequenz aufgebracht wird, die der Torsionsresonanzfrequenz entspricht. Deswegen führen bereits kleine Fehler bei der Berechnung des Gegendrehmoments oder kleine Änderungen im mechanischen Verhalten des Antriebsstrangs unter Umständen zu Instabilitäten. Dabei ist zu berücksichtigen, dass sich die mechanischen Eigenschaften des Antriebsstrangs im Allgemeinen über die Lebensdauer eines Kraftfahrzeugs verändern, beispielsweise kommt es zu Verschleiß an Zahnrädern oder zu einer Änderung der elastischen Eigenschaften von Wellenkupplungen. Ein weiterer Nachteil des Verfahrens ist, dass nur auf bereits existierende Schwingungen reagiert werden kann, die Dämpfung setzt also erst ein, wenn die hohe Belastung für den Antriebsstrang bereits vorhanden ist.However, the method described has the disadvantage that it must be operated near the stability limit in order to to be effective. The problem here is in particular that the damping torque is applied at a frequency corresponding to the torsional resonance frequency. Therefore, even small errors in the calculation of the counter torque or small changes in the mechanical behavior of the drive train may lead to instabilities. It should be noted that the mechanical properties of the drive train generally change over the life of a motor vehicle, for example, it comes to wear on gears or to a change in the elastic properties of shaft couplings. A further disadvantage of the method is that it is only possible to react to already existing vibrations, so the damping only starts when the high load for the drive train is already present.

Die EP 0 924 421 A offenbart als nächstliegender Stand der Technik eine Kontrollvorrichtung zur Kraftstoffeinspritzung, die eine Basiskraftstoffeinspritzmenge in Abhängigkeit von dem Zustand der Brennkraftmaschine bestimmt. Weiterhin wird vorgeschlagen, ein Korrekturmittel einzusetzen, um eine Torsionsschwingung des Abtriebswellensystems der Brennkraftmaschine durch die nachfolgende Kraftstoffeinspritzung basierend auf der Basiskraftstoffeinspritzmenge vorherzusagen, um die tatsächlich eingespritzte Kraftstoffmenge festzusetzen, so dass eine Torsionsschwingung unterdrückt wird. Weiterhin wird vorgeschlagen, eine tatsächliche Torsionsschwingung des Abtriebswellensystems zu erfassen und die eingespritzte Kraftstoffmenge entsprechend anzupassen.EP 0 924 421 A discloses, as the closest prior art, a fuel injection control device which determines a basic fuel injection amount depending on the state of the internal combustion engine. Further, it is proposed to use a correction means for predicting a torsional vibration of the output shaft system of the internal combustion engine by the subsequent fuel injection based on the basic fuel injection amount to set the actually injected fuel amount, so that a torsional vibration is suppressed. Furthermore, it is proposed to detect an actual torsional vibration of the output shaft system and to adjust the injected fuel quantity accordingly.

Aus der GB 2 262 818 A ist es bekannt, die Ausgabe eines Kontrollmodells eines Antriebsstrangs anhand gemessener Geschwindigkeitsgrößen der Antriebsstrangkomponenten zu bestätigen, um bei einer Abweichung die ausgegebene Schwingungsgröße des Kontrollmodells zu modifizieren.It is known from GB 2 262 818 A to confirm the output of a control model of a drive train on the basis of measured speed variables of the drive train components in order to modify the outputted vibration quantity of the control model in the event of a deviation.

Die EP 1 260 693 A offenbart ein Kontrollsystem für eine Brennkraftmaschine, bei dem ein Vorhersagemittel und ein Bandpass verwendet wird, um eine Resonanztorsionsschwingung des Antriebsstrangs vorherzusagen. Die Vorhersage wird dazu genützt, um die eingespritzte Kraftstoffmenge oder den Zündzeitpunkt zu verändern, so dass keine Resonanztorsionsschwingung auftritt.EP 1 260 693 A discloses a control system for an internal combustion engine in which a prediction means and a bandpass filter are used to predict a resonance torsional vibration of the drive train. The prediction is used to vary the amount of fuel injected or the ignition timing so that no resonance torsional vibration occurs.

Der Erfindung liegt also die Aufgabe zugrunde, mit möglichst geringem Aufwand Schwingungen im Antriebsstrang zu unterdrücken, wobei insbesondere hohe Belastungen des Antriebsstrangs und Ruckelbewegungen des Fahrzeugs vermieden werden sollen.The invention is therefore based on the object with the least possible effort to suppress vibrations in the drive train, in particular high loads on the drive train and jerky movements of the vehicle to be avoided.

Die Aufgabe wird mit einer Dämpfungseinrichtung gemäß Anspruch 1 und einem Dämpfungsverfahren gemäß Anspruch 9 gelöst.The object is achieved with a damping device according to claim 1 and a damping method according to claim 9.

Die Erfindung geht von der physikalischen Erkenntnis aus, dass die Brennkraftmaschine, der Antriebsstrang oder der Drehzahlsensor eine Totzeit aufweisen, welche die Regelung von Dämpfungsdrehmomenten zur Unterdrückung von Torsionsschwingungen im Antriebsstrang erschwert. Beispielsweise führt eine erhöhte Kraftstoffzufuhr nicht unmittelbar zu einem erhöhten Antriebsdrehmoment der Brennkraftmaschine, da die Kraftstoffmenge getaktet in die Brennräume eingespritzt wird, wodurch Zeitverluste entstehen.The invention is based on the physical knowledge that the internal combustion engine, the drive train or the rotational speed sensor have a dead time which makes the regulation of damping torques for suppressing torsional vibrations in the drive train more difficult. For example, an increased fuel supply does not directly lead to an increased driving torque of the internal combustion engine, since the fuel quantity is injected clocked into the combustion chambers, whereby time losses occur.

Erfindungsgemäß wird deshalb im Rahmen der Erfindung ein Prädiktorglied eingesetzt, um eine mechanische Zustandsgröße des Antriebsstrangs als Antwort auf eine Stellgröße zu ermitteln. Dies hat den Vorteil, dass die Stellgröße in Abhängigkeit von der ermittelten mechanischen Zustandsgröße festgelegt werden kann und die Brennkraftmaschine mit der so modifizierten Stellgröße angesteuert wird. Damit wird bereits die Anregung von Torsionsschwingungen unterdrückt.According to the invention, therefore, a predictive element is used in the context of the invention to provide a mechanical state variable to determine the drive train in response to a manipulated variable. This has the advantage that the manipulated variable can be determined as a function of the determined mechanical state variable and the internal combustion engine is controlled with the manipulated variable modified in this way. Thus, the excitation of torsional vibrations is already suppressed.

Die Stellgröße für die Brennkraftmaschine kann beispielsweise die der Brennkraftmaschine zugeführte Kraftstoffmenge sein. Es ist jedoch auch vorstellbar, andere Stellgrößen, wie beispielsweise die Drosselklappenstellung zu beeinflussen.The manipulated variable for the internal combustion engine can be, for example, the amount of fuel supplied to the internal combustion engine. However, it is also conceivable to influence other variables, such as the throttle position.

Die mechanische Zustandsgröße gibt vorzugsweise die zeitliche Veränderung der Torsion des Antriebsstrangs wieder, um Torsionsschwingungen deutlich von den anderen im Betrieb üblichen Belastungen zu unterscheiden.The mechanical state variable is preferably the time variation of the torsion of the drive train again to distinguish torsional vibrations clearly from the other normal in operation loads.

Die erfindungsgemäße Vorrichtung berücksichtigt vorzugsweise das eingestellte Übersetzungsverhältnis des Getriebes und andere Übersetzungen im Antriebsstrang. So kann die Dämpfungseinrichtung einen Signaleingang zur Aufnahme eines das Übersetzungsverhältnis des Getriebes wiedergebenden Signals umfassen.The device according to the invention preferably takes into account the set transmission ratio of the transmission and other translations in the drive train. Thus, the damping device may comprise a signal input for receiving a signal representing the transmission ratio of the transmission.

Das Prädiktorglied weist erfindungsgemäß ein Modell der Brennkraftmaschine und des Antriebsstrangs auf, um die mechanische Zustandsgröße zu ermitteln. Ein Modell hat den Vorteil, dass es eine rechnerische Vorhersage der mechanischen Antwort auf vorgegebene Ansteuerungen ermöglicht.According to the invention, the predictive element has a model of the internal combustion engine and the drive train in order to determine the mechanical state variable. A model has the advantage that it allows a mathematical prediction of the mechanical response to given controls.

Das in dem Prädiktorglied enthaltene Modell ist erfindungsgemäß im wesentlichen totzeitfrei. Da besonders die Brennkraftmaschine aufgrund des Verbrennungsprozesses eine Totzeit aufweist, hat dies den Vorteil eines Zeitgewinns. Wird vor einem Regelungseingriff die tatsächliche Antwort des Antriebsstrangs auf die Stellgröße abgewartet, so können während der dabei verstreichenden Totzeit weitere schwingungsanregende Impulse durch die Stellgröße gegeben werden, ohne dass dagegen geregelt wird. Wird dagegen die Antwort zeitnah, d.h. so schnell es die Recheneinheit des Modells erlaubt, berechnet, so können Torsionsschwingungen bereits im Anfangsstadium unterdrückt werden oder es kann die Anregung von Torsionsschwingungen unterdrückt werden.The model contained in the predictive element according to the invention is essentially free of dead time. Since, in particular, the internal combustion engine has a dead time due to the combustion process, this has the advantage of gaining time. If the actual response of the powertrain to the manipulated variable is waited for before a control intervention, then further oscillation-stimulating effects can occur during the dead time that elapses Pulses are given by the manipulated variable, without being regulated against it. If, on the other hand, the response is calculated in a timely manner, ie as fast as the computing unit of the model permits, then torsional vibrations can be suppressed already in the initial stage or the excitation of torsional vibrations can be suppressed.

Erfindungsgemäß ist der Ausgang des Prädiktorglieds mit dem Eingang eines Übertragungsglieds verbunden, das selbst ausgangsseitig mit dem Stellglied verbunden ist, um die Stellgröße anhand der mit dem Modell ermittelten Zustandsgröße zu beeinflussen. Das Übertragungsglied unterdrückt damit eine Schwingung, die sich einstellen würde, falls das Stellglied die Brennkraftmaschine mit einer Steuergröße ansteuert, die die Grundlage der Berechnung mit dem Modell des Antriebsstrangs war. Stellt also das Übertragungsglied fest, dass die vom Modell ausgegebene mechanische Zustandsgröße eine Schwingung wiedergibt, so wirkt sie dieser Schwingung entgegen, bevor diese Schwingung tatsächlich auftreten kann.According to the invention, the output of the predictive element is connected to the input of a transmission element which itself is connected on the output side to the actuator in order to influence the manipulated variable on the basis of the state variable determined with the model. The transmission member thus suppresses a vibration that would occur if the actuator controls the internal combustion engine with a control variable that was the basis of the calculation with the model of the drive train. Thus, if the transmission element determines that the mechanical state variable output by the model reflects an oscillation, it counteracts this oscillation before this oscillation can actually occur.

Vorteilhafterweise weist das Übertragungsglied ein P-Glied oder ein PD-Glied auf. Das P-Glied verändert die Stellgröße in einer proportionalen Abhängigkeit von der ermittelten Zustandsgröße. Es entspricht damit einem bekannten P-Regler, der ein proportionales Übertragungsverhalten aufweist. Da die Ermittlung der Zustandsgröße durch das Prädiktorglied im wesentlichen keine Totzeit aufweist, wird mit der proportionalen Übertragungscharakteristik des P-Glieds eine stabile Unterdrückung von Schwingungen im Antriebsstrang erreicht. Alternativ kann auch ein PD-Glied eingesetzt werden, das die Stellgröße zusätzlich oder ausschließlich in einer Abhängigkeit von der zeitlichen Änderung der ermittelten Zustandsgröße verändert. Das Übertragungsverhalten des PD-Glieds entspricht im wesentlichen dem eines PD-Reglers. Das PD-Glied bewirkt dabei eine Phasenvoreilung der Stellgröße gegenüber der ermittelten Zustandsgröße, wodurch eine Stabilisierung erreicht wird.Advantageously, the transmission element has a P-element or a PD-element. The P-element changes the manipulated variable in a proportional dependence on the determined state variable. It thus corresponds to a known P-controller, which has a proportional transmission behavior. Since the determination of the state variable by the predictive member has substantially no dead time, a stable suppression of vibrations in the drive train is achieved with the proportional transfer characteristic of the P-member. Alternatively, a PD element can be used, which modifies the manipulated variable additionally or exclusively in a function of the temporal change of the determined state variable. The transmission behavior of the PD element essentially corresponds to that of a PD controller. The PD element causes a phase advance of the manipulated variable with respect to the determined state variable, whereby a stabilization is achieved.

Vorteilhafterweise weist die Dämpfungseinrichtung eine Regelschleife zur Adaption des Prädiktorglieds auf. Dies bietet den Vorteil, dass das Prädiktorglied an veränderte Bedingungen angepasst werden kann. So kann beispielsweise das Prädiktorglied in Abhängigkeit einer Veränderung der mechanischen Eigenschaften des Antriebsstrangs so verändert werden, dass es die Antwort des Antriebsstrangs auf eine Ansteuerung der Brennkraftmaschine mit einer Stellgröße nach einer Veränderung der mechanischen Eigenschaften des Antriebsstrangs zuverlässig vorhersagen kann. Die Anpassung kann beispielsweise darin bestehen, die Parameter des Zwei-Massen-Schwingers zu verändern. In einer vorteilhaften Ausführungsform der Erfindung stützt der Regelkreis die Modellzustände. Damit können Störungen und Modellungenauigkeiten unmittelbar korrigiert werden, was die Qualität der Vorhersage des Prädiktorglieds erhöht.Advantageously, the damping device has a control loop for adapting the predictive element. This offers the advantage that the predictive element can be adapted to changing conditions. Thus, for example, the predictive member can be changed depending on a change in the mechanical properties of the drive train so that it can reliably predict the response of the drive train to a control of the internal combustion engine with a manipulated variable after a change in the mechanical properties of the drive train. The adaptation can be, for example, to change the parameters of the two-mass oscillator. In an advantageous embodiment of the invention, the control loop supports the model states. Thus, perturbations and model inaccuracies can be corrected immediately, which increases the quality of the prediction of the predictor.

Vorteilhafterweise weist die Dämpfungseinrichtung eine Messeinrichtung zur Messung der Zustandsgröße des Antriebsstrangs auf. Dadurch erhält die Dämpfungseinrichtung Informationen über die tatsächliche Antwort des Antriebsstrangs und der Brennkraftmaschine auf eine Ansteuerung mit einer Stellgröße, die der Dämpfungseinrichtung vorzugsweise bekannt ist. Die Messeinrichtung kann einen Winkelgeschwindigkeitsaufnehmer an einem angetriebenen Rad umfassen, beispielsweise der Winkelgeschwindigkeitsaufnehmer eines bereits vorhandenen Anti-Blockier-Systems (ABS). Wird zusätzlich die Drehzahl der Brennkraftmaschine und das Übersetzungsverhältnis des Antriebsstrangs berücksichtigt, kann damit eine zeitliche Veränderung der Torsion des Antriebsstranges ermittelt werden. Weiterhin können auch Winkelgeschwindigkeitssensoren im Bereich des Getriebes oder an einer anderen Stelle des Antriebsstrangs eingesetzt werden, wodurch Torsionsschwingungen im Antriebsstrang präziser erfasst werden können. Außerdem ist vorstellbar, die Torsion des Antriebsstrangs beispielsweise mit Dehnmessstreifen oder magnetostriktiven Sensoren zu messen.Advantageously, the damping device has a measuring device for measuring the state variable of the drive train. As a result, the damping device receives information about the actual response of the drive train and the internal combustion engine to a control with a manipulated variable, which is preferably known to the damping device. The measuring device may include an angular velocity sensor on a driven wheel, such as the angular velocity sensor of an existing anti-lock braking system (ABS). If, in addition, the rotational speed of the internal combustion engine and the transmission ratio of the drive train are taken into account, a change with time of the torsion of the drive train can thus be determined. Furthermore, angular velocity sensors can also be used in the region of the transmission or at another point of the drive train, as a result of which torsional vibrations in the drive train can be detected more precisely. It is also conceivable, the torsion of the drive train, for example with strain gauges or magnetostrictive sensors.

Weist die Messeinrichtungen eine Totzeit auf, so ergibt sich ein zusätzlicher Zeitgewinn durch die Ermittlung der Antwort des Antriebsstrangs in dem im Wesentlichen totzeitfreien Modell. Die Messeinrichtung zur Messung der Drehzahl eines Rades kann beispielsweise eine Totzeit aufweisen, da sie eine bestimmte Winkeldrehung des Rades abwarten muss, bevor die nächste Messmarke eine Messstelle der Messeinrichtung erreicht.If the measuring devices have a dead time, additional time is gained by ascertaining the response of the drive train in the essentially deadtime-free model. The measuring device for measuring the rotational speed of a wheel may, for example, have a dead time since it must wait for a certain angular rotation of the wheel before the next measuring mark reaches a measuring point of the measuring device.

Die Dämpfungseinrichtung umfasst in einer erfindungsgemäßen Ausführungsform ein Totzeitglied zur Simulation der Totzeit der Brennkraftmaschine, des Antriebsstrangs oder der Messeinrichtung. Wird das Totzeitglied eingangsseitig mit dem Prädiktorglied verbunden, so kann eine totzeitbehaftete Zustandsgröße aus der vom Prädiktorglied ermittelten Zustandsgröße berechnet werden. Dies hat den Vorteil, dass der Dämpfungseinrichtung eine Information über die vom Prädiktorglied vorhergesagte Zustandsgröße zu einem Zeitpunkt bereitgestellt wird, an dem diese Zustandsgröße am Antriebsstrang tatsächlich auftreten sollte. Vorzugsweise wird die Totzeit in Abhängigkeit von der Drehzahl der Brennkraftmaschine simuliert. Beispielsweise kann die Totzeit indirekt linear von der Drehzahl abhängig sein. Die Berücksichtigung der Drehzahl hat den Vorteil, dass die Totzeit präziser bestimmt werden kann.In one embodiment of the invention, the damping device comprises a dead time element for simulating the dead time of the internal combustion engine, the drive train or the measuring device. If the deadtime element is connected on the input side to the predictive element, a state variable subject to deadtime can be calculated from the state variable determined by the predictor element. This has the advantage that the attenuation device is provided with information about the state variable predicted by the predictor element at a point in time at which this state variable should actually occur on the drive train. Preferably, the dead time is simulated as a function of the rotational speed of the internal combustion engine. For example, the dead time may be indirectly linearly dependent on the speed. The consideration of the speed has the advantage that the dead time can be determined more precisely.

In einer Vergleichereinheit der Dämpfungseinrichtung wird erfindungsgemäß ein Vergleich der gemessenen Zustandsgröße mit der berechneten totzeitbehafteten Zustandsgröße vorgenommen. Dadurch kann erkannt werden, ob die vom Modell des Prädiktorglieds ermittelte Zustandsgröße in Übereinstimmung mit der tatsächlich am Antriebsstrang auftretenden Zustandsgröße ist. Dies stellt eine Qualitätskontrolle des Modells des Prädiktorglieds dar. Die Vergleichereinheit kann dabei sowohl die Phasenlage als auch die Amplitude der berechneten totzeitbehafteten Zustandsgröße überprüfen.In a comparator unit of the damping device, according to the invention, a comparison of the measured state variable with the calculated state variable subject to dead time is made. This makes it possible to detect whether the state variable determined by the model of the predictive element is in agreement with the state variable actually occurring on the drive train. This represents a quality control of the model of the predictor member. The comparator unit can be both the Check phase position as well as the amplitude of the calculated dead-time state variable.

Mit dem Ausgang der Vergleichereinheit ist erfindungsgemäß eine Adaptionseinheit verbunden. Diese Adaptionseinheit hat die Aufgabe, das Prädiktorglied in Abhängigkeit von dem Vergleich der gemessenen Zustandsgröße mit der berechneten, totzeitbehafteten Zustandsgröße zu adaptieren. Stellt die Adaptionseinheit beispielsweise fest, dass von dem Prädiktorglied eine leichte Torsionsschwingung vorhergesagt wird, diese tatsächlich aber am Antriebsstrang wesentlich größer auftritt, so kann die Adaptionseinheit das Modell des Antriebsstrangs dahingehend beeinflussen, dass die Amplitude der vorhergesagten Antwort bei zukünftigen Berechnungen größer ausfällt. Vorzugsweise passt die Adaptionseinheit das Modell des Antriebsstrangs und der Brennkraftmaschine nicht unmittelbar bei einer ersten Fehlererkennung an, sondern integriert die auftretenden Fehler über einen längeren Zeitraum, beispielsweise über Minuten, Stunden oder auch Wochen und Monate. Damit kann die Adaptionseinheit erkennen, ob sich das mechanische Verhalten des Antriebsstrangs über einen längeren Zeitraum verändert und dementsprechend das Modell des Antriebsstrangs und der Brennkraftmaschine anpassen. Vorzugsweise beeinflusst die Adaptionseinheit einzelne Parameter des Modells des Prädiktorglieds, wie beispielsweise die Dämpfung oder die Federsteifigkeit eines Zwei-Massen-Schwingers. Vorteile können sich auch aus einer Stützung der Modellzustände durch die Adaptionseinheit ergeben. Damit sind auch kurzfristige Modellkorrekturen möglich, die das Vorhersageverhalten des Modells verbessern.According to the invention, an adaptation unit is connected to the output of the comparator unit. This adaptation unit has the task of adapting the predictive element as a function of the comparison of the measured state variable with the calculated, deadtime-dependent state variable. For example, if the adaptation unit determines that the predictor member predicts a slight torsional vibration, but actually occurs significantly larger on the powertrain, then the adaptation unit may influence the powertrain model so that the amplitude of the predicted response is greater in future calculations. Preferably, the adaptation unit does not adapt the model of the drive train and the internal combustion engine directly to a first error detection but integrates the occurring errors over a longer period of time, for example over minutes, hours or also weeks and months. Thus, the adaptation unit can detect whether the mechanical behavior of the drive train changes over a longer period of time and accordingly adapt the model of the drive train and the internal combustion engine. Preferably, the adaptation unit influences individual parameters of the model of the predictive member, such as the damping or the spring stiffness of a two-mass oscillator. Advantages can also result from a support of the model states by the adaptation unit. This also allows short-term model corrections that improve the predictive behavior of the model.

Vorzugsweise enthält die Regelschleife das Prädiktorglied, das Totzeitglied, die Messeinrichtung, das Vergleichsglied und die Adaptionseinheit. Es ist jedoch auch vorstellbar, die Regelschleife in einer anderen Form anzuordnen, so kann beispielsweise zusätzlich eine Adaptionseinheit zur Adaption des Totzeitglieds vorgesehen werden, falls festgestellt wird, dass die berechnete totzeitbehaftete Zustandsgröße eine konstante Phasenverschiebung gegenüber der gemessenen Zustandsgröße aufweist.The control loop preferably contains the predictive element, the deadtime element, the measuring device, the comparison element and the adaptation unit. However, it is also conceivable to arrange the control loop in a different form, so for example, an adaptation unit for adapting the deadtime element can additionally be provided, if it is determined the calculated dead-time state variable has a constant phase shift compared to the measured state variable.

Die Dämpfungseinrichtung weist vorzugsweise einen Bremssignaleingang auf. Dies hat den Vorteil, dass die Dämpfungseinrichtung die Unterdrückung der Torsionsschwingungen in Abhängigkeit von einem Bremssignal ausführen kann. So kann beispielsweise bei einer starken Verzögerung, die seitens des Fahrers des Kraftfahrzeugs gewünscht wird, die Dämpfungseinrichtung funktionslos geschaltet werden, um eine Kraftstoffzuführung zur Brennkraftmaschine durch die Dämpfungseinrichtung zu verhindern. Es ist auch vorstellbar, dass das mechanische Modell des Antriebsstrangs an einen Bremseingriff angepasst wird, falls beispielsweise eine Antischlupfregelung einen Bremseingriff an einem Antriebsrad vornimmt.The damping device preferably has a brake signal input. This has the advantage that the damping device can perform the suppression of the torsional vibrations in response to a brake signal. Thus, for example, in the case of a strong deceleration which is desired on the part of the driver of the motor vehicle, the damping device can be switched without function in order to prevent fuel supply to the internal combustion engine by the damping device. It is also conceivable that the mechanical model of the drive train is adapted to a braking intervention, for example, if an anti-slip regulation makes a braking intervention on a drive wheel.

In einer weiteren vorteilhaften Ausführungsform weist die erfindungsgemäße Dämpfungseinrichtung einen Eingang zur Aufnahme eines Gaspedalsignals auf, wobei die Unterdrückung der Torsionsschwingungen in Abhängigkeit des Gaspedalsignals vorgenommen werden kann. Besondere Vorteile ergeben sich durch die Berücksichtigung der zeitlichen Veränderung der Gaspedalstellung. So kann beispielsweise bei einer Erhöhung des vom Fahrer gewünschten Antriebsmoments der Brennkraftmaschine entsprechend einer Zunahme des Gaspedalsignals die Dämpfungseinrichtung mit anderen Parametern betrieben werden als bei einer Abnahme des Gaspedalsignals. Beispielsweise kann die Brennkraftmaschine mit dem Antriebsstrang unterschiedliche Totzeiten für Veränderungen des gewünschten Moments in verschiedene Richtungen aufweisen. Des Weiteren kann es vorteilhaft sein, dass bei einem plötzlichen Loslassen des Gaspedals die Dämpfungseinrichtung außer Kraft gesetzt wird, da unter Umständen angenommen werden kann, dass der Fahrer eine starke Verzögerung des Fahrzeugs einleiten möchte.In a further advantageous embodiment, the damping device according to the invention has an input for receiving an accelerator pedal signal, wherein the suppression of the torsional vibrations in dependence on the accelerator pedal signal can be made. Special advantages result from the consideration of the temporal change of the accelerator pedal position. Thus, for example, with an increase in the driver's desired drive torque of the internal combustion engine in accordance with an increase of the accelerator pedal signal, the damping device can be operated with different parameters than when the accelerator pedal signal decreases. For example, the internal combustion engine with the drive train may have different dead times for changes in the desired torque in different directions. Furthermore, it may be advantageous that in a sudden release of the accelerator pedal, the damping device is disabled, since it may be assumed that the driver wants to initiate a strong deceleration of the vehicle.

Die Erfindung umfasst ferner eine Motorsteuerung mit einer Dämpfungseinrichtung in einer der beanspruchten Ausführungsformen. Eine solche Motorsteuerung ist besonders dazu geeignet, die Brennkraftmaschine so anzusteuern, dass verschleißerhöhende Belastungsspitzen und Ruckelbewegungen in Längsrichtung des Fahrzeugs vermieden werden.The invention further comprises a motor controller with a damping device in one of the claimed embodiments. Such a motor control is particularly suitable for controlling the internal combustion engine so that wear-increasing load peaks and jerking movements in the longitudinal direction of the vehicle are avoided.

Des Weiteren umfasst die Erfindung ein Dämpfungsverfahren nach Anspruch 9, das beispielsweise mit einer der beschriebenen Dämpfungseinrichtungen durchgeführt werden kann.Furthermore, the invention comprises a damping method according to claim 9, which can be carried out for example with one of the described damping devices.

In einem Ausführungsbeispiel wird zur Unterdrückung von Torsionsschwingungen im Antriebsstrang der Brennkraftmaschine die Drehzahl der Brennkraftmaschine ermittelt und die Zustandsgröße mit einem vorgegebenen zeitlichen Abstand wiederholt ermittelt, wobei der zeitliche Abstand in Abhängigkeit von der Drehzahl der Brennkraftmaschine festgelegt wird. Bei höheren Drehzahlen der Brennkraftmaschine wird beispielsweise die einzuspritzende Kraftstoffmenge in kürzeren Abständen berechnet als bei niedrigeren Drehzahlen. Daher ist es von Vorteil, wenn die Zustandsgröße, die die Torsionsschwingungen des Antriebsstrangs wiedergibt, bei höheren Drehzahlen in kürzeren Abständen berechnet wird, um die einzuspritzende Kraftstoffmenge anzupassen.In one embodiment, the rotational speed of the internal combustion engine is determined to suppress torsional vibrations in the drive train of the internal combustion engine and repeatedly determines the state variable with a predetermined time interval, wherein the time interval is determined in dependence on the speed of the internal combustion engine. At higher speeds of the internal combustion engine, for example, the fuel quantity to be injected is calculated at shorter intervals than at lower speeds. Therefore, it is advantageous if the state quantity representing the torsional vibrations of the drive train is calculated at higher speeds at shorter intervals in order to adjust the amount of fuel to be injected.

Vorteilhafterweise wird die Zustandsgröße vor jedem Einspritzvorgang ermittelt. Dadurch kann vermieden werden, dass ein Einspritzvorgang vorgenommen wird, mit dem Torsionsschwingungen angeregt werden könnten. Alternativ kann es jedoch auch ausreichend sein, die Zustandsgröße bei einer Brennkraftmaschine mit mehreren Brennräumen nur vor jedem Einspritzvorgang eines bestimmten Brennraums zu berechnen. Dies hat den Vorteil, dass weniger Rechenkapazität benötigt wird. Unter Umständen kann auch eine Ermittlung der Zustandsgröße in noch größeren Abständen sinnvoll sein.Advantageously, the state variable is determined before each injection process. This can be avoided that an injection process is performed, could be excited with the torsional vibrations. Alternatively, however, it may also be sufficient to calculate the state variable in an internal combustion engine having a plurality of combustion chambers only before each injection process of a specific combustion chamber. This has the advantage that less computing capacity is needed. Under certain circumstances, a determination of the state variable in even greater intervals may be useful.

Die Erfindung wird nachfolgend anhand der beiden beigefügten Figuren näher beschrieben. Es zeigen:

Figur 1
eine schematische Darstellung einer erfindungsgemäßen Dämpfungseinrichtung und
Figur 2
ein Flussdiagramm eines erfindungsgemäßen Dämpfungsverfahrens.
The invention is described below with reference to the two accompanying figures. Show it:
FIG. 1
a schematic representation of a damping device according to the invention and
FIG. 2
a flow chart of a damping method according to the invention.

Figur 1 zeigt schematisch ein regelungstechnisches Ersatzschaltbild, bei dem eine Brennkraftmaschine 1 von einer Stelleinrichtung 2 angesteuert wird. In der Zeichnung ist dargestellt, dass die Stellgröße, mit der die Brennkraftmaschine 1 von der Stelleinrichtung 2 angesteuert wird, die Kraftstoffmenge m eines Einspritzvorgangs ist. Tatsächlich kann die Stelleinrichtung 2 weitere Parameter der Brennkraftmaschine 1 steuern, beispielsweise die Drosselklappenstellung.FIG. 1 schematically shows a control circuit equivalent circuit diagram in which an internal combustion engine 1 is controlled by an actuating device 2. In the drawing, it is shown that the manipulated variable, with which the internal combustion engine 1 is driven by the actuator 2, the fuel quantity m of an injection process. In fact, the control device 2 can control further parameters of the internal combustion engine 1, for example the throttle valve position.

Die Brennkraftmaschine 1 treibt über einen Antriebsstrang 3 die Räder eines Fahrzeugs an. Der Antriebsstrang 3 umfasst mehrere Wellen, ein Getriebe, ein Differenzial und Gelenke zur Momentenübertragung zwischen den einzelnen Komponenten. Der Antriebsstrang 3 wird von der Brennkraftmaschine 1 mit dem Moment MIST angetrieben.The internal combustion engine 1 drives the wheels of a vehicle via a drive train 3. The drive train 3 comprises a plurality of shafts, a transmission, a differential and joints for torque transmission between the individual components. The drive train 3 is driven by the internal combustion engine 1 with the moment M IST .

Die Stelleinrichtung 2 stellt die einzuspritzende Kraftstoffmenge m entsprechend der Vorgabe des Antriebsmoments M'SOLL der Brennkraftmaschine 1 ein. Die Stelleinrichtung 2 bedient sich dabei eines Steuerverfahrens, das in verschiedenen Ausführungsformen dem Fachmann hinlänglich bekannt ist.The control device 2, the amount of fuel m according to the specification of the driving torque M 'SOLL an internal combustion engine. 1 The adjusting device 2 uses a control method which is well known to the person skilled in the art in various embodiments.

Die Dämpfungseinrichtung umfasst ein Prädiktorglied 4, das ein Modell der Brennkraftmaschine 1 und des Antriebsstrangs 3 enthält. Das Modell ist ein Torsionsschwinger mit zwei Massenträgheitsmomenten und einem Drehfederdämpferglied zwischen den beiden Massenträgheitsmomenten. Hierbei entspricht ein Massenträgheitsmoment dem Massenträgheitsmoment der bewegten Teile der Brennkraftmaschine 1. Das Drehfederdämpferelement stellt den Antriebsstrang 3 mit seinen Komponenten dar. Das zweite Massenträgheitsmoment des Modells entspricht den angetriebenen Rädern und der Masse des Fahrzeugs, die mit einem Trägheitsradius entsprechend dem Radius der Räder in die Berechnung des zweiten Massenträgheitsmomentes eingehen. M'SOLL wird als Belastungsmoment auf das Modell aufgebracht. Das Prädiktorglied 4 errechnet hieraus anhand des Modells die Winkelgeschwindigkeit der Welle der Brennkraftmaschine 1, an der der Antriebsstrang 3 angeschlossen ist, und die Winkelgeschwindigkeit der angetriebenen Räder. Hierbei berücksichtigt das Modell das eingestellte Übersetzungsverhältnis des Getriebes. Der Ausgang des Prädiktorglieds 4 enthält ein Signal, das die Differenz ΔαMODELL der beschriebenen Winkelgeschwindigkeiten darstellt.The damping device comprises a predictor member 4, which contains a model of the internal combustion engine 1 and of the drive train 3. The model is a torsional oscillator with two mass moments of inertia and a torsion spring damper between the two mass moments of inertia. Here, a moment of inertia corresponds to the mass moment of inertia of the moving Parts of the internal combustion engine 1. The torsion spring element represents the drive train 3 with its components. The second moment of inertia of the model corresponds to the driven wheels and the mass of the vehicle, which enter with a radius of inertia corresponding to the radius of the wheels in the calculation of the second moment of inertia. M ' SOLL is applied to the model as a load moment. The predictor member 4 calculates therefrom on the basis of the model the angular velocity of the shaft of the internal combustion engine 1 to which the drive train 3 is connected, and the angular velocity of the driven wheels. Here, the model takes into account the set transmission ratio of the transmission. The output of the predictor 4 contains a signal representing the difference Δα MODEL of the described angular velocities.

Die Differenz ΔαMODELL entspricht der zeitlichen Veränderung der Torsion des Antriebsstrangs 3 zwischen Brennkraftmaschine 1 und angetriebenen Rädern. Um eine Torsionsschwingung möglichst wirksam zu unterdrücken, wird entsprechend einer klassischen mechanischen Dämpfung von einem PD-Glied 5 ein Dämpfungsdrehmoment MKORREKTUR entsprechend der Torsionsgröße ΔαMODELL, die die zeitlichen Veränderung der Torsion wiedergibt, errechnet. Das PD-Glied 5 entspricht einem an sich bekannten PD-Regler, wobei die Kennzahlen für den proportionalen und den differenziellen Teil in Versuchen angepasst werden. Dabei wirkt ein größerer D-Anteil stabilisierend.The difference Δα MODEL corresponds to the time variation of the torsion of the drive train 3 between the internal combustion engine 1 and driven wheels. In order to suppress a torsional vibration as effectively as possible, a damping torque M CORRECTION corresponding to the torsional variable Δα MODEL , which represents the time variation of the torsion, is calculated according to a classical mechanical damping of a PD element 5. The PD element 5 corresponds to a known PD controller, wherein the ratios for the proportional and the differential part are adapted in experiments. In this case, a larger proportion of D acts stabilizing.

Das vom PD-Glied 5 berechnete Korrektormoment MKORREKTUR wird zu einem vom Fahrer vorgegebenen Drehmoment MSOLL der Brennkraftmaschine 1 in einem Addierer 6 addiert. Das Ergebnis dieser Addition ist das Drehmoment M'SOLL, das das Eingangssignal für die Stelleinrichtung 2 und das Prädiktorglied 4 darstellt. Im Einzelnen können in diesem Kreislauf durch mehrere iterative Schritte immer weiter verbesserte Momentenvorgaben M'SOLL errechnet werden.The correction factor M CORRECTION calculated by the PD element 5 is added to a torque M SOLL of the internal combustion engine 1 given by the driver in an adder 6. The result of this addition is the torque M ' SOLL , which represents the input signal for the actuator 2 and the predictor 4. Specifically, in this cycle, more and more improved torque specifications M ' SOLL can be calculated by several iterative steps.

Die dargestellte Dämpfungseinrichtung unterdrückt insbesondere deswegen sehr wirkungsvoll Torsionsschwingungen im Antriebsstrang 3, da sie nicht wie ein Regelverfahren aufgrund von Totzeiten im Regelkreis stabilitätskritisch ist. Die Brennkraftmaschine 1 weist eine Totzeit auf, die hauptsächlich durch den Brennvorgang bedingt ist. Die Totzeit der Brennkraftmaschine 1 beträgt bei einer Drehzahl von 800 Umdrehungen pro Minute (Upm) etwa 40 ms. Die Totzeit ist indirekt proportional zur Drehzahl. Aufgrund dieser Totzeit ist eine Messung der mechanischen Antwort des Antriebsstrangs 2 und der Brennkraftmaschine 1 auf die Stellgröße m der Stelleinrichtung 2 erst nach dieser Totzeit möglich.The illustrated damping device suppresses torsional vibrations in the drive train 3 in a particularly effective manner, since it is not critical to stability as a control method due to dead times in the control loop. The internal combustion engine 1 has a dead time, which is mainly due to the burning process. The dead time of the internal combustion engine 1 is at a speed of 800 revolutions per minute (rpm) about 40 ms. The dead time is indirectly proportional to the speed. Due to this dead time, a measurement of the mechanical response of the drive train 2 and the internal combustion engine 1 to the manipulated variable m of the adjusting device 2 is possible only after this dead time.

Dagegen weist das Prädiktorglied 4 mit dem Modell des Antriebsstrangs 3 und der Brennkraftmaschine 1 im wesentlichen keine Totzeit auf. Die Zeitspanne, nach der am Signalausgang des Prädiktorglieds 4 die Antwort auf die Eingangsgröße M'SOLL bereitsteht, hängt nur von der Rechengeschwindigkeit des Prädiktorglieds 4 ab. Die Zeitspanne ist bei Einsatz üblicher mikroelektronischer Bauteile weit geringer als die Totzeit der Brennkraftmaschine 1. Daher ist eine zeitnahe Berechnung eines Korrekturmoments MKORREKTUR möglich.In contrast, the predictor member 4 with the model of the drive train 3 and the internal combustion engine 1 substantially no dead time. The period of time after which the response to the input variable M ' SOLL is ready at the signal output of the predictive element 4 depends only on the computing speed of the predictive element 4. When using conventional microelectronic components, the time span is far shorter than the dead time of the internal combustion engine 1. Therefore, a timely calculation of a correction torque M CORRECTION is possible.

Zur Überprüfung der Vorhersagequalität und zu einer eventuellen Modelladaption des Modells des Prädiktorglieds 4 wird mit einer Messeinrichtung 7 die tatsächliche zeitliche Veränderung ΔαIST der Torsion des Antriebsstrangs 3 gemessen. Die Messeinrichtung 7 umfasst einen Drehzahlsensor an der Brennkraftmaschine 1, der die Drehzahl der Brennkraftmaschine 1 misst, und Drehzahlsensoren an jedem angetriebenen Rad. Üblicherweise wird in einem Kraftfahrzeug ohnehin die Drehzahlen der Brennkraftmaschine 1 und der Räder gemessen, beispielsweise im Rahmen einer Antriebsschlupfregelung. Die Messeinrichtung 7 errechnet aus den Signalen der einzelnen Drehzahlsensoren die zeitliche Veränderung ΔαIST der Torsion des Antriebsstrangs 2. Um diese gemessene zeitliche Veränderung ΔαIST der Torsion des Antriebsstrangs 3 mit der errechneten zeitlichen Veränderung ΔαMODELL vergleichen zu können, ist es notwendig, die berechnete Zustandsgröße ΔαMODELL mit einem Totzeitglied 8 zeitlich zu verschieben. In einer Vergleichereinheit 9 wird die mit dem Totzeitglied 8 und dem Prädiktorglied 4 errechnete zeitliche Veränderung Δα'MODELL der Torsion des Antriebsstrangs 3 mit der gemessenen zeitlichen Veränderung ΔαIST der Torsion des Antriebsstrangs 3 verglichen. Das Ergebnis dieses Vergleichs stellt den Fehler der Vorhersage des Prädiktorglieds 4 dar. Der Fehler dient als Eingangsgröße für eine Adaptionseinheit 10, die die Aufgabe hat, das Modell des Prädiktorglieds 4 zu adaptieren. Dies geschieht durch Parameteranpassung, beispielsweise der Feder- und Dämpfungskonstanten des Zwei-Massen-Schwinger-Modells. Dadurch ist gewährleistet, dass das Prädiktorglied 4 auch bei veränderten mechanischen Eigenschaften der Brennkraftmaschine 1 und des Antriebsstrangs 3 weiterhin richtig die Antwort des Antriebsstrangs 3 auf ein Antriebsmoment M'SOLL vorhersagt.To verify the predictive quality and to a possible model adaptation of the model of the predictor 4, the actual time change Δα IST the torsion of the drive train 3 is measured with a measuring device 7. The measuring device 7 comprises a rotational speed sensor on the internal combustion engine 1, which measures the rotational speed of the internal combustion engine 1, and rotational speed sensors on each driven wheel. Usually, in a motor vehicle, the rotational speeds of the internal combustion engine 1 and the wheels are measured anyway, for example in the context of traction control. The measuring device 7 calculates from the signals of the individual speed sensors, the time change Δα IST the torsion of the drive train 2. To this measured change in time Δα IST the torsion of the drive train 3 with the calculated To be able to compare temporal variation Δα MODEL , it is necessary to temporally shift the calculated state variable Δα MODEL with a dead time element 8. In a comparator unit 9, the time change Δα ' MODEL of the torsion of the drive train 3 calculated with the dead time element 8 and the predictive element 4 is compared with the measured time change Δα IST of the torsion of the drive train 3. The result of this comparison represents the error of the prediction of the predictive element 4. The error serves as an input variable for an adaptation unit 10, which has the task of adapting the model of the predictive element 4. This is done by parameter adjustment, for example, the spring and damping constants of the two-mass oscillator model. This ensures that the predictive element 4 continues to correctly predict the response of the drive train 3 to a drive torque M ' SOLL, even if the mechanical properties of the internal combustion engine 1 and of the drive train 3 are changed.

In Figur 2 ist ein erfindungsgemäßes Dämpfungsverfahren dargestellt. Es beginnt mit der Vorgabe eines gewünschten Motorantriebsmoments MSOLL durch den Fahrer. Im nächsten Schritt wird die mechanische Antwort des Antriebsstrangs und der Brennkraftmaschine auf das gewünschte Motorantriebsmoment MSOLL berechnet. Das Ergebnis ist die Zustandsgröße ΔαMODELL, die die zeitliche Veränderung der Torsion des Antriebsstrangs darstellt. Hierbei wird die Torsion des Antriebsstrangs zwischen der Brennkraftmaschine und den angetriebenen Rädern berechnet.FIG. 2 shows a damping method according to the invention. It begins with the specification of a desired motor drive torque M SOLL by the driver. In the next step, the mechanical response of the powertrain and the engine to the desired engine drive torque M SOLL is calculated. The result is the state quantity Δα MODEL , which represents the temporal variation of the driveline torsion. In this case, the torsion of the drive train between the internal combustion engine and the driven wheels is calculated.

Im nächsten Schritt wird ein Korrekturmoment MKORREKTUR berechnet, das durch einfache Multiplikation der Zustandsgröße ΔαMODELL mit einer Konstanten P berechnet wird. Da die Zustandsgröße ΔαMODELL die zeitliche Veränderung der Torsion des Antriebsstrangs darstellt, entspricht MKORREKTUR einem mechanischen Dämpfungsmoment.In the next step, a correction torque M CORRECTION is calculated, which is calculated by simply multiplying the state variable Δα MODEL by a constant P. Since the state variable Δα MODEL represents the temporal change of the torsion of the drive train, M CORRECTION corresponds to a mechanical damping torque .

Danach wird durch eine Addition des Korrekturmoments MKORREKTUR und des vorgegebenen Moments MSOLL die Eingangsgröße M' SOLL für die Ermittlung der zugeführten Kraftstoffmenge berechnet. Die Stelleinrichtung der Brennkraftmaschine wird dementsprechend mit M'SOLL im nächsten Schritt angesteuert.Then, by adding the correction torque M CORRECTION and the predetermined torque M SOLL, the input quantity M ' TARGET is calculated for determining the amount of fuel supplied. The adjusting device of the internal combustion engine is accordingly controlled with M ' SOLL in the next step.

Nachfolgend wird auf der Grundlage des Ansteuerdrehmoments M'SOLL die Zustandsgröße ΔαMODELL neu berechnet. In diesem Schritt wird dementsprechend eine Vorhersage über die zukünftige tatsächliche Antwort des Systems bestehend aus Brennkraftmaschine und Antriebsstrang auf die Ansteuerung mit M'SOLL gemacht.Subsequently, the state quantity Δα MODEL is recalculated on the basis of the drive torque M ' SOLL . In this step, accordingly, a prediction is made about the future actual response of the system consisting of the internal combustion engine and the drive train to the drive with M ' TARGET .

Anschließend wird an der berechneten Zustandsgröße eine Totzeit simuliert, die der tatsächlichen Totzeit der Brennkraftmaschine entspricht. Das Ergebnis dieser Simulation ist eine totzeitbehaftete Zustandsgröße Δα'MODELL, die der tatsächlichen zeitlichen Veränderung der Torsion des Antriebsstrangs entspricht, falls die Zustandsgröße richtig vorhergesagt wurde.Subsequently, a dead time is simulated to the calculated state variable, which corresponds to the actual dead time of the internal combustion engine. The result of this simulation is a dead-time state quantity Δα ' MODEL , which corresponds to the actual time change of the driveline torsion, if the state quantity was correctly predicted.

Um diese Vorhersage zu überprüfen, wird im nächsten Schritt die tatsächliche zeitliche Veränderung der Torsion des Antriebsstrangs ΔαIST gemessen. Falls sich beim anschließenden Vergleich der gemessenen mit der vorausberechneten Größe herausstellt, dass die Vorhersage falsch ist, so wird eine Parameteranpassung des Modells vorgenommen.In order to check this prediction, the next step is to measure the actual time change of the driveline torsion Δα IST . If, in the subsequent comparison of the measured and the predicted size, it turns out that the prediction is wrong, a parameter adaptation of the model is made.

Nach der Parameteranpassung oder direkt nach dem Vergleich, falls der Vergleich ergeben hat, dass die Vorhersage richtig war, wird überprüft, ob die Brennkraftmaschine abgestellt werden soll. Falls dies nicht der Fall ist, springt das Verfahren zum ersten Schritt zurück, und fragt ein neues Wunschmoment MSOLL des Fahrers ab. Ansonsten wird die Brennkraftmaschine abgestellt und das Verfahren beendet.After the parameter adjustment or immediately after the comparison, if the comparison has shown that the prediction was correct, it is checked whether the internal combustion engine should be turned off. If this is not the case, the method returns to the first step and polls a new desired torque M SOLL of the driver. Otherwise, the internal combustion engine is turned off and the process is terminated.

Die Erfindung ist nicht auf das vorgehend beschriebene Ausführungsbeispiel und das beschriebene Verfahren beschränkt.The invention is not limited to the embodiment described above and the method described.

Claims (18)

  1. Damping device for suppressing torsional oscillations in a drivetrain (3) of an internal combustion engine (1), with
    - a device (4) for determining a mechanical state variable (ΔαMODEL) reproducing the torsion of the drivetrain (3), whereby the determining device (4) has a predictor element (4) that contains a model of the drivetrain (3) and/or the internal combustion engine (1) and determines the mechanical state variable (ΔαMODEL) as a response of the drivetrain (3) and/or the internal combustion engine (1) to the control variable (m) on the basis of the model.
    - an actuator (2) for controlling the internal combustion engine (1) with the control variable (m),
    - a transmission element (5) that is connected on the input side to the predictor element (4) and on the output side to the actuator (2) to influence the control variable (m) on the basis of the mechanical state variable (ΔαMODEL) determined with the model such that the excitation of torsional oscillations is already suppressed,
    - characterized in that the model contained in the predictor element (4) is essentially free from idle time, whereas the internal combustion engine (1) and/or the drivetrain have an idle time (tIDLE) and/or a measuring device (7) for a measured state variable (ΔαACTUAL),
    characterized further in that
    - an idle time element (8) connected on the input side with the predictor element (4) for simulating the idle time (tIDLE) of the internal combustion engine (1) and/or the drivetrain (3) and/or a measuring device (7) for a measured state variable (ΔαACTUAL) and for output of a calculated idle-time affected state variable (Δα'MODEL),
    - a comparator (9) connected on the input side to the idle time element (8) and the measuring device (7) to compare the measured state variable (ΔαACTUAL) with the calculated, idle time-affected state variable (Δα'MODEL) and
    - an adaptation unit (10) connected on the input side to the output of the comparator (9) and on the output side to the predictor element (4) to adapt the predictor element (4) as a function of the comparison
  2. Damping device according to claim 1,
    characterized in that
    the transmission element (5) features a P-element or a PD-element (5).
  3. Damping device according to one of the claims 1 or 2,
    characterized by
    a measuring device (7) for measuring the state variable (ΔαACTUAL) of the drivetrain (3).
  4. Damping device according to one of the claims 1 to 3,
    characterized in that
    the measuring device (7) is idle time-affected.
  5. Damping device according to one of the claims 1 to 4,
    characterized in that
    the idle time element (8) is provided to simulate the idle time (tIDLE) of the measuring device (7).
  6. Damping device according to one of the claims 1 to 5,
    characterized by
    a brake signal input to record a brake signal, in which case the torsional oscillations are suppressed as a function of the brake signal.
  7. Damping device according to one of the claims 1 to 6,
    characterized by
    a gas pedal signal input to record a gas pedal signal in which case the torsional oscillations are suppressed as a function of the gas pedal signal.
  8. Engine control with a damping device according to one of the claims 1 to 7.
  9. Damping method to suppress torsional oscillations in the drivetrain (3) of an internal combustion engine (1) that has the following steps:
    - Determining a mechanical state variable (ΔαMODEL) representing the torsion of the drivetrain (3) as a response to the control variable (m) on the basis of a model of the drivetrain (3) and/or the internal combustion engine (1),
    - Activating the internal combustion engine (1) with the control variable (m) as a function of the mechanical state variable determined (ΔαMODEL),
    - Measuring a state variable (ΔαACTUAL) of the drivetrain (3), whereby the internal combustion engine (1) and/or the drivetrain (3) feature an idle time (tIDLE) of the internal combustion engine (1) and/or of the drivetrain (3), and/or a measuring device (7) for a measured state variable (ΔαACTUAL),
    - Calculating an idle-time affected state variable (Δα'MODEL),
    - Comparing the measured state variable (ΔαACTUAL) with the calculated idle-time affected state variable (Δα'MODEL), and
    - Adaptation of the model of the drivetrain (3) and/or the internal combustion engine depending on the comparison.
  10. Damping method according to claim 9,
    characterized by the following steps
    - Determining the rpm of the internal combustion engine (1)
    - Repeatedly determining the mechanical state variable (ΔαMODEL) at a given interval, in which case the interval is determined as a function of the rpm of the internal combustion engine (1).
  11. Damping method according to one of the claims 9 or 10,
    characterized in that
    the mechanical state variable (ΔαMODEL) is determined before each injection process.
  12. Damping method according to one of the claims 9 to 11,
    characterized in that
    the control variable (m) is changed with a proportional dependence on the determined state variable (ΔαMODEL).
  13. Damping method according to one of the claims 9 to 12,
    characterized in that
    the control variable (m) is changed as a function of the change in the determined state variable (ΔαMODEL) over time.
  14. Damping method according to one of the claims 9 to 13,
    characterized in that
    the measured state variable (ΔαACTUAL) of the drivetrain (3) is measured with an idle time-affected measuring device (7) and simulates the idle time of the measuring device.
  15. Damping method according to one of the claims 9 to 14,
    characterized in that
    the idle time (tIDLE) is simulated as a function of the rpm of the internal combustion engine (1).
  16. Damping method according to one of the claims 9 to 15,
    characterized in that
    the torsional oscillations are suppressed as a function of a brake intervention in the drivetrain (3).
  17. Damping method according to one of the claims 9 to 16,
    characterized by
    the following step:
    Disconnecting the suppression of the torsional oscillations in the case of a brake intervention in the drivetrain (3).
  18. Damping method according to one of the claims 13 to 17,
    characterized by
    a code of the proportional dependence of the control variable (m) on the determined mechanical state variable (ΔαMODEL) and/or on the change in the mechanical state variable determined (ΔαMODEL) over time is changed as a function of the change in the gas pedal signal over time.
EP04105189A 2003-11-07 2004-10-20 Damping device and method for the suppression of torsional vibrations in a drivetrain Active EP1529947B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10351958A DE10351958A1 (en) 2003-11-07 2003-11-07 Damping device and damping method for suppressing torsional vibrations in a drive train
DE10351958 2003-11-07

Publications (2)

Publication Number Publication Date
EP1529947A1 EP1529947A1 (en) 2005-05-11
EP1529947B1 true EP1529947B1 (en) 2006-12-06

Family

ID=34428592

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04105189A Active EP1529947B1 (en) 2003-11-07 2004-10-20 Damping device and method for the suppression of torsional vibrations in a drivetrain

Country Status (3)

Country Link
US (1) US7460944B2 (en)
EP (1) EP1529947B1 (en)
DE (2) DE10351958A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10351957B4 (en) * 2003-11-07 2007-07-26 Siemens Ag Damping system with a LOLIMOT model against drive train vibrations
FR2867111B1 (en) * 2004-03-05 2006-04-28 Renault Sas METHOD AND DEVICE FOR MONITORING THE AMORTIZATION OF OSCILLATING MODES OF AN INFINITELY VARIABLE TRANSMISSION WITH ELECTRIC VARIATOR
US8175779B2 (en) 2006-02-23 2012-05-08 Toyota Jidosha Kabushiki Kaisha Vehicle driving force control apparatus and method
JP4297119B2 (en) * 2006-02-23 2009-07-15 トヨタ自動車株式会社 Vehicle driving force control device
JP4998521B2 (en) * 2009-06-19 2012-08-15 株式会社デンソー Learning device
SE537116C2 (en) * 2011-02-23 2015-01-20 Scania Cv Ab Attenuation of driftline oscillations
DE102014003635B3 (en) * 2014-03-14 2015-07-02 Audi Ag Method for controlling a start-up procedure
FR3090546B1 (en) * 2018-12-21 2020-12-18 Psa Automobiles Sa OSCILLATION DAMPING CONTROL SYSTEM IN A THERMAL MOTOR DRIVE CHAIN
JP7384144B2 (en) * 2020-11-13 2023-11-21 トヨタ自動車株式会社 Drive source control device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68915426T2 (en) * 1989-02-17 1994-09-01 Bosch Gmbh Robert Vibration damping in a powertrain with a dual mass flywheel.
GB2262818B (en) * 1991-12-24 1995-06-21 Ricardo International Plc Oscillation reduction
EP0835190A1 (en) * 1996-04-29 1998-04-15 Robert Bosch Gmbh Process and device for setting a driving torque
MY120052A (en) * 1997-09-17 2005-08-30 Honda Motor Co Ltd Lock-up control device
JP3405163B2 (en) * 1997-12-17 2003-05-12 トヨタ自動車株式会社 Fuel injection amount control device for internal combustion engine
JPH11324770A (en) * 1998-05-14 1999-11-26 Mitsubishi Electric Corp Fuel injection device
US6202630B1 (en) * 1999-07-13 2001-03-20 Daimlerchrysler Corporation Open throttle torque control
DE10025586C2 (en) * 2000-05-24 2003-02-13 Siemens Ag Drive train for a motor vehicle
US6678605B2 (en) * 2001-05-25 2004-01-13 Mazda Motor Corporation Control system for internal combustion engine
US6675087B2 (en) * 2001-08-08 2004-01-06 Ford Global Technologies, Llc Method and system for scheduling optimal compression ratio of an internal combustion engine

Also Published As

Publication number Publication date
DE10351958A1 (en) 2005-06-16
DE502004002229D1 (en) 2007-01-18
US20050182545A1 (en) 2005-08-18
EP1529947A1 (en) 2005-05-11
US7460944B2 (en) 2008-12-02

Similar Documents

Publication Publication Date Title
EP2660118B1 (en) Device for detecting unwanted drive train reactions of a motor vehicle having at least one drive unit
EP2379390B1 (en) Method and device for operating a hybrid vehicle
DE112009002475B4 (en) VEHICLE VEHICLE VEHICLE CONTROL DEVICE AND VEHICLE ON WHICH THE VIBRATION CONTROL DEVICE IS MOUNTED
DE69822418T2 (en) Fuel injection control device for an internal combustion engine
WO2003019029A1 (en) Method and system for control of an automatic friction clutch arranged between an engine and a gearbox on a motor vehicle
DE102015116262A1 (en) Method and device for operating a drive system for a motor vehicle with an acceleration monitoring
DE3404156A1 (en) DEVICE FOR AUTOMATICALLY OPERATING A CLUTCH OF VEHICLES DURING THE START-UP
EP2328788B1 (en) Method and device for operating a hybrid drive device during the starting of an internal combustion engine
DE102010000108A1 (en) Acceleration control device for a vehicle
EP1529947B1 (en) Damping device and method for the suppression of torsional vibrations in a drivetrain
EP1959151A2 (en) Method and device for recognising whether a coupling in a motor vehicle power train is open or closed
EP1613852B1 (en) Method for operating an internal combustion engine comprising torque monitoring
WO2008040282A1 (en) Drive train
EP1936165B1 (en) Method and control device for dampening the shock when opening the torque converter coupling
EP3994025B1 (en) Method and device for operating a drive assembly of a motor vehicle, drive assembly
DE19756844B4 (en) Hydraulic control device of an automatic transmission
EP1529946B1 (en) System using a lolimot-model for damping drive train vibrations
DE19849841A1 (en) Determining slip in clutch arranged in driving line between engine and gearbox
DE102005039758A1 (en) Method for operating motor vehicle internal combustion (IC) engine, involves measuring disturbance torque of engine, then determining servo torque for engine control based on disturbance and target torques
DE102009050387A1 (en) System for determining torsion angle- change of drive strand of vehicle, has evaluation device for determining change of torsion angle of drive strand by comparative evaluation of detected driving speed and wheel speed dependent parameters
DE112007003032B4 (en) powertrain
DE102011004127B4 (en) Calculating a speed signal in a motor vehicle
DE19806393A1 (en) Control method for automobile drive unit for reducing drive train vibration
DE19509394A1 (en) Regulation of the operating behavior of an internal combustion engine, in particular a diesel engine, of a motor vehicle
DE102015212240A1 (en) Active vibration damping in a drive train

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20050606

17Q First examination report despatched

Effective date: 20050630

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20061206

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004002229

Country of ref document: DE

Date of ref document: 20070118

Kind code of ref document: P

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20061206

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081014

Year of fee payment: 5

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181031

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004002229

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501