EP1529928B1 - Environmentally friendly compressed gas driven rotating piston engine with its thermodynamic cycle process - Google Patents

Environmentally friendly compressed gas driven rotating piston engine with its thermodynamic cycle process Download PDF

Info

Publication number
EP1529928B1
EP1529928B1 EP04090285A EP04090285A EP1529928B1 EP 1529928 B1 EP1529928 B1 EP 1529928B1 EP 04090285 A EP04090285 A EP 04090285A EP 04090285 A EP04090285 A EP 04090285A EP 1529928 B1 EP1529928 B1 EP 1529928B1
Authority
EP
European Patent Office
Prior art keywords
pressure
working medium
unit
pressurized
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04090285A
Other languages
German (de)
French (fr)
Other versions
EP1529928A1 (en
Inventor
Klaus Herrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to PL04090285T priority Critical patent/PL1529928T3/en
Publication of EP1529928A1 publication Critical patent/EP1529928A1/en
Application granted granted Critical
Publication of EP1529928B1 publication Critical patent/EP1529928B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether

Definitions

  • the invention relates to a cold air engine system with a pressurized gas piston engine for operating stationary or mobile power machines and pneumatic tools and devices by means of compressed gas, is stored in a circulatory process in a cold-insulated tank in the cold liquid state, the environmental heat on the evaporation of the working medium in Tank generates a gas pressure and the liquid working fluid passed into an evaporator and out of this in the gaseous state for further heating in an expander unit with a firing unit and the gaseous working fluid flows countercurrently through the first recuperator of the firing unit and then cools the outer walls of the heater of the expander unit, expended from the expander unit working fluid expands into an engine and excess working fluid is discharged from the engine via an exhaust and Schalldämpfefread in the environment.
  • compressed air As a working medium for the operation of pneumatic tools and equipment and for power machines.
  • compressed air and compressed gas engines known as rotary piston engines, gear motors, screw motors, vane motors and air turbines.
  • the compressed air technology is considered to be very robust, reliable and compact.
  • the compressed air and gas engines characterized by the low density of air and gases, characterized by a very good quick start behavior.
  • the continuous and unlimited availability of the working media air and gas from the atmosphere and their storability make the compressed air storage technology interesting for applications for the storage of regenerative energies.
  • compressed air storage are known, which supply a compressed air fluid to a turbine that generates electricity via a generator.
  • a vehicle drive which relates its working fluid from a memory for compressed air and drives passenger cars. Its radius of action should amount to about 200 km, whereby 300 l of compressed air at 300 bar are required. To improve the range of action is provided to equip the motor vehicle additionally with a gasoline tank to allow outside the cities by the driver switching from compressed air drive to conventional drive to reduce emissions in densely populated areas of motor vehicles with internal combustion engines considerably. Disadvantage of this vehicle drive is the high power requirement for the generation of compressed air storage mass of up to 65kw for 200 km of driving distance. In addition, expensive engine technology is required to cope with the explosion (combustion heat) and expansion (cold) of the compressed air and to ensure sufficient service life for the engine.
  • An evaporator receives working medium through a combustion unit of state-of-the-art fuel and condensing technology. In a low-emission combustion, the water evaporates, is converted into hot gas and drives a reciprocating engine with a crankshaft gearbox. The steam is liquefied again via a condenser and returned to the circuit.
  • a working medium natural gas, gasoline, diesel, or biodiesel can be used.
  • a disadvantage is the high Exergielag in the evaporation of working fluid and fuel medium and the energy required for the crankshaft of the engine with two dead centers per operation.
  • the prior art is also associated with the fuel cell technology.
  • This technique requires hydrogen as the working medium.
  • This is produced on the one hand from fossil fuels and on the other hand from methanol.
  • the exhaust product is water gas.
  • Disadvantages of this combustion process is that hydrogen is explosive and consumes a lot of primary energy.
  • the production of hydrogen from fossil fuels causes environmental pollution and the production of methanol uses a lot of biomass.
  • the exhaust gas product water gas is a greenhouse gas and has a lasting negative impact on the environmental climate. All regenerative energy converters have the great disadvantage that the energy conversion subject to large fluctuations, which result from the natural conditions. Wind power plants and fossil power plants, for example, must to a great extent use the energy generated as control energy. If this is not possible, the energy actually absorbed or converted will be released unused into the environment.
  • DE 201 15 657 U1 will be the same system as in the DE 199 11 321 A1 disclosed with an additional electrical and mechanical heat source as an energy converter.
  • the working medium is liquid air or nitrogen.
  • a disadvantage of this solution is the high consumption of liquid air or nitrogen.
  • a reduction of consumption by an additional heat source is consumed by the energy required to produce the working media again.
  • the DE 202 14 238 V1 discloses a solution that delivers 100% of the used working fluid into the engine. Although the solution in the form of an open circuit requires less technical effort, but for a significant tank volume and a lot of electrical energy for the production of liquid air or nitrogen.
  • the invention discloses a force system comprising a thermally insulated storage container, the liquid working fluid stores, for example, liquid nitrogen, the liquid medium is to be pumped by means of a feed pump in the working cycle but first in one or more evaporators and converted there into a gaseous working medium, via a or several heat exchangers, the working fluid should be heated to at least 200 ° C above the critical temperature, passed into a heat storage and further heated.
  • the solution also provides to produce in the heat storage of salts or salt mixtures by heating and liquefaction working medium. The heating should be done from the heat of exhaust gases or by electric energy.
  • the working medium produced from renewable and regenerative energy sources should be generated outside of a cylinder chamber, temporarily stored in the liquid and gaseous state and be immediately retrievable and can be used in a closed and partially closed cycle process.
  • the structural design of the working piston of the engine according to the invention is particularly noteworthy.
  • the hemispherical and vertically divided working piston which have a double working surface for the working medium on the expansion side and whose hemisphere shape adapts to the shape of the spherical pressure distributor, namely the result that the working surface of the working piston again by 1.5 times a plan to enlarge workspace.
  • the piston pairs according to the invention are, according to claim 4, are advantageously held together with a plurality of permanent or electromagnets until the lava pressure is reached in the diffuser unit.
  • the pairs of pistons fly apart in a circular path and the magnets pull together the pairs of pistons after the displacement stroke.
  • the pressure storage vessel via a first expansion and volume unit with the mixed cooling of the expansion unit, via the third pressure-controlled line with the expander unit, via a second clutch and the first compressor with. a mechanical drive part and is connected via a fourth line to the third compressor, whereby all converted into working medium excessively generated mechanical, thermal and kinetic energy in the accumulator between storage and are retrievable from this in the working cycle.
  • the mechanical drive part By the construction of the mechanical drive part, according to claim 6, with a freewheel flywheel, a clutch with a first gear and at least one coil spring which mechanically drives the first compressor via a second clutch and the first compressor and a first clutch and a motor, be operated by the freewheel the pressurized gas piston engine without idling and assigns a direction of rotation oscillating piston pairs working direction, all occurring during a delay momentarily occurring moments of inertia from mechanical to thermal and potential energies are converted via the working cycle the pressurized gas piston engine as a working fluid and from this again converted into useful energy.
  • the coil spring stores and converts potential energy into rotary motion.
  • gaseous working fluid via the expansion unit, the third volume control valve and a subsequent expansion valve in a mixed cooling an air conditioning unit is passed, the pressure equalization by the Druck arrivedkessesl or the tank can be produced and the second expansion and volume unit Rooms are air-conditioned, without the pressure gas piston engine must work.
  • system can be connected in accordance with claim 9 by the expander unit via a first volume-controlled controlled system with a heating unit through the rooms, such as the passenger compartment of a motor vehicle, are heated without the pressurized gas piston engine must work.
  • the coupling of the cold air engine system with a photovoltaic system comprising a first inverter, a battery and a second inverter, via the motor and the third compressor, via the second pressure-controlled system with a gas liquefaction, comprising a third recuperator, a fourth recuperator, a second expansion valve, a first return line and a second return line.
  • a gas liquefaction comprising a third recuperator, a fourth recuperator, a second expansion valve, a first return line and a second return line.
  • the third compressor is to be driven via the first clutch and the second clutch, whereby gaseous working fluid can be liquefied with regenerative energy sources, storable in storages and supplied to the compressed-gas piston engine by which energy forms such as electric energy, heat, cold, fuel and mechanical energy can be generated ,
  • the Kalt Kunststoffmototsystem process in the partially closed working cycle working medium such as air and nitrogen.
  • working medium such as air and nitrogen.
  • gases and vapors such as helium, carbon dioxide, water, ammonia, alcohols and organic refrigerants
  • Fig.1 is a device according to the invention for operating a preferably mobile pressure gas piston engine, such as a motor vehicle, represented by means of compressed gas.
  • the device has, for example, a cold-insulated tank 1, a first volume control valve 2, an evaporator 3, an expansion unit 4, a second full-volume control valve 5, a pressure relief valve 6, a first pressure control valve 7, a second pressure control valve 8, a first expansion valve 9, a first conduit 10 , a first compressor 11, a third pressure regulating valve 12, and a fourth pressure regulating valve 13, a compressed gas storage boiler 14, first and second recuperators 15 and 16, an expander unit 17, a second conduit 18, a first diffuser 19, a first pressure distributor 20, a Fuel unit 21, a pressure control unit 22, a volume control unit 23, a pulse unit 24, a second pressure distributor 25, a second and third diffuser 26, a third spherical pressure distributor 27, an engine cylinder 28, at least one pair of pistons 29 and 30, motor shafts 31, 32, magnets 33rd , a pressurized gas piston
  • the working fluid is added before being fed into the working cycle, according to Fig.2 stored in the cold-insulated tank 1 in the cold, liquid state.
  • Working medium for example LPG
  • the evaporator 3 is system-tightly integrated in the expansion unit 4 and serves to convert the liquefied gas into pressurized gas.
  • gaseous working fluid is adjusted via the first expansion valve 9 and the second pressure control valve 8 and via the first line 10, which is preferably a suction line, led to the compressor 11.
  • a controlled forced flow in the form of compression shocks is possible, whereby the working pressure and the operating temperature of the gaseous working medium continue to increase and the, about the firing unit 21 and the heater of the expander unit 17, heated working fluid expands by a multiple of its volume.
  • the pressure control unit 22, the volume control unit 23 and the pulse unit 24 are connected to the second pressure distributor 25 and the second and third diffusers 26, which are directly opposed to the expansion chambers of the engine 34, preferably a rotary piston engine.
  • the gaseous working medium is conducted from the second pressure distributor 25 via the second and third diffusers 26 into the third spherical pressure distributor 27, which is fixedly connected to the engine cylinder 28.
  • the impulse countercurrent of the compressed gas via the third spherical pressure distributor 27 is a compression shock in the amount of 1.3 2 times the kinetic, the thermal and potential energy of the working pressure of the second and third diffuser 26 generates.
  • a pair of rotary pistons 29, 30 is fixedly connected to the motor shafts 31 and 32.
  • the motor shafts run gas-tight under the third spherical pressure distributor 27 and, together with the pair of pistons 29, 30, absorb the expansion energy of the pressure distributor 27.
  • the entire energy absorbed by the piston pair 29, 30 of the working medium compressed gas is now converted into mechanical energy with a large lever arm and without dead center.
  • pair of pistons 29, 30, is preferably a pair of rotary piston and divided centrally and vertically.
  • the piston pair 29, 30 has by this division over two Work surfaces, one expansion surface and one displacement surface, resulting in a total of a double working surface is available, which can be enlarged by 1.5 times on both sides by the displacement process during expansion.
  • the pressurized gas piston motor 34 is also equipped with a plurality of permanent magnets 33. After each compression stroke of the spherical pressure distributor 27 until reaching the lava pressure of the second and third diffuser 26 and the circular divergence, the pair of pistons 29, 30 contracted again firmly after the displacement process.
  • the expansion chamber of the Druckluftnikbenmotors 34 with the parallel on the motor shafts 31, 32 running piston pair 29, 30 is connected via the first nozzle 36 to the second compressor 37.
  • the working medium is pushed by the piston pair 29, 30 of the pressure gas piston motor 34 on the suction side of the second compressor 37 and pushed over the first nozzle 36 in the second compressor 37 and pressed via the first nozzle 36 in the second compressor 37.
  • Fig.2 is biased in the second compressor 37, the excess working medium from the pneumatic circuit piston motor 34 again and pushed through the second nozzle 39 into the mixing cooling the expansion unit 4, from which it is directly conveyed in the circulation process, or via the first expansion and volume unit 45 in the compressed gas storage vessel 14 stored and returned from there into the circulation process.
  • To the air piston engine 34 is, after Figure 3 , also connected to the exhaust and muffler unit 35, on the first part of the working medium, which reaches the air piston engine 34 with a pressure above 2 bar, is discharged at a temperature of about 7 ° C and without pollutants into the environment.
  • excess accumulating working fluid can, after Fig.2 and Figure 3 in that the heating unit 41 is supplied from the expander unit 17 via the first controlled system 42, wherein the cooled working medium returned from the heating unit 41 can be returned to the expansion unit 4. Also excess working fluid from the expander unit 17 via the third line 46 in the compressed gas storage tank 14 and from this for reuse in the circulation process can be conducted. Excess working fluid from the evaporator 3 of the expansion unit 4th can also be passed through the third valve 43 and another expansion valve in the air conditioning unit 44, from where the working fluid can air-condition a room. In the air conditioning unit 44 excess accumulating working fluid is traceable in the Kreisslaufprozeß.
  • the device according to the invention can, after Figure 3 to be supplied with working medium.
  • the fuel unit 21 by means of the control circuit 40, with a controlled and controlled oxidation of biomass and a pollution-free combustion is feasible to supply in addition oxygen-enriched, preheated working medium.
  • the inventive device When empty expansion unit 4, the inventive device, according to Fig.1 , Further, via a unit 68, which is formed from a compressed air filter and a suction line, sucking air from the atmosphere, pass through the first line 10 and the first compressor 11 in the compressed air storage tank 14, there removed in a separator 69 of water and pollutants be supplied as a gaseous working medium via a first expansion and volume control unit 45 of the expansion unit 4 and thus the circulation process.
  • the photovoltaic system has, for example, a third compressor 47, a pressure-controlled second controlled system 48, a third recuperator 49, a fourth recuperator 50, a second expansion valve 51, a first return line 52, a second return line 53, a pressure-controlled fifth line 54, a first inverter 55, a second inverter 57, a battery 56, a motor 58 and a mechanical clutch 59 on.
  • the inventive device can produce working medium.
  • liquid gas can also be produced from night stream or from a fuel cell, for example during the life of a motor vehicle in the garage.
  • the first inverter 55 is fed from one of the regenerative power sources. In the battery 56, the energy is stored chemically and regulated from there via the second inverter 57.
  • the motor 58 drives the third compressor 47. Via the first mechanical clutch 59, the engine can also drive the first compressor 11.
  • the working medium is, after Fig.1 and Fig.2 in the third compressor 47 pre-cooled by the atmosphere.
  • the still very warm working fluid with a temperature of 340 K can therefore be further pre-cooled, for example, by the cooling water of the heating unit 41, passed through the fourth Recuperator 50 and further cooled by the first return line 52 to about 110 K.
  • the thus cooled working fluid is partially liquefied via the second expansion valve 51 and passed into the tank 1.
  • the excess of cold working fluid via the second return line 53, a third non-return valve, the second pressure control valve driven the first expansion valve 9 regulated in the expansion unit 4.
  • a mechanical drive part 61 can be seen, which is connected to the engine 34.
  • the mechanical drive part 61 preferably has a freewheel 62, a flywheel 63, a mechanical energy conversion unit 65 with a clutch 64, a first transmission and one or more coil spring, a second transmission 66 and a third change gear 67.
  • the flywheel 63 is then directly connected to the energy conversion unit 65 and thus to the first gear and the coil spring.
  • the coil spring potential energy is stored and converted via the second gear 66 in rotary motion and thus in locomotion.
  • a further mechanical clutch 60 is arranged.
  • the device according to the invention can process helium, carbon dioxide, water, ammonia, alcohols, environmentally friendly organic refrigerants and hydrocarbons by oxidizing biomass as the working medium.
  • the engine 34 is closed via the exhaust and muffler unit 35 and the expansion unit 4 is set from mixed cooling to two separate systems. So one of the listed working media can be used in a closed cycle process. The use of air and nitrogen as a working medium is only possible as an open cycle process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Saccharide Compounds (AREA)

Abstract

Compressed gas planetary piston engine (34) uses an energy carrier which is stored in the cold state before being injected into the operating cycle in a cold-insulated tank (1). The ambient heat produces a gas pressure in the tank via vaporization of the working medium and regulated as operating pressure via a control unit (8). Preferred Features: The working pistons are divided and consist of piston pairs (29, 30). The piston pairs have a semi-circular shape. Permanent magnets or electromagnets (33) together until the Laval pressure in a diffuser unit (26) is reached. The magnets pull the piston pairs back together during a push stroke.

Description

Die Erfindung betrifft ein Kaltluftmotorsystem mit einem Druckgaskreiskolbenmotor, zum Betreiben von stationären oder mobilen Kraftmaschinen sowie von Druckluftwerkzeugen und -geräten mittels Druckgas, bei dem in einem Kreislaufprozeß in einem kälteisolierten Tank im kalten flüssigen Zustand gespeichert wird, wobei die Umweltwärme über die Verdampfung des Arbeitsmediums im Tank einen Gasdruck erzeugt und das flüssige Arbeitsmedium in einen Verdampfer geleitet und aus diesem im gasförmigen Zustand zur weiteren Erwärmung in eine Expandereinheit mit einer Brenneinheit geführt und das gasförmige Arbeitsmedium im Gegenstrom den ersten Rekuperator der Brenneinheit durchströmt und danach die Außenwände des Erhitzers der Expandereinheit abkühlt, das aus der Expandereinheit austretende Arbeitsmedium in einen Motor expandiert und überschüssiges Arbeitsmedium aus dem Motor über eine Abgas- und Schalldämpfefeinheit in die Umwelt ausgestoßen wird.The invention relates to a cold air engine system with a pressurized gas piston engine for operating stationary or mobile power machines and pneumatic tools and devices by means of compressed gas, is stored in a circulatory process in a cold-insulated tank in the cold liquid state, the environmental heat on the evaporation of the working medium in Tank generates a gas pressure and the liquid working fluid passed into an evaporator and out of this in the gaseous state for further heating in an expander unit with a firing unit and the gaseous working fluid flows countercurrently through the first recuperator of the firing unit and then cools the outer walls of the heater of the expander unit, expended from the expander unit working fluid expands into an engine and excess working fluid is discharged from the engine via an exhaust and Schalldämpfefeinheit in the environment.

Es ist bekannt, verdichtete Luft als Arbeitsmedium zum Betrieb von Druckluftwerkzeugen und -geräten sowie für Kraftmaschinen zu benutzen. So gibt es Druckluft- und Druckgasmotoren, die unter der Bezeichnung Rotationskolbenmotoren, Zahnradmotoren, Schraubenmotoren, Flügelzellenmotoren und Druckluftturbinen bekannt sind. Die Drucklufttechnik gilt als sehr robust, zuverlässig und kompakt. Auch zeichnen sich die Druckluft- und -gasantriebe, bedingt durch die geringe Dichte von Luft und Gasen, durch ein sehr gutes Schnellstartverhalten aus. Die kontinuierliche und unbegrenzte Verfügbarkeit der Arbeitsmedien Luft und Gas aus der Atmosphäre und deren Speicherbarkeit machen die Druckluftspeichertechnik interessant für Anwendungen zur Speicherung regenerativer Energien. So sind zum Beispiel in der Stromversorgung bei Spitzenstrombedarf, Druckluftspeicher bekannt, die ein Druckluftfluid einer Turbine zuführen, die über einen Generator Strom erzeugt. Die Erzeugung von Druckluft mit konventionellen Anlagen ist sehr teuer, weil bei diesen Verfahren hochwertige Elektroenergie in einem Verdichter in Druckluft umgewandelt wird. Es ist auch bekannt, mit gespeicherter Druckluft, von etwa 200 bar Spannung als Antriebsenergie, Fahrzeuge anzutreiben. Dabei handelt es sich um Speziallokomotiven im, von Schlagwettern gefährdeten, Bergbau unter Tage. Diese Lokomotiven werden aus einem besonderen Leitungsnetz mit Druckluft versorgt. Sie sind teuer und haben aufgrund der begrenzten Aufnahmekapazität der Speicherbehälter für die Druckluft einen geringen Aktionsradius, der einer Anwendung über Tage entgegensteht.It is known to use compressed air as a working medium for the operation of pneumatic tools and equipment and for power machines. Thus, there are compressed air and compressed gas engines known as rotary piston engines, gear motors, screw motors, vane motors and air turbines. The compressed air technology is considered to be very robust, reliable and compact. Also, the compressed air and gas engines, characterized by the low density of air and gases, characterized by a very good quick start behavior. The continuous and unlimited availability of the working media air and gas from the atmosphere and their storability make the compressed air storage technology interesting for applications for the storage of regenerative energies. For example, in the power supply at peak power demand, compressed air storage are known, which supply a compressed air fluid to a turbine that generates electricity via a generator. The production of compressed air with conventional systems is very expensive, because in these processes high-quality electrical energy is converted into compressed air in a compressor. It is also known to drive with stored compressed air, of about 200 bar voltage as drive energy, vehicles. These are special locomotives in the mining of mines threatened by field crashes. These locomotives are supplied with compressed air from a special pipeline network. They are expensive and have a small range of action due to the limited capacity of the storage tanks for the compressed air, which precludes an application for days.

Es ist auch ein Fahrzeugantrieb bekannt, der sein Arbeitsmedium aus einem Speicher für Druckluft bezieht und Personenkraftfahrzeuge antreibt. Dessen Aktionsradius soll etwa 200 km betragen, wobei dafür 300 I Druckluft bei 300 bar benötigt werden sollen. Zur Verbesserung des Aktionsradiuses ist vorgesehen, das Kraftfahrzeug zusätzlich mit einem Benzintank auszurüsten, um außerhalb der Städte durch den Fahrer ein Umschalten von Druckluftantrieb auf konventionellen Antrieb zu ermöglichen, um in dichtbesiedelten Bereichen den Schadstoffausstoß von Kraftfahrzeugen mit Verbrennungsmotoren erheblich zu senken. Nachteil dieses Fahrzeugantriebs ist der hohe Strombedarf zur Erzeugung von Druckluftspeichermasse von bis zu 65kw für 200 km Fahrstrecke. Außerdem ist teuere Werkstofftechnik für den Motor erforderlich, um die Explosion (Verbrennungshitze) und Expansion (Kälte) der Druckluft zu bewältigen und um ausreichende Standzeiten für den Motor zu gewährleisten.It is also known a vehicle drive, which relates its working fluid from a memory for compressed air and drives passenger cars. Its radius of action should amount to about 200 km, whereby 300 l of compressed air at 300 bar are required. To improve the range of action is provided to equip the motor vehicle additionally with a gasoline tank to allow outside the cities by the driver switching from compressed air drive to conventional drive to reduce emissions in densely populated areas of motor vehicles with internal combustion engines considerably. Disadvantage of this vehicle drive is the high power requirement for the generation of compressed air storage mass of up to 65kw for 200 km of driving distance. In addition, expensive engine technology is required to cope with the explosion (combustion heat) and expansion (cold) of the compressed air and to ensure sufficient service life for the engine.

Bekannt ist auch ein Wasserdampfmotor, in dem das Arbeitsmedium Wasserdampf in einem geschlossenen Arbeitskreislauf eingesetzt ist. Ein Verdampfer erhält dabei Arbeitsmedium durch eine Verbrennungseinheit modernster Brennstoff- und Brennwerttechnik. Bei einer schadstoffarmen Verbrennung verdampft das Wasser, wird in heißes Gas umgewandelt und treibt einen Hubkolbenmotor mit einem Kurbelwellengetriebe an. Über einen Kondensator wird der Wasserdampf wieder verflüssigt und in den Kreislauf zurückgeführt. Als Arbeitsmedium kann Erdgas, Benzin, Diesel, oder Biodiesel eingesetzt werden. Nachteilig ist jedoch der hohe Exergieverlust bei der Verdampfung von Arbeitsmedium und Brennstoffmedium sowie der Energieaufwand für die Kurbelwelle des Motors mit zwei Totpunkten pro Arbeitsgang.Also known is a steam engine in which the working medium is used steam in a closed working cycle. An evaporator receives working medium through a combustion unit of state-of-the-art fuel and condensing technology. In a low-emission combustion, the water evaporates, is converted into hot gas and drives a reciprocating engine with a crankshaft gearbox. The steam is liquefied again via a condenser and returned to the circuit. As a working medium, natural gas, gasoline, diesel, or biodiesel can be used. However, a disadvantage is the high Exergieverlust in the evaporation of working fluid and fuel medium and the energy required for the crankshaft of the engine with two dead centers per operation.

Aus dem Stand der Technik ist auch ein Heizgasmotor nach dem Stirling- Prinzip bekannt. Dieser Motor benutzt als Arbeitsmedium Helium. Dieses System wird zum Beispiel als dezentrale Strom- und Wärmeerzeugung und als Wärmekraftkopplung erprobt. Es ist umweltfreundlicher als der Verbrennungsmotor mit seiner Energie vernichtenden Technik und seinem Schadstoffausstoß. Nachteilig ist jedoch der große Volumenbedarf der Anlage und die fehlende Dynamik für den Fahrzeugantrieb.From the prior art, a Heizgasmotor according to the Stirling principle is known. This engine uses helium as the working medium. This system is being tested, for example, as a decentralized generation of electricity and heat and as a thermal power link. It is more environmentally friendly than the combustion engine with its energy-damaging technology and its pollutant emissions. The disadvantage, however, is the large volume requirement of the system and the lack of momentum for the vehicle drive.

Dem Stand der Technik ist auch die Brennstoffzellentechnik zuzuordnen. Diese Technik, benötigt als Arbeitsmedium Wasserstoff. Dieser wird einerseits aus fossilen Brennstoffen und andererseits aus Methanol erzeugt. Das Abgasprodukt ist Wassergas. Nachteile dieses Verbrennungsverfahrens ist, daß Wasserstoff explosionsgefährlich ist und viel Primärenergie verbraucht. Bei der Herstellung von Wasserstoff aus fossilen Brennstoffen entstehen Umweltbelastungen und bei der Herstellung aus Methanol wird viel Biomasse verbraucht. Das Abgasprodukt Wassergas ist ein Treibhausgas und beeinflußt das Umweltklima nachhaltig negativ. Alle regenerativen Energiewandler haben den großen Nachteil, daß die Energiewandlung großen Schwankungen unterliegen, die sich aus den natürlichen Gegebenheiten ergeben. So müssen beispielsweise Windkraftwerke und fossile Kraftwerke zu einem weit überwiegenden Anteil die erzeugte Energie als Regelungsenergie nutzen. Ist dies nicht möglich, so wird die eigentlich aufgenommene bzw. umgewandelte Energie ungenutzt wieder in die Umwelt entlassen.The prior art is also associated with the fuel cell technology. This technique requires hydrogen as the working medium. This is produced on the one hand from fossil fuels and on the other hand from methanol. The exhaust product is water gas. Disadvantages of this combustion process is that hydrogen is explosive and consumes a lot of primary energy. The production of hydrogen from fossil fuels causes environmental pollution and the production of methanol uses a lot of biomass. The exhaust gas product water gas is a greenhouse gas and has a lasting negative impact on the environmental climate. All regenerative energy converters have the great disadvantage that the energy conversion subject to large fluctuations, which result from the natural conditions. Wind power plants and fossil power plants, for example, must to a great extent use the energy generated as control energy. If this is not possible, the energy actually absorbed or converted will be released unused into the environment.

Aus der DE 199 11 321 A1 ist auch eine druckluftbetriebene Kraftmaschine bekannt, die das Arbeitsmedium Luft in einem separaten durch Vakuum isolierten Tank im flüssigen Zustand speichert. Die flüssige Luft wird in einem Verdampfer durch die Umweltwärme verdampft und dann in einen Druckluftmotor expandiert. Zusätzlich werden die anfallenden mechanischen Energien eines fahrenden Kraftfahrzeugs in Druckgas umgewandelt und in den Kreislauf zurückgeführt. Nachteilig an dieser Lösung ist der hohe Bedarf an flüssiger Luft.From the DE 199 11 321 A1 Also known is an air-powered engine that stores the working fluid air in a separate vacuum-insulated tank in the liquid state. The liquid air is vaporized in an evaporator by the environmental heat and then expanded into an air motor. In addition, the resulting mechanical energies of a moving motor vehicle are converted into compressed gas and recycled. A disadvantage of this solution is the high demand for liquid air.

In dem Gebrauchsmuster DE 201 15 657 U1 wird das gleiche System wie in der DE 199 11 321 A1 mit einer zusätzlichen elektrischen und mechanischen Wärmequelle als Energiewandler offenbart. Als Arbeitsmedium wird flüssige Luft oder Stickstoff angegeben. Nachteilig an dieser Lösung ist der hohe Verbrauch an flüssiger Luft oder Stickstoff. Eine Reduzierung des Verbrauchs durch eine zusätzliche Wärmequelle wird durch den Energieaufwand zur Erzeugung der Arbeitsmedien wieder aufgebraucht. Auch die DE 202 14 238 V1 offenbart eine Lösung, die das verwendete Arbeitsmedium zu 100% in den Motor befördert. Die Lösung in Form eines offenen Kreislaufs erfordert zwar weniger technischen Aufwand, aber dafür ein erhebliches Tankvolumen und viel Elektroenergie zur Herstellung der flüssigen Luft oder des Stickstoffs.In the utility model DE 201 15 657 U1 will be the same system as in the DE 199 11 321 A1 disclosed with an additional electrical and mechanical heat source as an energy converter. The working medium is liquid air or nitrogen. A disadvantage of this solution is the high consumption of liquid air or nitrogen. A reduction of consumption by an additional heat source is consumed by the energy required to produce the working media again. Also the DE 202 14 238 V1 discloses a solution that delivers 100% of the used working fluid into the engine. Although the solution in the form of an open circuit requires less technical effort, but for a significant tank volume and a lot of electrical energy for the production of liquid air or nitrogen.

Schließlich wird in der Druckschrift US - A- 3 998 059 ein Kraftsystem zum Antrieb von beispielsweise Werkzeugmaschinen oder Fahrzeugen vorgestellt. Die Erfindung offenbart ein Kraftsystem, das einen wärmeisolierten Lagerbehälter umfaßt, der flüssiges Arbeitsmedium beispielsweise flüssigen Stickstoff speichert, das flüssige Medium soll mit Hilfe einer Förderpumpe in den Arbeitskreislauf aber zunächst in einen oder mehrere Verdampfer gepumpt und dort in ein gasförmiges Arbeitsmedium umgewandelt werden, über einen oder mehrere Wärmetauscher soll das Arbeitsmedium auf mindestens 200°C über die kritische Temperatur erhitzt, in einen Wärmespeicher geleitet und weiter erwärmt werden. Die Lösung sieht auch vor, im Wärmespeicher aus Salzen oder Salzgemischen durch deren Erwärmung und Verflüssigung Arbeitsmedium zu erzeugen. Die Erwärmung soll aus der Wärme von Auspuffgasen oder durch Elektroenergie erfolgen.Finally, in the document US Pat. No. 3,998,059 a power system for driving example of machine tools or vehicles presented. The invention discloses a force system comprising a thermally insulated storage container, the liquid working fluid stores, for example, liquid nitrogen, the liquid medium is to be pumped by means of a feed pump in the working cycle but first in one or more evaporators and converted there into a gaseous working medium, via a or several heat exchangers, the working fluid should be heated to at least 200 ° C above the critical temperature, passed into a heat storage and further heated. The solution also provides to produce in the heat storage of salts or salt mixtures by heating and liquefaction working medium. The heating should be done from the heat of exhaust gases or by electric energy.

Es war daher Aufgabe der Erfindung, den bekannten Druckluftantrieb zum Betreiben stationärer und besonders mobiler Kraftmaschinen mittels Druckgas so weiterzuentwickeln, daß erneuerbare und regenerative Energiequellen zu nutzen und deren Energieeffizienz zu steigern ist, Verluste an überschüssigen Arbeitsmedium minimiert, keine Schadstoffe erzeugt und die bisherigen Arbeitsmedien völlig durch den Einsatz von Druckluft und Druckgas zu ersetzen sind. Dabei soll das aus erneuerbaren und regenerativen Energiequellen hergestellte Arbeitsmedium außerhalb eines Zylinderraums erzeugt werden, im flüssigen und gasförmigen Zustand zwischenzuspeichern und sofort wieder abrufbar sein sowie in einem geschlossenen und in einem teilgeschlossenen Kreislaufprozeß genutzt werden können.It was therefore an object of the invention to further develop the known compressed air drive for operating stationary and particularly mobile engines by means of compressed gas so that renewable and regenerative energy sources to use and their energy efficiency is increased, minimized losses of excess working fluid, no pollutants and the existing working media completely be replaced by the use of compressed air and compressed gas. In this case, the working medium produced from renewable and regenerative energy sources should be generated outside of a cylinder chamber, temporarily stored in the liquid and gaseous state and be immediately retrievable and can be used in a closed and partially closed cycle process.

Die Aufgabe wird durch ein Kaltluftmotorsystem mit einem Druckgaskreiskolbenmotor entsprechend den Merkmalen des Anspruchs 1 gelöst.The object is achieved by a cold air engine system having a compressed gas piston engine according to the features of claim 1.

Besonders hervorzuheben ist, nach Anspruch 3, der konstruktive Aufbau der erfindungsgemäßen Arbeitskolben der Kraftmaschine. Die halbkugelförmigen und senkrecht geteilten Arbeitskolben, die auf der Expansionsseite eine doppelte Arbeitsfläche für das Arbeitsmedium aufweisen und deren Halbkugelform sich an die Form des kugelförmigen Druckverteilers anpaßt, hat nämlich zur Folge, daß sich die Arbeitsfläche der Arbeitskolben nochmals um das 1,5-fache einer planen Arbeitsfläche vergrößert.Particularly noteworthy is, according to claim 3, the structural design of the working piston of the engine according to the invention. The hemispherical and vertically divided working piston, which have a double working surface for the working medium on the expansion side and whose hemisphere shape adapts to the shape of the spherical pressure distributor, namely the result that the working surface of the working piston again by 1.5 times a plan to enlarge workspace.

Die erfindungsgemäßen Kolbenpaare sind, nach Anspruch 4, werden vorteilhaft mit mehreren Dauer- oder Elektromagneten zusammengehalten, bis der Lavaldruck in der Diffusoreinheit erreicht ist. Dabei fliegen die Kolbenpaare in einer Kreisbahn auseinander und die Magnete ziehen nach dem Verschiebungsakt die Kolbenpaare wieder zusammen.The piston pairs according to the invention are, according to claim 4, are advantageously held together with a plurality of permanent or electromagnets until the lava pressure is reached in the diffuser unit. The pairs of pistons fly apart in a circular path and the magnets pull together the pairs of pistons after the displacement stroke.

Hervorzuheben ist auch, daß, gemäß Anspruch 5, der Druckspeicherkessel über eine erste Expansions- und Volumeneinheit mit der Mischkühlung der Expansionseinheit, über die dritte druckgeregelte Leitung mit der Expandereinheit, über eine zweite Kupplung und den ersten Verdichter mit. einem mechanischen Antriebsteil und über eine vierte Leitung mit dem dritten Verdichter verbunden ist, wodurch alle in Arbeitsmedium umgewandelten überschüssig erzeugten mechanischen, thermischen und kinetischen Energien im Druckspeicherkessel zwischen zu lagern und von diesem in den Arbeitskreislauf abrufbar sind.It should also be emphasized that, according to claim 5, the pressure storage vessel via a first expansion and volume unit with the mixed cooling of the expansion unit, via the third pressure-controlled line with the expander unit, via a second clutch and the first compressor with. a mechanical drive part and is connected via a fourth line to the third compressor, whereby all converted into working medium excessively generated mechanical, thermal and kinetic energy in the accumulator between storage and are retrievable from this in the working cycle.

Durch den Aufbau des mechanischen Antriebsteils, gemäß Anspruch 6, mit einem Freilauf einer Schwungscheibe, einer Kupplung mit einem ersten Getriebe und mindestens einer Spiralfeder, das über eine zweite Kupplung den ersten Verdichter und über eine erste Kupplung und einen Motor den dritten Verdichter mechanisch antreibt, durch den Freilauf den Druckgaskreiskolbenmotor ohne Leerlauf arbeiten läßt und als Drehrichtungswandler den oszillierend arbeitenden Kolbenpaaren eine Arbeitsdrehrichtung zuordnet, werden alle bei einer Verzögerung anfallenden kurzzeitig auftretenden Massenträgheitsmomente von mechanischer in thermische und potentielle Energien umgewandelt, über den Arbeitskreislauf dem Druckgaskreiskolbenmotor als Arbeitsmedium zugeführt und von diesem wieder in Nutzenergie umgewandelt. Mit Hilfe der Energieumwandlungseinheit, wird durch die Spiralfeder potentielle Energie gespeichert und in Drehbewegung umgewandelt.By the construction of the mechanical drive part, according to claim 6, with a freewheel flywheel, a clutch with a first gear and at least one coil spring which mechanically drives the first compressor via a second clutch and the first compressor and a first clutch and a motor, be operated by the freewheel the pressurized gas piston engine without idling and assigns a direction of rotation oscillating piston pairs working direction, all occurring during a delay momentarily occurring moments of inertia from mechanical to thermal and potential energies are converted via the working cycle the pressurized gas piston engine as a working fluid and from this again converted into useful energy. With the aid of the energy conversion unit, the coil spring stores and converts potential energy into rotary motion.

Von Vorteil ist auch, daß, nach Anspruch 7, gasförmiges Arbeitsmedium über die Expansionseinheit, das dritte Volumenregelventil und ein folgendes Expansionsventil in eine Mischkühlung einer Klimaeinheit leitbar ist, der Druckausgleich durch den Druckspeicherkessesl oder den Tank herstellbar ist und über die zweite Expansions- und Volumeneinheit Räume klimatisierbar sind, ohne daß der Druckgaskreiskolbenmotor arbeiten muß.It is also advantageous that, according to claim 7, gaseous working fluid via the expansion unit, the third volume control valve and a subsequent expansion valve in a mixed cooling an air conditioning unit is passed, the pressure equalization by the Druckspeicherkessesl or the tank can be produced and the second expansion and volume unit Rooms are air-conditioned, without the pressure gas piston engine must work.

Eine weitere vorteilhafte Nutzung des Kaltluftmotorsystems ist, gemäß Anspruch 8, gegeben, dadurch, daß flüssiges Arbeitsmedium aus dem kälteisolierten Tank mit Sauerstoff angereichert über einen druckgesteuerten Regelkreis in einen Verdampfer einer Klimaeinheit leitbar ist, wobei das verdampfte Arbeitsmedium aus dem Verdampfer der Klimaeinheit in den Kühlkreislauf des zweiten Verdichters führbar und vorgewärmt in die Brenneinheit zur angereicherten Verbrennung in den Arbeitskreislauf rückfühbar ist.A further advantageous use of the cold air engine system, according to claim 8, given by the fact that liquid working medium from the cold-insulated tank enriched with oxygen via a pressure-controlled loop in an evaporator of an air conditioning unit is conductive, wherein the evaporated working fluid from the evaporator of the air conditioning unit in the cooling circuit the second compressor feasible and preheated in the combustion unit for enriched combustion in the working circuit is recirculated.

Außerdem kann das System, gemäß Anspruch 9 durch die Expandereinheit über eine erste volumengesteuerte Regelstrecke mit einer Heizungseinheit verbunden werden, über die Räume, beispielsweise der Fahrgastraum eines Kraftfahrzeugs, heizbar sind, ohne daß der Druckgaskreiskolbenmotor arbeiten muß.In addition, the system can be connected in accordance with claim 9 by the expander unit via a first volume-controlled controlled system with a heating unit through the rooms, such as the passenger compartment of a motor vehicle, are heated without the pressurized gas piston engine must work.

Besonders hervorzuheben ist, nach Anspruch 10, die Koppelung des Kaltluftmotorsystems mit einer Photovoltaik- Anlage, aufweisend einen ersten Wechselrichter, einer Batterie und einen zweiten Wechselrichter, die über den Motor und den dritten Verdichter, über die zweite druckgeregelte Regelstrecke mit einer Gasverflüssigungsanlage, aufweisend einen dritten Rekupoerrator, einen vierten Rekuperator, ein zweites Expansionsventil, eine erste Rücklaufleitung und eine zweite Rücklaufleitung, verbunden ist. Auf diese Weise kann Arbeitsmedium aus regenerativen Energiequellen der Umwelt hergestellt werden und abgekühltes flüssiges Arbeitsmedium aus der Gasverflüssigungsanlage über das zweite Expansionsventil im kälteisolierten Tank gespeichert und gasförmiges Arbeitsmedium über die zweite Rücklaufleitung über eine druckgeregelte fünfte Leitung dem Druckspeicherkessel und damit dem Arbeitskreislauf des Kaltluftmotorsystems direkt zuführt werden. Dadurch ist der dritte Verdichter über die erste Kupplung und die zweite Kupplung anzutreiben, wodurch auch gasförmiges Arbeitsmedium mit regenerativen Energiequellen verflüssigbar ist, in Speichern lagerbar und dem Druckgaskreiskolbenmotor zuführbar ist, durch den Energieformen wie Elektroenergie, Wärme, Kälte, Kraftstoff und mechanische Energie erzeugbar sind.Particularly noteworthy is, according to claim 10, the coupling of the cold air engine system with a photovoltaic system, comprising a first inverter, a battery and a second inverter, via the motor and the third compressor, via the second pressure-controlled system with a gas liquefaction, comprising a third recuperator, a fourth recuperator, a second expansion valve, a first return line and a second return line. In this way, working medium can be produced from regenerative energy sources of the environment and cooled liquid working medium from the gas liquefaction plant via the second expansion valve stored in the cold-insulated tank and gaseous working medium over the second Return line via a pressure-controlled fifth line to the pressure storage boiler and thus the working circuit of the cold air motor system are fed directly. As a result, the third compressor is to be driven via the first clutch and the second clutch, whereby gaseous working fluid can be liquefied with regenerative energy sources, storable in storages and supplied to the compressed-gas piston engine by which energy forms such as electric energy, heat, cold, fuel and mechanical energy can be generated ,

Von Bedeutung ist es weiterhin, daß das Kaltluftmotorsystem, gemäß Anspruch 11, mit dem Druckgaskreiskolbenmotor als geschlossener Kreislauf mit getrennten Fließprozessen und Systemen betreibbar ist, was den Vorteil hat, daß der Arbeitskreislauf vom Kältekreislauf systemdicht getrennt ist.It is also important that the cold air engine system, according to claim 11, with the pressurized gas piston engine as a closed circuit with separate flow processes and systems is operable, which has the advantage that the working circuit is separated system-tight from the refrigeration cycle.

Schließlich kann das Kaltluftmototsystem, gemäß Anspruch 12, auch im teilgeschlossenen Arbeitskreislauf Arbeitsmedium wie Luft und Stickstoff verarbeiten. Dabei kann über eine Regeleinheit und den ersten Verdichter aus der Atmosphäre angesaugte Luft im Druckspeicherkessel als Arbeitsmedium gelagert und im geschlossenen Arbeitskreislauf Gase und Dämpfe wie Helium, Kohlendioxyd, Wasser, Ammoniak, Alkohole und organische Kältemittel eingesetzt werden.Finally, the Kaltluftmototsystem, according to claim 12, process in the partially closed working cycle working medium such as air and nitrogen. In this case, can be used as a working medium stored in the accumulator tank and a working unit in a closed working cycle gases and vapors such as helium, carbon dioxide, water, ammonia, alcohols and organic refrigerants via a control unit and the first compressor from the atmosphere.

Die Erfindung ist nachstehend anhand eines Ausführungsbeispiels näher beschrieben. Dabei zeigen die Zeichnungen in

Fig.1
eine Gesamtdarstellung des erfindungsgemäßen Verfahrens und der Einrichtung zu dessen Durchführung, untergliedert in Ausschnitt A, B und C,
Fig.2
Ausschnitt A von Fig.1,
Fig.3
Ausschnitt B von Fig.1,
Fig.4
Ausschnitt C von Fig.1.
The invention is described below with reference to an embodiment. The drawings show in
Fig.1
an overall view of the method according to the invention and the device for its implementation, subdivided into section A, B and C,
Fig.2
Section A of Fig.1 .
Figure 3
Section B of Fig.1 .
Figure 4
Section C of Fig.1 ,

In Fig.1 ist eine erfindungsgemäße Einrichtung zum Betreiben eines vorzugsweise mobilen Druckgaskreiskolbenmotors, beispielsweise eines Kraftfahrzeugs, mittels Druckgas dargestellt. Die Einrichtung weist beispielsweise einen kälteisolierten Tank 1, ein erstes Volumenregelventil 2, einen Verdampfer 3, eine Expansionseinheit 4, ein zweites Vollumenregelventil 5, eine Entspannungsdüse 6, ein erstes Druckregelventil 7, ein zweites Druckregelventil 8, ein erstes Expansionsventil 9, eine erste Leitung 10, einen ersten Verdichter 11, ein drittes Druckregelventil 12, und ein viertes Druckregelventil 13, einen Druckgasspeicherkessel 14, einen ersten und zweiten Rekuperator 15 und 16, eine Expandereinheit 17, eine zweite Leitung 18, einen ersten Diffusor 19, einen ersten Druckverteiler 20, eine Brennstoffeinheit 21, eine Druckregeleinheit 22, eine Volumenregeleinheit 23 eine Impulseinheit 24, einen zweiten Druckverteiler 25, einen zweiten und dritten Diffusor 26, einen dritten kugelförmigen Druckverteiler 27, einen Motorzylinder 28, mindestens ein Kolbenpaar 29 und 30, Motorwellen 31, 32, Magnete 33, einen Druckgaskreiskolbenmotor 34, eine Abgas- und Schalldämpfereinheit 35, eine erste Düse 36, einen zweiten Verdichter 37, einen Kühlkreislauf 38, eine zweite Düse 39, einen Regelkreis 40, eine Heizungseinheit 41, eine erste Regelstrecke 42, ein drittes Volumenregelventil 43, eine Klimaeinheit 44, eine erste und zweite Expansion- und Volumeneinheit 45 und eine dritte Leitung 46 auf.In Fig.1 is a device according to the invention for operating a preferably mobile pressure gas piston engine, such as a motor vehicle, represented by means of compressed gas. The device has, for example, a cold-insulated tank 1, a first volume control valve 2, an evaporator 3, an expansion unit 4, a second full-volume control valve 5, a pressure relief valve 6, a first pressure control valve 7, a second pressure control valve 8, a first expansion valve 9, a first conduit 10 , a first compressor 11, a third pressure regulating valve 12, and a fourth pressure regulating valve 13, a compressed gas storage boiler 14, first and second recuperators 15 and 16, an expander unit 17, a second conduit 18, a first diffuser 19, a first pressure distributor 20, a Fuel unit 21, a pressure control unit 22, a volume control unit 23, a pulse unit 24, a second pressure distributor 25, a second and third diffuser 26, a third spherical pressure distributor 27, an engine cylinder 28, at least one pair of pistons 29 and 30, motor shafts 31, 32, magnets 33rd , a pressurized gas piston engine 34, an exhaust and Schalldämpfereinhei t 35, a first nozzle 36, a second compressor 37, a cooling circuit 38, a second nozzle 39, a control circuit 40, a heating unit 41, a first controlled system 42, a third volume control valve 43, an air conditioning unit 44, a first and second expansion and volume unit 45 and a third line 46.

Das Arbeitsmedium wird vor der Zuführung in den Arbeitskreislauf, gemäß Fig.2 in dem kälteisolierten Tank 1 im kalten, flüssigen Zustand gespeichert. Arbeitsmedium, beispielsweise Flüssiggas, wird über das erste Volumenregelventil 2 in den Verdampfer 3 und von diesem über das erste Druckregelventil 7, das zweite Volumenregelventil 5 und die Entspannungsdüse 6 in eine Mischkühlung der Expansionseinheit 4 gedrückt. Der Verdampfer 3 ist erfindungsgemäß systemdicht in die Expansionseinheit 4 integriert und dient der Umwandlung des Flüssiggases in Druckgas. Das aus der Expansionseinheit 4 kommende, nunmehr gasförmige Arbeitsmedium wird über das erste Expansionsventil 9 und das zweite Druckregelventil 8 eingeregelt und über die erste Leitung 10, die vorzugsweise eine Saugleitung ist, zum Verdichter 11 geführt.The working fluid is added before being fed into the working cycle, according to Fig.2 stored in the cold-insulated tank 1 in the cold, liquid state. Working medium, for example LPG, is forced into the evaporator 3 via the first volume control valve 2 and from there via the first pressure control valve 7, the second volume control valve 5 and the expansion nozzle 6 into a mixed cooling of the expansion unit 4. According to the invention, the evaporator 3 is system-tightly integrated in the expansion unit 4 and serves to convert the liquefied gas into pressurized gas. Coming from the expansion unit 4, now gaseous working fluid is adjusted via the first expansion valve 9 and the second pressure control valve 8 and via the first line 10, which is preferably a suction line, led to the compressor 11.

Aus dem ersten Verdichter 11 wird, gemäß Fig.3, das Arbeitsmedium über das dritte Druckregelventil 12 in den ersten und zweiten Rekuperator 15 und 16 geleitet, und durchströmt im Gegenstrom der Rekuperatoren 15 und 16 die Brennereinheit 21, Der Verdichter 11 ist über das vierte Druckregelventil 13 mit dem Druckgasspeicherkessel 14 verbunden, in den überschüssig erzeugtes gasförmiges Arbeitsmedium geleitet werden kann, Das dritte Druckregelventil 12 ist über eine zweite Leitung 18 mit dem ersten Druckverteiler 20 und dem ersten Diffusor 19 und über diese mit der Expandereinheit 17 verbunden. Durch diese Anordnung ist eine kontrollierte Zwangsströmung in Form Verdichtungsstöße möglich, wodurch der Arbeitsdruck und die Betriebstemperatur des gasförmigen Arbeitsmediums weiter ansteigen und sich das, über die Brenneinheit 21 und den Erhitzer der Expandereinheit 17, erwärmte Arbeitsmedium um ein mehrfaches seines Volumens ausdehnt. An die Expandereinheit 17 schließen sich erfindungsgemäß die Druck regeleinheit 22, die Volumen regeleinheit 23 und die Impuls regeleinheit 24 an, mit denen das gasförmige Arbeitsmedium nach Druck, Volumen und Zeitimpuls steuerbar aus der Expandereinheit 17 abgegeben werden kann. Die Druckregeleinheit 22, die Volumenregeleinheit 23 und die Impulseinheit 24 sind mit dem zweiten Druckverteiler 25 und dem zweiten und dritten Diffusor 26 verbunden, die den Expansionskammern der Kraftmaschine 34, vorzugsweise eines Kreiskolbenmotors, direkt gegenüberliegen. Das gasförmige Arbeitsmedium wird von dem zweiten Druckverteiler 25 über den zweiten und dritten Diffusor 26 in den dritten kugelförmigen Druckverteiler 27 geleitet, der fest mit dem Motorzylinder 28 verbunden ist. Im Impulsgegenstrom gelangt das gasförmige Arbeitsmedium, Druckgas, in den Expansionsraum der Kraftmaschine 34. Durch den Impulsgegenstrom des Druckgases über den dritten kugelförmigen Druckverteiler 27 wird ein Verdichtungsstoß in Höhe des 1,32 - fachen der kinetischen, der thermischen und potentiellen Energie des Arbeitsdruckes des zweiten und dritten Diffusors 26 erzeugt. Ein Kreiskolbenpaar 29, 30 ist fest mit den Motorwellen 31 und 32 verbunden. Die Motorwellen verlaufen gasdicht unter dem dritten kugelförmigen Druckverteiler 27 und nehmen zusammen mit dem Kolbenpaar 29, 30 die Expansionsenergie des Druckverteilers 27 auf. Die gesamte von dem Kolbenpaar 29, 30 aufgenommene Energie des Arbeitsmediums Druckgas wird nun mit großem Hebelarm und ohne Totpunkt in mechanische Energie umgwandelt. Das, in den Zeichnungen nicht näher dargestellte, Kolbenpaar 29, 30, ist vorzugsweise ein Kreiskolbenpaar und mittig und senkrecht geteilt. Das Kolbenpaar 29, 30 verfügt durch diese Teilung über jeweils zwei Arbeitsflächen, jeweils eine Exansionsfläche und eine Verschiebefläche, wodurch insgesamt eine doppelte Arbeitsfläche zur Verfügung steht, die zusätzlich durch den Verschiebevorgang bei der Expansion beidseitig 1,5- fach vergrößerbar ist. Der Druckgaskreiskolbenmotor 34 ist außerdem mit mehreren Dauermagneten 33 ausgestattet. Nach jedem Verdichtungsstoß des kugelförmigen Druckverteilers 27 wird bis zum Erreichen des Lavaldrucks des zweiten und dritten Diffusors 26 und beim kreisförmigen Auseinanderfliegen das Kolbenpaar 29, 30 nach dem Verschiebungsvorgang wieder fest zusammengezogen. Die Expansionskammer des Druckluftkreiskolbenmotors 34 mit dem parallel auf den Motorwellen 31, 32 laufenden Kolbenpaar 29, 30 ist über die erste Düse 36 mit dem zweiten Verdichter 37 verbunden. Das Arbeitsmedium wird von dem Kolbenpaar 29, 30 des Druckgaskreiskolbenmotors 34 auf die Saugseite des zweiten Verdichters 37 geschoben und über die erste Düse 36 in den zweiten Verdichter 37 geschoben und über die erste Düse 36 in den zweiten Verdichter 37 gedrückt.From the first compressor 11 is, according to Figure 3 , the working medium via the third pressure control valve 12 in the first and second recuperators 15 and 16 passed, and flows in countercurrent of the recuperators 15 and 16th the burner unit 21, the compressor 11 is connected via the fourth pressure control valve 13 to the compressed gas storage boiler 14, can be passed into the excess generated gaseous working fluid, the third pressure control valve 12 is connected via a second line 18 to the first pressure manifold 20 and the first diffuser 19 and connected via this with the expander unit 17. By this arrangement, a controlled forced flow in the form of compression shocks is possible, whereby the working pressure and the operating temperature of the gaseous working medium continue to increase and the, about the firing unit 21 and the heater of the expander unit 17, heated working fluid expands by a multiple of its volume. To the expander unit 17 close according to the invention, the pressure control unit 22, the volume control unit 23 and the pulse control unit 24, with which the gaseous working fluid after pressure, volume and timing pulse controllable from the expander unit 17 can be dispensed. The pressure control unit 22, the volume control unit 23 and the pulse unit 24 are connected to the second pressure distributor 25 and the second and third diffusers 26, which are directly opposed to the expansion chambers of the engine 34, preferably a rotary piston engine. The gaseous working medium is conducted from the second pressure distributor 25 via the second and third diffusers 26 into the third spherical pressure distributor 27, which is fixedly connected to the engine cylinder 28. The impulse countercurrent of the compressed gas via the third spherical pressure distributor 27 is a compression shock in the amount of 1.3 2 times the kinetic, the thermal and potential energy of the working pressure of the second and third diffuser 26 generates. A pair of rotary pistons 29, 30 is fixedly connected to the motor shafts 31 and 32. The motor shafts run gas-tight under the third spherical pressure distributor 27 and, together with the pair of pistons 29, 30, absorb the expansion energy of the pressure distributor 27. The entire energy absorbed by the piston pair 29, 30 of the working medium compressed gas is now converted into mechanical energy with a large lever arm and without dead center. The not shown in the drawings, pair of pistons 29, 30, is preferably a pair of rotary piston and divided centrally and vertically. The piston pair 29, 30 has by this division over two Work surfaces, one expansion surface and one displacement surface, resulting in a total of a double working surface is available, which can be enlarged by 1.5 times on both sides by the displacement process during expansion. The pressurized gas piston motor 34 is also equipped with a plurality of permanent magnets 33. After each compression stroke of the spherical pressure distributor 27 until reaching the lava pressure of the second and third diffuser 26 and the circular divergence, the pair of pistons 29, 30 contracted again firmly after the displacement process. The expansion chamber of the Druckluftkreiskolbenmotors 34 with the parallel on the motor shafts 31, 32 running piston pair 29, 30 is connected via the first nozzle 36 to the second compressor 37. The working medium is pushed by the piston pair 29, 30 of the pressure gas piston motor 34 on the suction side of the second compressor 37 and pushed over the first nozzle 36 in the second compressor 37 and pressed via the first nozzle 36 in the second compressor 37.

Gemäß Fig.2 wird im zweiten Verdichter 37 das überschüssige Arbeitsmedium aus dem Druckluftkreiskolbenmotor 34 wieder vorgespannt und über die zweite Düse 39 in die Mischkühlung der Expansionseinheit 4 gedrückt, von der es wieder direkt in den Kreislaufprozeß abgegeben wird oder über die erste Expansions- und Volumeneinheit 45 in dem Druckgasspeicherkessel 14 gespeichert und von dort wieder in den Kreislaufprozeß abgegeben. An den Druckluftkreiskolbenmotor 34 ist, nach Fig.3, außerdem die Abgas- und Schalldämpfereinheit 35 angeschlossen, über die zunächst der Teil des Arbeitsmediums, der den Druckluftkreiskolbenmotor 34 mit einem Druck über 2 bar erreicht, mit einer Temperatur von ca. 7°C und ohne Schadstoffe in die Umwelt ausgestoßen wird.According to Fig.2 is biased in the second compressor 37, the excess working medium from the pneumatic circuit piston motor 34 again and pushed through the second nozzle 39 into the mixing cooling the expansion unit 4, from which it is directly conveyed in the circulation process, or via the first expansion and volume unit 45 in the compressed gas storage vessel 14 stored and returned from there into the circulation process. To the air piston engine 34 is, after Figure 3 , also connected to the exhaust and muffler unit 35, on the first part of the working medium, which reaches the air piston engine 34 with a pressure above 2 bar, is discharged at a temperature of about 7 ° C and without pollutants into the environment.

Mit dem im beschriebenen Kreislaufprozeß überschüssig anfallenden Arbeitsmedium kann, nach Fig.2 und Fig.3, aus der Expandereinheit 17 über die erste Regelstrecke 42 die Heizungseinheit 41 versorgt werden, wobei das aus der Heizungseinheit 41 zurückgeführte, abgekühlte Arbeitsmedium wieder in die Expansionseinheit 4 rückführbar ist. Auch ist überschüssiges Arbeitsmedium aus der Expandereinheit 17 über die dritte Leitung 46 in den Druckgasspeicherkessel 14 und aus diesem zur Wiederverwendung im Kreislaufprozeß leitbar. Überschüssiges Arbeitsmedium aus dem Verdampfer 3 der Expansionseinheit 4 kann des weiteren über das dritte Ventil 43 und ein weiteres Expansionsventil in die Klimaeinheit 44 geleitet werden, von wo das Arbeitsmedium einen Raum klimatisieren kann. In der Klimaeinheit 44 überschüssig anfallendes Arbeitsmedium ist in den Kreißlaufprozeß rückführbar.With the in the cycle described excess accumulating working fluid can, after Fig.2 and Figure 3 in that the heating unit 41 is supplied from the expander unit 17 via the first controlled system 42, wherein the cooled working medium returned from the heating unit 41 can be returned to the expansion unit 4. Also excess working fluid from the expander unit 17 via the third line 46 in the compressed gas storage tank 14 and from this for reuse in the circulation process can be conducted. Excess working fluid from the evaporator 3 of the expansion unit 4th can also be passed through the third valve 43 and another expansion valve in the air conditioning unit 44, from where the working fluid can air-condition a room. In the air conditioning unit 44 excess accumulating working fluid is traceable in the Kreisslaufprozeß.

Die erfindungsgemäße Einrichtung kann, nach Fig.3, mit Arbeitsmedium versorgt werden. So ist die Brennstoffeinheit 21 mit Hilfe des Regelkreislaufes 40, mit dem eine geregelte und kontrollierte Oxydation von Biomasse und eine schadstoffreie Verbrennung durchführbar ist, zusätzlich mit Sauerstoff angereichertem, vorgewärmten Arbeitsmedium zu versorgen.The device according to the invention can, after Figure 3 to be supplied with working medium. Thus, the fuel unit 21 by means of the control circuit 40, with a controlled and controlled oxidation of biomass and a pollution-free combustion is feasible to supply in addition oxygen-enriched, preheated working medium.

Bei leerer Expansionseinheit 4, kann die erfindungsgemäße Einrichtung, gemäß Fig.1, des weiteren über eine Einheit 68, die aus einem Druckluftfilter und einer Saugleitung gebildet ist, Luft aus der Atmosphäre ansaugen, über die erste Leitung 10 und den ersten Verdichter 11 in den Druckluftspeicherkessel 14 leiten, dort in einem Abscheider 69 von Wasser und Schadstoffen befreit werden und als gasförmiges Arbeitsmedium über eine erste Expansions- und Volumenregeleinheit 45 der Expansionseinheit 4 und somit dem Kreislaufprozeß zugeführt werden.When empty expansion unit 4, the inventive device, according to Fig.1 , Further, via a unit 68, which is formed from a compressed air filter and a suction line, sucking air from the atmosphere, pass through the first line 10 and the first compressor 11 in the compressed air storage tank 14, there removed in a separator 69 of water and pollutants be supplied as a gaseous working medium via a first expansion and volume control unit 45 of the expansion unit 4 and thus the circulation process.

Gemäß Fig.4 besteht eine weitere Möglichkeit der Herstellung von Arbeitsmedium aus regenerativen Energiequellen der Umwelt über eine Photovoltaik- Anlage, die mit der erfindungsgemäßen Einrichtung verbunden ist. Die Photovoltaik- Anlage weist beispielsweise einen dritten Verdichter 47, eine druckgeregelte zweite Regelstrecke 48, einen dritten Rekuperator 49, einen vierten Rekuperrator 50, ein zweites Expansionsventil 51 eine erste Rücklaufleitung 52, eine zweite Rücklaufleitung 53, eine druckgeregelte fünfte Leitung 54, einen ersten Wechselrichter 55, einen zweiten Wechselrichter 57, eine Batterie 56, einen Motor 58 und eine mechanische Kupplung 59 auf. Über diesen Regelkreis kann die erfindungsgemäße Einrichtung Arbeits-medium herstellen. Natürlich kann auch aus Nachtstrom oder aus einer Brennstoffzelle flüssiges Gas hergestellt werden, zum Beispiel während der Standzeit eines Kraftfahrzeugs in der Garage. Der erste Wechselrichter 55 wird aus einer der regenerativen Energiequellen gespeist. In der Batterie 56 wird die Energie chemisch gespeichert und von dort über den zweiten Wechselrichter 57 geregelt. Der Motor 58 treibt den dritten Verdichter 47 an. Über die erste mechanische Kupplung 59 kann der Motor auch den ersten Verdichter 11 antreiben. Das Arbeitsmedium wird, nach Fig.1 und Fig.2, im dritten Verdichter 47 durch die Atmosphäre vorgekühlt. Das trotzdem noch sehr warme Arbeitsmedium mit einer Temperatur von 340 K kann deshalb beispielsweise durch das Kühlwasser der Heizungseinheit 41 weiter vorgekühlt werden, durch den vierten Recuperator 50 geleitet und von der ersten Rücklaufleitung 52 weiter auf ca. 110 K abgekühlt werden. Das so abgekühlte Arbeitsmedium wird über das zweite Expansionsventil 51 zum Teil verflüssigt und in den Tank 1 geleitet. Der überschuß an kalten Arbeitsmedium über die zweite Rücklaufleitung 53, eine dritte Rückschlagklappe, das zweite Druckregelventil das erste Expansionsventil 9 in die Expansionseinheit 4 geregelt gefahren.According to Figure 4 There is a further possibility of producing working medium from renewable energy sources of the environment via a photovoltaic system, which is connected to the device according to the invention. The photovoltaic system has, for example, a third compressor 47, a pressure-controlled second controlled system 48, a third recuperator 49, a fourth recuperator 50, a second expansion valve 51, a first return line 52, a second return line 53, a pressure-controlled fifth line 54, a first inverter 55, a second inverter 57, a battery 56, a motor 58 and a mechanical clutch 59 on. About this loop, the inventive device can produce working medium. Of course, liquid gas can also be produced from night stream or from a fuel cell, for example during the life of a motor vehicle in the garage. The first inverter 55 is fed from one of the regenerative power sources. In the battery 56, the energy is stored chemically and regulated from there via the second inverter 57. The motor 58 drives the third compressor 47. Via the first mechanical clutch 59, the engine can also drive the first compressor 11. The working medium is, after Fig.1 and Fig.2 in the third compressor 47 pre-cooled by the atmosphere. The still very warm working fluid with a temperature of 340 K can therefore be further pre-cooled, for example, by the cooling water of the heating unit 41, passed through the fourth Recuperator 50 and further cooled by the first return line 52 to about 110 K. The thus cooled working fluid is partially liquefied via the second expansion valve 51 and passed into the tank 1. The excess of cold working fluid via the second return line 53, a third non-return valve, the second pressure control valve driven the first expansion valve 9 regulated in the expansion unit 4.

Aus Fig.3 ist ein mechanisches Antriebsteil 61 erkennbar, das mit der Kraftmaschine 34 verbunden ist. Das mechanische Antriebsteil 61 weist vorzugsweise einen Freilauf 62, eine Schwungscheibe 63, ein mechanische Energieumwandlungseinheit 65 mit einer Kupplung 64, einem ersten Getriebe und einer oder mehreren Spiralfeder, ein zweites Getriebe 66 und ein drittes Wechselgetriebe 67 auf. Bei Schubbetrieb oder Talfahrt der Kraftmaschine 34 ist diese über den Freilauf 62 vom Getriebe und der Schwungscheibe 63 trennbar. Die Schwungscheibe 63 ist dann direkt mit der Energieumwandlungseinheit 65 und so mit dem ersten Getriebe und der Spiralfeder verbunden. Durch die Spiralfeder wird potentielle Energie gespeichert und über das zweite Getriebe 66 in Drehbewegung und somit in Fortbewegung umgewandelt. An der Kupplung 64 ist eine weitere mechanische Kupplung 60 angeordnet.Out Figure 3 a mechanical drive part 61 can be seen, which is connected to the engine 34. The mechanical drive part 61 preferably has a freewheel 62, a flywheel 63, a mechanical energy conversion unit 65 with a clutch 64, a first transmission and one or more coil spring, a second transmission 66 and a third change gear 67. When overrun or descent of the engine 34 this is separable via the freewheel 62 from the transmission and the flywheel 63. The flywheel 63 is then directly connected to the energy conversion unit 65 and thus to the first gear and the coil spring. By the coil spring potential energy is stored and converted via the second gear 66 in rotary motion and thus in locomotion. At the clutch 64, a further mechanical clutch 60 is arranged.

Schließlich kann die erfindungsgemäße Einrichtung Helium, Kohlendioxyd, Wasser, Ammoniak, Alkohole, umweltfreundliche organische Kältemittel und Kohlenwasserstoffe durch Oxydation von Biomasse als Arbeitsmedium verarbeiten. Dazu wird die Kraftmaschine 34 über die Abgas- und Schalldämpfereinheit 35 geschlossen und die Expansionseinheit 4 von Mischkühlung auf zwei getrennte Systeme eingestellt. So kann eines der aufgeführten Arbeitsmedien in einem geschlossenen Kreislaufprozeß genutzt werden. Die Nutzung von Luft und Stickstoff als Arbeitsmedium ist nur als offener Kreislaufprozeß möglich.Finally, the device according to the invention can process helium, carbon dioxide, water, ammonia, alcohols, environmentally friendly organic refrigerants and hydrocarbons by oxidizing biomass as the working medium. For this purpose, the engine 34 is closed via the exhaust and muffler unit 35 and the expansion unit 4 is set from mixed cooling to two separate systems. So one of the listed working media can be used in a closed cycle process. The use of air and nitrogen as a working medium is only possible as an open cycle process.

Die beschriebenen erfindungsgemäßen Verfahrensabläufe und beispielsweisen Einrichtungsbestandteile sind selbstverständlich auch für stationäre Kraftmaschinen zur Energieversorgung von Wohnhäusern, Fabriken etc. nutzbar.The described process sequences according to the invention and, for example, device components are, of course, also usable for stationary power machines for the energy supply of residential buildings, factories, etc.

Aufstellung der verwendeten BezugszeichenList of used reference numbers

11
kälteisolierter Tank für flüssiges Gas,cold-insulated tank for liquid gas,
22
erstes Volumenregelventil,first volume control valve,
33
Verdampfer,Evaporator,
44
Expansionseinheit mit Mischkühlung,Expansion unit with mixed cooling,
55
zweites Volumenregelventil,second volume control valve,
66
Entspannungsdüse,expansion nozzle,
77
erstes Druckregelventil,first pressure control valve,
88th
zweites Druckregelventil,second pressure control valve,
99
erstes Expansionsventil,first expansion valve,
1010
erste Leitung,first line,
1111
erster Verdichter,first compressor,
1212
drittes Druckregelventil,third pressure control valve,
1313
viertes Druckregelventil,fourth pressure control valve,
1414
Druckgasspeicherkessel,Compressed gas storage vessel
1515
erster Rekuperator,first recuperator,
1616
zweiter Rekuperator,second recuperator,
1717
Expandereinheit,Expander unit,
1818
zweite Leitung,second line,
1919
erster Diffusor,first diffuser,
2020
Druckverteiler,Pressure manifold,
2121
Brenneinheit,Burning unit
2222
Druckregeleinheit,Pressure control unit,
2323
Volumenregeleinheit,Volume control unit,
2424
Impulsregeleinheit,Impulse control unit
2525
Verteiler,distribution,
2626
zweiter und dritter Diffusor,second and third diffuser,
2727
kugelförmiger Druckverteiler,spherical pressure distributor,
2828
Motorzylinder,Engine cylinder,
2929
Kolbenpaar,Piston pair,
3030
Kolbenpaar,Piston pair,
3131
Motorwelle,Motor shaft,
3232
Motorwelle,Motor shaft,
3333
Dauermagnete,Permanent magnets,
3434
Druckgaskreiselkolbenmotor,Gas pressure centrifugal rotary engine,
3535
Abgas- und Schalldämpfereinheit,Exhaust and silencer unit,
3636
erste Düse,first nozzle,
3737
zweiter Verdichter,second compressor,
3838
Kühlkreislauf,Cooling circuit
3939
zweite Düse,second nozzle,
4040
Regelkreis, druckgsteuert,Control circuit, pressure-controlled,
4141
Heizungseinheit,Heating unit
4242
erste Regelstreckefirst controlled system
4343
drittes Ventil,third valve,
4444
Klimaeinheit,Air conditioning unit,
4545
erste Expansions- und Volumenregeleinheit,first expansion and volume control unit,
4646
dritte Leitung, druckgeregelt,third line, pressure controlled,
4747
dritter Verdichter,third compressor,
4848
zweite Regelstrecke, druckgeregelt,second controlled system, pressure controlled,
4949
dritter Rekuperator,third recuperator,
5050
vierter Rekuperator,fourth recuperator,
5151
zweites Expansionsventil,second expansion valve,
5252
erste Rücklaufleitung,first return line,
5353
zweite Rücklaufleitung,second return line,
5454
fünfte Leitung, druckgeregelt,fifth line, pressure controlled,
5555
erster Wechselrichter,first inverter,
5656
Batterie,Battery,
5757
zweiter Wechselrichter,second inverter,
5858
Motor,Engine,
5959
erste mechanische Kupplung,first mechanical coupling,
6060
zweite Kupplung,second clutch,
6161
mechanisches Antriebsteil,mechanical drive part,
6262
Freilauf,Freewheel,
6363
Schwungscheibe,Flywheel,
6464
Kupplung mit erstem Getriebe und mindestens einer Spiralfeder,Clutch with first gear and at least one coil spring,
6565
Spiralfedern,Coil springs,
6666
zweites Getriebe,second gear,
6767
drittes Wechselgetriebe,third change gear,
6868
Einheit, aus Druckluftfilter und SaugleitungUnit, made of compressed air filter and suction line
6969
Abscheider,separators,
7070
vierte Leitung,fourth line,
7171
zweite Expansions- und Volurnenregeleinheit.second expansion and volution control unit.

Claims (12)

  1. A cold-air-engine system having a pressurized-gas rotary-piston engine, wherein the working medium is stored in the cold, liquid state in a thermally insulated tank (1) prior to being fed to the working circuit, where ambient heat generates a gas pressure, which is regulated at the working pressure by a second pressure-control valve (8), by evaporating the working medium in the tank (1) and the liquid working medium is conducted to an evaporator (3) by that working pressure via a first volume-control valve (2) and conducted therefrom, in the gas phase, via a first line (10), through a first compressor (11) and a third pressure-control valve (12), via a second line (18) and first and second recuperators (15, 16) for further heating in an expander unit (17) having a burner unit (21), whereby the gaseous working medium flows through the first recuperator (15) on the burner unit (21) in counterflow mode and then cools the outer walls of the heater on the expander unit (17), working medium exiting the expansion unit (17) expands in an engine, and surplus working medium is ejected from the engine to the ambient via an exhaust and silencer unit, wherein the evaporator (3) is incorporated into an expansion unit (4) such that the entire subsystem is hermetically sealed and the gaseous working medium exiting the evaporator (3) via a first pressure-control valve (7) and a second volume-control valve (5) may be pressed into a mixed cooler on the expansion unit (4) via a relief nozzle (6), where the cooling of the working medium in the mixed cooler on the expansion unit (4) is isobaric and the working medium's exergy is increased, wherein a parallel line is connected to a fourth pressure-control valve (13), a check valve, the compressor (11), a pressurized-gas storage vessel, and to the second line (18) via the third pressure-control valve (12), to a first diffuser (19) and a pressure distributor (20), and to the heater on the expander unit (17), where a controlled, forced flow in the form of pulsating, compressive shocks arises and the working pressure and working temperature increase, wherein the burner unit (21) simultaneously heats the working medium via the heater on the expander unit (17), whereby the volume of the working medium increases by several times, wherein the expander unit (17) immediately follows a pressure-regulation unit (22), a volume-regulation unit (23), and a pulsation-regulation unit (24) that are connected to a distributor (25) and the second and third diffusers (26) by a pipeline and situated immediately opposite the expansion chamber of a pressurized-gas rotary-piston engine (34), whereby the working medium coming from the distributor (25) on the second and third diffusers (26) may be conducted into the expansion chamber of the pressurized-gas rotary-piston engine (34) via a spherical pressure distributor (27) in pulsed-counterflow mode and the pulsed counterflow of the working medium generates a compressive shock having an amplitude 1.69-times the kinetic, thermal, and potential energy of the working pressure of the second and third diffusers (26) via the spherical pressure distributor (27), wherein the pressurized-gas rotary-piston engine (34) has a cylinder (28), a pair of pistons (29, 30), and shafts (31, 32), where the pair of pistons (29, 30) are firmly attached to the shafts (31, 32) and the cylinder (28) is firmly attached to the spherical pressure distributor (27), wherein the shafts (31, 32) run, hermetically sealed, beneath the spherical pressure distributor (27), whereby they take up the expansion energy and convert the full extent of the energy of the working medium taken up by the pair of pistons (29, 30) into mechanical energy, with a high degree of leverage and no dead point, wherein a first nozzle (36) connects the expansion chamber of the pressurized-gas rotary-piston engine (34) to the rotary pistons of a second compressor (37) , which also run on the engine's shafts (31, 32), whereby the working medium is to be forced to the induction side of the pistons of the second compressor (37) by the pair of pistons (29, 30) of the pressurized-gas rotary engine (34) and the second compressor (37) forces the prepressurized working medium back into the mixed cooler of the expansion unit (4) via a second nozzle (39), whereby the working circuit of the pressurized-gas rotary engine (34) is to be closed, and whereby the working circuit functions as a partially closed circuit via an exhaust and silencer unit (35), provided that sufficient working medium has been stored in the cold-air-engine system and the pressure at the induction side of the second compressor (37) exceeds 2 bar.
  2. A cold-air-engine system having a pressurized-gas rotary-piston engine according to claim 1, wherein the pressurized-gas rotary engine (34) is equipped with two to twelve pairs of pistons (29, 30) situated in an expansion stage and with the corresponding number of piston pairs (29, 30) situated in second and third expansion stages, where each and every piston pair (29, 30) should be coordinated to two spherical pressure distributors (27).
  3. A cold-air-engine system having a pressurized-gas rotary-piston engine according to claim 1, wherein the pairs of pistons (29, 30) are hemispherical and vertically split working pistons that have dual working surfaces for the working medium and whose hemispherical shape conforms to the shape of the spherical pressure distributor (27), whereby the area of their working surface is increased to 1.5-times that of a planar working surface.
  4. A cold-air-engine system having a pressurized-gas rotary-piston engine according to claim 1, wherein the pairs of pistons (29, 30) are held together by several permanent magnets or electromagnets (33) until the Laval pressure in the diffuser unit is reached, whereby the pairs of pistons (29, 30) will fly apart along a circular path due to the Laval pressure and the permanent magnets or electromagnets (33) pull the pairs of pistons (29, 30) back together during a displacement action.
  5. A cold-air-engine system having a pressurized-gas rotary-piston engine according to claim 1, wherein the pressure-accumulator vessel is connected to the mixed cooler on the expansion unit (4) via a first expansion and volume unit (45), to the expander unit (17) via the third pressure-regulated line (46), to a mechanical-drive section (61) via a second coupler (60), and to the third compressor (47) via a fourth line (70), whereby all surplus mechanical, thermal, and kinetic energy generated that has been converted in the working medium is to be temporarily stored in the pressure-accumulator vessel (14) and capable of being called up into the working circuit therefrom.
  6. A cold-air-engine system having a pressurized-gas rotary-piston engine according to claim 1, wherein the mechanical-drive section (61) has an freewheeling mechanism (62), a flywheel (63), a clutch (64) coupling it to a first gearbox, and at least one helical spring (65) and mechanically drives the third compressor (47) via a second clutch (60) and a motor (58) via a first clutch (59), allows the pressurized-gas rotary-piston engine (34) to run without idling via the freewheeling mechanism (62), as a direction-of-rotation converter, assigns a direction of rotation to the pair of oscillatory pistons (29, 30), whereby all moments of inertia that briefly occur in the event of decelerations are convertible from mechanical energy into thermal and potential energies that may be supplied to the pressurized-gas rotary-piston engine (34) in the form of working medium via the working circuit and converted into useful energy by the former.
  7. A cold-air-engine system having a pressurized-gas rotary-piston engine according to claim 1, wherein gaseous working medium may be conducted to the third volume-control valve (43) and an expansion valve on a mixed cooler of an air-conditioning unit (44) that follows it, pressure equalization may be generated by the pressure-accumulator vessel (14) or the tank (1), and rooms may be air-conditioned by the second expansion and volume unit (71), without need for running the pressurized-gas rotary-piston engine (34).
  8. A cold-air-engine system having a pressurized-gas rotary-piston engine according to claim 1, wherein the liquid working medium coming from the thermally insulated tank (1) that has been enriched with oxygen may be conducted to an evaporator on the air-conditioning unit (44) via a pressure-regulated circuit (40), whereby the evaporated working medium may be conducted out of the evaporator on the air-conditioning unit (44), into the cooling circuit (38) of the second compressor (37), and returned to the working circuit for enriched combustion, after having been preheated in the burner unit (21).
  9. A cold-air-engine system having a pressurized-gas rotary-piston engine according to claim 1, wherein the expander unit (17) is connected to a heater unit (41), which may be used for heating rooms, via a first volume-controlled regulation stretch (42), without need for running the pressurized-gas rotary-piston engine (34).
  10. A cold-air-engine system having a pressurized-gas rotary-piston engine according to claim 1, wherein the cold-air-engine system is coupled to a photovoltaic system having a first inverter (55), a battery (56), and a second inverter (57) that are connected to a gas-liquefaction system having a third recuperator (49), a fourth recuperator (50), a second expansion valve (51), a first return line (52), and a second return line (53) via the second pressure-regulated regulation stretch (48), where working medium coming from renewable, environmental, energy sources may be generated and cooled, liquid, working medium coming from the gas-liquefaction system (49, 50, 51, 52) via the second expansion valve (51) is to be stored in the thermally insulated tank (1) and gaseous working medium may be immediately conducted to the pressure-accumulator vessel ((14) via the second return line (53) and a pressure-regulated, fifth line (54), and thus to the cold-air-engine system's working circuit, and where the third compressor (47) is to be driven via the first clutch (59) and the second clutch (60), whereby gaseous working medium may also be liquefied using renewable energy sources, stored in storage vessels, and conducted to the pressurized-gas rotary-piston engine (34), which may be utilised to generate forms of energy, such as electrical energy, heat, energy for running refrigeration equipment, fuels, and mechanical energy.
  11. A cold-air-engine system having a pressurized-gas rotary-piston engine according to claim 1, wherein the cold-air-engine system may be run jointly with the pressurized-gas rotary-piston engine (34) as a closed circuit having distinct flow processes and systems, where the working circuit is a sealed system that is hermetically isolated from the refrigeration circuit.
  12. A cold-air-engine system having a pressurized-gas rotary-piston engine according to claim 1, wherein air and nitrogen may be employed as the working medium in the partially closed working circuit, where air inducted from the atmosphere via a regulation unit (68) and the first compressor (11) may be stored in the pressure-accumulator vessel (14) as the working medium and gases and vapours, such as helium, carbon dioxide, water, ammonia, alcohols, and organic refrigerants, may be employed in the closed working circuit.
EP04090285A 2003-11-04 2004-07-21 Environmentally friendly compressed gas driven rotating piston engine with its thermodynamic cycle process Not-in-force EP1529928B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL04090285T PL1529928T3 (en) 2003-11-04 2004-07-21 Environmentally friendly compressed gas driven rotating piston engine with its thermodynamic cycle process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10352520A DE10352520B4 (en) 2003-11-04 2003-11-04 Method for operating a stationary or mobile engine by means of compressed gas and device for carrying out the method
DE10352520 2003-11-04

Publications (2)

Publication Number Publication Date
EP1529928A1 EP1529928A1 (en) 2005-05-11
EP1529928B1 true EP1529928B1 (en) 2009-01-21

Family

ID=34428660

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04090285A Not-in-force EP1529928B1 (en) 2003-11-04 2004-07-21 Environmentally friendly compressed gas driven rotating piston engine with its thermodynamic cycle process

Country Status (7)

Country Link
EP (1) EP1529928B1 (en)
AT (1) ATE421633T1 (en)
DE (2) DE10352520B4 (en)
DK (1) DK1529928T3 (en)
ES (1) ES2320762T3 (en)
PL (1) PL1529928T3 (en)
PT (1) PT1529928E (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005039993A1 (en) * 2005-05-07 2006-11-09 Klaus Herrmann Rotary piston engine for drive system has two rotators in which rotary pistons can turn on turning bolts
DE102006062741B4 (en) * 2006-05-05 2011-06-16 Herrmann, Klaus Process for the recovery, storage and treatment of liquid work equipment and a method for using the work equipment on a rotary swivel piston engine
EP2236822A1 (en) * 2009-04-01 2010-10-06 Werner Hermeling On-demand method for regulating and smoothing the electric output of an energy convertor and device for carrying out this method
DE102013009537A1 (en) * 2013-05-10 2014-11-13 Johannes Schmitz A method of continuously recovering power, building with exergy, method of reducing mass load, method of routing air in a residential building, method of operating a heat pump assembly, heat exchangers and method of cooling a building, method of heating service water

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987632A (en) * 1970-02-27 1976-10-26 Pereda Eugene F Liquid air engine
US3786631A (en) * 1971-09-23 1974-01-22 L Manning Nitrogen vapor engine
GB1481682A (en) * 1973-07-12 1977-08-03 Nat Res Dev Power systems
US4291232A (en) * 1979-07-09 1981-09-22 Cardone Joseph T Liquid powered, closed loop power generating system and process for using same
CA1152563A (en) * 1980-04-28 1983-08-23 Max F. Anderson Closed loop power generating method and apparatus
DE4304688A1 (en) * 1993-01-05 1994-07-07 Rauscher Georg Low temp. heat engine e.g. for vehicle, current generator, refrigerator
DE19524171A1 (en) * 1995-07-03 1997-01-09 Rauscher Georg Low temp thermal energy machine - has closed liquid gas circuit for extraction of heat energy from ambient air or working machine
DE19527882A1 (en) * 1995-07-29 1997-04-17 Hartmann Joerg Dipl Math Energy storage using liquefied air e.g. for powering vehicles, air conditioning engineering and storage of off-peak electricity
DE19911321A1 (en) * 1999-03-13 2000-09-14 Herrmann Klaus Operating method for mobile pneumatic engine stores energy carrier in liquefied state and extracts required volume for re-gasification and supply into engine
US6349787B1 (en) * 2000-05-08 2002-02-26 Farouk Dakhil Vehicle having a turbine engine and a flywheel powered by liquid nitrogen
US20020178724A1 (en) * 2001-06-04 2002-12-05 Robert Daniel Hunt Cyrogen production via a cryogenic vapor driven power piston for use in a cryogenic vapor powered vehicle with rotary vane motors attached to the axles of the vehicle next to the vehicle's four wheels, using a heat source such as solar heat, heat of compression (heat pump or air compressor, etc.) or heat of friction (as formed by an electric generator), or chemical heat, or heat formed by electrical resistance, heat of combustion, etc. to generate high-pressure, high-kinetic energy cryogenic vapor
DE20115657U1 (en) * 2001-09-24 2002-01-17 Schmid Heinrich Liquid nitrogen motor and / or liquid air motor
DE20214283U1 (en) * 2002-09-15 2003-02-27 Schmid Heinrich Liquid compressed gas engine for boats

Also Published As

Publication number Publication date
DE502004008900D1 (en) 2009-03-12
ES2320762T3 (en) 2009-05-28
DE10352520A1 (en) 2005-06-16
ATE421633T1 (en) 2009-02-15
DE10352520B4 (en) 2006-11-02
PT1529928E (en) 2009-04-24
EP1529928A1 (en) 2005-05-11
DK1529928T3 (en) 2009-05-25
PL1529928T3 (en) 2009-11-30

Similar Documents

Publication Publication Date Title
JP3544377B2 (en) Internal combustion engine as heat engine
EP0749521B1 (en) Process for the low-pollutant conversion of fossil fuels into power
US6955052B2 (en) Thermal gas compression engine
EP1841964B1 (en) Power plant featuring thermal decoupling
DE602004009104T2 (en) ENGINE WITH AN ACTIVE MONO-ENERGY AND / OR BI-ENERGY CHAMBER WITH COMPRESSED AIR AND / OR ADDITIONAL ENERGY AND THERMODYNAMIC CYCLE THEREOF
EP3129610A1 (en) Method and device for storing and recovering energy
DE10392525T5 (en) Methods, processes, systems and apparatus with water combustion technology for the combustion of hydrogen and oxygen
DE19903907A1 (en) Hydraulic load drive method, for a fork-lift truck , involves using free piston engine connected in parallel with pneumatic-hydraulic converter so load can be optionally driven by converter and/or engine
DE202005003611U1 (en) Thermal electric station for producing and storing electrical energy comprises a compressed air storage unit with heat exchangers for thermally coupling the station and the compressed air storage unit
DE102010047518A1 (en) Device for energy recovery from exhaust stream of internal combustion engine in vehicle, has working medium that is guided in closed joule-cyclic process in waste heat recovery device
US8453444B2 (en) Power plant using compressed or liquefied air for energy storage
EP1529928B1 (en) Environmentally friendly compressed gas driven rotating piston engine with its thermodynamic cycle process
DE4304688A1 (en) Low temp. heat engine e.g. for vehicle, current generator, refrigerator
WO2011066813A2 (en) Universal rotary piston compressor
DE102010029972A1 (en) Combustion engine drive assembly for e.g. motor car, has pump connected with input of expander, and electrical generator mechanically connected with expander driven shaft and electrically connected with electrolysis device
DE69738474T2 (en) PURE AIR MOTORS FOR TRANSPORT AND OTHER MOTORIZED APPLICATIONS
DE102006062741B4 (en) Process for the recovery, storage and treatment of liquid work equipment and a method for using the work equipment on a rotary swivel piston engine
WO1996001362A1 (en) Low-temperature heat engine
EP3938636B1 (en) Vehicle having a turbine system
WO2012072479A1 (en) Method for operating an adiabatic compressed-air energy storage power plant and adiabatic compressed-air energy storage power plant
WO1998025019A1 (en) Method for generating energy by means of internal combustion engines and waste heat boilers located downstream
DE102005022961A1 (en) Bivalent process to operate piston engine using conventional liquid fuel aided by compressed air and exhaust gas heat recovery
DE102005010264A1 (en) Fuel system for e.g. zero emission vehicle has pressure energy utilization unit, which is formed as gear machine with two interlocked gear wheels for production of mechanical energy
WO2014063810A2 (en) Device for converting thermal energy into mechanical energy and motor vehicle comprising a device of this type
DE102017002286A1 (en) Hydrid heat engine with two devices for converting heat into mechanical energy Enabled by an isochoric working machine, a hybrid thermal cycle process and an isothermal heat engine.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20050621

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070214

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004008900

Country of ref document: DE

Date of ref document: 20090312

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20090416

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20090401018

Country of ref document: GR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2320762

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090121

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090121

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090121

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

26N No opposition filed

Effective date: 20091022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20100611

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: EE

Payment date: 20100719

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100722

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090121

BERE Be: lapsed

Owner name: HERRMANN, KLAUS

Effective date: 20110731

REG Reference to a national code

Ref country code: EE

Ref legal event code: MM4A

Ref document number: E003188

Country of ref document: EE

Effective date: 20110731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110721

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004008900

Country of ref document: DE

Representative=s name: MUELLER-BORE & PARTNER PATENTANWAELTE PARTG MB, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20140721

Year of fee payment: 11

Ref country code: NL

Payment date: 20140728

Year of fee payment: 11

Ref country code: FI

Payment date: 20140718

Year of fee payment: 11

Ref country code: CZ

Payment date: 20140718

Year of fee payment: 11

Ref country code: GR

Payment date: 20140721

Year of fee payment: 11

Ref country code: CH

Payment date: 20140721

Year of fee payment: 11

REG Reference to a national code

Representative=s name: MUELLER-BORE & PARTNER PATENTANWAELTE PARTG MB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004008900

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140731

Year of fee payment: 11

Ref country code: PL

Payment date: 20140717

Year of fee payment: 11

Ref country code: GB

Payment date: 20140721

Year of fee payment: 11

Ref country code: AT

Payment date: 20140729

Year of fee payment: 11

Ref country code: ES

Payment date: 20140801

Year of fee payment: 11

Ref country code: FR

Payment date: 20140731

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140728

Year of fee payment: 11

Ref country code: PT

Payment date: 20140122

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140930

Year of fee payment: 11

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20160121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004008900

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20150731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 421633

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150721

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150721

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150721

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150721

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150721

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150721

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150722

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150721

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160121

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20090401018

Country of ref document: GR

Effective date: 20160202

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150722