DE19527882A1 - Energy storage using liquefied air e.g. for powering vehicles, air conditioning engineering and storage of off-peak electricity - Google Patents
Energy storage using liquefied air e.g. for powering vehicles, air conditioning engineering and storage of off-peak electricityInfo
- Publication number
- DE19527882A1 DE19527882A1 DE19527882A DE19527882A DE19527882A1 DE 19527882 A1 DE19527882 A1 DE 19527882A1 DE 19527882 A DE19527882 A DE 19527882A DE 19527882 A DE19527882 A DE 19527882A DE 19527882 A1 DE19527882 A1 DE 19527882A1
- Authority
- DE
- Germany
- Prior art keywords
- energy
- liquid air
- air
- storage
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004146 energy storage Methods 0.000 title claims abstract description 11
- 238000004378 air conditioning Methods 0.000 title claims description 8
- 230000005611 electricity Effects 0.000 title description 5
- 239000007788 liquid Substances 0.000 claims abstract description 35
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims abstract description 20
- 238000001816 cooling Methods 0.000 claims abstract description 10
- 239000002826 coolant Substances 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 13
- 238000005516 engineering process Methods 0.000 claims description 7
- 239000001273 butane Substances 0.000 claims description 5
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims description 5
- 239000007789 gas Substances 0.000 description 11
- 230000008901 benefit Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000499 effect on compression Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000036515 potency Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/005—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0012—Primary atmospheric gases, e.g. air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/009—Hydrocarbons with four or more carbon atoms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
- F25J1/0245—Different modes, i.e. 'runs', of operation; Process control
- F25J1/0251—Intermittent or alternating process, so-called batch process, e.g. "peak-shaving"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0275—Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0281—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0285—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/04—Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/30—Compression of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2260/00—Coupling of processes or apparatus to other units; Integrated schemes
- F25J2260/30—Integration in an installation using renewable energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/62—Details of storing a fluid in a tank
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
Die Erfindung betrifft die Erkenntnis, daß die an sich bekannte Luftverflüssigung durch ein Verfahren zur Erhöhung des Wirkungsgrades als Verfahren zur Energiespeicherung eingesetzt werden kann.The invention relates to the knowledge that the known air liquefaction by a Processes for increasing the efficiency used as a process for energy storage can be.
Sie betrifft weiterhin Verfahren zur Nutzung dieser flüssigen Luft zum Antrieb von Fahrzeugen und in der Klimatechnik, sowie die Kombination der Erzeugung und Nutzung von flüssiger Luft zur Speicherung von Nachtstrom.It also relates to methods of using this liquid air to drive Vehicles and in air conditioning technology, as well as the combination of the generation and use of liquid air for storing night electricity.
Es ist bekannt, daß Energie, die zu einem Zeitpunkt oder an einem Ort erzeugt wird, wo sie nicht verwendet werden kann, entweder übertragen und/oder zwischengespeichert werden muß. Besonders erneuerbare Energien, wie z. B. die Windkraft, haben den Nachteil, daß sie entsprechend der natürlichen Gegebenheiten und nicht nach Bedarf anfallen. Trotzdem wird in modernen Windkranlagen größtenteils elektrischer Strom erzeugt und direkt in das öffentliche Netz eingespeist.It is known that energy is generated at a time or in a place where it is cannot be used, either transferred and / or cached got to. Especially renewable energies, such as B. the wind power have the disadvantage that they according to the natural conditions and do not arise as required. Nevertheless, in modern wind turbines mostly generate electricity and directly into that fed into the public grid.
Flüssige Luft wird bisher nur zur Stofftrennung und bei Gebrauch extrem niedriger Temperaturen erzeugt. Die hierzu eingesetzte Energie könnte größtenteils auch anderweitig verwendet werden.So far, liquid air has only been used for material separation and extremely low when used Temperatures. Most of the energy used for this could also be otherwise be used.
Im Rahmen der Erzeugung von flüssiger Luft müssen bei der mehrstufigen Kompression sowohl der Kompressor als auch das komprimierte Gas von ca. 200°C bis nahe an die Umgebungstemperatur gekühlt werden. Hierzu werden derzeit Wasser oder Luft benutzt.As part of the generation of liquid air, multi-stage compression both the compressor and the compressed gas from approx. 200 ° C to close to Ambient temperature to be cooled. Water or air are currently used for this.
Ein vergleichbares Beispiel für die Rückumwandlung von speicherbarer Energie in Bewegungsenergie ist das mit einem Akkumulator gespeiste Elektrofahrzeug.A comparable example for the reconversion of storable energy into Kinetic energy is the electric vehicle powered by an accumulator.
In der Klimatechnik werden elektrisch angetriebene Kältemaschinen verwendet.Electrically driven chillers are used in air conditioning technology.
Zur Speicherung von Nachtstrom werden Pumpspeicherwerke eingesetzt.Pump storage plants are used to store night power.
Folgende Nachteile bestehen beim gegenwärtigen Stand der Technik:The following disadvantages exist with the current state of the art:
- - Ungleichmäßig erzeugte Elektroenergie muß zusätzlich umgeformt werden, um die hohen Anforderungen an den Wechselstrom im öffentlichen Netz zu erfüllen.- In addition, unevenly generated electrical energy has to be transformed to meet the high To meet AC power requirements in the public grid.
- - Es muß ein Anschluß an das öffentliche Leitungsnetz hergestellt werden.- A connection to the public supply network must be established.
- - Die Einspeisung der Energie nach Möglichkeit und nicht nach Bedarf erzeugt eine große Abneigung beim Abnehmer bzw. es fällt dort ein hoher zusätzlicher Aufwand an.- Feeding the energy in whenever possible and not as needed creates a large one Reluctance on the part of the customer or there is a high additional effort.
Die bisherigen Kühlsysteme haben den Nachteil, daß die abgeführte Wärmeenergie kaum genutzt wird. The previous cooling systems have the disadvantage that the dissipated thermal energy is hardly is being used.
Akkumulatoren sind wegen der Schwermetalle teuer und bergen besonders bei Produktion und Entsorgung eine Gefahr für die Umwelt in sich. Das Nachladen der Akkumulatoren in den Fahrzeugen geschieht im Vergleich zur nachfolgend aufgeführten Lösung mit geringer Energiedichte.Accumulators are expensive because of the heavy metals and are particularly difficult to produce and Disposal is a danger to the environment in itself. Reloading the batteries in the Vehicles are less expensive compared to the solution listed below Energy density.
Elektrisch angetriebene Kältemaschinen sind vergleichsweise aufwendig und benötigen eine kontinuierliche Energieversorgung.Electrically driven chillers are comparatively complex and require one continuous energy supply.
Pumpspeicherwerke sind an besondere geologische Voraussetzungen gebunden. Folglich sind sie selten in unmittelbarer Nähe von Kraftwerken. Hierdurch entstehen Übertragungsverluste.Pumped storage plants are tied to special geological requirements. Hence are they rarely in the immediate vicinity of power plants. This causes transmission losses.
Das technische Problem liegt darin, ein Verfahren zu finden, womit die Energie in hoher Dichte gespeichert wird, und welches hierzu einen jederzeit zugänglichen umweftfreundlichen Rohstoff benutzt. Dieses Verfahren wird effektiv, indem die Wärme, die bei der Verflüssigung von Luft naturgemäß in großer Menge anfällt, mit möglichst hohem Wirkungsgrad als zusätzliche Antriebsenergie für den Kompressor genutzt wird.The technical problem is to find a method by which the energy in high Density is saved, and which one is always accessible and environmentally friendly Raw material used. This process becomes effective by removing the heat that comes from liquefaction of air naturally occurs in large quantities, with the highest possible efficiency as additional drive energy is used for the compressor.
Flüssige Luft als speicherbare Energie führt zur Aufgabenstellung, sie zur Erzeugung von Bewegungsenergie einzusetzen.Liquid air as storable energy leads to the task, it to the generation of Use kinetic energy.
Sie sollte weit über das bekannte Maß in der Klimatechnik eingesetzt werden. Dabei sollten der mit der Kühlung verbundene Wärmestrom und/oder die Volumenausdehnung der Luft bei Verdunstung und Erwärmung zur Energiegewinnung genutzt werden.It should be used far beyond the known standard in air conditioning technology. Doing so the heat flow associated with the cooling and / or the volume expansion of the air Evaporation and heating can be used to generate energy.
Es existiert das Problem, eine Anlage mit der Funktion eines Pumpspeicherwerkes in unmittelbarer Nähe jedes Kraftwerkes bauen zu können.There is the problem of a system with the function of a pumped storage plant in to be able to build in the immediate vicinity of any power plant.
Die Lösung ist das Verfahren, die an sich bekannte Verflüssigung von Luft zur Energiespeicherung einzusetzen. In einem Dewar-Gefäß (Thermogefäß, das nicht gasdicht verschlossen sein darf) vom Ausmaß eines Großcontainers kann ein negatives Potential von mehr als einer Megawattstunde gespeichert werden.The solution is the process, the known liquefaction of air Use energy storage. In a Dewar flask (thermo flask that is not gas-tight of the size of a large container may have a negative potential of more than one megawatt hour can be saved.
Durch den Einsatz des Kohlenwasserstoffes Pentan als Kühlmittel und gleichzeitig als Medium in einer Wärmekranlage mit geschlossenem Kreislauf zum zusätzlichen Antrieb des Kompressors wird der zur Energiespeicherung notwendige Wirkungsgrad erzielt. Pentan siedet bei 36°C und kondensiert bei Umgebungstemperatur (vgl. Fig. 1).The use of the hydrocarbon pentane as a coolant and at the same time as a medium in a closed-loop heating system to additionally drive the compressor achieves the efficiency required for energy storage. Pentane boils at 36 ° C and condenses at ambient temperature (see Fig. 1).
Die Lösung ist die Nutzung des Energiegefälles zwischen flüssiger Luft und der Umgebungswärme eines Fahrzeuges zum Antrieb durch eine Wärmekraftanlage mit geschlossenem Kreislauf mit dem Medium Butan. Eine weitere Energiequelle ist die etwa 700- fache Volumenausdehnung von flüssiger Luft zu gasförmiger Luft mit Umgebungstemperatur (vgl. Fig. 2).The solution is to use the energy differential between liquid air and the ambient heat of a vehicle to drive it through a closed-loop thermal power plant with the butane medium. Another source of energy is the approximately 700-fold expansion in volume from liquid air to gaseous air at ambient temperature (cf. FIG. 2).
Zur Energiespeicherung gewonnene flüssige Luft kann direkt elektrisch angetriebene Kältemaschinen ersetzen. Zusätzlich sollte der Wärmestrom aus der Kühlung zur Energiegewinnung in Analogie zum Fahrzeug genutzt werden (vgl. Fig. 3a und 3b). Liquid air obtained for energy storage can directly replace electrically driven chillers. In addition, the heat flow from cooling should be used to generate energy in analogy to the vehicle (see Fig. 3a and 3b).
Die Lösung ist die Speicherung der Energie des Nachtstromes in flüssiger Luft und die Rückgewinnung von Elektroenergie in Spitzenzeiten aus dem Energiegefälle zwischen der flüssigen Luft und der Restwärme des Kraftwerkes ebenfalls in Analogie zur Energieumwandlung im Fahrzeug (vgl. Fig. 4).The solution is the storage of the energy of the nighttime electricity in liquid air and the recovery of electrical energy at peak times from the energy gradient between the liquid air and the residual heat of the power plant, also in analogy to the energy conversion in the vehicle (see Fig. 4).
Ein wesentlicher Vorteil ist, daß Luft überall problemlos entnommen und wieder abgegeben werden kann. Flüssige Luft besitzt eine hohe Energiedichte in Form eines großen Energiegefälles. Sie kann relativ einfach in Dewar-Gefäßen gespeichert werden. Damit ist auch ein effektiver Transport von erneuerbarer speicherbarer Energie über Strecken, auf denen sich eine ständige Verbindung nicht lohnt, möglich. Das Sammeln von mehr als einer Megawattstunde in flüssiger Luft in Dewar-Gefäßen mit dem Ausmaß von Großcontainern ermöglicht den Transport zum Nutzer im Rhythmus von mehreren Tagen.A major advantage is that air can be easily removed and discharged anywhere can be. Liquid air has a high energy density in the form of a large one Energy gradient. It can be stored relatively easily in Dewar vessels. So that is also an effective transport of renewable storable energy over routes on which a permanent connection is not worthwhile, possible. Collecting more than one Megawatt hour in liquid air in Dewar vessels the size of large containers enables transport to the user at intervals of several days.
Pentan als Kühlmittel hat den Vorteil der Aufnahme von viel Wärme in Form von Verdunstungswärme. Der zweite wesentliche Vorteil ist die Ausnutzung der Energie des gasförmigen Pentans zum zusätzlichen Antrieb für die Kompression. Die zusätzlich gewonnene Bewegungsenergie wirkt immer wieder auf die Kompression zurück. Wenn zum Beispiel die Hälfte der in Wärme umgewandelten ursprünglich zugeführten Energie noch einmal nutzbar gemacht wird, so kommen in einem zweiten Schritt ein Viertel in einem dritten Schritt ein Achtel usw. hinzu. D.h., daß sich der Nutzeffekt aus dieser Maßnahme nach kurzer Betriebszeit vom reinen Wirkungsgrad hin zum Grenzwert aus der Summe aller Potenzen des Wirkungsgrades aufschaukelt. Die nachfolgende Tabelle zeigt an einigen Beispielen, wie sich dies auswirkt:Pentane as a coolant has the advantage of absorbing a lot of heat in the form of Evaporation heat. The second major advantage is the use of the energy of the gaseous pentans for additional drive for compression. The additionally won Kinetic energy always has an effect on compression. If, for example, the Half of the energy originally converted into heat can be used again is done, in a second step a quarter come in a third step Eighths, etc. This means that the benefit from this measure will be removed after a short time Operating time from pure efficiency to the limit value from the sum of all potencies of the Efficiency builds up. The following table shows some examples of how this affects:
Der Vorteil des Fahrzeuges, was mit flüssiger Luft angetrieben wird, gegenüber dem Elektrofahrzeug liegt darin, daß das Dewar-Gefäß billiger und aus umweltfreundlicheren Materialien hergestellt und sehr viel schneller wieder aufgefüllt werden kann als der Akkumulator.The advantage of the vehicle, which is driven by liquid air, over that Electric vehicle is that the Dewar vessel is cheaper and more environmentally friendly Materials and can be refilled much faster than that Accumulator.
Durch den Einsatz von zur Energiespeicherung erzeugter flüssiger Luft in der Klimatechnik entfallen sowohl die Kältemaschine als auch die Notwendigkeit einer kontinuierlichen Versorgung mit Elektroenergie. Wenn der Wärmestrom aus der Kühlung zur Energiegewinnung genutzt wird, so wird die Gesamtbilanz verbessert, weil dem Kühlmittel an dieser Stelle zusätzlich Energie entzogen wird, aber es entsteht auch ein etwas höherer Verbrauch an flüssiger Luft. Unabhängig davon ist die Volumenausdehnung der ehemals flüssigen Luft nutzbar. Through the use of liquid air generated for energy storage in air conditioning technology both the chiller and the need for a continuous one are eliminated Supply of electrical energy. When the heat flow from the cooling to Energy is used, the overall balance is improved because of the coolant additional energy is withdrawn from this point, but a somewhat higher one also arises Liquid air consumption. Regardless of this, the volume expansion is the former liquid air usable.
Die Anlage, die ein herkömmliches Pumpspeicherwerk ersetzen soll, kann unmittelbar im oder am Kraftwerk installiert werden. Indem sie zu Spitzenzeiten aus flüssiger Luft und der Restwärme des Kraftwerkes Elektroenergie erzeugt, führt sie durch die verbesserte Kühlung gleichzeitig zu einer Erhöhung der Effektivität der vorhandenen Kraftwerksanlage.The system, which is to replace a conventional pumped storage plant, can be installed directly in or be installed at the power plant. By being at peak times from liquid air and the Residual heat generated by the power plant produces electrical energy through the improved cooling at the same time to increase the effectiveness of the existing power plant.
Es bedeutet grundsätzlich vergleichsweise wenig mehr Aufwand, die Luftverflüssigung um die Trennung der Bestandteile der Luft zu erweitern. Besonders bei der Masse verflüssigter Luft in der letztgenannten Anlage ist eine wirtschaftlich sinnvolle Gewinnung kleinster Bestandteile der Luft zu erwarten. Aber auch in kleineren Anlagen beinhaltet die Technologie der Luftverflüssigung, daß der nicht verflüssigte Teil der komprimierten Gase ständig in der Anlage kreist. Folglich reichert sich dieses Gasgemisch mit den Gasen Neon, Helium und Wasserstoff an, weil sie mit den Siedetemperaturen -246, -269 bzw. -253°C deutlich unter denen von Stickstoff und Sauerstoff liegen. Damit liefert dieses Gasgemisch nach einer gewissen Betriebszeit einen wertvollen Rohstoff zur Produktion von Helium für Luftschiffe in ausreichender Menge und zu einem vertretbaren Preis.Basically, it means comparatively little more effort, the air liquefaction around the Expand separation of air components. Especially with the mass of liquefied air in The latter plant is an economically sensible extraction of the smallest components expected in the air. But even in smaller plants, the technology includes Air liquefaction that the non-liquefied part of the compressed gases constantly in the Plant circles. As a result, this gas mixture is enriched with the gases neon, helium and Hydrogen, because with the boiling temperatures -246, -269 and -253 ° C they are significantly below that of nitrogen and oxygen. So this gas mixture delivers after one a valuable raw material for the production of helium for airships in certain operating times sufficient quantity and at a reasonable price.
Die Erfindung wird anhand von mehreren Darstellungen des Grundprinzips für die jeweiligen Verfahrensschritte näher erläutert.The invention is based on several representations of the basic principle for each Process steps explained in more detail.
Es zeigen:Show it:
Fig. 1 Energiespeicherung mittels flüssiger Luft am Beispiel Windenergie, Fig. 1 Energy storage by means of liquid air example wind energy,
Fig. 2 Erzeugung von Bewegungsenergie mittels flüssiger Luft,2 generation of kinetic energy by means of liquid air,
Fig. 3a und 3b Zwei Beispiele für besonders effektive Nutzung von flüssiger Luft in der Klimatechnik durch Kälte-Kraft-Kopplung, FIGS. 3a and 3b show two examples of particularly effective use of liquid air in air-conditioning refrigerant by force coupling,
Fig. 4 Energiespeicherung mittels flüssiger Luft in einer Anlage mit der Funktion derzeitiger Pumpspeicherwerke. Fig. 4 energy storage by means of liquid air in a system with the function of current pumped storage plants.
Sowohl der technische Aufbau einer Anlage zur Luftverflüssigung als auch eine Wärmekraftanlage mit geschlossenem Kreislauf sind an sich bekannt. Durch die Erhöhung des Wirkungsgrades wird die Luftverflüssigung zum Verfahren zur Energiespeicherung. Die direkte Kopplung von einem Windrad und einer Anlage zur Luftverflüssigung ist besonders günstig, weil hier die zwischenzeitliche Umwandlung in eine andere Energieart entfällt. Both the technical structure of a plant for air liquefaction and one Closed cycle thermal power plants are known per se. By increasing the Efficiency is the liquefaction of air to the method for energy storage. The Direct coupling of a wind turbine and an air liquefaction system is special cheap, because here the intermediate conversion into another type of energy is not necessary.
Fig. 2 beinhaltet den Tankvorgang und die Funktionsweise eines Fahrzeuges, was mittels flüssiger Luft angetrieben wird. Der Vorratstank ist ein Dewar-Gefäß mit mindestens einhundert Liter Inhalt. Die Wärmekranlage hat die bekannten Bestandteilen Verdampfer, Gasdruckmotor, Kondensor und Pumpe. Hinzu kommt ein Wärmetauscher und ein weiterer Gasdruckmotor. Fig. 2 includes the refueling process and the functioning of a vehicle which is driven by means of liquid air. The storage tank is a Dewar vessel with at least one hundred liters of content. The heating system has the well-known components of evaporator, gas pressure motor, condenser and pump. There is also a heat exchanger and another gas pressure motor.
Butan (Siedetemperatur -1°C) verdampft unter dem Einfluß der Umgebungswärme. Das hierdurch unter Druck stehende Gas treibt den Gasdruckmotor, der zum Beschleunigen des Fahrzeugs dient, an. Der Kondensor ist ein Wärmetauscher, wo Butan bei Verbrauch von vergleichsweise wenig flüssiger Luft verflüssigt wird. Über die Pumpe wird das verflüssigte Gas in den Verdampfer zurück gebracht. Die ehemals flüssige Luft hat nach Erwärmung auf Umgebungstemperatur das 700-fache Volumen. Ein zusätzlicher Gasdruckmotor nutzt die darin enthaltene Energie entweder auch zum Beschleunigen des Fahrzeugs oder zum Antrieb von Hilfsaggregaten wie Lüfter, Lichtmaschine usw.Butane (boiling point -1 ° C) evaporates under the influence of the ambient heat. The thereby pressurized gas drives the gas pressure motor, which accelerates the Serves vehicle. The condenser is a heat exchanger where butane is consumed by comparatively little liquid air is liquefied. This is liquefied via the pump Gas returned to the evaporator. The formerly liquid air is open after heating Ambient temperature 700 times the volume. An additional gas pressure engine uses the energy contained therein either to accelerate the vehicle or to drive it of auxiliary units such as fans, alternators, etc.
Fig. 3a und 3b zeigen, wie in der Klimatechnik zusätzlich Bewegungsenergie gewonnen werden kann, wenn ein dem angestrebten Temperaturbereich angepaßtes Medium (Propan oder Butan) gleichzeitig als Kühlmittel und in einer Wärmekranlage mit geschlossenem Kreislauf fungiert und/oder die Volumenausdehnung genutzt wird. Die Bewegungsenergie kann direkt z. B. zum Antrieb von Lüftern eingesetzt oder in Elektroenergie umgewandelt werden. FIGS. 3a and 3b show how kinetic energy can be recovered in the air conditioning technology, in addition, if a matched the desired temperature range medium (propane or butane) also acts as a coolant and a heat crane position closed-loop and / or the volume expansion is used. The kinetic energy can directly z. B. used to drive fans or converted into electrical energy.
Fig. 4 gibt einen Überblick über die Anlage, die die Funktion von bisherigen Pumpspeicherwerken übernehmen soll. Die Energie für die Luftverflüssigung ist der Nachtstrom. Hier wird ein weitaus größeres stationäres Dewar-Gefäß benötigt. Bei der Verwertung des Potentials der flüssigen Luft kommt die Wärme aus der Restwärme des Kraftwerkes, und die Bewegungsenergie wird zur Gewinnung von Elektroenergie eingesetzt. Abgesehen von der Dimension setzt sich die Anlage aus den bereits beschriebenen Anlagen zusammen. Fig. 4 gives an overview of the system that is to take over the function of previous pumped storage plants. The energy for air liquefaction is the night electricity. A much larger stationary Dewar vessel is required here. When utilizing the potential of liquid air, the heat comes from the residual heat of the power plant, and the kinetic energy is used to generate electrical energy. Apart from the dimensions, the system is made up of the systems already described.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19527882A DE19527882A1 (en) | 1995-07-29 | 1995-07-29 | Energy storage using liquefied air e.g. for powering vehicles, air conditioning engineering and storage of off-peak electricity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19527882A DE19527882A1 (en) | 1995-07-29 | 1995-07-29 | Energy storage using liquefied air e.g. for powering vehicles, air conditioning engineering and storage of off-peak electricity |
Publications (1)
Publication Number | Publication Date |
---|---|
DE19527882A1 true DE19527882A1 (en) | 1997-04-17 |
Family
ID=7768180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19527882A Withdrawn DE19527882A1 (en) | 1995-07-29 | 1995-07-29 | Energy storage using liquefied air e.g. for powering vehicles, air conditioning engineering and storage of off-peak electricity |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE19527882A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1529928A1 (en) * | 2003-11-04 | 2005-05-11 | Klaus Herrmann | Environmentally friendly compressed gas driven rotating piston engine with its thermodynamic cycle process |
DE102010024465A1 (en) * | 2010-06-21 | 2011-12-22 | Siemens Aktiengesellschaft | Method for utilizing waste electrical energy of e.g. coal fired power plant, involves liquefying gas with assistance of electrical power, storing liquefied gas, and cooling process medium of power station with assistance of liquefied gas |
EP2405176A1 (en) * | 2010-07-09 | 2012-01-11 | LO Solutions GmbH | Method and device for providing electrical and thermal energy, in particular in a harbour |
WO2013062922A1 (en) * | 2011-10-22 | 2013-05-02 | Baxter Larry L | Systems and methods for integrated energy storage and cryogenic carbon capture |
EP2634383A1 (en) * | 2012-03-01 | 2013-09-04 | Institut Für Luft- Und Kältetechnik Gemeinnützige GmbH | Method and assembly for storing energy |
CN103422894A (en) * | 2012-05-18 | 2013-12-04 | 周登荣 | Heating regulator used for aerodynamic vehicle |
US8656712B2 (en) | 2007-10-03 | 2014-02-25 | Isentropic Limited | Energy storage |
GB2512360A (en) * | 2013-03-27 | 2014-10-01 | Highview Entpr Ltd | Method and apparatus in a cryogenic liquefaction process |
WO2014026738A3 (en) * | 2012-08-02 | 2014-10-23 | Linde Aktiengesellschaft | Method and device for generating electrical energy |
EP3552971A3 (en) * | 2018-03-23 | 2020-02-12 | United Technologies Corporation | Propulsion system cooling control |
CN113958374A (en) * | 2021-09-22 | 2022-01-21 | 西安交通大学 | Partially-pumped multi-stage heat exchange liquefied air energy storage system and method |
-
1995
- 1995-07-29 DE DE19527882A patent/DE19527882A1/en not_active Withdrawn
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1529928A1 (en) * | 2003-11-04 | 2005-05-11 | Klaus Herrmann | Environmentally friendly compressed gas driven rotating piston engine with its thermodynamic cycle process |
US8656712B2 (en) | 2007-10-03 | 2014-02-25 | Isentropic Limited | Energy storage |
US8826664B2 (en) | 2007-10-03 | 2014-09-09 | Isentropic Limited | Energy storage |
DE102010024465A1 (en) * | 2010-06-21 | 2011-12-22 | Siemens Aktiengesellschaft | Method for utilizing waste electrical energy of e.g. coal fired power plant, involves liquefying gas with assistance of electrical power, storing liquefied gas, and cooling process medium of power station with assistance of liquefied gas |
EP2405176A1 (en) * | 2010-07-09 | 2012-01-11 | LO Solutions GmbH | Method and device for providing electrical and thermal energy, in particular in a harbour |
WO2013062922A1 (en) * | 2011-10-22 | 2013-05-02 | Baxter Larry L | Systems and methods for integrated energy storage and cryogenic carbon capture |
US9410736B2 (en) | 2011-10-22 | 2016-08-09 | Sustainable Energy Solutions, Llc | Systems and methods for integrated energy storage and cryogenic carbon capture |
CN104246150A (en) * | 2011-10-22 | 2014-12-24 | 可持续能源解决方案有限公司 | Systems and methods for integrated energy storage and cryogenic carbon capture |
EP2634383A1 (en) * | 2012-03-01 | 2013-09-04 | Institut Für Luft- Und Kältetechnik Gemeinnützige GmbH | Method and assembly for storing energy |
DE102012104416A1 (en) * | 2012-03-01 | 2013-09-05 | Institut Für Luft- Und Kältetechnik Gemeinnützige Gmbh | Method and arrangement for storing energy |
CN103422894B (en) * | 2012-05-18 | 2015-08-05 | 周登荣 | For the heating controller of air car |
CN103422894A (en) * | 2012-05-18 | 2013-12-04 | 周登荣 | Heating regulator used for aerodynamic vehicle |
WO2014026738A3 (en) * | 2012-08-02 | 2014-10-23 | Linde Aktiengesellschaft | Method and device for generating electrical energy |
GB2512360B (en) * | 2013-03-27 | 2015-08-05 | Highview Entpr Ltd | Method and apparatus in a cryogenic liquefaction process |
GB2512360A (en) * | 2013-03-27 | 2014-10-01 | Highview Entpr Ltd | Method and apparatus in a cryogenic liquefaction process |
EP3552971A3 (en) * | 2018-03-23 | 2020-02-12 | United Technologies Corporation | Propulsion system cooling control |
US11299279B2 (en) | 2018-03-23 | 2022-04-12 | Raytheon Technologies Corporation | Chilled working fluid generation and separation for an aircraft |
US11305879B2 (en) | 2018-03-23 | 2022-04-19 | Raytheon Technologies Corporation | Propulsion system cooling control |
US11542016B2 (en) | 2018-03-23 | 2023-01-03 | Raytheon Technologies Corporation | Cryogenic cooling system for an aircraft |
CN113958374A (en) * | 2021-09-22 | 2022-01-21 | 西安交通大学 | Partially-pumped multi-stage heat exchange liquefied air energy storage system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2084372B1 (en) | Method and apparatus for effective and low-emission operation of power stations, as well as for energy storage and energy conversion | |
US9217423B2 (en) | Energy storage system using supercritical air | |
CN1057585C (en) | Method and apparatus for increasing efficiency and productivity in a power generation cycle | |
EP2634383B1 (en) | Method and assembly for storing energy | |
DE19527882A1 (en) | Energy storage using liquefied air e.g. for powering vehicles, air conditioning engineering and storage of off-peak electricity | |
EP2078140A2 (en) | Method and apparatus for use of low-temperature heat for electricity generation | |
CN106050344B (en) | A kind of cold liquid air energy storage method of mixed working fluid moldeed depth and system | |
WO2016050524A1 (en) | Device and method for storing energy | |
DE19530099B4 (en) | Heat recovery in a liquid ring pump barrier fluid cooler system | |
DE102015007732A1 (en) | Oxygen expander (electrolysis) for cooling the production and compression process | |
EP2415976B1 (en) | Thermal engine for converting thermal energy into mechanical energy and method for operating of such a thermal engine | |
DE4243401C2 (en) | Process for converting thermal energy into electrical energy | |
EP4139562B1 (en) | System having a liquid air energy storage and power plant apparatus | |
DE10039989B4 (en) | Energy process and energy system for converting thermal energy into electrical energy | |
WO2014153583A1 (en) | Device for storing energy | |
DE102011111963A1 (en) | Method for supplying electrical power for operating electrical consumer utilized for heating and/or air-conditioning building, involves supplying heat energy as fluid stream, and receiving heat energy by energy converter from environment | |
WO2013004351A1 (en) | Device for emergency cooling a system for exothermic processes | |
EP2236822A1 (en) | On-demand method for regulating and smoothing the electric output of an energy convertor and device for carrying out this method | |
DE102011105542A1 (en) | Method and device for energy storage by means of a combined heat and pressure accumulator | |
DE102022125604B4 (en) | System and method for energy conversion and energy storage | |
DE202010008126U1 (en) | Heat engine for converting thermal energy into mechanical energy used to generate electricity | |
DE10221145A1 (en) | Thermal power engine for electricity generation and operating process, has internal heat sink based on the state of aggregation of a fluid | |
AT12845U1 (en) | Method for operating a stationary power plant with at least one internal combustion engine | |
DE102010060595A1 (en) | Method for generating electricity from liquefied gases, used in e.g. power plant, involves vaporizing stored liquefied gas | |
DE2654097A1 (en) | Continuous operation motor or cooler - uses solar or underground heat by clockwise temp. entropy cycle of low triple point gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8122 | Nonbinding interest in granting licenses declared | ||
8139 | Disposal/non-payment of the annual fee |