EP1513168A2 - Method and apparatus for magnetising a magnet system - Google Patents

Method and apparatus for magnetising a magnet system Download PDF

Info

Publication number
EP1513168A2
EP1513168A2 EP04405528A EP04405528A EP1513168A2 EP 1513168 A2 EP1513168 A2 EP 1513168A2 EP 04405528 A EP04405528 A EP 04405528A EP 04405528 A EP04405528 A EP 04405528A EP 1513168 A2 EP1513168 A2 EP 1513168A2
Authority
EP
European Patent Office
Prior art keywords
magnetizing
pulse
current
coil
magnetizing coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04405528A
Other languages
German (de)
French (fr)
Other versions
EP1513168B1 (en
EP1513168A3 (en
Inventor
Albert Maurer
Urs Meyer
Stefan Haas
Olivier Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1513168A2 publication Critical patent/EP1513168A2/en
Publication of EP1513168A3 publication Critical patent/EP1513168A3/en
Application granted granted Critical
Publication of EP1513168B1 publication Critical patent/EP1513168B1/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
    • H01F7/1816Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current making use of an energy accumulator

Definitions

  • the present invention relates to a method and a Device for magnetizing a magnet system according to Preambles of the independent claims.
  • the invention is suitable for.
  • magnetizing permanent magnets Magnetizing coil It is known for magnetizing permanent magnets Magnetizing coil to use.
  • the magnetizing coil is immediately above the magnetic body to be magnetized or arranged around him.
  • the magnetizing coil is a associated with charged capacitor, which via the coil unloaded. That in the magnetizing coil at short notice built-up magnetic field magnetizes the magnetic body.
  • the usual pulse durations be 10 ms or more. It is observed that the magnetizing coil undesirably strongly heated, which a high clock frequency makes it impossible and the use of complex cooling systems conditional.
  • NdFeB neodymium-iron-boron
  • DE-39'34'691 a device is described, in which the magnets in a current-carrying conductor be pushed. A magnetizing of pre-assembled Magnets can not be reached with this device.
  • the in DE-39'34'691 mentioned parallelization refers on adjacent conductors for magnetizing long bar magnet or multi-pole Magnetization.
  • the method and the device should be particularly also allow permanent magnets made of rare earth materials in Series production with a high clock rate of one second or less magnetizing and so high productivity too guarantee.
  • the method and the device are intended for the use in an automated production plant be suitable, while also magnetizing already to allow magnets wound on rotors. she should work energy-saving and get along with air cooling.
  • the device should be compact, robust and be cost-effective and if possible standard components use.
  • the material to be magnetized with a current flowing through a Magnetisierspule current pulse or the magnetic field built up by the magnetizing coil magnetized and magnetically anchored The magnetization by the magnetic field is the heating of the magnetizing coil opposite. Therefore, the current pulse has to be short enough to avoid any to cause too much warming.
  • a Current pulse with a pulse duration between 10 ⁇ s and 500 ⁇ s and preferably used between 10 ⁇ s and 200 ⁇ s.
  • Of the Power pulse must be strong enough at the same time, however, for a the magnetization to build up sufficient magnetic field.
  • the one required short pulse with strong magnetic field becomes preferably by superposition of several Magnetizing coils with low number of turns achieved.
  • the inventive method for Magnetizing a magnet system to the magnet system Magnetizing assigned is with subjected to a current pulse with a limited pulse duration, whereby a magnetic field interacting with the magnet system is built.
  • the pulse duration of the current pulse on a value between 10 ⁇ s and 500 ⁇ s and preferably limited between 10 ⁇ s and 200 ⁇ s.
  • the inventive device for magnetizing a Magnet system includes a pulse generator circuit with a capacitor element, one with the capacitor element electrically connected magnetizing coil and a Switching element, by its actuation the magnetizing coil with a by discharge of the capacitor element resulting current pulse with limited pulse duration acted upon and thus the structure of a magnetic field is triggerable.
  • the pulse generator circuit is such constructed that the pulse duration of the current pulse to a value between 10 ⁇ s and 500 ⁇ s and preferably between 10 ⁇ s and 200 ⁇ s is limited.
  • Each of the at least two Magnetizing coils may be assigned a switching element, in which case the device further comprises actuating means has, by means of which the at least two switching elements can be actuated simultaneously.
  • the device is the pulse generator circuit several times, for example four to twelve times, existing, what in Following as “parallel multiplication” or Referred to as “parallelization” of the pulse generator circuit becomes. Thanks to parallel multiplication, the Inductance of the magnetizing coil and the capacity of the Capacitor element are kept small in the resonant circuit. This results in the required short pulse durations of eg 100 ⁇ s; nevertheless, enough high magnetic fields generated to modern, sophisticated magnet systems too magnetize.
  • the Magnetizing pulse For a reduction of heat energy in the Magnetizing coil is released, so is the Magnetizing pulse in its duration to limit.
  • the usual Discharge circuit with freewheeling diode sets a substantial Proportion of the pulse energy stored in the capacitor exponentially decaying end of the pulse around. this section but no longer has a magnetizing effect.
  • a novel circuit which in the path of the freewheeling diode a Storage throttle has, can be the exponential Prevent leakage of the current in the magnetizing coil and regain much of the energy in it.
  • the inductive feedback allows the second swing the capacitor voltage and thereby prevents the ohmic Losses due to decaying. The remaining energy charges the capacitor element already for the next pulse again on. Thus, a low energy consumption is achieved, and it No elaborate cooling of the coil is necessary.
  • the second Swinging over the inductive feedback results in a quadruple parallelization of the magnetizing coil one additional energy savings of 43%. Without parallelization, with a single magnetizing coil and the same power, it is only 18%.
  • the pulse generator circuit a return path arranged parallel to the magnetizing coil on which a storage throttle and a direction includes the current pulse blocking diode element.
  • the Storage throttle element is advantageously so dimensioned that together with the storage capacitor forms a resonant circuit whose period is greater as the corresponding one of the magnetizing circuit.
  • the electromagnetic resonant circuit can by an already magnetized permanent magnet, preferably a NdFeB magnet, get supported. This one will be in the Magnetizing coil inserted in such a way that its field that of Coil superimposed and reinforcing effect.
  • the inventive device can be with about 1000 V operate, reducing the requirements for the paint insulation (125 V per turn with 8 turns) between individual Wire windings in the magnetizing coil still in the unproblematic area lie.
  • As energy storage preferably pulse-resistant capacitors with metallized Plastic film used. These have a low Self-inductance, what the characteristics of the resonant circuit less influenced. For switching the voltages and currents come z.
  • FIG. 1 shows very schematically important elements of a preferred embodiment of the device 1 according to the invention.
  • the device 1 includes a plurality of preferably identical pulse generator circuits 2.1-2.4. In the embodiment of Figure 1, four such pulse generator circuits 2.1-2.4 are indicated; but it can also be more or less.
  • Each pulse generator circuit 2.1-2.4 has a capacitor element 21, preferably a foil capacitor, and a magnetizing coil 22 electrically connected to the capacitor element 21.
  • Each pulse generator circuit 2.1-2.4 also has a switching element 23, for example a thyristor, by the actuation of which a pulse-like discharge of the capacitor element 21 via the magnetizing coil 22 and thus the establishment of a magnetic field in the magnetizing coil 22 can be triggered.
  • the device 1 further comprises actuating means 3, by means of which the switching elements 23 of the at least two pulse generator circuits 2.1-2.4 are simultaneously actuated.
  • actuating means are known in the art; see, for. B. Werner Lücking, "Thyristor basic circuits: Manual for training, study and practice", VDE-Verlag, 1984.
  • the pulse generator circuits 2.1-2.4 and in particular the Magnetisierspulen 22 are mutually arranged so that their magnetic fields superimpose reinforcing. Details of the pulse generator circuits 2.1-2.4 will be discussed further with reference to FIG.
  • FIG. 2 shows a preferred embodiment of a pulse generator circuit 2 for the device 1 according to the invention.
  • the capacitor 21 having a capacitance C
  • magnetizing coil 22 having an inductance L and thyristor 23 and introduced already on the basis of FIG Inductance L 2
  • the magnetizing coil 22 an inner resistor R 1 and the thyristor 23 and the electrical lines connecting these elements an internal resistance R 2 .
  • the pulse generator circuit 2 is designed and dimensioned such that the discharge of the capacitor element 21 has a pulse duration of approximately 10-500 ⁇ s and preferably approximately 10-200 ⁇ s. To achieve such short pulse durations, the values of C and L must be small. It may, for example, apply: 1 ⁇ H ⁇ L ⁇ 15 ⁇ H and 15 ⁇ F ⁇ C ⁇ 150 ⁇ F, and preferably 2 ⁇ H ⁇ L ⁇ 8 ⁇ H and 30 ⁇ F ⁇ C ⁇ 75 ⁇ F. In order to build up sufficiently high magnetic fields despite the small L and C values, preferably the pulse generator circuit 2 or parts thereof are multiplied in parallel, as illustrated and explained with reference to FIG.
  • the at least one capacitor element 21 should be chargeable with voltages ⁇ C of approximately 100-5000 V and preferably approximately 1200-2000 V.
  • the pulse generator circuit 2 should allow discharge currents iL 1 of approximately 1-10 kA and preferably approximately 2-5 kA.
  • a return path 24 is arranged parallel to the magnetizing coil 22.
  • This includes a storage inductor coil 25 having an inductance L d and a blocking in the direction of the discharge current pulse diode 26.
  • the storage inductor coil 25 has an internal resistance R d .
  • the storage choke coil 25 is advantageously dimensioned so that it forms a resonant circuit together with the capacitor element 21 whose period is greater, for example. 2 to 1000 times greater and preferably 10 to 100 times greater than the corresponding period of the Magnetisiernikes without return path 24.
  • a storage choke coil 25 is preferably selected, which has an inductance L d , which is 2 to 1000 times larger and preferably 10 to 100 times greater than the inductance L 1 of the magnetizing coil, z , B. 10 ⁇ H ⁇ L d ⁇ 150 ⁇ H.
  • the different phases of the temporal sequence are for Clarification by three vertical lines from each other demarcated.
  • the switching element 23 of the device 1 according to the invention may, instead of the thyristor shown by way of example in FIG. 2, also comprise an insulated gate bipolar transistor 4 (insulated gate bipolar transistor, IGBT). Such a switching element 23 is shown by way of example in FIG .
  • the collector C of the IGBT 4 is electrically connected to the magnetizing coil 22. Between the magnetizing coil and the IGBT, a diode 41 blocking the direction of the discharge current pulse may optionally be connected.
  • the gate G of the IGBT 4 is driven by a drive device 42.
  • the drive unit 42 has an ignition input 43 for an ignition pulse.
  • a current sensor 44 is installed, the signal of which is fed via a sensor input 45 into the drive unit 42. If the emitter current I E is positive and a firing pulse is present, the IGBT 4 should let through; otherwise the IGBT 4 should lock.
  • FIG. 5 shows a preferred arrangement of magnetizing coils 22.1-22.8 in the device 1 according to the invention in a plan view.
  • FIG. 6 shows a cross section along the line VI-VI in FIG. 5.
  • eight magnetizing coils 22.1 to 22.8 having different diameters are nested one inside the other.
  • Each magnetizing coil 22.1-22.8 has, for example, six turns. It is also possible to use magnetizing coils with bifilar or multifilar windings.
  • the magnetizing coils 22.1-22.8 may be rectangular, square or round or have other geometries.
  • the arrangement can be completed on both sides by an epoxy glass plate 27.1, 27.2.
  • the inner or outer diameter of such an arrangement depends on the particular application and is typically in the range of a few to a few hundred centimeters.
  • the resulting magnetic field B ie the superposition of the magnetic fields built up in the eight magnetizing coils 22.1-22.8, is indicated by an arrow.
  • the arrangement is z. B. positioned on the surface of a magnetic system to be magnetized 8, such that the largest possible part of the magnetic field B can interact with the material of the magnetic system 8. If the magnet system 8 is accessible, at least partially, from the sides, the arrangement is preferably positioned such that the magnetizing coils 22.1-22.8 surround, at least partially, the magnet system 8. This allows an even more efficient magnetization to be achieved.
  • the Magnetizing coils 22.1-22.8 also the same diameter have and be arranged one above the other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Treatment Devices (AREA)
  • Relay Circuits (AREA)

Abstract

The method involves providing the magnet system with a magnetizing coil (22) and applying a current pulse to the coil of limited pulse duration to create a magnetic field that interacts with the magnet system. The pulse duration of the current pulse is limited to a value between 10 microseconds and 500 microseconds, preferably between 10 and 200 microseconds. Independent claims are included for the use of the method to magnetize permanent magnets made of rare-earth materials; and for an apparatus for magnetizing a magnet system.

Description

Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zum Magnetisieren eines Magnetsystems gemäss den Oberbegriffen der unabhängigen Patentansprüche. Die Erfindung eignet sich z. B. dafür, Dauermagnete aus Seltenerd-Materialien auf dem Rotor eines Elektromotors zu magnetisieren und magnetisch zu verankern. Sie kann in automatisierten Magnetisieranlagen mit geringen Taktzeiten bzw. hohen Stückzahlen eingesetzt werden.The present invention relates to a method and a Device for magnetizing a magnet system according to Preambles of the independent claims. The invention is suitable for. For example, permanent magnets made of rare earth materials on the rotor of an electric motor too magnetizing and magnetically anchoring. She can in automated magnetizing systems with low cycle times or high quantities are used.

Es ist bekannt, zum Magnetisieren von Dauermagneten eine Magnetisierspule zu verwenden. Die Magnetisierspule wird unmittelbar über dem zu magnetisierenden Magnetkörper oder um ihn herum angeordnet. Der Magnetisierspule ist ein aufgeladener Kondensator zugeordnet, welcher über die Spule entladen wird. Das in der Magnetisierspule kurzfristig aufgebaute Magnetfeld magnetisiert den Magnetkörper. Um ein genügend grosses Magnetfeld aufzubauen, muss eine Magnetisierspule mit vielen Windungen bzw. einer grossen Induktivität verwendet werden. Die üblichen Pulsdauern betragen 10 ms oder mehr. Dabei wird beobachtet, dass sich die Magnetisierspule unerwünschterweise stark erwärmt, was eine hohe Taktfrequenz verunmöglicht und den Einsatz von aufwändigen Kühlsystemen bedingt.It is known for magnetizing permanent magnets Magnetizing coil to use. The magnetizing coil is immediately above the magnetic body to be magnetized or arranged around him. The magnetizing coil is a associated with charged capacitor, which via the coil unloaded. That in the magnetizing coil at short notice built-up magnetic field magnetizes the magnetic body. To one to build up enough large magnetic field, one must Magnetizing coil with many turns or a large Inductance can be used. The usual pulse durations be 10 ms or more. It is observed that the magnetizing coil undesirably strongly heated, which a high clock frequency makes it impossible and the use of complex cooling systems conditional.

Ein für den Betrieb von gattungsgemässen Magnetisiervorrichtungen geeigneter elektrischer Pulsgenerator ist in der DE-28'06'000 offenbart. Dieser Pulsgenerator beinhaltet eine Schaltung zur Energierückgewinnung mit zwei Kondensatoren oder zwei gleichzeitig gezündeten Hochstrom-Schaltern.One for the operation of generic Magnetizing devices suitable electrical Pulse generator is disclosed in DE-28'06'000. This Pulse generator includes a circuit for Energy recovery with two capacitors or two simultaneously fired high-current switches.

Dauermagnete aus Seltenerd-Materialien wie Neodym-Eisen-Bor (NdFeB) lösen zur Zeit die in grossen Stückzahlen eingesetzten Ferritmagnete ab. Sie sind wegen ihrer hohen Koerzitivkraft erheblich schwieriger zu magnetisieren. Während für die Magnetisierung herkömmlicher Magnete aus Magnetlegierungen oder Ferriten eine magnetische Feldstärke von 800 kA/m genügt, verlangen die modernen Magnete 1600-4000 kA/m. Die letztgenannte Feldstärke liegt höher als der Sättigungsgrad von allen bekannten ferromagnetischen Materialien. Ein Eisenrückschluss für die Magnetisierspule hat deshalb höchstens noch eine unterstützende Wirkung, kann aber keine Feldkonzentration mehr bewirken. Für das Magnetisieren müssen deshalb Luftspulen eingesetzt werden. Diese haben einen wesentlich schlechteren Wirkungsgrad in der Magnetisierung, weil sich das Magnetfeld nicht auf den Magneten konzentrieren lässt. Deshalb müssen wesentlich höhere Leistungen in die Spule gebracht werden, und deren unerwünschte Erwärmung ist entsprechend grösser.Permanent magnets made of rare earth materials such as neodymium-iron-boron (NdFeB) currently solve the large numbers used ferrite from. They are because of their high Coercive force considerably more difficult to magnetize. While dating for the magnetization of conventional magnets Magnetic alloys or ferrites a magnetic field strength of 800 kA / m is enough, modern magnets demand 1600-4000 kA / m. The latter field strength is higher than the degree of saturation of all known ferromagnetic Materials. An iron yoke for the magnetizing coil therefore has at most a supporting effect, can but cause no more field concentration. For the Magnetizing must therefore be used air coils. These have a much lower efficiency in the Magnetization, because the magnetic field is not on the Let magnets concentrate. That's why essential higher powers are brought into the coil, and whose unwanted heating is correspondingly greater.

Konventionelle Magnetisieranlagen arbeiten mit Pulsdauern von 10 ms oder mehr. Solche Pulsdauern ergeben genügende Eindringtiefen des Magnetfeldes auch in elektrisch leitfähigen Materialien, wo die Ausbreitung magnetischer Felder durch Wirbelströme verzögert wird. Sie erlauben weiter den Einsatz von kostengünstigen Elektrolytkondensatoren zur Energiespeicherung für den Magnetisierpuls und die Anwendung von Halbleiterschaltern für die Netzfrequenz. Für einzelne Magnetisierungen in Labor und Fertigungsbereich eignet sich diese Technik gut, nicht jedoch für die Serienfertigung. In der Serienfertigung fehlt die Zeit zum Abkühlen der Magnetisierspule zwischen den einzelnen Magnetisiervorgängen. Für moderne Dauermagnete mit hoher Koerzitivkraft ist die Leistung einer solchen Magnetisieranlage in der Serienfertigung begrenzt.Conventional magnetizing systems work with pulse durations of 10 ms or more. Such pulse durations give sufficient Penetration depths of the magnetic field also in electrical conductive materials, where the spread of magnetic Fields is delayed by eddy currents. They allow further the use of cost-effective electrolytic capacitors for Energy storage for the magnetizing pulse and the application of semiconductor switches for the mains frequency. For individual Magnetization in laboratory and manufacturing area is suitable This technique is good, but not for mass production. In Series production lacks the time to cool down Magnetizing coil between the individual Magnetisiervorgängen. For modern permanent magnets with high coercive force is the Performance of such a Magnetisieranlage in the Serial production limited.

Bei beengtem Raum für die Magnetisierspule lassen sich Magnete im montierten Zustand mit herkömmlichen Methoden kaum magnetisieren. In diesem Fall werden bereits vorher magnetisierte Dauermagnete in das Magnetsystem eingebaut, was besondere Anforderungen an die Montage stellt. Die Handhabung von magnetisierten Dauermagneten und Magnetsystemen ist heikel, weil ferromagnetische Partikel jeder Art angezogen werden und sich kaum mehr entfernen lassen. Dasselbe gilt für Absplitterungen der Magnete, wie sie sich bei einem zufälligen Aufprall der Dauermagnete zwangsläufig ergeben.In a confined space for the magnetizing coil can be Magnets in the assembled state with conventional methods hardly magnetize. In this case, beforehand magnetized permanent magnets built into the magnet system, which special demands on the assembly. The handling of magnetized permanent magnets and magnet systems delicate because ferromagnetic particles of any kind attracted and can hardly be removed. The same applies to Chipping the magnets, as they are at a accidental impact of the permanent magnets inevitably result.

Ohne Magnetisierpulse kommt die in der DE-100'49'766 offenbarte Anordnung zum Magnetisieren von Magnetsystemen aus. Gemäss dieser Schrift wird eine aus einem kühlbaren Hochtemperatursupraleiter aufgebaute Magnetisierspule verwendet, welche durch eine regelbare Gleichstromquelle gespiesen wird. Diese Anordnung erfordert eine aufwändige Kühlung und verbraucht viel Energie. Die Magnetisierspule aus einem Hochtemperatursupraleiter ist teuer und störungsanfällig.Without Magnetisierpulse comes in DE-100'49'766 disclosed arrangement for magnetizing magnet systems out. According to this document, one of a coolable High-temperature superconductor constructed magnetizing coil used, which by a controllable DC source is fed. This arrangement requires a complex Cooling and consuming a lot of energy. The magnetizing coil off a high temperature superconductor is expensive and trouble-prone.

In der DE-39'34'691 ist eine Vorrichtung beschreiben, bei welcher die Magnete in einen stromdurchflossenen Leiter geschoben werden. Ein Magnetisieren von vormontierten Magneten ist mit dieser Vorrichtung nicht zu erreichen. Die in der DE-39'34'691 erwähnte Parallelisierung bezieht sich auf nebeneinander liegende Leiter zum Magnetisieren von langen Stabmagneten beziehungsweise zur mehrpoligen Magnetisierung.In DE-39'34'691 a device is described, in which the magnets in a current-carrying conductor be pushed. A magnetizing of pre-assembled Magnets can not be reached with this device. The in DE-39'34'691 mentioned parallelization refers on adjacent conductors for magnetizing long bar magnet or multi-pole Magnetization.

Es ist eine Aufgabe der Erfindung, ein Verfahren und eine Vorrichtung zur Magnetisierung von Dauermagneten anzugeben, welche die oben genannten Nachteile nicht aufweisen. Das Verfahren und die Vorrichtung sollen es insbesondere ermöglichen, auch Dauermagnete aus Seltenerd-Materialien in Serienfertigung mit hoher Taktrate von einer Sekunde oder weniger zu magnetisieren und so eine hohe Produktivität zu gewährleisten. Das Verfahren und die Vorrichtung sollen für den Einsatz in einer automatisierten Produktionsanlage geeignet sein, wobei sie auch das Magnetisieren von bereits auf Rotoren aufbandagierten Magneten zulassen sollen. Sie sollen energiesparend arbeiten und mit Luftkühlung auskommen. Ferner soll die Vorrichtung kompakt, robust sowie kostengünstig sein und nach Möglichkeit Standardkomponenten verwenden.It is an object of the invention, a method and a To provide a device for magnetizing permanent magnets, which do not have the above-mentioned disadvantages. The The method and the device should be particularly also allow permanent magnets made of rare earth materials in Series production with a high clock rate of one second or less magnetizing and so high productivity too guarantee. The method and the device are intended for the use in an automated production plant be suitable, while also magnetizing already to allow magnets wound on rotors. she should work energy-saving and get along with air cooling. Furthermore, the device should be compact, robust and be cost-effective and if possible standard components use.

Diese und andere Aufgaben werden durch das Verfahren bzw. die Vorrichtung gelöst, wie sie in den unabhängigen Patentansprüchen definiert sind. Vorteilhafte Ausführungsformen sind in den abhängigen Ansprüchen angegeben.These and other objects are achieved by the method and the Device solved, as in the independent Claims are defined. advantageous Embodiments are in the dependent claims specified.

Gemäss der Erfindung wird das zu magnetisierende Material mit einem durch eine Magnetisierspule fliessenden Strompuls bzw. dem durch die Magnetisierspule aufgebauten Magnetfeld magnetisiert und magnetisch verankert. Der Magnetisierung durch das Magnetfeld steht die Erwärmung der Magnetisierspule entgegen. Daher muss der Strompuls genug kurz sein, um keine zu hohe Erwärmung zu verursachen. Erfindungsgemäss wird ein Strompuls mit einer Pulsdauer zwischen 10 µs und 500 µs und vorzugsweise zwischen 10 µs und 200 µs verwendet. Der Strompuls muss aber gleichzeitig genug stark sein, um ein für die Magnetisierung genügendes Magnetfeld aufzubauen. Der dazu erforderliche kurze Puls mit starkem Magnetfeld wird vorzugsweise durch Superposition von mehreren Magnetisierspulen mit geringer Windungszahl erreicht.According to the invention, the material to be magnetized with a current flowing through a Magnetisierspule current pulse or the magnetic field built up by the magnetizing coil magnetized and magnetically anchored. The magnetization by the magnetic field is the heating of the magnetizing coil opposite. Therefore, the current pulse has to be short enough to avoid any to cause too much warming. According to the invention is a Current pulse with a pulse duration between 10 μs and 500 μs and preferably used between 10 μs and 200 μs. Of the Power pulse must be strong enough at the same time, however, for a the magnetization to build up sufficient magnetic field. The one required short pulse with strong magnetic field becomes preferably by superposition of several Magnetizing coils with low number of turns achieved.

Dementsprechend wird im erfindungsgemässen Verfahren zum Magnetisieren eines Magnetsystems dem Magnetsystem eine Magnetisierspule zugeordnet. Die Magnetisierspule wird mit einem Strompuls mit begrenzter Pulsdauer beaufschlagt, wodurch ein mit dem Magnetsystem wechselwirkendes Magnetfeld aufgebaut wird. Dabei wird die Pulsdauer des Strompulses auf einen Wert zwischen 10 µs und 500 µs und vorzugsweise zwischen 10 µs und 200 µs begrenzt. In einer bevorzugten Ausführungsform werden dem Magnetsystem mindestens zwei Magnetisierspulen zugeordnet und derart gegenseitig angeordnet, dass sich ihre Magnetfelder verstärkend überlagern, und die Magnetfelder der mindestens zwei Magnetisierspulen werden gleichzeitig aufgebaut.Accordingly, in the inventive method for Magnetizing a magnet system to the magnet system Magnetizing assigned. The magnetizing coil is with subjected to a current pulse with a limited pulse duration, whereby a magnetic field interacting with the magnet system is built. In this case, the pulse duration of the current pulse on a value between 10 μs and 500 μs and preferably limited between 10 μs and 200 μs. In a preferred Embodiment become the magnet system at least two Magnetizing associated and thus mutually arranged that reinforcing their magnetic fields superimpose, and the magnetic fields of at least two Magnetizing coils are set up at the same time.

Die erfindungsgemässe Vorrichtung zum Magnetisieren eines Magnetsystems beinhaltet eine Pulsgeneratorschaltung mit einem Kondensatorelement, einer mit dem Kondensatorelement elektrisch verbundenen Magnetisierspule und einem Schaltelement, durch dessen Betätigung die Magnetisierspule mit einem durch Entladung des Kondensatorelements entstehenden Strompuls mit begrenzter Pulsdauer beaufschlagbar und somit der Aufbau eines Magnetfeldes auslösbar ist. Die Pulsgeneratorschaltung ist derart aufgebaut, dass die Pulsdauer des Strompulses auf einen Wert zwischen 10 µs und 500 µs und vorzugsweise zwischen 10 µs und 200 µs begrenzt ist.The inventive device for magnetizing a Magnet system includes a pulse generator circuit with a capacitor element, one with the capacitor element electrically connected magnetizing coil and a Switching element, by its actuation the magnetizing coil with a by discharge of the capacitor element resulting current pulse with limited pulse duration acted upon and thus the structure of a magnetic field is triggerable. The pulse generator circuit is such constructed that the pulse duration of the current pulse to a value between 10 μs and 500 μs and preferably between 10 μs and 200 μs is limited.

In einer bevorzugten Ausführungsform sind mindestens zwei Magnetisierspulen vorhanden und derart gegenseitig angeordnet, dass sich ihre Magnetfelder verstärkend überlagern, und mindestens ein Schaltelement ist derart angeordnet und betätigbar, dass die mindestens zwei Magnetisierspulen gleichzeitig mit je einem Strompuls beaufschlagbar sind. Jeder der mindestens zwei Magnetisierspulen kann ein Schaltelement zugeordnet sein, wobei diesfalls die Vorrichtung ferner Betätigungsmittel aufweist, mittels welcher die mindestens zwei Schaltelemente gleichzeitig betätigbar sind.In a preferred embodiment, at least two Magnetizing available and so mutually arranged that reinforcing their magnetic fields overlay, and at least one switching element is such arranged and operable that the at least two Magnetizing simultaneously with one current pulse can be acted upon. Each of the at least two Magnetizing coils may be assigned a switching element, in which case the device further comprises actuating means has, by means of which the at least two switching elements can be actuated simultaneously.

In einer besonders vorteilhaften Ausführungsform der erfindungsgemässen Vorrichtung ist die Pulsgeneratorschaltung mehrfach, bspw. vier- bis zwölffach, vorhanden, was im Folgenden als "parallele Vervielfachung" oder "Parallelisierung" der Pulsgeneratorschaltung bezeichnet wird. Dank der parallelen Vervielfachung kann die Induktivität der Magnetisierspule und der die Kapazität des Kondensatorelements im Schwingkreis klein gehalten werden. Dadurch ergeben sich die erforderlichen kurzen Pulsdauern von bspw. 100 µs; trotzdem werden genügend hohe Magnetfelder erzeugt, um auch moderne, anspruchsvolle Magnetsysteme zu magnetisieren.In a particularly advantageous embodiment of the The device according to the invention is the pulse generator circuit several times, for example four to twelve times, existing, what in Following as "parallel multiplication" or Referred to as "parallelization" of the pulse generator circuit becomes. Thanks to parallel multiplication, the Inductance of the magnetizing coil and the capacity of the Capacitor element are kept small in the resonant circuit. This results in the required short pulse durations of eg 100 μs; nevertheless, enough high magnetic fields generated to modern, sophisticated magnet systems too magnetize.

Für eine Reduktion der Wärmeenergie, die in der Magnetisierspule freigesetzt wird, ist also der Magnetisierpuls in seiner Dauer zu begrenzen. Die übliche Entladeschaltung mit Freilaufdiode setzt einen wesentlichen Anteil der im Kondensator gespeicherten Impulsenergie beim exponentiell abfallenden Ende des Pulses um. Dieser Abschnitt hat aber keine magnetisierende Wirkung mehr. Mit einer neuartigen Schaltung, die im Pfad der Freilaufdiode eine Speicherdrosselspule aufweist, lässt sich das exponentielle Auslaufen des Stromes in der Magnetisierspule unterdrücken und die darin steckende Energie grossenteils zurückgewinnen. Die induktive Rückführung ermöglicht das zweite Umschwingen der Kondensatorspannung und verhindert dadurch die ohmschen Verluste durch Ausschwingen. Die verbleibende Energie lädt das Kondensatorelement bereits für den nächsten Puls wieder auf. Somit wird ein geringer Energieverbrauch erzielt, und es ist keine aufwändige Kühlung der Spule nötig. Das zweite Umschwingen über die induktive Rückführung ergibt bei einer vierfachen Parallelisierung der Magnetisierspule eine zusätzliche Energieersparnis von 43 %. Ohne Parallelisierung, mit einer einzigen Magnetisierspule und gleicher Leistung, sind es lediglich 18 %. For a reduction of heat energy in the Magnetizing coil is released, so is the Magnetizing pulse in its duration to limit. The usual Discharge circuit with freewheeling diode sets a substantial Proportion of the pulse energy stored in the capacitor exponentially decaying end of the pulse around. this section but no longer has a magnetizing effect. With a novel circuit, which in the path of the freewheeling diode a Storage throttle has, can be the exponential Prevent leakage of the current in the magnetizing coil and regain much of the energy in it. The inductive feedback allows the second swing the capacitor voltage and thereby prevents the ohmic Losses due to decaying. The remaining energy charges the capacitor element already for the next pulse again on. Thus, a low energy consumption is achieved, and it No elaborate cooling of the coil is necessary. The second Swinging over the inductive feedback results in a quadruple parallelization of the magnetizing coil one additional energy savings of 43%. Without parallelization, with a single magnetizing coil and the same power, it is only 18%.

Dementsprechend weist vorzugsweise die Pulsgeneratorschaltung einen parallel zur Magnetisierspule angeordneten Rückführpfad auf, welcher ein Speicherdrosselelement und ein in Richtung des Strompulses sperrendes Diodenelement beinhaltet. Das Speicherdrosselelement wird dabei vorteilhafterweise so dimensioniert, dass es zusammen mit dem Speicherkondensator einen Schwingkreis bildet, dessen Periodendauer grösser ist als die entsprechende des Magnetisierkreises.Accordingly, preferably, the pulse generator circuit a return path arranged parallel to the magnetizing coil on which a storage throttle and a direction includes the current pulse blocking diode element. The Storage throttle element is advantageously so dimensioned that together with the storage capacitor forms a resonant circuit whose period is greater as the corresponding one of the magnetizing circuit.

Der elektromagnetische Schwingkreis kann durch einen bereits magnetisierten Dauermagneten, vorzugsweise einen NdFeB-Magneten, unterstützt werden. Dieser wird in die Magnetisierspule derart eingelegt, dass sein Feld jenes der Spule überlagert und verstärkend wirkt.The electromagnetic resonant circuit can by an already magnetized permanent magnet, preferably a NdFeB magnet, get supported. This one will be in the Magnetizing coil inserted in such a way that its field that of Coil superimposed and reinforcing effect.

Zur Magnetisierung von typischen Magnetsystemen sind Leistungen nötig, die Spannungen von 1000 V und mehr sowie Ströme im Bereich von Kiloampere bedingen. Die erfindungsgemässe Vorrichtung lässt sich mit etwa 1000 V betreiben, wodurch die Anforderungen an die Lackisolation (125 V pro Windung bei 8 Windungen) zwischen einzelnen Drahtwindungen in der Magnetisierspule noch im unproblematischen Bereich liegen. Als Energiespeicher werden vorzugsweise pulsfeste Kondensatoren mit metallisierter Kunststofffolie verwendet. Diese haben eine geringe Eigeninduktivität, was die Eigenschaften des Schwingkreises weniger beeinflusst. Zum Schalten der Spannungen und Ströme kommen z. B. Bipolartransistoren mit isoliertem Tor oder schnelle Thyristoren in Frage.For the magnetization of typical magnet systems are Performances necessary, the voltages of 1000 V and more as well Currents in the range of Kiloampere condition. The inventive device can be with about 1000 V operate, reducing the requirements for the paint insulation (125 V per turn with 8 turns) between individual Wire windings in the magnetizing coil still in the unproblematic area lie. As energy storage preferably pulse-resistant capacitors with metallized Plastic film used. These have a low Self-inductance, what the characteristics of the resonant circuit less influenced. For switching the voltages and currents come z. B. bipolar transistors with insulated gate or fast thyristors in question.

Nachfolgend werden vorteilhafte Ausführungsformen der Erfindung anhand der Zeichnungen detailliert erläutert. Dabei zeigen:

Fig. 1
einige wichtige Elemente der erfindungsgemässen Vorrichtung in einer sehr schematischen perspektivischen Ansicht,
Fig. 2
eine Pulsgeneratorschaltung für die erfindungsgemässe Vorrichtung,
Fig. 3
einen zeitlichen Verlauf verschiedener Grössen beim erfindungsgemässen Verfahren in einem Diagramm,
Fig. 4
ein Schaltelement für die erfindungsgemässe Vorrichtung,
Fig. 5
eine Anordnung von Magnetisierspulen des erfindungsgemässen Verfahrens in einer Draufsicht und
Fig. 6
einen Querschnitt entlang der Linie VI-VI durch die Anordnung von Fig. 5.
Hereinafter, advantageous embodiments of the invention will be explained in detail with reference to the drawings. Showing:
Fig. 1
some important elements of the device according to the invention in a very schematic perspective view,
Fig. 2
a pulse generator circuit for the device according to the invention,
Fig. 3
a time course of different sizes of the inventive method in a diagram,
Fig. 4
a switching element for the device according to the invention,
Fig. 5
an arrangement of Magnetisierspulen the inventive method in a plan view and
Fig. 6
a cross section along the line VI-VI through the arrangement of Fig. 5th

In Figur 1 sind sehr schematisch wichtige Elemente einer bevorzugten Ausführungsform der erfindungsgemässen Vorrichtung 1 dargestellt. Die Vorrichtung 1 beinhaltet mehrere vorzugsweise identische Pulsgeneratorschaltungen 2.1-2.4. Im Ausführungsbeispiel von Fig. 1 sind vier derartige Pulsgeneratorschaltungen 2.1-2.4 angedeutet; es können jedoch auch mehr oder weniger sein. Jede Pulsgeneratorschaltung 2.1-2.4 weist ein Kondensatorelement 21, vorzugsweise einen Folienkondensator, und eine mit dem Kondensatorelement 21 elektrisch verbundene Magnetisierspule 22 auf. Jede Pulsgeneratorschaltung 2.1-2.4 weist ausserdem ein Schaltelement 23, bspw. einen Thyristor, auf, durch dessen Betätigung eine pulsartige Entladung des Kondensatorelements 21 über die Magnetisierspule 22 und somit der Aufbau eines Magnetfeldes in der Magnetisierspule 22 auslösbar ist. Die Vorrichtung 1 weist ferner Betätigungsmittel 3 auf, mittels welcher die Schaltelemente 23 der mindestens zwei Pulsgeneratorschaltungen 2.1-2.4 gleichzeitig betätigbar sind. Derartige Betätigungsmittel sind dem Fachmann bekannt; siehe z. B. Werner Lücking, "Thyristor-Grundschaltungen: Handbuch für Ausbildung, Studium und Praxis", VDE-Verlag, 1984. Die Pulsgeneratorschaltungen 2.1-2.4 und insbesondere die Magnetisierspulen 22 sind derart gegenseitig angeordnet, dass sich ihre Magnetfelder verstärkend überlagern. Auf Einzelheiten der Pulsgeneratorschaltungen 2.1-2.4 wird anlässlich der Fig. 2 weiter eingegangen. FIG. 1 shows very schematically important elements of a preferred embodiment of the device 1 according to the invention. The device 1 includes a plurality of preferably identical pulse generator circuits 2.1-2.4. In the embodiment of Figure 1, four such pulse generator circuits 2.1-2.4 are indicated; but it can also be more or less. Each pulse generator circuit 2.1-2.4 has a capacitor element 21, preferably a foil capacitor, and a magnetizing coil 22 electrically connected to the capacitor element 21. Each pulse generator circuit 2.1-2.4 also has a switching element 23, for example a thyristor, by the actuation of which a pulse-like discharge of the capacitor element 21 via the magnetizing coil 22 and thus the establishment of a magnetic field in the magnetizing coil 22 can be triggered. The device 1 further comprises actuating means 3, by means of which the switching elements 23 of the at least two pulse generator circuits 2.1-2.4 are simultaneously actuated. Such actuating means are known in the art; see, for. B. Werner Lücking, "Thyristor basic circuits: Manual for training, study and practice", VDE-Verlag, 1984. The pulse generator circuits 2.1-2.4 and in particular the Magnetisierspulen 22 are mutually arranged so that their magnetic fields superimpose reinforcing. Details of the pulse generator circuits 2.1-2.4 will be discussed further with reference to FIG.

Figur 2 zeigt eine bevorzugte Ausführungsform einer Pulsgeneratorschaltung 2 für die erfindungsgemässe Vorrichtung 1. Zu erkennen sind die bereits anlässlich der Fig. 1 eingeführten Elemente Kondensator 21 mit einer Kapazität C, Magnetisierspule 22 mit einer Induktivität L und Thyristor 23. Der Kondensator 21 hat eine innere Induktivität L2, die Magnetisierspule 22 einen inneren Widerstand R1 und der Thyristor 23 sowie die diese Elemente verbindenden elektrischen Leitungen einen inneren Widerstand R2. FIG. 2 shows a preferred embodiment of a pulse generator circuit 2 for the device 1 according to the invention. The capacitor 21 having a capacitance C, magnetizing coil 22 having an inductance L and thyristor 23 and introduced already on the basis of FIG Inductance L 2 , the magnetizing coil 22 an inner resistor R 1 and the thyristor 23 and the electrical lines connecting these elements an internal resistance R 2 .

Die Pulsgeneratorschaltung 2 ist derart beschaffen und dimensioniert, dass die Entladung des Kondensatorelements 21 eine Pulsdauer von ca. 10-500 µs und vorzugsweise ca. 10-200 µs hat. Um derart kurze Pulsdauern zu erreichen, müssen die Werte von C und L klein sein. Es kann bspw. gelten: 1 µH < L < 15 µH sowie 15 µF < C < 150 µF, und vorzugsweise 2 µH < L < 8 µH sowie 30 µF < C < 75 µF. Um trotz der kleinen L- und C-Werte genügend hohe Magnetfelder aufzubauen, wird vorzugsweise die Pulsgeneratorschaltung 2 oder Teile davon parallel vervielfacht, wie anlässlich von Fig. 1 dargestellt und erläutert. Das mindestens eine Kondensatorelement 21 soll mit Spannungen uC von ca. 100-5000 V und vorzugsweise ca. 1200-2000 V aufladbar sein. Die Pulsgeneratorschaltung 2 soll Entladeströme iL1 von ca. 1-10 kA und vorzugsweise ca. 2-5 kA ermöglichen.The pulse generator circuit 2 is designed and dimensioned such that the discharge of the capacitor element 21 has a pulse duration of approximately 10-500 μs and preferably approximately 10-200 μs. To achieve such short pulse durations, the values of C and L must be small. It may, for example, apply: 1 μH <L <15 μH and 15 μF <C <150 μF, and preferably 2 μH <L <8 μH and 30 μF <C <75 μF. In order to build up sufficiently high magnetic fields despite the small L and C values, preferably the pulse generator circuit 2 or parts thereof are multiplied in parallel, as illustrated and explained with reference to FIG. The at least one capacitor element 21 should be chargeable with voltages μC of approximately 100-5000 V and preferably approximately 1200-2000 V. The pulse generator circuit 2 should allow discharge currents iL 1 of approximately 1-10 kA and preferably approximately 2-5 kA.

In der besonders vorteilhaften Ausführungsform von Fig. 2 ist parallel zur Magnetisierspule 22 ein Rückführpfad 24 angeordnet. Dieser beinhaltet eine Speicherdrosselspule 25 mit einer Induktivität Ld und eine in Richtung des Entladungsstrompulses sperrende Diode 26. Die Speicherdrosselspule 25 hat einen inneren Widerstand Rd. Mit dem Rückführpfad 24 lässt sich das exponentielle Auslaufen des Stromes in der Magnetisierspule 22 unterdrücken und die darin steckende Energie grossenteils zurückgewinnen. Die Speicherdrosselspule 25 wird dabei vorteilhaft so dimensioniert, dass sie zusammen mit dem Kondensatorelement 21 einen Schwingkreis bildet, dessen Periodendauer grösser, bspw. 2- bis 1000-mal grösser und vorzugsweise 10- bis 100-mal grösser, ist als die entsprechende Periodendauer des Magnetisierkreises ohne Rückführpfad 24. Um dies zu erreichen, wird vorzugsweise eine Speicherdrosselspule 25 gewählt, die eine Induktivität Ld hat, die 2- bis 1000-mal grösser und vorzugsweise 10- bis 100-mal grösser ist als die Induktivität L1 der Magnetisierspule, z. B. 10 µH < Ld < 150 µH.In the particularly advantageous embodiment of FIG. 2, a return path 24 is arranged parallel to the magnetizing coil 22. This includes a storage inductor coil 25 having an inductance L d and a blocking in the direction of the discharge current pulse diode 26. The storage inductor coil 25 has an internal resistance R d . With the return path 24, the exponential leakage of the current in the magnetizing coil 22 can be suppressed and the energy stuck in it largely recovered. The storage choke coil 25 is advantageously dimensioned so that it forms a resonant circuit together with the capacitor element 21 whose period is greater, for example. 2 to 1000 times greater and preferably 10 to 100 times greater than the corresponding period of the Magnetisierkreises without return path 24. To achieve this, a storage choke coil 25 is preferably selected, which has an inductance L d , which is 2 to 1000 times larger and preferably 10 to 100 times greater than the inductance L 1 of the magnetizing coil, z , B. 10 μH <L d <150 μH.

Anhand von Figur 3 wird eine bevorzugte Ausführungsform des erfindungsgemässen Verfahrens erläutert, welche sich auf die Pulsgeneratorschaltung 2 von Fig. 2 bezieht. Das Diagramm von Fig. 3 zeigt eine rechnerische Simulation des zeitlichen Verlaufs verschiedener Grössen, nämlich:

  • Kurve 91: der Ladespannung uLade = uC - uL2,
  • Kurve 92: des Magnetisierstroms iL1,
  • Kurve 93: des Stroms iL2 und
  • Kurve 94: der Diodenspannung uD.
  • Referring to Figure 3, a preferred embodiment of the inventive method is explained, which relates to the pulse generator circuit 2 of Fig. 2. The diagram of Fig. 3 shows a mathematical simulation of the time course of different quantities, namely:
  • Curve 91: the charging voltage uLade = uC - uL 2 ,
  • Curve 92: of the magnetizing current iL 1 ,
  • Curve 93: of the current iL 2 and
  • Curve 94: the diode voltage uD.
  • Die verschiedenen Phasen des zeitlichen Ablaufs sind zur Verdeutlichung durch drei senkrechte Linien voneinander abgegrenzt. The different phases of the temporal sequence are for Clarification by three vertical lines from each other demarcated.

    Die Simulation basiert auf den folgenden Werten:

  • uC(t=0) = 1000 V
  • C = 60 µF
  • L2 = 2.66 µH
  • L1 = 5.49 µH
  • R1 = 0.062 Ω
  • R2 = 0.01 Ω
  • Ld = 54.9 µH = 10L1
  • Rd = 0.1 Ω.
  • The simulation is based on the following values:
  • μC (t = 0) = 1000V
  • C = 60 μF
  • L 2 = 2.66 μH
  • L 1 = 5.49 μH
  • R 1 = 0.062 Ω
  • R 2 = 0.01 Ω
  • L d = 54.9 μH = 10L 1
  • R d = 0.1 Ω.
  • Es resultieren folgende Werte:

  • maximaler Spulenstrom iL1,max = 2348 A
  • Pulsdauer = 71 µs
  • uLade(Ende) = 658 V
  • Energie(t=0) = 30 Ws
  • Energie(Ende) = 43 % der Energie(t=0).
  • The result is the following values:
  • maximum coil current iL 1, max = 2348 A.
  • Pulse duration = 71 μs
  • uLade (end) = 658V
  • Energy (t = 0) = 30 Ws
  • Energy (end) = 43% of energy (t = 0).
  • Das Schaltelement 23 der erfindungsgemässen Vorrichtung 1 kann statt des in Fig. 2 beispielhaft dargestellten Thyristors auch einen Bipolartransistor 4 mit isoliertem Tor (insulated-gate bipolar transistor, IGBT) beinhalten. Ein derartiges Schaltelement 23 ist beispielhaft in Figur 4 dargestellt. Der Kollektor C des IGBT 4 ist mit der Magnetisierspule 22 elektrisch verbunden. Zwischen der Magnetisierspule und dem IGBT kann fakultativ eine entgegen der Richtung des Entladungsstrompulses sperrende Diode 41 geschaltet sein. Das Tor G des IGBT 4 wird von einem Ansteuergerät 42 angesteuert. Das Ansteuergerät 42 weist einen Zündeingang 43 für einen Zündpuls auf. Nach dem Emitter E des IGBT 4 ist ein Stromsensor 44 eingebaut, dessen Signal über einen Sensoreingang 45 in das Ansteuergerät 42 eingespiesen wird. Ist der Emitterstrom IE positiv und ist ein Zündpuls vorhanden, so soll der IGBT 4 durchlassen; andernfalls soll der IGBT 4 sperren.The switching element 23 of the device 1 according to the invention may, instead of the thyristor shown by way of example in FIG. 2, also comprise an insulated gate bipolar transistor 4 (insulated gate bipolar transistor, IGBT). Such a switching element 23 is shown by way of example in FIG . The collector C of the IGBT 4 is electrically connected to the magnetizing coil 22. Between the magnetizing coil and the IGBT, a diode 41 blocking the direction of the discharge current pulse may optionally be connected. The gate G of the IGBT 4 is driven by a drive device 42. The drive unit 42 has an ignition input 43 for an ignition pulse. After the emitter E of the IGBT 4, a current sensor 44 is installed, the signal of which is fed via a sensor input 45 into the drive unit 42. If the emitter current I E is positive and a firing pulse is present, the IGBT 4 should let through; otherwise the IGBT 4 should lock.

    In Figur 5 ist eine bevorzugte Anordnung von Magnetisierspulen 22.1-22.8 in der erfindungsgemässen Vorrichtung 1 in einer Draufsicht dargestellt. Figur 6 zeigt einen Querschnitt entlang der Linie VI-VI in Fig. 5. In diesem Ausführungsbeispiel sind acht Magnetisierspulen 22.1-22.8 mit unterschiedlichen Durchmessern ineinander verschachtelt. Jede Magnetisierspule 22.1-22.8 weist bspw. sechs Windungen auf. Es können auch Magnetisierspulen mit bifilaren oder multifilaren Wicklungen eingesetzt werden. Die Magnetisierspulen 22.1-22.8 können rechteckig, quadratisch oder rund sein oder andere Geometrien aufweisen. Die Anordnung kann beidseitig durch je eine Epoxy-Glasplatte 27.1, 27.2 abgeschlossen sein. Der Innen- bzw. Aussendurchmesser einer solchen Anordnung hängt von der jeweiligen Anwendung ab und liegt typischerweise im Bereich von einigen bis einigen hundert Zentimetern. Das resultierende Magnetfeld B, d. h. die Superposition der in den acht Magnetisierspulen 22.1-22.8 aufgebauten Magnetfelder, ist mit einem Pfeil angedeutet. Die Anordnung wird z. B. auf der Oberfläche eines zu magnetisierenden Magnetsystems 8 positioniert, derart, dass ein möglichst grosser Teil des Magnetfelds B mit dem Material des Magnetsystems 8 wechselwirken kann. Falls das Magnetsystem 8, zumindest teilweise, von den Seiten her zugänglich ist, wird die Anordnung vorzugsweise derart positioniert, dass die Magnetisierspulen 22.1-22.8 das Magnetsystem 8, zumindest teilweise, umgeben. So kann eine noch effizientere Magnetisierung erzielt werden. FIG. 5 shows a preferred arrangement of magnetizing coils 22.1-22.8 in the device 1 according to the invention in a plan view. FIG. 6 shows a cross section along the line VI-VI in FIG. 5. In this exemplary embodiment, eight magnetizing coils 22.1 to 22.8 having different diameters are nested one inside the other. Each magnetizing coil 22.1-22.8 has, for example, six turns. It is also possible to use magnetizing coils with bifilar or multifilar windings. The magnetizing coils 22.1-22.8 may be rectangular, square or round or have other geometries. The arrangement can be completed on both sides by an epoxy glass plate 27.1, 27.2. The inner or outer diameter of such an arrangement depends on the particular application and is typically in the range of a few to a few hundred centimeters. The resulting magnetic field B, ie the superposition of the magnetic fields built up in the eight magnetizing coils 22.1-22.8, is indicated by an arrow. The arrangement is z. B. positioned on the surface of a magnetic system to be magnetized 8, such that the largest possible part of the magnetic field B can interact with the material of the magnetic system 8. If the magnet system 8 is accessible, at least partially, from the sides, the arrangement is preferably positioned such that the magnetizing coils 22.1-22.8 surround, at least partially, the magnet system 8. This allows an even more efficient magnetization to be achieved.

    Alternativ zum hier gezeigten Ausführungsbeispiel können die Magnetisierspulen 22.1-22.8 auch dieselben Durchmesser aufweisen und übereinander angeordnet sein. Selbstverständlich sind auch Kombinationen von Verschachtelung und Anordnung übereinander möglich. Alternatively to the embodiment shown here, the Magnetizing coils 22.1-22.8 also the same diameter have and be arranged one above the other. Of course, combinations of Nesting and arrangement on top of each other possible.

    Bezugszeichenliste:LIST OF REFERENCE NUMBERS

    11
    Vorrichtungcontraption
    22
    PulsgeneratorschaltungPulse generator circuit
    2121
    Kondensatorelementcapacitor element
    2222
    Magnetisierspulemagnetizing
    2323
    Schaltelementswitching element
    2424
    RückführpfadReturn path
    2525
    SpeicherdrosselspuleStorage inductor
    2626
    Diodediode
    27.1, 27.227.1, 27.2
    Epoxy-GlasplatteEpoxy-glass plate
    33
    Betätigungsmittelactuating means
    44
    IGBTIGBT
    4141
    Diodediode
    4242
    AnsteuergerätA driving
    4343
    Zündeingangignition input
    4444
    Stromsensorcurrent sensor
    4545
    Sensoreingangsensor input
    88th
    Magnetsystemmagnet system
    9191
    Ladespannung uLade = uC - uL2 Charging voltage uLade = uC - uL 2
    9292
    Magnetisierstrom iL1 Magnetizing current iL 1
    9393
    Strom iL2 Current iL 2
    9494
    Diodenspannung uDDiode voltage uD

    Claims (21)

    Verfahren zum Magnetisieren eines Magnetsystems (8), wobei
    dem Magnetsystem (8) eine Magnetisierspule (22) zugeordnet wird und
    die Magnetisierspule mit einem Strompuls mit begrenzter Pulsdauer beaufschlagt wird, wodurch ein mit dem Magnetsystem (8) wechselwirkendes Magnetfeld (B) aufgebaut wird,
    dadurch gekennzeichnet, dass die Pulsdauer des Strompulses auf einen Wert zwischen 10 µs und 500 µs und vorzugsweise zwischen 10 µs und 200 µs begrenzt wird.
    Method for magnetizing a magnet system (8), wherein
    the magnet system (8) is associated with a Magnetisierspule (22) and
    the magnetizing coil is subjected to a current pulse having a limited pulse duration, whereby a magnetic field (B) interacting with the magnet system (8) is built up,
    characterized in that the pulse duration of the current pulse is limited to a value between 10 μs and 500 μs and preferably between 10 μs and 200 μs.
    Verfahren nach Anspruch 1, wobei
    dem Magnetsystem (8) mindestens zwei Magnetisierspulen (22) zugeordnet werden,
    die mindestens zwei Magnetisierspulen (22) derart gegenseitig angeordnet werden, dass sich ihre Magnetfelder (B) verstärkend überlagern, und
    die Magnetfelder (B) der mindestens zwei Magnetisierspulen (22) gleichzeitig aufgebaut werden.
    The method of claim 1, wherein
    at least two magnetizing coils (22) are assigned to the magnet system (8),
    the at least two magnetizing coils (22) are mutually arranged in such a way that their magnetic fields (B) are superimposed in reinforcing manner, and
    the magnetic fields (B) of the at least two magnetizing coils (22) are constructed simultaneously.
    Verfahren nach einem der vorangehenden Ansprüche, wobei der Strompuls durch Entladung eines mit der Magnetisierspule (22) elektrisch verbundenen Kondensatorelementes (21) erzeugt wird und die Magnetisierspule (22) und das Kondensatorelement (21) derart gewählt und gegenseitig angeordnet werden, dass die Pulsdauer des Strompulses auf einen Wert zwischen 10 µs und 500 µs und vorzugsweise zwischen 10 µs und 200 µs begrenzt wird.Method according to one of the preceding claims, wherein the current pulse by discharging one with the Magnetizing coil (22) electrically connected Capacitor element (21) is generated and the Magnetizing coil (22) and the capacitor element (21) be chosen and arranged one another such that the pulse duration of the current pulse to a value between 10 μs and 500 μs and preferably between 10 μs and 200 μs is limited. Verfahren nach Anspruch 3, wobei der Strompuls über einen parallel zur Magnetisierspule (22) angeordneten Rückführpfad (24) induktiv in das Kondensatorelement (21) zurückgeführt wird, so dass ein exponentielles Auslaufen des Stromes in der Magnetisierspule (22) verhindert und elektrische Energie zurückgewonnen wird.The method of claim 3, wherein the current pulse across a arranged parallel to the magnetizing coil (22) Return path (24) inductively into the capacitor element (21) is traced back, leaving an exponential leak the current in the Magnetisierspule (22) prevents and electrical energy is recovered. Anwendung des Verfahrens nach einem der vorangehenden Ansprüche zum Magnetisieren von Dauermagneten (8) aus Seltenerd-Materialien, bspw. von solchen auf dem Rotor eines Elektromotors.Application of the method according to one of the preceding Claims for magnetizing permanent magnets (8) Rare earth materials, such as those on the rotor an electric motor. Vorrichtung (1) zum Magnetisieren eines Magnetsystems (8), beinhaltend
       eine Pulsgeneratorschaltung (2) mit
          einem Kondensatorelement (21),
          einer mit dem Kondensatorelement (21) elektrisch verbundenen Magnetisierspule (22) und
          einem Schaltelement (23), durch dessen Betätigung die Magnetisierspule (22) mit einem durch Entladung des Kondensatorelements (21) entstehenden Strompuls mit begrenzter Pulsdauer beaufschlagbar und somit der Aufbau eines Magnetfeldes (B) auslösbar ist,
    dadurch gekennzeichnet, dass die Pulsgeneratorschaltung (2) derart aufgebaut ist, dass die Pulsdauer des Strompulses auf einen Wert zwischen 10 µs und 500 µs und vorzugsweise zwischen 10 µs und 200 µs begrenzt ist.
    Device (1) for magnetizing a magnet system (8), comprising
    a pulse generator circuit (2) with
    a capacitor element (21),
    a magnetizing coil (22) electrically connected to the capacitor element (21) and
    a switching element (23), by the actuation of which the magnetizing coil (22) can be acted upon by a current pulse with a limited pulse duration resulting from the discharge of the capacitor element (21) and thus the structure of a magnetic field (B) can be triggered,
    characterized in that the pulse generator circuit (2) is constructed such that the pulse duration of the current pulse is limited to a value between 10 microseconds and 500 microseconds and preferably between 10 microseconds and 200 microseconds.
    Vorrichtung nach Anspruch 6, wobei mindestens zwei Magnetisierspulen (22) vorhanden und derart gegenseitig angeordnet sind, dass sich ihre Magnetfelder (B) verstärkend überlagern, und mindestens ein Schaltelement (23) derart angeordnet und betätigbar ist, dass die mindestens zwei Magnetisierspulen (22) gleichzeitig mit je einem Strompuls beaufschlagbar sind.Apparatus according to claim 6, wherein at least two Magnetizing (22) available and so mutually are arranged so that their magnetic fields (B) superimpose reinforcing, and at least one switching element (23) is arranged and operable such that the at least two magnetizing coils (22) simultaneously with each can be acted upon by a current pulse. Vorrichtung (1) nach Anspruch 7, wobei mindestens zwei Magnetisierspulen (22.1-22.8) ineinander verschachtelt sind.Device (1) according to claim 7, wherein at least two Magnetizing coils (22.1-22.8) interleaved are. Vorrichtung (1) nach Anspruch 7 oder 8, wobei jeder der mindestens zwei Magnetisierspulen (22) ein Schaltelement (23) zugeordnet ist und die Vorrichtung (1) ferner Betätigungsmittel (3) aufweist, mittels welcher die mindestens zwei Schaltelemente (23) gleichzeitig betätigbar sind. Device (1) according to claim 7 or 8, wherein each of the at least two magnetizing coils (22) a switching element (23) is associated and the device (1) further Actuating means (3), by means of which the at least two switching elements (23) simultaneously are operable. Vorrichtung (1) nach einem der Ansprüche 6-9, wobei mindestens zwei Kondensatorelemente (21) vorhanden sind.Device (1) according to any one of claims 6-9, wherein at least two capacitor elements (21) are present. Vorrichtung (1) nach einem der Ansprüche 6-10, wobei die Pulsgeneratorschaltung (2) einen parallel zur Magnetisierspule (22) angeordneten Rückführpfad (24) aufweist, welcher ein Speicherdrosselelement (25) und ein in Richtung des Entladungsstrompulses (iL1) sperrendes Diodenelement (26) beinhaltet.Device (1) according to one of claims 6-10, wherein the pulse generator circuit (2) has a parallel to the magnetizing coil (22) arranged return path (24), which a storage throttle element (25) and in the direction of the discharge current pulse (iL 1 ) blocking diode element (26). Vorrichtung (1) nach Anspruch 11, wobei der Rückführpfad (24) derart dimensioniert ist, dass er zusammen mit dem Kondensatorelement (21) einen elektrischen Schwingkreis bildet, dessen Periodendauer grösser, bspw. 2- bis 1000-mal grösser und vorzugsweise 10- bis 100-mal grösser, ist als die Periodendauer der Pulsgeneratorschaltung (2) ohne den Rückführpfad (24).Device (1) according to claim 11, wherein the return path (24) is dimensioned such that it together with the Capacitor element (21) an electrical resonant circuit forms whose period longer, for example. 2- to 1000 times larger and preferably 10 to 100 times larger, is as the period of the pulse generator circuit (2) without the return path (24). Vorrichtung (1) nach Anspruch 12, wobei das Speicherdrosselelement (25) eine Speicherdrosselspule mit einer Induktivität (Ld) ist, die 2- bis 1000-mal grösser und vorzugsweise 10- bis 100-mal grösser ist als die Induktivität (L1) der Magnetisierspule (22). Device (1) according to claim 12, wherein the storage throttle element (25) is a storage choke coil with an inductance (L d ) which is 2 to 1000 times larger and preferably 10 to 100 times larger than the inductance (L 1 ). the magnetizing coil (22). Vorrichtung (1) nach einem der Ansprüche 11-13, wobei die Pulsgeneratorschaltung mehrere parallel zueinander geschaltete Speicherdrosselelemente (25) aufweist.Device (1) according to one of claims 11-13, wherein the Pulse generator circuit several parallel to each other has switched storage throttle elements (25). Vorrichtung (1) nach einem der Ansprüche 6-14, wobei die Vorrichtung (1) mindestens zwei vorzugsweise identische Pulsgeneratorschaltungen (2.1-2.4) aufweist.Device (1) according to any one of claims 6-14, wherein the Device (1) at least two preferably identical Pulse generator circuits (2.1-2.4) has. Vorrichtung (1) nach einem der Ansprüche 6-15, wobei das Kondensatorelement (21) ein festes, flächiges, mit einer Metallschicht versehenes Dielektrikum beinhaltet, und vorzugsweise ein Folienkondensator ist.Device (1) according to any one of claims 6-15, wherein the Capacitor element (21) a solid, flat, with a Includes metal layer provided dielectric, and preferably a foil capacitor. Vorrichtung (1) nach einem der Ansprüche 6-16, wobei das Schaltelement (23) einen Bipolartransistor (4) mit isoliertem Tor beinhaltet, dessen Kollektor (C) mit der Magnetisierspule (22) elektrisch verbunden ist.Device (1) according to any one of claims 6-16, wherein the Switching element (23) comprises a bipolar transistor (4) insulated gate whose collector (C) with the Magnetizing coil (22) is electrically connected. Vorrichtung (1) nach Anspruch 17, wobei das Tor (G) des Bipolartransistors (4) mit isoliertem Tor von einem Ansteuergerät (42) ansteuerbar ist, welches einen Zündeingang (43) für eine Zündpuls und einen Sensoreingang (45) für ein Signal eines den Emitterstrom (IE) messenden Stromsensors (44) aufweist, und der Bipolartransistor (4) mit isoliertem Tor vom Ansteuergerät (42) derart ansteuerbar ist, dass er sperrt, wenn der Stromsensor (44) einen negativen Emitterstrom (IE) feststellt.Device (1) according to claim 17, wherein the gate (G) of the bipolar transistor (4) with an insulated gate is controllable by a drive device (42) which has an ignition input (43) for an ignition pulse and a sensor input (45) for a signal of a the emitter current (I E ) measuring current sensor (44), and the insulated gate bipolar transistor (4) from the drive device (42) is such that it locks when the current sensor (44) detects a negative emitter current (I E ). Vorrichtung (1) nach einem der Ansprüche 6-16, wobei das Schaltelement (23) einen Thyristor beinhaltet.Device (1) according to any one of claims 6-16, wherein the Switching element (23) includes a thyristor. Vorrichtung (1) nach einem der Ansprüche 6-19, wobei in mindestens einer Magnetisierspule (22) ein bereits magnetisierter Dauermagnet, vorzugsweise ein NdFeB-Magnet, derart eingesetzt ist, dass sein Magnetfeld das von der Magnetisierspule (22) aufgebaute Magnetfeld (B) verstärkend überlagert.Device (1) according to any one of claims 6-19, wherein in at least one magnetizing coil (22) already magnetized permanent magnet, preferably a NdFeB magnet, is inserted such that its magnetic field that magnetic field built up by the magnetizing coil (22) (B) reinforcing superimposed. Verwendung der Vorrichtung (1) nach einem der Ansprüche 6-20 zum Magnetisieren von Dauermagneten (8) aus Seltenerd-Materialien, bspw. von solchen auf dem Rotor eines Elektromotors.Use of the device (1) according to one of the claims 6-20 for magnetizing permanent magnets (8) Rare earth materials, such as those on the rotor an electric motor.
    EP04405528.3A 2003-09-02 2004-08-24 Method and apparatus for magnetising a magnet system Active EP1513168B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    CH150603 2003-09-02
    CH15062003 2003-09-02

    Publications (3)

    Publication Number Publication Date
    EP1513168A2 true EP1513168A2 (en) 2005-03-09
    EP1513168A3 EP1513168A3 (en) 2008-07-02
    EP1513168B1 EP1513168B1 (en) 2017-03-08

    Family

    ID=34120765

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP04405528.3A Active EP1513168B1 (en) 2003-09-02 2004-08-24 Method and apparatus for magnetising a magnet system

    Country Status (2)

    Country Link
    US (1) US7324320B2 (en)
    EP (1) EP1513168B1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2006132897A1 (en) * 2005-06-03 2006-12-14 Sensormatic Electronics Corporation Techniques for deactivating electronic article surveillance labels using energy recovery

    Families Citing this family (15)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6896826B2 (en) * 1997-01-09 2005-05-24 Advanced Technology Materials, Inc. Aqueous cleaning composition containing copper-specific corrosion inhibitor for cleaning inorganic residues on semiconductor substrate
    TWI227502B (en) * 2003-09-02 2005-02-01 Ind Tech Res Inst Precise multi-pole magnetic components and manufacturing method thereof
    US8816805B2 (en) * 2008-04-04 2014-08-26 Correlated Magnetics Research, Llc. Magnetic structure production
    US9371923B2 (en) 2008-04-04 2016-06-21 Correlated Magnetics Research, Llc Magnetic valve assembly
    US8760250B2 (en) 2009-06-02 2014-06-24 Correlated Magnetics Rsearch, LLC. System and method for energy generation
    US8179219B2 (en) 2008-04-04 2012-05-15 Correlated Magnetics Research, Llc Field emission system and method
    US8704626B2 (en) 2010-05-10 2014-04-22 Correlated Magnetics Research, Llc System and method for moving an object
    US9404776B2 (en) 2009-06-02 2016-08-02 Correlated Magnetics Research, Llc. System and method for tailoring polarity transitions of magnetic structures
    US9711268B2 (en) 2009-09-22 2017-07-18 Correlated Magnetics Research, Llc System and method for tailoring magnetic forces
    US8362863B2 (en) * 2011-01-14 2013-01-29 General Electric Company System and method for magnetization of rare-earth permanent magnets
    US9245677B2 (en) 2012-08-06 2016-01-26 Correlated Magnetics Research, Llc. System for concentrating and controlling magnetic flux of a multi-pole magnetic structure
    CN106681422B (en) * 2016-12-14 2018-02-02 中国人民解放军国防科学技术大学 Electrical parameter adjustable magnetic switch and electrical parameter adjusting method online
    US11289962B2 (en) * 2017-01-04 2022-03-29 Wisk Aero Llc Method of rotor production including co-curing and magnetization in place
    US10586639B2 (en) 2017-01-04 2020-03-10 Wisk Aero Llc Array of three pole magnets
    USD949106S1 (en) 2019-11-18 2022-04-19 Maurer Magnetic Ag Demagnetization apparatus

    Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0101922A1 (en) * 1982-07-27 1984-03-07 Zentralen Maschinostroitelen Institut Method and device for treating ferromagnetic materials
    US5469321A (en) * 1992-11-13 1995-11-21 Stupak, Jr.; Joseph J. Magnetizing device having variable charge storage network and voltage control
    US6249444B1 (en) * 1999-11-01 2001-06-19 Astec International Limited Offset resonant ZVS forward converter

    Family Cites Families (15)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3678436A (en) * 1971-05-24 1972-07-18 Gen Electric Magnetizing apparatus and method
    DE2806000A1 (en) 1978-02-13 1979-08-16 Eerichh Dr Ing Steingroever Pulse generator for magnetising permanent magnets - discharges electrolytic capacitor into coil and uses second capacitor to recover stored magnetic energy
    DE2907898A1 (en) * 1979-03-01 1980-09-11 Steingroever Erich Dr Ing MULTIPOLE DEVICE AND METHOD FOR MAGNETIZING RING-SHAPED PERMANENT MAGNETS
    DE3934691A1 (en) 1989-10-18 1991-04-25 Steingroever Magnet Physik Magnetising unit for high coercivity permanent magnets - has magnets placed at centre of plate conductor elements
    JP3510016B2 (en) * 1994-10-01 2004-03-22 林原 健 Magnetic generator
    US6111490A (en) * 1996-06-19 2000-08-29 Aisin Seiki Kabushiki Kaisha Superconducting magnet apparatus and method for magnetizing superconductor
    US5775310A (en) * 1996-12-24 1998-07-07 Hitachi, Ltd. Ignition device for an internal combustion engine
    BR9706334B1 (en) * 1997-12-29 2009-08-11 magnetization process of the permanent magnets of an electric motor rotor and hermetic compressor motor assembly process.
    US6542348B1 (en) * 1998-02-03 2003-04-01 Joseph J. Stupak, Jr. Method and system for driving a magnetizing fixture
    US6194884B1 (en) * 1999-11-23 2001-02-27 Delphi Technologies, Inc. Circuitry for maintaining a substantially constant sense current to load current ratio through an electrical load driving device
    JP3484133B2 (en) * 2000-03-03 2004-01-06 株式会社日立製作所 Ignition device for internal combustion engine and one-chip semiconductor for ignition of internal combustion engine
    DE10049766A1 (en) 2000-09-29 2002-04-11 Siemens Ag Magnetizing magnet systems involves feeding direct current that is regulated continuously or in stages to coil made from high temperature superconductor to magnetize permanent magnets
    DE10123626A1 (en) * 2001-05-15 2002-11-21 Bosch Gmbh Robert Voltage changer for electric machines e.g. for starter in vehicle, has phase windings in a machine connected to multiple bridge circuits each with multiple electrically controllable switches and buffer store operating as a capacitor.
    US6778087B2 (en) * 2001-06-15 2004-08-17 3M Innovative Properties Company Dual axis magnetic field EAS device
    US6703746B2 (en) * 2002-03-01 2004-03-09 General Motors Corporation Interior permanent magnet rotor

    Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0101922A1 (en) * 1982-07-27 1984-03-07 Zentralen Maschinostroitelen Institut Method and device for treating ferromagnetic materials
    US5469321A (en) * 1992-11-13 1995-11-21 Stupak, Jr.; Joseph J. Magnetizing device having variable charge storage network and voltage control
    US6249444B1 (en) * 1999-11-01 2001-06-19 Astec International Limited Offset resonant ZVS forward converter

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2006132897A1 (en) * 2005-06-03 2006-12-14 Sensormatic Electronics Corporation Techniques for deactivating electronic article surveillance labels using energy recovery
    AU2006255614B2 (en) * 2005-06-03 2011-08-04 Sensormatic Electronics Llc Techniques for deactivating electronic article surveillance labels using energy recovery
    CN101223556B (en) * 2005-06-03 2014-05-07 传感电子公司 Techniques for deactivating electronic article surveillance labels using energy recovery

    Also Published As

    Publication number Publication date
    US20050195058A1 (en) 2005-09-08
    EP1513168B1 (en) 2017-03-08
    EP1513168A3 (en) 2008-07-02
    US7324320B2 (en) 2008-01-29

    Similar Documents

    Publication Publication Date Title
    EP1513168B1 (en) Method and apparatus for magnetising a magnet system
    DE69533962T2 (en) DC CURRENT AND USING CONTROL DEVICE FOR INDUCTIVE LOAD
    DE102008047852B4 (en) Separator for separating a mixture of magnetizable and non-magnetizable particles contained in a suspension carried in a separation channel
    DE3639256C2 (en)
    DE2058091B2 (en) Control circuit for pulse control of a DC motor
    EP0258344B1 (en) Electrical component with inductive and capacitive properties
    DE102011000980B4 (en) Choke with dynamic bias
    DE10221072B4 (en) Capacitive discharge ignition system with extended spark duration
    EP0018352B1 (en) Electric device or machine
    DE10341582B4 (en) Circuit arrangement for fast switching of inductive loads
    DE3741584C2 (en) Electromagnetic flow meter
    EP1507445B1 (en) Electronic ballast for operating a lamp with iterative voltage pulses
    DE69012357T2 (en) Power supply circuit and method for powering pulsed gas lasers.
    WO2020221388A1 (en) Motor control unit comprising a magnetisable coupling element, and electric motor assembly
    DE10331866B4 (en) Device for controlling a coil arrangement with electrically variable inductance, and switching power supply
    DE4237704C1 (en) Method and device for demagnetizing magnetic materials
    DE3604579A1 (en) Energy-storing inductive winding
    DE3614528A1 (en) METHOD FOR OPERATING A MULTIPLE ELECTROMAGNET ARRANGEMENT
    DE3421575A1 (en) Electrical pulse generator
    DE102004045601B3 (en) Electromagnetic shaping of workpieces involves connecting shaping coil into charging current circuit via charging current switch and storing electrical energy in shaping coil during charging
    DE102005044192B4 (en) Method and device for the electromagnetic forming of workpieces
    DE10025457C2 (en) Device for magnetizing permanent magnets and method for operating such a device
    EP1696199A1 (en) Pulsed power circuit for electromagnetic launcher
    DE102019000727A1 (en) Device and method for bidirectional inductive energy transmission
    CH717381A1 (en) Electronic switching device for demagnetizing ferromagnetic bodies.

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL HR LT LV MK

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL HR LT LV MK

    17P Request for examination filed

    Effective date: 20081215

    AKX Designation fees paid

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

    17Q First examination report despatched

    Effective date: 20090219

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    INTG Intention to grant announced

    Effective date: 20160922

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

    Free format text: ORIGINAL CODE: EPIDOSDIGR1

    GRAL Information related to payment of fee for publishing/printing deleted

    Free format text: ORIGINAL CODE: EPIDOSDIGR3

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    INTC Intention to grant announced (deleted)
    INTG Intention to grant announced

    Effective date: 20161223

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    Ref country code: AT

    Ref legal event code: REF

    Ref document number: 874195

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20170315

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SCHNEIDER FELDMANN AG PATENT- UND MARKENANWAEL, CH

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R096

    Ref document number: 502004015472

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MP

    Effective date: 20170308

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 14

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20170308

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20170609

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BG

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20170608

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20170308

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20170308

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20170308

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20170308

    Ref country code: RO

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20170308

    Ref country code: CZ

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20170308

    Ref country code: EE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20170308

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20170308

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20170710

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R097

    Ref document number: 502004015472

    Country of ref document: DE

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20170308

    26N No opposition filed

    Effective date: 20171211

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20170308

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20170308

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    REG Reference to a national code

    Ref country code: BE

    Ref legal event code: MM

    Effective date: 20170831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170824

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 15

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170824

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170831

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 874195

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20170824

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170824

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: HU

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

    Effective date: 20040824

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170308

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20190813

    Year of fee payment: 16

    Ref country code: IT

    Payment date: 20190821

    Year of fee payment: 16

    Ref country code: FR

    Payment date: 20190711

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20190822

    Year of fee payment: 16

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20170308

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: MAURER, ALBERT, CH

    Free format text: FORMER OWNER: MAURER, ALBERT, CH

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 502004015472

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20200824

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20200831

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20200824

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20210302

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20200824

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20230902

    Year of fee payment: 20