EP1506634B1 - Blinde transportformatdetektion für übertragungsverbindung - Google Patents

Blinde transportformatdetektion für übertragungsverbindung Download PDF

Info

Publication number
EP1506634B1
EP1506634B1 EP03735803A EP03735803A EP1506634B1 EP 1506634 B1 EP1506634 B1 EP 1506634B1 EP 03735803 A EP03735803 A EP 03735803A EP 03735803 A EP03735803 A EP 03735803A EP 1506634 B1 EP1506634 B1 EP 1506634B1
Authority
EP
European Patent Office
Prior art keywords
data
error detection
blocks
tracebacks
speculative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03735803A
Other languages
English (en)
French (fr)
Other versions
EP1506634A1 (de
Inventor
Timothy Fisher-Jeffes
Jason Woodward
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Analog Devices BV
Original Assignee
Analog Devices BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Analog Devices BV filed Critical Analog Devices BV
Publication of EP1506634A1 publication Critical patent/EP1506634A1/de
Application granted granted Critical
Publication of EP1506634B1 publication Critical patent/EP1506634B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0046Code rate detection or code type detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0054Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes

Definitions

  • the invention relates to receivers for transmission links, in base stations or mobile terminals of radio transmission links, and to corresponding software and methods, for carrying out blind transport format detection.
  • UMTS Third Generation Protocol Partnership
  • 3GPP Third Generation Protocol Partnership
  • the data in the form of Transport blocks or sets of Transport blocks is encoded/decoded to offer transport services over a radio transmission link.
  • a channel coding scheme provides a combination of error detection, error correcting, rate matching, interleaving and transport channels mapping onto/splitting from physical channels.
  • BTFD blind transport format detection
  • the scheme uses this to test whether a given sequence of bits in the data stream could be a CRC code, for a block of data bits preceding the CRC bits.
  • the length of the block may differ. It may be coded in various ways including convolution coding.
  • Explicit blind transport format detection involves performing the recursive add-compare-select process of a trellis decode over the maximum Transport Format (TF) length, storing trace-back information as one goes. This is followed by a series of speculative trace-backs and subsequent CRC checks starting from each position where a potential transport format could have terminated. This is summarised in Figures 1, 2 and 3. When a CRC pass is found the resulting decoded sequence has a high probability of being the correct one of the correct length and hence also the correct transport format. This implies the need for a convolutional coded data sequence that has a CRC appended to it prior to encoding. The series of tracebacks and subsequent CRC checks are carried out in order of the shortest tracebacks first.
  • decoding may occur until a path having a probability of being valid over a threshold value is located. This path is traced back and a cyclic redundancy check is carried out to determine the probability of the decoded sequence being the correct one.
  • the present invention is a receiver-side apparatus as defined in Claim 1, a method as defined in Claim 11, and a computer program as defined in Claim 12.
  • a first aspect of the invention provides a receiver for a transmission link, the link using different transport formats for blocks of data, and using convolutional coding with additional error detection code information, for transmitting the blocks to the receiver, the receiver having:
  • the prioritisation may be of both the traceback and the error detection. It may be used at a base station receiver or a mobile receiver.
  • the trellis decode is preferably carried out over a maximum length of a block.
  • the error detection code is a CRC code.
  • the probability is determined from a comparison of the all zero state metric with other metrics at the same point in the trellis.
  • the link uses fixed transport channel start points.
  • the receiver is UMTS 3GPP compliant equipment.
  • the data stream with variable number of bits from higher layers is block-encoded using a cyclic redundancy check (CRC) and then convolutionally encoded.
  • CRC parity bits are attached just after the data stream with variable number of bits as shown in figure 1.
  • the size of the CRC is 24, 16, 12, 8 or 0 bits and it is signalled from higher layers what CRC size that should be used for each channel.
  • Convolutional codes with constraint length 9 and coding rates 1/3 and 1/2 are defined.
  • the receiver knows only the possible transport formats (or the possible end bit position ⁇ n end ⁇ ) by Layer-3 negotiation.
  • the receiver performs Viterbi-decoding on the soft decision sample sequence.
  • the correct trellis path of the Viterbi-decoder ends at the zero state at the correct end bit position.
  • the blind transport format detection method using CRC traces back the surviving trellis path ending at the zero state (hypothetical trellis path) at each possible end bit position to recover the data sequence. For each recovered data sequence error-detection is performed by checking the CRC, and if there is no error, the recovered sequence is declared to be correct.
  • n end ⁇ 10 log 10 ( a 0 ( n end ) ⁇ a min ( n end ) a max ( n end ) ⁇ a min ( n end ) ) [ dB ]
  • n end is the current bit position within the trellis (the potential transport format end position).
  • a l (k) is the surviving trellis metric of the I-th state at the k-th position in the trellis and hence a 0 ( n end ) is the surviving trellis metric of the zeroth-state at the n end -th position in the trellis, a min ( n end ) is the minimum surviving trellis metric over all states at the n end -th position in the trellis and a max ( n end ) is the maximum surviving trellis metric over all states at the n end -th position in the trellis.
  • a path selection threshold D is introduced.
  • the threshold D determines whether the hypothetical trellis path connected to the zero state should be traced back or not at each end bit position n end . If the hypothetical trellis path connected to the zero state that satisfies: s ( n end ) ⁇ D is found, the path is traced back to recover the frame data, where D is the path selection threshold and a design parameter. If more than one end bit positions satisfying Eq. 2 is found, the end bit position which has minimum value of s(n end ) is declared to be correct. If no path satisfying Eq. 2 is found even after all possible end bit positions have been exhausted, the received frame data is declared to be in error.
  • Figure 3 shows a potential transport channel block of data having CRC information, and preceded and succeeded by other blocks in a data stream.
  • the channel or block start position is fixed.
  • Potential CRC positions are shown depending on the transport format.
  • Speculative traceback start positions are shown at each potential CRC position. Recursive ACS metric calculation is carried out in a forward direction, while the tracebacks occur in the reverse direction.
  • the 3GPP standard sets out that for the uplink, blind transport format detection is a network controlled option.
  • the receiver shall be capable of performing blind transport format detection, if certain restrictions on the configured transport channels are fulfilled:
  • the embodiment of the invention set out in figure 4 uses these probabilistic measures s ( n end ) to pick the most likely trellis positions (and hence transport formats) to traceback and CRC check first. Essentially this involves sorting all the probabilistic measures s ( n end ) and doing speculative tracebacks and CRC checks in this order. This will assist explicit BTFD using CRC checking by narrowing down which transport formats for a particular transport channel are most likely under detection before having to actually do any of the trace-backs followed by CRC checks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Claims (12)

  1. Empfängerseitige Vorrichtung für eine Übertragungsverbindung, wobei die Verbindung verschiedene Transportformate für Datenblöcke verwendet und Faltungscodierung mit zusätzlichen Fehlererkennungscode-Informationen verwendet, zur Übertragung der Blöcke zu der Empfängerseite, die Vorrichtung aufweisend:
    einen Decoder zur Durchführung einer Trellisdecodierung und von spekulativen Rückverfolgungen von potenziellen Endbitpositionen aus eines der empfangenen codierten Blöcke zur Erzeugung von decodierten Datenkandidaten,
    ein Fehlererkennungselement zum Ausführen von Fehlererkennung an den Kandidaten, unter der Annahme, dass ein Teil jedes Kandidaten der zusätzliche Fehlererkennungscode ist und ein Teil der Datenblock ist, und
    einen Formatdetektor zum Bestimmen eines Transportformats basierend auf einem Ergebnis der Fehlererkennungen,
    die Vorrichtung gekennzeichnet durch Anordnung zur Bestimmung einer Wahrscheinlichkeit, dass jeder decodierte Datenkandidat gültig ist, und Priorisierung der Ausführung der spekulativen Rückverfolgungen oder der Fehlererkennungen gemäß den Wahrscheinlichkeiten.
  2. Vorrichtung von Anspruch 1, angeordnet zur Priorisierung sowohl der Rückverfolgung als auch der Fehlererkennung.
  3. Vorrichtung von Anspruch 1 oder 2, wobei die Trellisdecodierung über eine maximale Länge eines Blocks ausgeführt wird.
  4. Vorrichtung von einem der vorangegangenen Ansprüche, wobei der Fehlererkennungscode ein CRC-Code ist.
  5. Vorrichtung von einem der vorangegangenen Ansprüche, angeordnet zur Begrenzung der Zahl der ausgeführten spekulativen Rückverfolgungen und Fehlererkennungen, wonach ein Falscherkennungs-Ereignis angezeigt wird.
  6. Vorrichtung von einem der vorangegangenen Ansprüche, wobei die Wahrscheinlichkeit aus einem Vergleich der Alle-Nullzustand-Metrik mit anderen Metriken an demselben Punkt in dem Trellis bestimmt wird.
  7. Vorrichtung von einem der vorangegangenen Ansprüche, wobei die Datenblöcke feste Transportkanalstartpunkte haben.
  8. Vorrichtung von einem der vorangegangenen Ansprüche, wobei die Vorrichtung für einen Datenübertragungsdienst zu Teilnehmern über eine Verbindung geeignet ist.
  9. Mobiles Endgerät für Verwendung mit einer Funkbasisstation, aufweisend:
    empfängerseitige Vorrichtung, wie in einem der Ansprüche 1 bis 7 dargelegt.
  10. Basisstation mit empfängerseitiger Vorrichtung, wie in einem der Ansprüche 1 bis 7 dargelegt.
  11. Verfahren zum Empfangen von Daten über eine Übertragungsverbindung, wobei die Verbindung verschiedene Transportformate für Datenblöcke verwendet und Faltungscodierung mit zusätzlichen Fehlererkennungscode-Informationen verwendet, zur Übertragung der Blöcke zu der Empfängerseite, das Verfahren die folgenden Schritte aufweisend:
    Durchführen einer Trellisdecodierung und von spekulativen Rückverfolgungen von potenziellen Endbitpositionen aus eines der empfangenen codierten Blöcke zur Erzeugung von decodierten Datenkandidaten,
    Ausführen von Fehlererkennung an den Kandidaten, unter der Annahme, dass ein Teil jedes Kandidaten der zusätzliche Fehlererkennungscode ist und ein Teil der Datenblock ist, und
    Bestimmen eines Transportformats basierend auf einem Ergebnis der Fehlererkennungen, das Verfahren gekennzeichnet durch
    Bestimmen einer Wahrscheinlichkeit, dass jeder decodierte Datenkandidat gültig ist, und Priorisierung der spekulativen Rückverfolgungen oder der Fehlererkennungen gemäß den Wahrscheinlichkeiten.
  12. Computerprogramm, das, wenn es in einem Prozessor ausgeführt wird, bewirkt, dass der Prozessor das Verfahren von Anspruch 11 ausführt.
EP03735803A 2002-05-23 2003-05-20 Blinde transportformatdetektion für übertragungsverbindung Expired - Lifetime EP1506634B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0211844 2002-05-23
GB0211844A GB2389020B (en) 2002-05-23 2002-05-23 Blind transport format detection for transmission link
PCT/GB2003/002174 WO2003101026A1 (en) 2002-05-23 2003-05-20 Blind transport format detection for transmission link

Publications (2)

Publication Number Publication Date
EP1506634A1 EP1506634A1 (de) 2005-02-16
EP1506634B1 true EP1506634B1 (de) 2006-09-20

Family

ID=9937240

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03735803A Expired - Lifetime EP1506634B1 (de) 2002-05-23 2003-05-20 Blinde transportformatdetektion für übertragungsverbindung

Country Status (7)

Country Link
US (1) US7665010B2 (de)
EP (1) EP1506634B1 (de)
CN (1) CN100438391C (de)
AU (1) AU2003236885A1 (de)
DE (1) DE60308509T2 (de)
GB (1) GB2389020B (de)
WO (1) WO2003101026A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734810B2 (en) * 2001-01-31 2004-05-11 Matsushita Electric Industrial Co., Ltd. Apparatus and method for decoding
GB2389020B (en) 2002-05-23 2006-02-01 Ubinetics Ltd Blind transport format detection for transmission link
GB0221993D0 (en) * 2002-09-21 2002-10-30 Autonomous Well Company The Electric submersible oil well pump communications
JP4408783B2 (ja) 2004-09-29 2010-02-03 Necエレクトロニクス株式会社 復号装置及び復号方法
CN101076963B (zh) * 2004-12-13 2012-06-20 飞思卡尔半导体公司 检测信息帧的端点的装置和方法
ATE545228T1 (de) * 2004-12-23 2012-02-15 St Ericsson Sa Blinde transportformaterkennung mit niedriger komplexität
US7716554B2 (en) * 2005-07-18 2010-05-11 Industrial Technology Research Institute System and method for blind transport format detection with cyclic redundancy check
KR101462211B1 (ko) * 2008-01-30 2014-11-17 삼성전자주식회사 이동통신 시스템의 복호 장치 및 방법
US8433989B2 (en) 2008-03-19 2013-04-30 Nokia Corporation Error checking with data presence detection
TW200947882A (en) * 2008-05-13 2009-11-16 Univ Ishou Decoding method of cyclic code weight decoder
EP2696527B1 (de) * 2012-08-09 2016-07-27 ST-Ericsson SA Verbesserte blinde Transportformaterkennung in Abhängigkeit der Empfangsbedingungen des Signals

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100195745B1 (ko) * 1996-08-23 1999-06-15 전주범 비터비 복호화기의 가산 비교 선택 장치
FI105961B (fi) * 1998-12-14 2000-10-31 Nokia Networks Oy Vastaanottomenetelmä ja vastaanotin
EP1303050A4 (de) * 2000-06-21 2005-08-24 Fujitsu Ltd Verahren zur erkennung eines übertragungsformats
JP2002077121A (ja) * 2000-08-31 2002-03-15 Sony Corp データ復調装置および方法
US8014473B2 (en) * 2001-01-26 2011-09-06 Qualcomm Incorporated Method and apparatus for detecting messages with unknown signaling characteristic
US20020108090A1 (en) * 2001-02-05 2002-08-08 Cute Ltd. Blind transport format detection of turbo-coded data
US7076005B2 (en) * 2001-02-15 2006-07-11 Qualcomm, Incorporated System and method for transmission format detection
US7072926B2 (en) * 2001-06-08 2006-07-04 Texas Instruments Incorporated Blind transport format detection system and method with logarithm approximation for reliability figure
GB2389020B (en) 2002-05-23 2006-02-01 Ubinetics Ltd Blind transport format detection for transmission link

Also Published As

Publication number Publication date
US7665010B2 (en) 2010-02-16
DE60308509T2 (de) 2007-07-05
WO2003101026A1 (en) 2003-12-04
GB2389020B (en) 2006-02-01
DE60308509D1 (de) 2006-11-02
EP1506634A1 (de) 2005-02-16
AU2003236885A1 (en) 2003-12-12
CN1656723A (zh) 2005-08-17
GB2389020A (en) 2003-11-26
GB0211844D0 (en) 2002-07-03
US20060117245A1 (en) 2006-06-01
CN100438391C (zh) 2008-11-26

Similar Documents

Publication Publication Date Title
US7162675B2 (en) Error detection methods in wireless communication systems
US6567938B2 (en) Convolution decoding terminated by an error detection block code with distributed parity bits
US9197246B2 (en) Iterative decoding of blocks with cyclic redundancy checks
US6813323B2 (en) Decoding method and communication terminal apparatus
US8462890B2 (en) Apparatus and methods for jointly decoding messages based on apriori knowledge of modified codeword transmission
CN1292958A (zh) 确定卷积编码通信信道的接收信号质量的方法和系统
US7555069B2 (en) Apparatus and method for receiving a forward packet data control channel in a mobile communication system supporting packet data service
US20010040916A1 (en) W-CDMA transmission rate estimation method and device
US20040199848A1 (en) Error correction decoding apparatus and error correction decoding method
EP1506634B1 (de) Blinde transportformatdetektion für übertragungsverbindung
EP1056212A2 (de) Viterbi Dekodierung mit Anwendung einer einzigen falschen Wende Korrektur
US20090019339A1 (en) Power reception optimization method, and associated apparatus, for operating upon an encoded data block
CA2326589A1 (en) Mobile station employing crc verification using decoding reliability and methods therefor
WO2003101027A1 (en) Blind transport format-detection with preselection of candidate transport formats
US6603409B2 (en) Decoding apparatus and decoding method of repeated data for rate matching
CN101151836A (zh) 基于解码器度量的盲传输格式检测
Yeh et al. An FEC overlay for idle slot utilization for IS-136
MXPA00009731A (en) Mobile station employing crc verification using decoding reliability and methods therefor
JP2002217876A (ja) 復号化装置および復号化方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17Q First examination report despatched

Effective date: 20050617

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 60308509

Country of ref document: DE

Date of ref document: 20061102

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070621

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220525

Year of fee payment: 20

Ref country code: DE

Payment date: 20220527

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60308509

Country of ref document: DE