EP1505635B1 - Massenspektrometer und massenspektrometrisches Verfahren - Google Patents

Massenspektrometer und massenspektrometrisches Verfahren Download PDF

Info

Publication number
EP1505635B1
EP1505635B1 EP04026520A EP04026520A EP1505635B1 EP 1505635 B1 EP1505635 B1 EP 1505635B1 EP 04026520 A EP04026520 A EP 04026520A EP 04026520 A EP04026520 A EP 04026520A EP 1505635 B1 EP1505635 B1 EP 1505635B1
Authority
EP
European Patent Office
Prior art keywords
mbar
vacuum chamber
ion guide
mass spectrometer
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04026520A
Other languages
English (en)
French (fr)
Other versions
EP1505635A2 (de
EP1505635A3 (de
Inventor
Robert Harold Bateman
Kevin Giles
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micromass UK Ltd
Original Assignee
Micromass UK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0110149A external-priority patent/GB0110149D0/en
Priority claimed from GBGB0120028.6A external-priority patent/GB0120028D0/en
Application filed by Micromass UK Ltd filed Critical Micromass UK Ltd
Priority to EP20100183535 priority Critical patent/EP2302661A1/de
Priority claimed from EP01310026A external-priority patent/EP1215712B1/de
Publication of EP1505635A2 publication Critical patent/EP1505635A2/de
Publication of EP1505635A3 publication Critical patent/EP1505635A3/de
Application granted granted Critical
Publication of EP1505635B1 publication Critical patent/EP1505635B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/062Ion guides
    • H01J49/065Ion guides having stacked electrodes, e.g. ring stack, plate stack

Definitions

  • the present invention relates to mass spectrometers and methods of mass spectrometry.
  • Ion guides comprising rf-only multipole rod sets such as quadrupoles, hexapoles and octopoles are well known.
  • An alternative type of ion guide known as an "ion funnel” has recently been proposed by Smith and coworkers at Pacific Northwest National Laboratory.
  • An ion funnel comprises a stack of ring electrodes of constant external diameter but which have progressively smaller internal apertures.
  • a dc voltage/potential gradient is applied along the length of the ion guide in order to urge ions through the ion funnel which would otherwise act as an ion mirror.
  • a variant of the standard ion funnel arrangement is disclosed in Anal. Chem. 2000, 72, 2247-2255 and J. Am. Soc. Mass Spectrom. 2000, 11, 19-23 (Belov) and comprises an initial drift section comprising ring electrodes having constant internal diameters and a funnel section comprising ring electrodes having uniformly decreasing internal diameters. A dc voltage gradient is applied across both sections in order to urge ions through the ion funnel.
  • ion funnels suffer from a narrow bandpass transmission efficiency i.e. the ion funnel may, for example, only efficiently transmit ions having mass to charge ratios ("m/z") falling within a narrow range e.g. 100 ⁇ m/z ⁇ 200.
  • m/z mass to charge ratios
  • pages 2249 and 2250 of Anal. Chem 2000, 72, 2247-2255 which similarly recognises that ion funnels suffer from an undesirably narrow m/z transmission window.
  • ion funnel ion guides require both an rf voltage and a dc voltage gradient to be applied to the ring electrodes.
  • the design and manufacture of a reliable power supply capable of supplying both an rf voltage and a dc voltage gradient which is decoupled from the rf voltage is a non-trivial matter and increases the overall manufacturing cost of the mass spectrometer.
  • US-5818055 discloses a method and device for injection of ions into an ion trap.
  • the preferred embodiment comprises a plurality of electrodes wherein most if not all of the electrodes have apertures which are substantially the same size.
  • the apertures are preferably circular in shape, and the outer circumference of the electrodes may also be circular.
  • the electrodes may comprise ring or annular electrodes.
  • the outer circumference of the electrodes does not need to be circular and embodiments of the present invention are contemplated wherein the outer profile of the electrodes may take on other shapes.
  • the preferred embodiment wherein the internal apertures of each of the electrodes are either identical or substantially similar is referred to hereinafter as an "ion tunnel" in contrast to ion funnels which have ring electrodes with internal apertures which become progressively smaller in size.
  • One advantage of the preferred embodiment is that the ion guide does not suffer from a narrow or limited mass to charge ratio transmission efficiency which appears to be inherent with ion funnel arrangements.
  • Another advantage of the preferred embodiment is that a dc voltage gradient is not and does not need to be applied to the ion guide.
  • the resulting power supply for the ion guide can therefore be significantly simplified compared with that required for an ion funnel thereby saving costs and increasing reliability.
  • An additional advantage of the preferred embodiment is that it has been found to exhibit an approximately 75% improvement in ion transmission efficiency compared with a conventional multipole, e.g. hexapole, ion guide. The reasons for this enhanced ion transmission efficiency are not fully understood, but it is thought that the ion tunnel may have a greater acceptance angle and a greater acceptance area than a comparable multipole rod set ion guide.
  • the preferred ion guide therefore represents a significant improvement over other known ion guides.
  • ion optical devices other than an ion tunnel ion guide
  • multipole rod sets Einzel lenses, segmented multipoles, short (solid) quadrupole pre/post filter lenses ("stubbies"), 3D quadrupole ion traps comprising a central doughnut shaped electrode together with two concave end cap electrodes, and linear (2D) quadrupole ion traps comprising a multipole rod set with entrance and exit ring electrodes.
  • stubbies 3D quadrupole ion traps comprising a central doughnut shaped electrode together with two concave end cap electrodes
  • 2D linear quadrupole ion traps comprising a multipole rod set with entrance and exit ring electrodes
  • the input vacuum chamber is arranged to be maintained at a relatively high pressure i.e. at least a few mbar.
  • the input vacuum chamber may be arranged to be maintained at a pressure above a minimum value of 0.1 mbar and less than or equal to a maximum value such as 20 or 30 mbar.
  • Embodiments of the present invention are also contemplated, wherein if the AC-only ion guide is considered to have a length L and is maintained in the input vacuum chamber at a pressure P, then the pressure-length product p x L is selected from the group comprising: (i) ⁇ 1 mbar cm; (ii) ⁇ 2 mbar cm; (iii) ⁇ 5 mbar cm; (iv) ⁇ 10 mbar cm; (v) ⁇ 15 mbar cm; (vi) ⁇ 20 mbar cm; (vii) ⁇ 25 mbar cm; (viii) ⁇ 30 mbar cm; (ix) ⁇ 40 mbar cm; (x) ⁇ 50 mbar cm; (xi) ⁇ 60 mbar cm; (xii) ⁇ 70 mbar cm; (xiii) ⁇ 80 mbar cm; (xiv) ⁇ 90 mbar cm; (xv) ⁇ 100 mbar cm; (xvi) ⁇ 110
  • the electrodes are preferably relatively thin e.g. ⁇ 2 mm, further preferably ⁇ 1 mm, further preferably 0.5 ⁇ 0.2 mm, further preferably 0.7 ⁇ 0.1 mm thick. According to a particularly preferred embodiment the electrodes have a thickness within the range 0.5-0.7 mm in contrast to multipole rod sets which are typically > 10 cm long.
  • Each, or at least a majority of the electrodes forming the AC-only ion guide may comprise either a plate having an aperture therein, or a wire or rod bent to form a closed ring or a nearly closed ring.
  • the outer profile of the electrodes may or may not be circular.
  • alternate electrodes are connected together and to one of the output connections of a single AC generator.
  • the AC-only ion guide preferably comprises at least 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 electrodes.
  • the electrodes forming the AC-only ion guide may have internal diameters or dimensions selected from the group comprising: (i) ⁇ 5.0 mm; (ii) ⁇ 4.5 mm; (iii) ⁇ 4.0 mm; (iv) ⁇ 3.5 mm; (v) ⁇ 3.0 mm; (vi) ⁇ 2.5 mm; (vii) 3.0 ⁇ 0.5 mm; (viii) ⁇ 10.0 mm; (ix) ⁇ 9.0 mm; (x) ⁇ 8.0 mm; (x) ⁇ 7.0 mm; (xii) ⁇ 6.0 mm; (xiii) 5.0 t 0.5 mm; and (xiv) 4-6 mm.
  • the length of the AC-only ion guide may be selected from the group comprising: (i) ⁇ 100 mm; (ii) ⁇ 120 mm; (iii) ⁇ 150 mm; (iv) 130 ⁇ 10 mm; (v) 100-150 mm; (vi) ⁇ 160 mm; (vii) ⁇ 180 mm; (viii) ⁇ 200 mm; (ix) 130-150 mm; (x) 120-180 mm; (xi) 120-140 mm; (xii) 130 mm ⁇ 5, 10, 15, 20, 25 or 30 mm; (xiii) 50-300 mm; (xiv) 150-300 mm; (xv) ⁇ 50 mm; (xvi) 50-100 mm; (xvii) 60-90 mm; (xviii) ⁇ 75 mm; (xix) 50-75 mm; and (xx) 75-100 mm.
  • An intermediate vacuum chamber is disposed between the input vacuum chamber and the analyzer vacuum chamber, the intermediate vacuum chamber comprising an AC-only ion guide for transmitting ions through the intermediate vacuum chamber.
  • the AC-only ion guide arranged in the intermediate vacuum chamber preferably comprises a plurality of electrodes having apertures, the apertures being aligned so that ions travel through them as they are transmitted by the ion guide.
  • At least one further differential pumping apertured electrode is provided through which ions may pass.
  • the further differential pumping apertured electrode is disposed between the vacuum chambers to allow the intermediate vacuum chamber to be maintained at a lower pressure than the input vacuum chamber, and the analyzer vacuum chamber to be maintained at a lower pressure than the intermediate vacuum chamber.
  • An alternating current (AC) generator is connected to an intermediate chamber reference potential for providing AC potentials to the AC-only ion guide in the intermediate vacuum chamber.
  • At least 90%, and preferably 100%, of the apertures of the electrodes forming the AC-only ion guide in the intermediate vacuum chamber are substantially the same size, and at least 90%, and preferably 100%, of the plurality of the electrodes forming the AC-only ion guide in the intermediate vacuum chamber are connected to the AC generator connected to the intermediate chamber reference potential in such a way that at any instant during an AC cycle of the output of the AC generator, adjacent ones of the electrodes forming the AC-only ion guide arranged in the intermediate vacuum chamber are supplied respectively with approximately equal positive and negative potentials relative to the intermediate chamber reference potential.
  • the AC-only ion guide in the intermediate vacuum chamber comprises at least 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 electrodes.
  • the intermediate vacuum chamber is arranged to be maintained at a pressure selected from the group comprising: (i) 10 -3 -10 -2 mbar; (ii) ⁇ 2 x 10 -3 mbar; (iii) ⁇ 5 x 10 -3 mbar; (iv) ⁇ 10 -2 mbar; (v) 10 -3 -5 x 10 -3 mbar; and (vi) 5 x 10 -3 -10 -2 mbar.
  • the electrodes forming the AC-only ion guide in the intermediate vacuum chamber have internal diameters or dimensions selected from the group comprising: (i) ⁇ 5.0 mm; (ii) ⁇ 4.5 mm; (iii) ⁇ 4.0 mm; (iv) ⁇ 3.5 mm; (v) ⁇ 3.0 mm; (vi) ⁇ 2.5 mm; (vii) 3.0 ⁇ 0.5 mm; (viii) ⁇ 10.0 mm; (ix) ⁇ 9.0 mm; (x) ⁇ 8.0 mm; (xi) ⁇ 7.0 mm; (xii) ⁇ 6.0 mm; (xiii) 5.0 ⁇ 0.5 mm; and (xiv) 4-6 mm.
  • the individual electrodes in the AC-only ion guide in the input vacuum chamber and/or the AC-only ion guide in the intermediate vacuum chamber preferably have a substantially circular aperture having a diameter selected from the group comprising: (i) 0.5-1.5 mm; (ii) 1.5-2.5 mm; (iii) 2.5-3.5 mm; (iv) 3.5-4.5 mm; (v) 4.5-5.5 mm; (vi) 5.5-6.5 mm; (vii) 6.5-7.5 mm; (viii) 7.5-8.5 mm; (ix) 8.5-9.5 mm; (x) 9.5-10.5 mm; and (xi) ⁇ 10mm.
  • the length of the ion guide in the intermediate vacuum chamber is selected from the group comprising: (i) ⁇ 100 mm; (ii) ⁇ 120 mm; (iii) ⁇ 150 mm; (iv) 130 ⁇ 10 mm; (v) 100-150 mm; (vi) ⁇ 160 mm; (vii) ⁇ 180 mm; (viii) ⁇ 200 mm; (ix) 130-150 mm; (x) 120-180 mm; (xi) 120-140 mm; (xii) 130 mm ⁇ 5, 10, 15, 20, 25 or 30 mm; (xiii) 50-300 mm; (xiv) 150-300 mm; (xv) ⁇ 50 mm; (xvi) 50-100 mm; (xvii) 60-90 mm; (xviii) ⁇ 75 mm; (xix) 50-75 mm; and (xx) 75-100 mm.
  • the ion source is an atmospheric pressure ion source.
  • the ion source is a continuous ion source.
  • An Electrospray (“ES”) ion source or an Atmospheric Pressure Chemical Ionisation (“APCI”) ion source is particularly preferred.
  • the ion source is either an Inductively Coupled Plasma (“ICP”) ion source or a Matrix Assisted Laser Desorption Ionisation (“MALDI”) ion source at low vacuum or at atmospheric pressure.
  • ICP Inductively Coupled Plasma
  • MALDI Matrix Assisted Laser Desorption Ionisation
  • the ion mass analyser is selected from the group comprising: (i) a time-of-flight mass analyser, preferably an orthogonal time of flight mass analyser; (ii) a quadrupole mass analyser; and (iii) a quadrupole ion trap.
  • the AC-only ion guide comprises two interleaved comb arrangements, each comb arrangement comprising a longitudinally extending bar or spine having a plurality of electrodes having apertures depending therefrom.
  • the input vacuum chamber has a length and the combs arrangements extend at least x% of the length, x% selected from the group comprising: (i) ⁇ 50%; (ii) ⁇ 60%; (iii) ⁇ 70%; (iv) ⁇ 80%; (v) ⁇ 90%; and (vi) ⁇ 95%.
  • a preferred ion tunnel 15 comprises a plurality of electrodes 15a,15b each having an aperture.
  • the outer profile of the electrodes 15a,15b is circular.
  • the outer profile of the electrodes 15a,15b does not need to be circular.
  • the preferred embodiment may be considered to comprise a plurality of ring or annular electrodes, electrodes having other shapes are also contemplated as falling within the scope of the present invention.
  • Adjacent electrodes 15a,15b are connected to opposite phases of an AC power supply.
  • the first, third, fifth etc. ring electrodes 15a may be connected to the 0° phase supply 16a
  • the second, fourth, sixth etc. ring electrodes 15b may be connected to the 180° phase supply 16b.
  • the AC power supply may be a RF power supply.
  • the present invention is not intended to be limited to RF frequencies.
  • "AC" is intended to mean simply that the waveform alternates and hence embodiments of the present invention are also contemplated wherein non-sinusoidal waveforms including square waves are provided. Ions from an ion source pass through the ion tunnel 15 and are efficiently transmitted by it.
  • the dc reference potential about which the AC signal oscillates is substantially the same for each electrode.
  • blocking dc potentials are not applied to either the entrance or exit of the ion tunnel 15.
  • Fig. 2 shows a conventional mass spectrometer.
  • An Electrospray (“ES”) ion source 1 or an Atmospheric Pressure Chemical lonisation (“APCI”) 1,2 ion source emits ions which enter a vacuum chamber 17 pumped by a rotary or mechanical pump 4 via a sample cone 3 and a portion of the gas and ions passes through a differential pumping aperture 21 preferably maintained at 50-120V into a vacuum chamber 18 housing an rf-only hexapole ion guide 6. Vacuum chamber 18 is pumped by a rotary or mechanical pump 7.
  • Ions are transmitted by the rf-only hexapole ion guide 6 through the vacuum chamber 18 and pass through a differential pumping aperture 8 into a further vacuum chamber 19 pumped by a turbo-molecular pump 10.
  • This vacuum chamber 19 houses another rf-only hexapole ion guide 9.
  • Ions are transmitted by rf-only hexapole ion guide 9 through vacuum chamber 19 and pass through differential pumping aperture 11 into a yet further vacuum chamber 20 which is pumped by a turbo-molecular pump 14.
  • Vacuum chamber 20 houses a prefilter rod set 12, a quadrupole mass filter/analyser 13 and may include other elements such as a collision cell (not shown), a further quadrupole mass filter/analyser together with an ion detector (not shown) or a time of flight analyser (not shown).
  • Fig. 3 illustrates an embodiment of the present invention wherein hexapole ion guide 6 has been replaced with an ion tunnel 15 according to the preferred embodiment.
  • the other components of the mass spectrometer are substantially the same as described in relation to Fig. 2 and hence will not be described again.
  • the ion tunnel 15 exhibits an improved transmission efficiency of approximately 75% compared with using hexapole ion guide 6 and the ion tunnel 15 does not suffer from as narrow a m/z bandpass transmission efficiency as is reported with ion funnels.
  • the reference potential of the ion tunnel 15 is preferably maintained at 0-2 V dc above the dc potential of the wall forming the differential pumping aperture 11 which is preferably either at ground (0 V dc) or around 40-240 V dc depending upon the mass analyser used.
  • the wall forming differential pumping aperture 11 may, of course, be maintained at other dc potentials.
  • the hexapole ion guide 9 may be replaced by an ion tunnel 15' with hexapole ion guide 6 being maintained.
  • Fig. 4 shows a particularly preferred embodiment of the present invention wherein both hexapole ion guides 6,9 have been replaced with ion tunnels 15,15'.
  • the ion tunnels 15,15' are about 13 cm in length and preferably comprise approximately 85 ring electrodes.
  • the ion tunnel 15 in vacuum chamber 18 is preferably maintained at a pressure ⁇ 1 mbar and is supplied with an rf-voltage at a frequency - 1 MHz
  • the ion tunnel 15' in vacuum chamber 19 is preferably maintained at a pressure of 10 -3 -10 -2 mbar and is supplied with an rf-voltage at a frequency - 2 MHz.
  • Rf frequencies of 800 kHz - 3 MHz could also be used for both ion tunnels 15,15' according to further embodiments of the present invention.
  • the ion tunnel 15' exhibits an improved transmission efficiency of approximately 25%, and hence the combination of ion tunnels 15,15' exhibit an improved transmission efficiency of approximately 100% compared with using hexapole ion guide 6 in combination with hexapole ion guide 9.
  • Figs. 5 and 6 show a particularly preferred embodiment of the present invention.
  • the AC-only ion guide comprises two interleaved comb-like arrangements of electrodes.
  • Each comb comprises a plurality of electrodes 15a;15b, each electrode 15a;15b having an aperture.
  • One of the combs is shown in more detail in Fig. 5 .
  • the comb comprises a longitudinally extending bar or spine from which a number of electrodes 15a;15b depend therefrom.
  • the electrodes 15a;15b are integral with the bar or spine.
  • Each electrode 15a;15b preferably has a substantially circular aperture. However, as can be seen from Fig.
  • each electrode 15a;15b in cross-section is preferably a truncated circular shape.
  • Fig. 6 shows in more detail how the two combs are interleaved. Various insulating rings are also shown which help to hold the assembly together.
  • the comb like arrangement of electrodes 15a;15b may be provided in input vacuum chamber 18 and/or intermediate vacuum chamber 19. For the avoidance of any doubt, the arrangements shown in Figs. 5 and 6 are intended to fall within the scope of the claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Claims (30)

  1. Massenspektrometer, umfassend:
    eine Ionenquelle (1) zum Erzeugen von Ionen;
    eine Eingangsvakuumkammer (18), die mindestens eine AC-Ionenführung zum Übertragen der Ionen umfasst, wobei die AC-Ionenführung bildende benachbarte Elektroden mit entgegengesetzten Phasen einer AC-Stromversorgung verbunden sind;
    eine Analysatorvakuumkammer (20), die einen Massenanalysator (13) umfasst, der so angeordnet ist, dass er Ionen empfängt, nachdem sie von der AC-Ionenführung übertragen worden sind;
    eine Zwischenvakuumkammer (19), die zwischen der Eingangsvakuumkammer (18) und der Analysatorvakuumkammer (20) angeordnet ist, wobei die Zwischenvakuumkammer (19) eine AC-Ionenführung zum Übertragen von Ionen durch die Zwischenvakuumkammer (19) umfasst;
    mindestens eine differentiell pumpende, mit Öffnungen versehene Elektrode (8), durch die Ionen hindurchtreten können, wobei die mindestens eine differentiell pumpende, mit Öffnungen versehene Elektrode (8) zwischen der Eingangsvakuumkammer (18) und der Zwischenvakuumkammer (19) angeordnet ist, damit die Zwischenvakuumkammer (19) auf einem niedrigeren Druck als die Eingangsvakuumkammer (18) gehalten werden kann; und
    mindestens eine weitere differentiell pumpende, mit Öffnungen versehene Elektrode (11), durch die Ionen hindurchtreten können, angeordnet zwischen der Zwischenvakuumkammer (19) und der Analysatorvakuumkammer (20), damit die Analysatorvakuumkammer (20) auf einem niedrigeren Druck als die Zwischenvakuumkammer (19) gehalten werden kann;
    dadurch gekennzeichnet, dass:
    die AC-Ionenführung, die in der Eingangsvakuumkammer (18) angeordnet ist, zwei verschachtelte Kammanordnungen umfasst, wobei jede Kammanordnung einen sich in Längsrichtung erstreckenden Stab oder Rücken mit mehreren Elektroden mit Öffnungen, die von dort herabhängen, umfasst, wobei die Elektroden mit dem Stab oder Rücken integral sind.
  2. Massenspektrometer nach Anspruch 1, wobei mindestens 90% oder 100% der Öffnungen im Wesentlichen die gleiche Größe aufweisen.
  3. Massenspektrometer nach Anspruch 1 oder 2, wobei die mehreren Elektroden, die die AC-Ionenführung bilden, die in der Eingangsvakuumkammer (18) angeordnet ist, derart mit einem AC-Generator verbunden sind, dass zu einem beliebigen Zeitpunkt während eines AC-Zyklus des Ausgangs des AC-Generators benachbarte der Elektroden jeweils etwa gleiche positive und negative Potentiale relativ zu einem Eingangskammerreferenzpotential erhalten.
  4. Massenspektrometer nach einem vorhergehenden Anspruch, wobei die Eingangsvakuumkammer (18) eine Länge aufweist und sich die Kammanordnungen über mindestens x% der Länge erstrecken, wobei x% ausgewählt ist aus der Gruppe bestehend aus: (i) ≥ 50%; (ii) ≥ 60%; (iii) ≥ 70%; (iv) ≥ 80%; (v) ≥ 90% und (vi) ≥ 95%.
  5. Massenspektrometer nach einem vorhergehenden Anspruch, wobei abwechselnde der Elektroden miteinander und mit einem der Ausgangsanschlüsse eines einzelnen AC-Generators verbunden sind.
  6. Massenspektrometer nach einem vorhergehenden Anspruch, wobei die in der Eingangsvakuumkammer (18) angeordnete AC-Ionenführung mindestens 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90 oder 100 Elektroden umfasst.
  7. Massenspektrometer nach einem vorhergehenden Anspruch, wobei die Elektroden Innendurchmesser oder -abmessungen aufweisen ausgewählt aus der Gruppe bestehend aus: (i) ≤ 5,0 mm; (ii) ≤ 4,5 mm; (iii) ≤ 4, 0 mm; (iv) ≤ 3,5 mm; (v) ≤ 3, 0 mm; (vi) ≤ 2,5 mm; (vii) 3,0 ± 0,5 mm; (viii) ≤ 10,0 mm; (ix) ≤ 9,0mm; (x) ≤ 8,0mm; (xi) ≤ 7,0mm; (xii) ≤ 6,0 mm; (xiii) 5,0 ± 0,5 mm und (xiv) 4-6 mm.
  8. Massenspektrometer nach einem vorhergehenden Anspruch, wobei die Länge der in der Eingangsvakuumkammer (18) angeordneten AC-Ionenführung ausgewählt ist aus der Gruppe bestehend aus: (i) ≥ 100 mm; (ii) ≥ 120 mm; (iii) ≥ 150 mm; (iv) 130 ± 10 mm; (v) 100 - 150 mm; (vi) ≤ 160 mm; (vii) ≤ 180 mm; (viii) ≤ 200 mm; (ix) 130 - 150 mm; (x) 120 - 180 mm; (xi) 120 - 140 mm; (xii) 130 mm ± 5, 10, 15, 20, 25 oder 30 mm; (xiii) 50 - 300 mm; (xiv) 150 - 300 mm; (xv) ≥ 50 mm; (xvi) 50 - 100 mm; (xvii) 60 - 90 mm; (xviii) ≥ 75 mm; (xix) 50 - 75 mm; (xx) 75 - 100 mm; (xxi) 150 - 200 mm; (xxii) ≥ 200 mm und (xxiii) 50 - 200 mm.
  9. Massenspektrometer nach einem vorhergehenden Anspruch, wobei die in der Zwischenvakuumkammer (19) angeordnete AC-Ionenführung mehrere Elektroden mit Öffnungen umfasst, wobei die Öffnungen so ausgerichtet sind, dass sich Ionen durch sie bewegen, wenn sie von der AC-Ionenführung in der Zwischenvakuumkammer (19) übertragen werden;
    wobei das Massenspektrometer weiterhin einen Wechselstromgenerator (AC) umfasst, der mit einem Zwischenkammerreferenzpotential verbunden ist, um AC-Potentiale an die AC-Ionenführung in der Zwischenvakuumkammer (19) zu liefern.
  10. Massenspektrometer nach Anspruch 9, wobei mindestens 90% oder 100% der Öffnungen der die AC-Ionenführung in der Zwischenvakuumkammer (19) bildenden Elektroden im Wesentlichen die gleiche Größe aufweisen und
    mindestens 90% oder 100% der mehreren, die AC-Ionenführung in der Zwischenvakuumkammer (19) bildenden Elektroden mit dem AC-Generator verbunden sind, der mit dem Zwischenkammerreferenzpotential verbunden ist, und zwar derart, dass bei einem beliebigen Zeitpunkt während eines AC-Zyklus des Ausgangs des AC-Generators benachbarte der Elektroden, die die in der Zwischenvakuumkammer (19) angeordnete AC-Ionenführung bilden, jeweils etwa gleiche positive und negative Potentiale relativ zu dem Zwischenkammerreferenzpotential erhalten.
  11. Massenspektrometer nach Anspruch 9 oder 10, wobei die AC-Ionenführung in der Zwischenvakuumkammer (19) mindestens 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90 oder 100 Elektroden umfasst.
  12. Massenspektrometer nach einem der Ansprüche 9, 10 oder 11, wobei die Zwischenvakuumkammer (19) so ausgelegt ist, dass sie auf einem Druck gehalten wird ausgewählt aus der Gruppe bestehend aus: (i) 10-1--10-2 mbar; (ii) ≥ 2 x 10-3 mbar; (iii) ≥ 5 x 10-3 mbar; (iv) ≤ 10-2 mbar; (v) 10-3 - 5 x 10 -3 mbar und (vi) 5 x 10-3 - 10-2 mbar.
  13. Massenspektrometer nach einem der Ansprüche 9-12, wobei Elektroden, die die AC-Ionenführung in der Zwischenvakuumkammer (19) bilden, Innendurchmesser oder -abmessungen aufweisen ausgewählt aus der Gruppe bestehend aus: (i) ≤ 5,0 mm; (ii) ≤ 4,5 mm; (iii) ≤ 4, 0 mm; (iv) ≤ 3,5 mm; (v) ≤ 3, 0 mm; (vi) ≤ 2,5 mm; (vii) 3,0 ± 0,5 mm; (viii) ≤ 10,0 mm, (ix) ≤ 9,0 mm, (x) ≤ 8,0 mm; (xi) ≤ 7,0 mm; (xii) ≤ 6,0 mm; (xiii) 5,0 ± 0,5 mm und (xiv) 4-6 mm.
  14. Massenspektrometer nach einem der Ansprüche 9-13, wobei die Länge der AC-Ionenführung in der Zwischenvakuumkammer (19) ausgewählt ist aus der Gruppe bestehend aus: (i) ≥ 100 mm; (ii) ≥ 120 mm; (iii) ≥ 150 mm; (iv) 130 ± 10 mm; (v) 100 - 150 mm, (vi) ≤ 160 mm; (vii) ≤ 180 mm; (viii) ≤ 200 mm; (ix) 130 - 150 mm; (x) 120 - 180 mm; (xi) 120 - 140 mm; (xii) 130 mm ± 5, 10, 15, 20, 25 oder 30 mm; (xiii) 50 - 300 mm; (xiv) 150 - 300 mm; (x) ≥ 50 mm; (xvi) 50 - 100 mm; (xvii) 60 - 90 mm; (xviii) ≥ 75 mm; (xix) 50 - 75 mm; (xx) 75 - 100 mm; (xxi) 150 - 200 mm; (xxii) ≥ 200 mm und (xxiii) 50 - 200 mm.
  15. Massenspektrometer nach einem vorhergehenden Anspruch, wobei die Ionenquelle (1) eine Atmosphärendruck-Ionenquelle ist.
  16. Massenspektrometer nach einem vorhergehenden Anspruch, wobei die Ionenquelle (1) eine kontinuierliche Ionenquelle ist.
  17. Massenspektrometer nach Anspruch 15 oder 16, wobei die Ionenquelle (1) eine Elektrospray-Ionenquelle ("ES") oder eine APCI-Ionenquelle (Atmospheric Pressure Chemical Ionisation - chemische Ionisation bei Atmosphärendruck) ist.
  18. Massenspektrometer nach Anspruch 15 oder 16, wobei die Ionenquelle (1) eine induktiv gekoppelte Plasma-Ionenquelle ("ICP" - Inductively Coupled Plasma) ist.
  19. Massenspektrometer nach einem der Ansprüche 1-14, wobei die Ionenquelle (1) eine matrixunterstützte Laser-Desorptions-Ionenquelle ("MALDI" - Matrix Assisted Laser Desorption Ionisation) ist.
  20. Massenspektrometer nach einem vorhergehenden Anspruch, wobei der Massenanalysator ausgewählt ist aus der Gruppe bestehend aus: (i) einem Flugzeit-Massenanalysator; (ii) einem orthogonal-Flugzeit-Massenanalysator; (iii) einem Quadrupol-Massenanalysator und (iv) einer Quadrupol-Ionenfalle.
  21. Massenspektrometer nach einem vorhergehenden Anspruch, wobei die Eingangsvakuumkammer (18) so ausgelegt ist, dass sie auf einem Druck gehalten wird ausgewählt aus der Gruppe bestehend aus: (i) ≥ 0,1 mbar; (ii) ≥ 0,5 mbar; (iii) ≥ 0,7 mbar; (iv) ≥ 1,0 mbar; (v) ≥ 1,3 mbar; (vi) ≥ 1,5 mbar; (vii) ≥ 2,0 mbar; (viii) ≥ 2,5 mbar; (ix) 3,0 mbar; (x) ≥ 3,5 mbar; (xi) ≥ 4,0 mbar; (xii) 4,5 mbar; (xiii) ≥ 5,0 mbar; (xiv) ≥ 6,0 mbar; (xv) ≥ 7,0 mbar; (xvi) ≥ 8,0 mbar; (xvii) ≥ 9,0 mbar; (xviii) ≥ 10,0 mbar; (xix) 1 - 5 mbar; (xx) 1 - 2 mbar und (xxi) 0,5 - 1,5 mbar.
  22. Massenspektrometer nach einem vorhergehenden Anspruch, wobei die Eingangsvakuumkammer (18) so ausgelegt ist, dass sie auf einem Druckgehalten wird ausgewählt ist aus der Gruppe bestehend aus: (i) ≤ 20 mbar und (ii) ≤ 30 mbar.
  23. Massenspektrometer nach einem vorhergehenden Anspruch, wobei, wenn die in der Eingangsvakuumkammer (18) angeordnete AC-Ionenführung eine Länge L aufweist und in der Eingangsvakuumkammer (18) auf einem Druck P gehalten wird, dann das Druck-Länge-Produkt p x L ausgewählt ist aus der Gruppe bestehend aus: (i) ≥1 mbar cm; (ii) ≥ 2 mbar cm; (iii) ≥ 5 mbar cm; (iv) ≥ 10 mbar cm; (v) ≥ 15 mbar cm; (vi) ≥ 20 mbar cm; (vii) ≥ 25 mbar cm; (viii) ≥ 30 mbar cm; (ix) ≥ 40 mbar cm; (x) ≥ 50 mbar cm; (xi) ≥ 60 mbar cm; (xii) ≥ 70 mbar cm; (xiii) ≥ 80 mbar cm; (xiv) ≥ 90 mbar cm; (xv) ≥ 100 mbar cm; (xvi) ≥ 110 mbar cm; (xvii) ≥ 120 mbar cm; (xviii) ≥ 130 mbar cm; (xix) ≥ 140 mbar cm; (xx) ≥ 150 mbar cm; (xxi) ≥ 160 mbar cm; (xxii) ≥ 170 mbar cm; (xxiii) ≥ 180 mbar cm; (xxiv) ≥ 190 mbar cm und (xxv) ≥ 200 mbar cm.
  24. Massenspektrometer nach einem vorhergehenden Anspruch, wobei die Elektroden, die die in der Eingangsvakuumkammer (18) angeordnete AC-Ionenführung bilden, eine Dicke aufweisen ausgewählt aus der Gruppe bestehend aus: (i) ≤ 2 mm; (ii) ≤ 1 mm; (iii) 0,5 ± 0,2 mm; (iv) 0,7 ± 0,1 mm und (v) 0, 5 - 0,7 mm.
  25. Verfahren der Massenspektrometrie, umfassend:
    Erzeugen von Ionen aus einer Ionenquelle;
    Übertragen mindestens einiger der Ionen durch eine Eingangsvakuumkammer (18), die mindestens eine AC-Ionenführung zum Übertragen der Ionen umfasst,
    wobei benachbarte Elektroden, die die AC-Ionenführung bilden, mit entgegengesetzten Phasen einer AC-Stromversorgung verbunden sind;
    Schicken der Ionen an eine Analysatorvakuumkammer (20), die einen Massenanalysator (13) umfasst, der so angeordnet ist, dass er Ionen empfängt, nachdem sie von der AC-Ionenführung übertragen worden sind;
    Bereitstellen einer Zwischenvakuumkammer (19), die zwischen der Eingangsvakuumkammer (18) und der Analysatorvakuumkammer (20) angeordnet ist, wobei die Zwischenvakuumkammer (19) eine AC-Ionenführung zum Übertragen von Ionen durch die Zwischenvakuumkammer (19) umfasst;
    Bereitstellen mindestens einer differentiell pumpenden, mit Öffnungen versehenen Elektrode (8),
    durch die Ionen hindurchtreten können, wobei die mindestens eine differentiell pumpende, mit Öffnungen versehene Elektrode (8) zwischen der Eingangsvakuumkammer (18) und der Zwischenvakuumkammer (19) angeordnet ist, damit die Zwischenvakuumkammer (19) auf einem niedrigeren Druck als die Eingangsvakuumkammer (18) gehalten werden kann; und
    Bereitstellen mindestens einer weiteren differentiell pumpenden, mit Öffnungen versehenen Elektrode (11), durch die Ionen hindurchtreten können, angeordnet zwischen der Zwischenvakuumkammer (19) und der Analysatorvakuumkammer (20), damit die Analysatorvakuumkammer auf einem niedrigeren Druck als die Zwischenvakuumkammer (19) gehalten werden kann;
    dadurch gekennzeichnet, dass:
    der Schritt des Übertragens mindestens einiger der Ionen durch die Eingangsvakuumkammer (18) das Übertragen der Ionen durch die AC-Ionenführung umfasst, die zwei verschachtelte Kammanordnungen umfasst, wobei jede Kammanordnung einen sich in , Längsrichtung erstreckenden Stab oder Rücken mit mehreren Elektroden mit Öffnungen, die von dort herabhängen, umfasst, wobei die Elektroden mit dem Stab oder Rücken integral sind.
  26. Verfahren nach Anspruch 25, weiterhin umfassend das Halten der Eingangsvakuumkammer auf einem Druck ausgewählt aus der Gruppe bestehend aus: (i) ≥ 0,1 mbar; (ii) ≥ 0,5 mbar; (iii) ≥ 0,7 mbar; (iv) ≥ 1,0 mbar; (v) ≥ 1,3 mbar; (vi) ≥ 1,5 mbar; (vii) ≥ 2,0 mbar; (viii) ≥ 2,5 mbar; (ix) ≥ 3,0 mbar; (x) ≥ 3,5 mbar; (xi) ≥ 4,0 mbar; (xii) ≥ 4,5 mbar; (xiii) ≥ 5,0 mbar; (xiv) ≥ 6,0 mbar; (xv) ≥ 7,0 mbar; (xvi) ≥ 8,0 mbar; (xvii) ≥ 9,0 mbar; (xviii) ≥ 10,0 mbar; (xix) 1 - 5 mbar; (xx) 1 - 2 mbar und (xxi) 0,5 - 1,5 mbar.
  27. Verfahren nach Anspruch 25 oder 26, weiterhin umfassend das Halten der Eingangsvakuumkammer (18) auf einem Druck ausgewählt aus der Gruppe bestehend aus: (i) ≤ 20 mbar und (ii) ≤ 30 mbar.
  28. Verfahren nach Ansprüchen 25, 26 oder 27, wobei die in der Zwischenvakuumkammer (19) angeordnete AC-Ionenführung mehrere Elektroden mit Öffnungen umfasst, wobei die Öffnungen so ausgerichtet sind, dass Ionen sich durch sie hindurchbewegen, wenn sie von der Ionenführung übertragen werden;
    und das Verfahren weiterhin das Bereitstellen eines Wechselstromgenerators (AC) umfasst, der mit einem Zwischenkammerreferenzpotential verbunden ist, um AC-Potentiale an die AC-Ionenführung in der Zwischenvakuumkammer (19) zu liefern.
  29. Verfahren nach Anspruch 28, weiterhin umfassend das Halten der Zwischenvakuumkammer (19) auf einem Druck ausgewählt aus der Gruppe bestehend aus: (i) 10-3-10-2 mbar; (ii) ≥ 2 x 10-3 mbar; (iii) ≥ 5 x 10-3. mbar; (iv) ≤ 10-2 mbar; (v) 10-3 - 5 x 10-3 mbar und (vi) 5 x 10-2 mbar.
  30. Verfahren nach einem der Ansprüche 25-29, weiterhin umfassend das Halten der AC-Ionenführung mit einer Länge L in der Eingangsvakuumkammer (18) auf einem Druck P, wobei das Druck-Länge-Produkt p x L ausgewählt ist aus der Gruppe bestehend aus: (i) ≥ 1 mbar cm; (ii) ≥ 2 mbar cm; (iii) ≥ 5 mbar cm; (iv) ≥ 10 mbar cm; (v) ≥ 15 mbar cm; (vi) ≥ 20 mbar cm; (vii) ≥ 25 mbar cm; (viii) ≥ 30 mbar cm; (ix) ≥ 40 mbar cm; (x) ≥ 50 mbar cm; (xi) ≥ 60 mbar cm; (xii) ≥ 70 mbar cm; (xiii) ≥ 80 mbar cm; (xiv) ≥ 90 mbar cm; (xv) ≥ 100 mbar cm; (xvi) ≥ 110 mbar cm; (xvii) ≥ 120 mbar cm; (xviii) ≥ 130 mbar cm; (xix) ≥ 140 mbar cm; (xx) ≥ 150 mbar cm; (xxi) ≥ 160 mbar cm; (xxii) ≥ 170 mbar cm; (xxiii) ≥ 180 mbar cm; (xxiv) ≥ 190 mbar cm und (xxv) ≥ 200 mbar cm.
EP04026520A 2000-11-29 2001-11-29 Massenspektrometer und massenspektrometrisches Verfahren Expired - Lifetime EP1505635B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20100183535 EP2302661A1 (de) 2000-11-29 2001-11-29 Massenpektrometer mit einer Ionentunnel-Ionenführung und massenspektrometrisches Verfahren

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
GBGB0029088.2A GB0029088D0 (en) 2000-11-29 2000-11-29 Ion tunnel
GB0029088 2000-11-29
GB0109760 2001-04-20
GBGB0109760.9A GB0109760D0 (en) 2000-11-29 2001-04-20 Mass spectrometers and methods of mass spectrometry
GB0110149 2001-04-25
GB0110149A GB0110149D0 (en) 2000-11-29 2001-04-25 Mass spectrometers and methods of mass spectrometry
GBGB0120028.6A GB0120028D0 (en) 2000-11-29 2001-08-16 Mass spectrometers and methods of mass spectrometry
GB0120028 2001-08-16
EP01310026A EP1215712B1 (de) 2000-11-29 2001-11-29 Massenspektrometer und massenspektrometrische Verfahren

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP01310026A Division EP1215712B1 (de) 2000-11-29 2001-11-29 Massenspektrometer und massenspektrometrische Verfahren
EP01310026.8 Division 2001-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP10183535.3 Division-Into 2010-09-30

Publications (3)

Publication Number Publication Date
EP1505635A2 EP1505635A2 (de) 2005-02-09
EP1505635A3 EP1505635A3 (de) 2007-03-21
EP1505635B1 true EP1505635B1 (de) 2011-01-12

Family

ID=9904092

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04026520A Expired - Lifetime EP1505635B1 (de) 2000-11-29 2001-11-29 Massenspektrometer und massenspektrometrisches Verfahren
EP20100183535 Withdrawn EP2302661A1 (de) 2000-11-29 2001-11-29 Massenpektrometer mit einer Ionentunnel-Ionenführung und massenspektrometrisches Verfahren

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP20100183535 Withdrawn EP2302661A1 (de) 2000-11-29 2001-11-29 Massenpektrometer mit einer Ionentunnel-Ionenführung und massenspektrometrisches Verfahren

Country Status (4)

Country Link
EP (2) EP1505635B1 (de)
AT (2) ATE495542T1 (de)
DE (2) DE60143861D1 (de)
GB (2) GB0029088D0 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2302661A1 (de) * 2000-11-29 2011-03-30 Micromass UK Limited Massenpektrometer mit einer Ionentunnel-Ionenführung und massenspektrometrisches Verfahren

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8581177B2 (en) 2011-04-11 2013-11-12 Thermo Finnigan Llc High duty cycle ion storage/ion mobility separation mass spectrometer
GB201122178D0 (en) 2011-12-22 2012-02-01 Thermo Fisher Scient Bremen Method of tandem mass spectrometry
GB2497948A (en) 2011-12-22 2013-07-03 Thermo Fisher Scient Bremen Collision cell for tandem mass spectrometry
US9536724B2 (en) * 2012-03-23 2017-01-03 Micromass Uk Limited Ion guide construction method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19523859C2 (de) * 1995-06-30 2000-04-27 Bruker Daltonik Gmbh Vorrichtung für die Reflektion geladener Teilchen
DE19628179C2 (de) * 1996-07-12 1998-04-23 Bruker Franzen Analytik Gmbh Vorrichtung und Verfahren zum Einschuß von Ionen in eine Ionenfalle
GB0028586D0 (en) * 2000-11-23 2001-01-10 Univ Warwick An ion focussing and conveying device
EP1215712B1 (de) * 2000-11-29 2010-09-08 Micromass UK Limited Massenspektrometer und massenspektrometrische Verfahren
GB0029088D0 (en) * 2000-11-29 2001-01-10 Micromass Ltd Ion tunnel
US7067802B1 (en) * 2005-02-11 2006-06-27 Thermo Finnigan Llc Generation of combination of RF and axial DC electric fields in an RF-only multipole

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GERLICH D.: "State-Selected and State-to-State Ion-Molecule Reaction Dynamics. Part 1: Experiment", INTERNET CITATION, XP002339690, Retrieved from the Internet <URL:www.tu-chemnitz.de/physik/ion/publications/ger92.pdf> *
SHAFFER S.A. ET AL: "AN ION FUNNEL INTERFACE FOR IMPROVED ION FOCUSING AND SENSITIVITY USING ELECTROSPRAY IONIZATION MASS SPECTROMETRY", ANALYTICAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US LNKD- DOI:10.1021/AC9802170, vol. 70, no. 19, 1 October 1998 (1998-10-01), pages 4111 - 4119, XP000790313, ISSN: 0003-2700 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2302661A1 (de) * 2000-11-29 2011-03-30 Micromass UK Limited Massenpektrometer mit einer Ionentunnel-Ionenführung und massenspektrometrisches Verfahren

Also Published As

Publication number Publication date
DE60143861D1 (de) 2011-02-24
ATE480865T1 (de) 2010-09-15
GB0109760D0 (en) 2001-06-13
EP1505635A2 (de) 2005-02-09
GB0029088D0 (en) 2001-01-10
EP1505635A3 (de) 2007-03-21
EP2302661A1 (de) 2011-03-30
DE60143015D1 (de) 2010-10-21
ATE495542T1 (de) 2011-01-15

Similar Documents

Publication Publication Date Title
EP1215712B1 (de) Massenspektrometer und massenspektrometrische Verfahren
EP2436026B1 (de) Ionentunnel-ionenführung
US6642514B2 (en) Mass spectrometers and methods of mass spectrometry
US6403952B2 (en) Ion transfer from multipole ion guides into multipole ion guides and ion traps
US6977371B2 (en) Mass spectrometer
US9865442B2 (en) Curved ion guide with non mass to charge ratio dependent confinement
US20020063210A1 (en) Mass spectrometers and methods of mass spectrometry
EP2756520B1 (de) Leistungsverbesserung für nur-hf-quadrupel-massenfilter und lineare quadrupel-ionenfänger mit axialem ausstoss
EP1505635B1 (de) Massenspektrometer und massenspektrometrisches Verfahren
GB2397690A (en) AC tunnelion guide for a mass spectrometer
EP1220291B1 (de) Massenspektrometer und massenspektrometrisches Verfahren
GB2402807A (en) Mass spectrometer
GB2480160A (en) Ion guides comprising axial groupings of radially segmented electrodes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1215712

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GILES, KEVIN

Inventor name: BATEMAN, ROBERT HAROLD

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20070419

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20080312

RIC1 Information provided on ipc code assigned before grant

Ipc: H01J 49/06 20060101AFI20100414BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1215712

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60143861

Country of ref document: DE

Date of ref document: 20110224

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60143861

Country of ref document: DE

Effective date: 20110224

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110423

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110512

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20111128

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60143861

Country of ref document: DE

Effective date: 20111013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191021

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20201021

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60143861

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60143861

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20211128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20211128