EP1494506B1 - High mode microwave resonator for thermal processing - Google Patents
High mode microwave resonator for thermal processing Download PDFInfo
- Publication number
- EP1494506B1 EP1494506B1 EP04007895A EP04007895A EP1494506B1 EP 1494506 B1 EP1494506 B1 EP 1494506B1 EP 04007895 A EP04007895 A EP 04007895A EP 04007895 A EP04007895 A EP 04007895A EP 1494506 B1 EP1494506 B1 EP 1494506B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- microwave
- resonator
- coupling
- section
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000012545 processing Methods 0.000 title claims description 8
- 230000008878 coupling Effects 0.000 claims description 22
- 238000010168 coupling process Methods 0.000 claims description 22
- 238000005859 coupling reaction Methods 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 16
- 229910052782 aluminium Inorganic materials 0.000 abstract description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 3
- 230000005855 radiation Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 18
- 238000009826 distribution Methods 0.000 description 17
- 230000008569 process Effects 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 10
- 230000005672 electromagnetic field Effects 0.000 description 7
- 238000005245 sintering Methods 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 5
- 238000013461 design Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241001135893 Themira Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 210000001061 forehead Anatomy 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000012994 industrial processing Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000009768 microwave sintering Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/6402—Aspects relating to the microwave cavity
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2206/00—Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
- H05B2206/04—Heating using microwaves
- H05B2206/044—Microwave heating devices provided with two or more magnetrons or microwave sources of other kind
Definitions
- the invention relates to a modular microwave resonator and a thermal region of a process line formed therefrom.
- the microwave resonator is dimensioned geometrically such that, due to the coupled-in microwave, starting from the fundamental mode, a sufficient number of modes are formed which enable an overlay in such a way that the intensity effective in the resonator volume becomes sufficiently close to the uniformity required for industrial processing , Choice of frequency, geometry of the applicator, as well as the coupling determine the nature of the overlapping wave field.
- a monomode resonator a sharp, pure geometric mode is excited, which generally has a very inhomogeneous distribution. To allow more modes, the applicator volume must be significantly increased.
- the device consists of a heating chamber, through which the material to be processed is transported.
- the heating chamber has a wall portion which is concavely curved. At this is the coupled microwave reflected and focused on the volume of material to be heated.
- a comparable device shows the WO 90/03714 , There, the heating chamber is used for food heating in order to try to surround the food volume to be heated with a volume in which an electromagnetic field with still tolerable deviation from homogeneity exists, so that a more uniform temperature field is established.
- the heating chamber is widened by a second reflection wall opposite the first reflection wall, with the aim of fulfilling the process volume with a reinforced, uniform field in order to achieve a uniform heating of the object.
- a prismatic, with respect to its longitudinal axis symmetrical cavity with even polygonal cross section is described as a resonator. All surface segments of the resonator are flat.
- the microwave beam is coupled through a coupling opening in one of the two end walls, its beam axis is inclined to the longitudinal axis, in such a way that at the first reflection, a symmetrical beam splitting takes place.
- the theoretical Findings for the field division were confirmed mathematically as well as experimentally in good measure. Uniform processing of several bodies that are too glowing or burning can be carried out with reduced rejects.
- the invention has for its object to enable heating, temperature control and processing of extended sheet materials in the mold for industrial application that, due to extraordinary field homogeneity, by the structural geometry, the type of source and waveguide coupling and tuning frequency and Size of the applicator even sensitive polymer structures can be thermally processed to high quality products with previously unattainable material properties and thus cured.
- the charge should be possible in a stack-like manner, ie by full packing of the applicator, or in the other embodiment in the flow-through method.
- the object is achieved by a high-mode microwave resonator according to the characterizing features of claim 1, in which, in addition to the fundamental mode sufficiently many higher modes can form, in particular.
- the resonator has a prismatic columnar shape with a pentagonal, outwardly curved (convex) cross section.
- the microwave is via Einkoppelö réelleen in one of the five Jacket sides coupled into the resonator.
- These coupling openings are line radiators and lie parallel to the edge of the jacket wall.
- a divergent microwave beam with a beam plane instead of the beam axis, a line beam emerges from each coupling-in opening.
- the beam planes are directed so that the coupled-in microwave line beam bundles fan out in the resonator and superimpose themselves in a predetermined central volume around and along the longitudinal axis of the resonator to an at least largely homogeneous distribution of the electromagnetic field therein.
- the frontal access to the resonator is highlighted. This can be from one end face, it is then loaded from there with process material and the same taken from it. However, the resonator can also be used in the pass if access is available via both end faces. A resonator used in this way will then generally stand on one of the five jacket walls, wherein the jacket wall with the coupling openings can be exposed as required. For example, if the resonator is seated on a rack, this casing wall could be the bottom wall at the same time. If required easy accessibility to the microwave equipment, this shell wall may also be exposed to the side or upwards. But this is ultimately determined by process conditions.
- the entrance into the interior of the resonator is arranged via at least one of the remaining four shell walls except the jacket wall with the coupling openings, preferably via one of these shell wall with coupling openings opposite or both.
- the resonator could then be placed on an end wall and be cabinet accessible. If he is in this way on wheels or a caster frame, he is also still mobile. In which direction, viewed from the resonator feed and removal, the lateral surface with the coupling openings is exposed, as noted above, depends on the other process conditions. An example is the access to a cabinet with hinged door or folding doors with the microwave equipment on the rear wall.
- a different electromagnetic field distribution than that formed here about the central longitudinal axis of the resonator can in principle also be set.
- the decoupled microwave / n reflect on the inner walls of the resonator expanding and not focusing. This is a fundamental prerequisite for a homogeneous field distribution, because focal field peaks, caustics, as in the case of a circular mantle wall, can not occur.
- microwave components / sources ranging from 100 MHz up to the area of construction of 25 GHz standard.
- the household microwave is a known device. It works with a magnetron as a microwave source and generates a high frequency of 2.45 GHz. In ceramic sintering, the thermal processing at this frequency but also at about 24.5 GHz makes sense.
- the coupling property of the process substance plays an important role, which is also still temperature-dependent.
- the diameter of the Resonatorquerites and the length of the resonator from the field calculations and considerations out to set the required degree of field homogeneity in necessary sub-volume is always greater than the wavelength ⁇ of the applied microwave, preferably 2 ⁇ .
- the resonator with semi-hexagonal cross section is constructed in frame construction of aluminum profiles, such as FIG. 2 shows.
- He is a laboratory setup.
- the shell walls are made of aluminum sheet, which is attached to the frame from the inside.
- the two end faces are here perforated sheets, which are pivotable on the bottom frame via a hinge.
- the right coupling device has on its rear forehead, on the rear resonator end wall, the microwave source, a magnetron, sitting with tuning unit (slide sit) for adjustment.
- FIG. 2 This is indicated by the hose feeders and visible rectangular parts.
- the microwave source of the parallel opposite coupling device sits in front of the bottom left corner in the figure accordingly.
- FIG. 1 shows its position in the resonator cross section.
- the resonator cross section is convex pentagonal and can be completed by mirroring at the base edge to a regular hexagon, as in FIG. 1 shown.
- FIG. 1 is on the left in the figure source of the beam path of the coupling-out microwave beam with its point-dashed beam axis, correct beam plane, indicated.
- the left ray representation in the picture reflects twice, on the side wall and left roof wall, the right only at this Roof wall. More leads to confusion and is therefore omitted.
- the technical data are exemplary.
- this resonator plates and band-shaped green bodies were cured in homogeneous or composite form over the action of the coupled microwave depending on the extent in a short time for dimensional stability and optionally for mechanical stability.
- a green sheet of CFRP material 3 mm thick and 20 cm 2, can thus over cross section and area in less than 20 minutes. evenly cured, fuel cell membranes in less than 5 minutes. This is only possible in several hours in a classic autoclave with purely thermal action over the surface of the article.
- FIG. 3 shows the energy density distribution over the central cross section. In the upper half, in the central area, there is a relatively uniformly uniform distribution, which in this central area is characterized by only slight fluctuations. Strong also occur the two immediate Einkoppel Schemee with the respectively connected rectangular waveguide cross section.
- FIG. 4 the distribution is shown perpendicular thereto in the center plane to the base plate along the longitudinal center. Process articles which are exposed in the partial volume of the resonator in which these useful, little fluctuating field conditions exist and are exposed to the microwave are uniformly shaped-solidified in the comparatively short process times. In both planes considered, the largest variation is less than 5%.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Constitution Of High-Frequency Heating (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Drying Of Semiconductors (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
Die Erfindung betrifft einen modularen Mikrowellenresonator und einen daraus gebildeten thermischen Bereich einer Prozessstrasse. Der Mikrowellenresonator ist bezüglich seiner Frequenz geometrisch derartig dimensioniert, dass sich durch die eingekoppelte Mikrowelle, ausgehend von der Grundmode, hinreichend viele Moden ausbilden, die eine Überlagerung in der Art ermöglichen, dass die im Resonatorvolumen wirksame Intensität einem zur industriellen Prozessierung erforderlichen Gleichmass ausreichend nähe kommt. Wahl der Frequenz, Geometrie des Applikators, sowie der Einkopplung determinieren die Art des sich überlagernden Wellenfeldes. Bei einem monomodigen Resonator wird eine scharfe, reine geometrische Mode angeregt, die im allgemeinen eine sehr inhomogene Verteilung aufweist. Um mehr Moden zuzulassen muss das Applikatorvolumen deutlich vergrößert werden. Im Grenzfall sehr großer Abstände besteht der Übergang zur klassischen geometrischen Optik. Wie in
In der
Eine vergleichbare Einrichtung zeigt die
A comparable device shows the
In der
In der
Inhomogene Feldverteilungen führen beim Sintern von Keramiken zu unterschiedlichen Dichten innerhalb einer Charge und zu inhomogenen Verdichtungen in einzelnen Proben, die letztlich mechanische Spannungen hervorrufen, die die Formteile deformieren oder gar zertrümmern. Diese Problematik und die daraus gezogene Erkenntnis, dass eine gleichmäßige Volumenheizung u. a. bei Sinterprozessen von bedeutendem Vorteil und großer Bedeutung bei der thermischen Materialprozessierung sind, werden in dem Aufsatz "
Anlässlich des MRS Spring Meeting in San Francisco, April 11th, 1996 (Symp. Microwave Processing of Materials V) berichteten L. Feher et al. unter dem Titel "The MiRa/THESIS 3D-Code Package for Resonator Design and Modelling of Millimeter-Wave Material Processing" Über die Simulation der Feldverteilung in einem vom IAP in Nizhny Novgorod benutzten Design eines hochmodigen, zylindrischen Resonators mit sphärischem Deckel. Es wird darin gezeigt, dass Resonatoren mit kreiszylindrischer oder sphärischer Geometrie eine durchweg verbesserungsbedürftige Feldverteilungen haben. Aufgrund ihrer Topologie treten Fokussierungen des Feldes im Resonatorinnern zwangsläufig auf, so dass im Vergleich zum Resonatorvolumen nur ein verhältnismäßig kleines Arbeitsvolumen mit einigermaßen homogener Feldverteilung bleibt. Zusätzliche technische Maßnahmen wie Modenrührer und diffuse Flächen (Streuflächen) bringen zwar Verbesserung, die aber für die gewerbliche bzw. industrielle Anwendung mit zu hohem Aufwand verbunden sind.At the MRS Spring Meeting in San Francisco, April 11th, 1996 (Symp. Microwave Processing of Materials V), L. Feher et al. titled "The MiRa / THESIS 3D Code Package for Resonator Design and Modeling of Millimeter-Wave Material Processing" On the simulation of the field distribution in a design of a high-capacity, cylindrical spherical resonator with a spherical cover used by the IAP in Nizhny Novgorod. It is shown therein that resonators with a circular cylindrical or spherical geometry have a field distribution which is in need of improvement. Due to their topology, focusing of the field inevitably occurs in the interior of the resonator, so that only a comparatively small working volume with reasonably homogeneous field distribution remains compared to the resonator volume. Additional technical measures such as fashion stirrers and diffuse surfaces (scattered surfaces) bring about improvement, but they are too costly for commercial or industrial use.
In der
Die bislang vorgestellten, bestehenden technischen Vorrichtungen lösen das Problem durch monomodige oder optische Ansätze, beschränkt in einer endlichen Geometrie, und sind hinsichtlich der technischen Nutzung unter den Anforderungen großflächiger, membranartiger Strukturen und Beladungen in ihren Ausbildungen insbesondere zur Realisierung von linienförmigen Prozessstrassen nicht zweckmäßig oder verwendbar.The previously presented, existing technical devices solve the problem by monomode or optical approaches, limited in a finite geometry, and are in terms of technical use under the requirements of large-scale, membrane-like structures and loads in their training, especially for the realization of linear process lines not useful or usable ,
Der Erfindung liegt die Aufgabe zugrunde, eine Erwärmung, Temperierung und Prozessierung ausgedehnter flächiger Materialien in der Form für die industrielle Anwendung zu ermöglichen, dass, durch außerordentliche Feldhomogenität bedingt, durch die bauliche Geometrie, die Art der Quellen- und Wellenleitereinkopplung sowie der Abstimmung Frequenz und Größe des Applikators selbst sensible polymere Strukturen zu hochqualitativen Produkten mit bisher nicht erreichbaren Materialeigenschaften thermisch prozessiert und damit ausgehärtet werden können. Die Beschickung soll dabei in einer Ausbildung stapelartig, also durch Vollpacken des Applikators, oder in der andern Ausbildung im Durchflussverfahren möglich sein.The invention has for its object to enable heating, temperature control and processing of extended sheet materials in the mold for industrial application that, due to extraordinary field homogeneity, by the structural geometry, the type of source and waveguide coupling and tuning frequency and Size of the applicator even sensitive polymer structures can be thermally processed to high quality products with previously unattainable material properties and thus cured. In this case, the charge should be possible in a stack-like manner, ie by full packing of the applicator, or in the other embodiment in the flow-through method.
Die Aufgabe wird durch einen hochmodigen Mikrowellenresonator gemäss den kennzeichnenden Merkmalen des Anspruchs 1, in dem sich insbesondere neben der Grundmode hinreichend viele höhere Moden ausbilden können, gelöst.The object is achieved by a high-mode microwave resonator according to the characterizing features of
Der Resonator hat prismatisch säulenförmige Gestalt mit pentagonalem, nach außen gewölbtem (konvexem) Querschnitt. Die Mikrowelle wird über Einkoppelöffnungen in einer der fünf Mantelseiten in den Resonator eingekoppelt. Diese Einkoppelöffnungen sind Linienstrahler und liegen parallel zu der Kante der Mantelwand. Dadurch tritt aus jeder Einkoppelöffnung ein divergenter Mikrowellenstrahl mit einer Strahlebene statt Strahlachse, ein Linienstrahlbündel, aus. Die Strahlebenen sind so gerichtet, dass sich die eingekoppelten Mikrowellenlinienstrahlenbündel im Resonator auffächern und sich in einem vorgegebenen zentralen Volumen um und entlang der Längsachse des Resonators zu einer zumindest weitestgehend homogenen Verteilung des elektromagnetischen Feldes darin überlagern.The resonator has a prismatic columnar shape with a pentagonal, outwardly curved (convex) cross section. The microwave is via Einkoppelöffnungen in one of the five Jacket sides coupled into the resonator. These coupling openings are line radiators and lie parallel to the edge of the jacket wall. As a result, a divergent microwave beam with a beam plane instead of the beam axis, a line beam, emerges from each coupling-in opening. The beam planes are directed so that the coupled-in microwave line beam bundles fan out in the resonator and superimpose themselves in a predetermined central volume around and along the longitudinal axis of the resonator to an at least largely homogeneous distribution of the electromagnetic field therein.
In den Unteransprüchen 2 bis 10 werden vorteilhafte und für den Betrieb zweckmäßige Ausgestaltungen des Resonators beschrieben:
- Eine spezielle, symmetrische Querschnittsform des Resonators ist die zur Seitenhalbierenden der Grundseite symmetrische Querschnitt (Anspruch 2), insbesondere wenn die beiden Seitenwände auch noch senkrecht auf der Grundplatte/Rückwand stehen (Anspruch 3). Der letztere Fall insbesondere ergibt sich aus rechnerischen Feldbetrachtungen, Felduntersuchungen und Symmetriebetrachtungen an einem Resonator mit hexagonalem Querschnitt (siehe
DE 196 33.245
- A special, symmetrical cross-sectional shape of the resonator is symmetrical to the Seitenhalbierenden the base side cross-section (claim 2), in particular when the two side walls are still perpendicular to the base plate / rear wall (claim 3). The latter case in particular results from computational field observations, field investigations and symmetry considerations on a resonator with hexagonal cross-section (see
DE 196 33,245
Bezüglich der geforderten Qualität der elektromagnetischen Feldverteilung im Innern des Resonators hat sich experimentell gezeigt, dass der Anbau der zur Einkopplungsvorrichtung gehörigen Mikrowelle an der einen oder andern Stirnseite, und damit bei Betrachtung beider Einkopplungsvorrichtungen gleichartig oder auf unterschiedlicher Stirnseite - im einen oder andern Fall messbare, im allgemeinen jedoch nicht stark ausgeprägte Verbesserungen bringt (Anspruch 5).With regard to the required quality of the electromagnetic field distribution in the interior of the resonator, it has been shown experimentally that the mounting of the microwave belonging to the coupling device is similar on one or the other end side, and thus in the case of both coupling devices or on a different face - in one case or another measurable, but in general not very pronounced improvements brings (claim 5).
Ablagerungen in den Einkoppelöffnungen würden die Auskopplung der Mikrowelle und damit die Feldverteilung im Resonator nachteilig beeinträchtigen. Es ist deshalb sinnvoll und zweckmäßig die Einkoppelöffnungen mikrowellentransparent, umgebungs- und prozessinert mit einem Dielektrikum zu verschließen / abzudecken (Anspruch 6). Das kann beispielsweise einen Teflonfolie sein aber auch sonst eine , eventuell zusätzlich mechanisch belastbare Abdeckung/Lage.Deposits in the coupling openings would adversely affect the decoupling of the microwave and thus the field distribution in the resonator. It is therefore useful and useful to close the coupling openings microwave transparent, ambient and prozessinert with a dielectric / cover (claim 6). This may for example be a Teflon film but also otherwise, possibly additionally mechanically loadable cover / layer.
In Anspruch 7 wird der stirnseitige Zugang zum Resonator hervorgehoben. Das kann von einer Stirnseite aus sein, es wird dann von da aus mit Prozessgut beschickt und dasselbe daraus entnommen. Der Resonator kann aber auch im Durchlauf benutzt werden, wenn über beide Stirnseiten Zugang besteht. Ein derartig benutzter Resonator wird dann im allgemeinen auf einer der fünf Mantelwände stehen, wobei die Mantelwand mit den Einkoppelöffnungen je nach Bedarf exponiert werden kann. Sitzt der Resonator auf einem Gestell beispielsweise, könnte diese Mantelwand gleichzeitig Bodenwand sein. Bei geforderter leichter Zugänglichkeit zu den mikrowellentechnischen Einrichtungen, kann diese Mantelwand auch zur Seite oder nach oben exponiert sein. Das aber wird schließlich durch Prozessgegebenheiten bestimmt.In claim 7, the frontal access to the resonator is highlighted. This can be from one end face, it is then loaded from there with process material and the same taken from it. However, the resonator can also be used in the pass if access is available via both end faces. A resonator used in this way will then generally stand on one of the five jacket walls, wherein the jacket wall with the coupling openings can be exposed as required. For example, if the resonator is seated on a rack, this casing wall could be the bottom wall at the same time. If required easy accessibility to the microwave equipment, this shell wall may also be exposed to the side or upwards. But this is ultimately determined by process conditions.
In Anspruch 8 ist beschrieben, dass der Zugang ins Resonatorinnere über mindestens eine der übrigen vier Mantelwände außer der Mantelwand mit den Einkoppelöffnungen eingerichtet ist, vorzugsweise über eine dieser Mantelwand mit Einkoppelöffnungen gegenüberliegende oder beide. Bei dieser Forderung könnte dann der Resonator auf eine Stirnwand gestellt und schrankartig zugänglich sein. Steht er in dieser Art auf Rollen oder einem Rollengestell, ist er darüber hinaus noch mobil. In welche Richtung, von der Resonatorbeschickung und - entnahme aus gesehen, die Mantelfläche mit den Einkoppelöffnungen exponiert wird, ist wie oben angemerkt, von den weiteren Prozessgegebenheiten abhängig. Beispielhaft ist der Zugang zu einem Schrank mit Klapptür oder Klapptüren mit den mikrowellentechnischen Anbauten auf der Rückwand.In claim 8 it is described that the entrance into the interior of the resonator is arranged via at least one of the remaining four shell walls except the jacket wall with the coupling openings, preferably via one of these shell wall with coupling openings opposite or both. In this case, the resonator could then be placed on an end wall and be cabinet accessible. If he is in this way on wheels or a caster frame, he is also still mobile. In which direction, viewed from the resonator feed and removal, the lateral surface with the coupling openings is exposed, as noted above, depends on the other process conditions. An example is the access to a cabinet with hinged door or folding doors with the microwave equipment on the rear wall.
Neben den beiden entlang der Mantelwandkante sitzenden Einkoppelvorrichtungen besteht nach Anspruch 9 eine weitere, gleichartig dazwischenliegende, über die zusätzlich elektromagnetisch eingekoppelt werden kann, um die Feldhomogenität im Nutzvolumen innerhalb des Resonators hinsichtlich der Verteilungscharakteristik fein zu manipulieren. Das Hauptfeld wird über die beiden äußeren Einkopplungen eingestellt.In addition to the two along the mantle wall edge fitting Einkoppelvorrichtungen exists according to claim 9 another, similar intermediate, can be coupled via the additional electromagnetic to finely manipulate the field homogeneity in the useful volume within the resonator with respect to the distribution characteristic. The main field is set via the two outer couplings.
Über die Zahl der Einkoppelvorrichtungen kann grundsätzlich auch eine andere elektromagnetische Feldverteilungen als die hier um die zentrale Längsachse des Resonators ausgebildete eingestellt werden. Die ausgekoppelten Mikrowelle/n reflektieren an den Innenwänden des Resonators aufweitend und nicht fokussierend. Das ist für eine homogene Feldverteilung eine grundlegende Voraussetzung, weil fokale Feldüberhöhungen, Kaustiken, wie bei runder Mantelwand nicht auftreten können.By way of the number of coupling devices, a different electromagnetic field distribution than that formed here about the central longitudinal axis of the resonator can in principle also be set. The decoupled microwave / n reflect on the inner walls of the resonator expanding and not focusing. This is a fundamental prerequisite for a homogeneous field distribution, because focal field peaks, caustics, as in the case of a circular mantle wall, can not occur.
Schließlich ergibt sich aus mikrowellentheoretischen Betrachtungen, dass bei einfachen Strukturen eine Welligkeit mit frequenzberücksichtigender Dimension für den Grad der Gleichmäßigkeit des elektromagnetischen Feldes in Teilvolumen des Resonators vorteilhaft ist. Experimentell bestätigte sich das für den Resonator, wenn die Welligkeit w sich in dem Band.
Orientiert an dem Prozess, der gefahren, und dem Material, das prozessiert werden soll, sowie dem monetären Aufwand, der für eine solche mikrowellentechnologische Einrichtung aufgewandt werden muss, wird man zum Bau auf Mikrowellenkomponenten/quellen zugreifen, die ab 100 MHz bis in den Bereich von 25 GHz Standard sind. Für die Speisenerwärmung beispielsweise ist die Haushaltsmikrowelle eine bekannte Einrichtung. Sie arbeitet mit einem Magnetron als Mikrowellenquelle und erzeugt eine Hochfrequenz von 2,45 GHz. Bei der Keramiksinterung ist die thermische Prozessierung bei dieser Frequenz aber auch bei etwa 24,5 GHz sinnvoll. Hier spielt die Ankopplungseigenschaft der Prozesssubstanz eine gewichtige Rolle, die zudem noch temperaturabhängig ist. Aus der Homogenitätsforderung an das elektromagnetische Feld in mindestens einem Teilvolumen des Resonatorinnern und der Prozesskörperdimensionen ergibt sich die Frequenzwahl und Geometrie des Resonators, wobei der Durchmesser des Resonatorquerschnitts und die Länge des Resonators aus den Feldrechnungen und -betrachtungen heraus zur Einstellung des geforderten Grades an Feldhomogenität im notwendigen Teilvolumen stets größer als die Wellenlänge λ der angewandten Mikrowelle, vorzugsweise 2λ ist.Based on the process being driven and the material to be processed, as well as the monetary outlay that must be expended for such a microwave equipment, one will access microwave components / sources ranging from 100 MHz up to the area of construction of 25 GHz standard. For the food warming example, the household microwave is a known device. It works with a magnetron as a microwave source and generates a high frequency of 2.45 GHz. In ceramic sintering, the thermal processing at this frequency but also at about 24.5 GHz makes sense. Here, the coupling property of the process substance plays an important role, which is also still temperature-dependent. From the homogeneity requirement to the electromagnetic field in at least a partial volume of the resonator interior and the process body dimensions results in the frequency selection and geometry of the resonator, the diameter of the Resonatorquerschnitts and the length of the resonator from the field calculations and considerations out to set the required degree of field homogeneity in necessary sub-volume is always greater than the wavelength λ of the applied microwave, preferably 2λ.
Das Durchführungsbeispiel ist ein Resonator in der geometrischen Form gemäss Anspruch 4 mit pentagonalem Querschnitt, speziell, da aus einem regelmäßig hexagonalen Querschnitt durch Halbierung hervorgehend, semihexagonalem Querschnitt. Diese spezielle, beispielhafte Geometrie wird im folgenden noch näher erläutert. Die Zeichnung dazu besteht aus den
-
die Erzeugung des Resonatorquerschnitts,Figur 1 -
der Resonator mit semihexagonalem Querschnitt perspektivisch,Figur 2 -
Figur 3 die Energiedichteverteilung über dem Querschnitt,Figur 4 die mittige Energiedichteverteilung über der Resonatorlänge.
-
FIG. 1 the generation of the resonator cross-section, -
FIG. 2 the resonator with semi-hexagonal cross section in perspective, -
FIG. 3 the energy density distribution over the cross section,FIG. 4 the central energy density distribution over the resonator length.
Der Resonator mit semihexagonalem Querschnitt ist in Rahmenbauweise aus Aluminiumprofilen aufgebaut, wie
In
Die Betriebesdaten und die Geometrie des Resonators mit semihexagonalem Querschnitt sind:
Die Betriebsfrequenz ist 2,45 GHz und damit eine Wellenlänge λ im Vakuum von etwa 12 cm. Als Mikrowellenquelle wird pro Einkoppelvorrichtung ein Magnetron verwendet. Die beiden Magnetrone sind pulsbar mit steuerbarem Puls-Breiten-Verhältnis, so dass kontinuierlich eine Mikrowellenleistung von null bis zum Nennmaximum eingestellt werden kann. Das Resonator hat die zehnfache Vakuumwellenlänge, also etwa 1,2 m, die Seitenwand hat eine Innenhöhe von etwa 30 cm und die beiden Dachmantelwände sind jeweils 60 cm breit.
- The operating frequency is 2.45 GHz and thus a wavelength λ in a vacuum of about 12 cm. The microwave source used per coupling device is a magnetron. The two magnetrons are pulsable with controllable pulse width ratio, so that a microwave power can be continuously set from zero to the nominal maximum. The resonator has ten times the vacuum wavelength, ie about 1.2 m, the side wall has an internal height of about 30 cm and the two roof walls are each 60 cm wide.
Die technischen Daten sind beispielhaft. In diesem Resonator wurden und werden Platten und bandförmige Grünkörper in homogener oder verbundtechnische Form über die Einwirkung der eingekoppelten Mikrowelle je nach Ausdehnung in kurzer Zeit zur Formstabilität und gegebenenfalls zur mechanischen Stabilität ausgehärtet. Eine Grünplatte aus CFK-Material, 3 mm dick und 20 cm2 kann so über Querschnitt und Fläche in weniger als 20 Minuten. gleichmäßig ausgehärtet werden, Brennstoffzellmembranen in weniger als 5 Minuten. Das gelingt in einem klassischen Autoklaven bei rein thermischer Einwirkung über die Gegenstandsoberfläche nur in mehreren Stunden.The technical data are exemplary. In this resonator plates and band-shaped green bodies were cured in homogeneous or composite form over the action of the coupled microwave depending on the extent in a short time for dimensional stability and optionally for mechanical stability. A green sheet of CFRP material, 3 mm thick and 20 cm 2, can thus over cross section and area in less than 20 minutes. evenly cured, fuel cell membranes in less than 5 minutes. This is only possible in several hours in a classic autoclave with purely thermal action over the surface of the article.
Die ausgezeichneten Prozesszeiten werden anhand der
In
In beiden betrachteten Ebenen ist die größte Schwankung kleiner als 5%.The excellent process times are based on the
In
In both planes considered, the largest variation is less than 5%.
Claims (10)
- High mode microwave resonator for thermally processing materials, wherein the resonator has a prismatic columnar shape with a pentagonal cross section curved outwards, characterized in thata) at least two identically linear coupling-in devices for a microwave are situated parallel to the two outside edges of one of the five outside walls in the same, via which coupling devices the microwave is coupled-in into the resonator in each case in the form of a line beam bundle,b) one microwave source each is used per coupling device andc) the two microwave sources are pulsable with controllable pulse rate/width ratio such that a microwave output is adjustable in a continuous manner from zero up to the rated maximum andd) the coupled-in microwaves overlap in the resonator.
- Microwave resonator according to Claim 1, characterized in that the cross section of the resonator is mirror-symmetrical in relation to the median of the baseline of the cross section.
- Microwave resonator according to Claim 2, characterized in that the two side walls to be placed on the bottom surface of the resonator stand vertically on said surface.
- Microwave resonator according to Claim 3, characterized in that the cross section of the resonator is the symmetrical half of a hexagonal cross section - semi-hexagonal.
- Microwave resonator according to Claim 4, characterized in that the respective microwave source of the two outer coupling-in devices is attached to the identical or to the oppositely situated end face of the resonator.
- Microwave resonator according to Claim 5, characterized in that the coupling-in openings for the microwave are closed/covered by a microwave-transparent, environment-inert and process-inert dielectric.
- Microwave resonator according to Claim 6, characterized in that said microwave is accessible via at least one of its two end walls.
- Microwave resonator according to Claim 6, characterized in that said microwave resonator is accessibly via at least one of the two outside walls, which are situated opposite the outside wall with the coupling-in openings.
- Microwave resonator according to Claims 7 and 8, characterized in that between the two outer coupling-in openings there is another parallel one, via which a microwave of adjustable power is also coupled for adapting to the field homogeneity.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10329412 | 2003-07-01 | ||
DE10329412A DE10329412B4 (en) | 2003-07-01 | 2003-07-01 | Highly modern microwave resonator for thermal processing |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1494506A2 EP1494506A2 (en) | 2005-01-05 |
EP1494506A3 EP1494506A3 (en) | 2008-01-23 |
EP1494506B1 true EP1494506B1 (en) | 2010-07-14 |
Family
ID=33426791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04007895A Expired - Lifetime EP1494506B1 (en) | 2003-07-01 | 2004-04-01 | High mode microwave resonator for thermal processing |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1494506B1 (en) |
AT (1) | ATE474437T1 (en) |
DE (2) | DE10329412B4 (en) |
ES (1) | ES2348391T3 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021126661B4 (en) | 2021-10-14 | 2024-03-14 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Motor vehicle bumper |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4631380A (en) * | 1983-08-23 | 1986-12-23 | Durac Limited | System for the microwave treatment of materials |
NZ220550A (en) * | 1986-06-05 | 1990-10-26 | Nearctic Research Centre Austr | Microwave drier cavity: configuration maximises energy in drying zone while minimising energy reflected back to source |
GB8822703D0 (en) * | 1988-09-28 | 1988-11-02 | Core Consulting Group | Microwave-powered heating chamber |
JPH0754744B2 (en) * | 1990-09-26 | 1995-06-07 | 財団法人ファインセラミックスセンター | Microwave heating device and microwave heating method |
DE4313806A1 (en) * | 1993-04-27 | 1994-11-03 | Rene Salina | Device for heating materials in a heating chamber which can be irradiated with microwaves, and method for producing ceramic products, in which the raw product (unfinished product) is dried by means of microwaves |
US5532462A (en) * | 1994-04-29 | 1996-07-02 | Communications & Power Industries | Method of and apparatus for heating a reaction vessel with microwave energy |
AU716305B2 (en) * | 1996-05-17 | 2000-02-24 | Technology Finance Corporation (Proprietary) Limited | Dielectric heating device |
GB2315654B (en) * | 1996-07-25 | 2000-08-09 | Ea Tech Ltd | Radio-frequency and microwave-assisted processing of materials |
DE19633245C1 (en) * | 1996-08-17 | 1997-11-27 | Karlsruhe Forschzent | High mode microwave resonator for high temperature treatment of materials |
SE517608C2 (en) * | 1999-03-22 | 2002-06-25 | Leif Goesta Zettergren | Procedure for heat treatment |
DE20006527U1 (en) * | 2000-04-08 | 2000-09-28 | Prozeßautomation Kohler GmbH, 35510 Butzbach | Slot waveguide |
AUPR346001A0 (en) * | 2001-03-01 | 2001-03-29 | BKW Investments Pty Ltd | An apparatus for heating a food product and a heating device and feed assembly therefor |
-
2003
- 2003-07-01 DE DE10329412A patent/DE10329412B4/en not_active Expired - Fee Related
-
2004
- 2004-04-01 AT AT04007895T patent/ATE474437T1/en active
- 2004-04-01 DE DE502004011386T patent/DE502004011386D1/en not_active Expired - Lifetime
- 2004-04-01 EP EP04007895A patent/EP1494506B1/en not_active Expired - Lifetime
- 2004-04-01 ES ES04007895T patent/ES2348391T3/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP1494506A2 (en) | 2005-01-05 |
ES2348391T3 (en) | 2010-12-03 |
EP1494506A3 (en) | 2008-01-23 |
DE502004011386D1 (en) | 2010-08-26 |
ATE474437T1 (en) | 2010-07-15 |
DE10329412B4 (en) | 2005-09-22 |
DE10329412A1 (en) | 2005-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1060355B1 (en) | Method and device for microwave sintering of nuclear fuel | |
DE69431394T2 (en) | Device for coupling microwave energy during the processing of sheet material | |
DE69020332T2 (en) | TREATMENT BY HIGH FREQUENCY OF A MATERIAL BY A SELECTED SEQUENCE OF FASHIONS. | |
DE69713775T2 (en) | PROCESSING MATERIALS BY RADIO FREQUENCY AND MICROWAVES | |
DE69304383T2 (en) | Microwave emitter and plasma reactor using this device | |
EP0950341A1 (en) | Baking oven for the high-temperature treatment of materials with a low dielectric loss factor | |
DE10329411B4 (en) | Microwave resonator, a process line constructed modularly from such a microwave resonator, a method for operating and by this method thermally processed objects / workpieces by means of a microwave | |
DE102018102509A1 (en) | Microsynthesis of high throughput multi-component materials | |
EP0823190B1 (en) | Method and device for the heat treatment of materials in a microwave oven and use of this method and this device | |
DE10128038C1 (en) | Microwave through-flow heater, for domestic, medical or industrial applications, has dimensions of microwave applicator matched to wavelength of microwaves | |
DE19633245C1 (en) | High mode microwave resonator for high temperature treatment of materials | |
DE69609671T2 (en) | Rectangular microwave applicator | |
EP1494506B1 (en) | High mode microwave resonator for thermal processing | |
DE69204722T2 (en) | Device and method for the thermal treatment of ceramic composite bodies by means of ultra-high frequency. | |
DE4100462C2 (en) | ||
DE2819762A1 (en) | RESONANT MICROWAVE APPLICATOR | |
DE102011111884B3 (en) | Device for generating thermodynamic cold plasma by microwaves, has resonance chambers distributed in evacuated, electrically conductive anode, where plasma is generated by microwaves under standard atmospheric conditions | |
EP0457948B1 (en) | Microwaveapparatus | |
DE102020113578A1 (en) | Microwave treatment facility | |
DE102007055548A1 (en) | Apparatus for introducing heating microwaves into reaction chamber, for effecting high pressure reactions, includes generator, aerial and aerial holder sealed by shrink-fitted ring | |
DE102008001637B4 (en) | Microwave oven for the thermal treatment of goods | |
Galek | Modeling of Microwave Absorption Mechanisms in Metallic Powders | |
EP0780496A1 (en) | Apparatus for growing zeolite crystals from an aqueous solution | |
DE102010015768A1 (en) | Microwave reactor for microwave-assisted catalytic conversion of a liquid substance or gaseous medium, comprises an inner space enclosure, housing with walls made of reflective material for microwaves, and a hollow cylinder | |
DE3730086A1 (en) | Microwave-plasma CVD appts. - with multi-element microwave inlet window having cavity resonance structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
17P | Request for examination filed |
Effective date: 20080208 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20090731 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: KARLSRUHER INSTITUT FUER TECHNOLOGIE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LINK, GUIDO, DR. Inventor name: FEHER, LAMBERT, DR. |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 502004011386 Country of ref document: DE Date of ref document: 20100826 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20100714 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Effective date: 20101123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101014 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101115 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101015 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 |
|
26N | No opposition filed |
Effective date: 20110415 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004011386 Country of ref document: DE Effective date: 20110415 |
|
BERE | Be: lapsed |
Owner name: KARLSRUHER INSTITUT FUR TECHNOLOGIE Effective date: 20110430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 474437 Country of ref document: AT Kind code of ref document: T Effective date: 20110401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20150427 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20150428 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160401 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160402 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20181204 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200421 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20200423 Year of fee payment: 17 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210401 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210430 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230418 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 502004011386 Country of ref document: DE |