EP1494506B1 - High mode microwave resonator for thermal processing - Google Patents

High mode microwave resonator for thermal processing Download PDF

Info

Publication number
EP1494506B1
EP1494506B1 EP04007895A EP04007895A EP1494506B1 EP 1494506 B1 EP1494506 B1 EP 1494506B1 EP 04007895 A EP04007895 A EP 04007895A EP 04007895 A EP04007895 A EP 04007895A EP 1494506 B1 EP1494506 B1 EP 1494506B1
Authority
EP
European Patent Office
Prior art keywords
microwave
resonator
coupling
section
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04007895A
Other languages
German (de)
French (fr)
Other versions
EP1494506A2 (en
EP1494506A3 (en
Inventor
Lambert Dr. Feher
Guido Dr. Link
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karlsruher Institut fuer Technologie KIT
Original Assignee
Karlsruher Institut fuer Technologie KIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karlsruher Institut fuer Technologie KIT filed Critical Karlsruher Institut fuer Technologie KIT
Publication of EP1494506A2 publication Critical patent/EP1494506A2/en
Publication of EP1494506A3 publication Critical patent/EP1494506A3/en
Application granted granted Critical
Publication of EP1494506B1 publication Critical patent/EP1494506B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6402Aspects relating to the microwave cavity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/044Microwave heating devices provided with two or more magnetrons or microwave sources of other kind

Definitions

  • the invention relates to a modular microwave resonator and a thermal region of a process line formed therefrom.
  • the microwave resonator is dimensioned geometrically such that, due to the coupled-in microwave, starting from the fundamental mode, a sufficient number of modes are formed which enable an overlay in such a way that the intensity effective in the resonator volume becomes sufficiently close to the uniformity required for industrial processing , Choice of frequency, geometry of the applicator, as well as the coupling determine the nature of the overlapping wave field.
  • a monomode resonator a sharp, pure geometric mode is excited, which generally has a very inhomogeneous distribution. To allow more modes, the applicator volume must be significantly increased.
  • the device consists of a heating chamber, through which the material to be processed is transported.
  • the heating chamber has a wall portion which is concavely curved. At this is the coupled microwave reflected and focused on the volume of material to be heated.
  • a comparable device shows the WO 90/03714 , There, the heating chamber is used for food heating in order to try to surround the food volume to be heated with a volume in which an electromagnetic field with still tolerable deviation from homogeneity exists, so that a more uniform temperature field is established.
  • the heating chamber is widened by a second reflection wall opposite the first reflection wall, with the aim of fulfilling the process volume with a reinforced, uniform field in order to achieve a uniform heating of the object.
  • a prismatic, with respect to its longitudinal axis symmetrical cavity with even polygonal cross section is described as a resonator. All surface segments of the resonator are flat.
  • the microwave beam is coupled through a coupling opening in one of the two end walls, its beam axis is inclined to the longitudinal axis, in such a way that at the first reflection, a symmetrical beam splitting takes place.
  • the theoretical Findings for the field division were confirmed mathematically as well as experimentally in good measure. Uniform processing of several bodies that are too glowing or burning can be carried out with reduced rejects.
  • the invention has for its object to enable heating, temperature control and processing of extended sheet materials in the mold for industrial application that, due to extraordinary field homogeneity, by the structural geometry, the type of source and waveguide coupling and tuning frequency and Size of the applicator even sensitive polymer structures can be thermally processed to high quality products with previously unattainable material properties and thus cured.
  • the charge should be possible in a stack-like manner, ie by full packing of the applicator, or in the other embodiment in the flow-through method.
  • the object is achieved by a high-mode microwave resonator according to the characterizing features of claim 1, in which, in addition to the fundamental mode sufficiently many higher modes can form, in particular.
  • the resonator has a prismatic columnar shape with a pentagonal, outwardly curved (convex) cross section.
  • the microwave is via Einkoppelö réelleen in one of the five Jacket sides coupled into the resonator.
  • These coupling openings are line radiators and lie parallel to the edge of the jacket wall.
  • a divergent microwave beam with a beam plane instead of the beam axis, a line beam emerges from each coupling-in opening.
  • the beam planes are directed so that the coupled-in microwave line beam bundles fan out in the resonator and superimpose themselves in a predetermined central volume around and along the longitudinal axis of the resonator to an at least largely homogeneous distribution of the electromagnetic field therein.
  • the frontal access to the resonator is highlighted. This can be from one end face, it is then loaded from there with process material and the same taken from it. However, the resonator can also be used in the pass if access is available via both end faces. A resonator used in this way will then generally stand on one of the five jacket walls, wherein the jacket wall with the coupling openings can be exposed as required. For example, if the resonator is seated on a rack, this casing wall could be the bottom wall at the same time. If required easy accessibility to the microwave equipment, this shell wall may also be exposed to the side or upwards. But this is ultimately determined by process conditions.
  • the entrance into the interior of the resonator is arranged via at least one of the remaining four shell walls except the jacket wall with the coupling openings, preferably via one of these shell wall with coupling openings opposite or both.
  • the resonator could then be placed on an end wall and be cabinet accessible. If he is in this way on wheels or a caster frame, he is also still mobile. In which direction, viewed from the resonator feed and removal, the lateral surface with the coupling openings is exposed, as noted above, depends on the other process conditions. An example is the access to a cabinet with hinged door or folding doors with the microwave equipment on the rear wall.
  • a different electromagnetic field distribution than that formed here about the central longitudinal axis of the resonator can in principle also be set.
  • the decoupled microwave / n reflect on the inner walls of the resonator expanding and not focusing. This is a fundamental prerequisite for a homogeneous field distribution, because focal field peaks, caustics, as in the case of a circular mantle wall, can not occur.
  • microwave components / sources ranging from 100 MHz up to the area of construction of 25 GHz standard.
  • the household microwave is a known device. It works with a magnetron as a microwave source and generates a high frequency of 2.45 GHz. In ceramic sintering, the thermal processing at this frequency but also at about 24.5 GHz makes sense.
  • the coupling property of the process substance plays an important role, which is also still temperature-dependent.
  • the diameter of the Resonatorquerites and the length of the resonator from the field calculations and considerations out to set the required degree of field homogeneity in necessary sub-volume is always greater than the wavelength ⁇ of the applied microwave, preferably 2 ⁇ .
  • the resonator with semi-hexagonal cross section is constructed in frame construction of aluminum profiles, such as FIG. 2 shows.
  • He is a laboratory setup.
  • the shell walls are made of aluminum sheet, which is attached to the frame from the inside.
  • the two end faces are here perforated sheets, which are pivotable on the bottom frame via a hinge.
  • the right coupling device has on its rear forehead, on the rear resonator end wall, the microwave source, a magnetron, sitting with tuning unit (slide sit) for adjustment.
  • FIG. 2 This is indicated by the hose feeders and visible rectangular parts.
  • the microwave source of the parallel opposite coupling device sits in front of the bottom left corner in the figure accordingly.
  • FIG. 1 shows its position in the resonator cross section.
  • the resonator cross section is convex pentagonal and can be completed by mirroring at the base edge to a regular hexagon, as in FIG. 1 shown.
  • FIG. 1 is on the left in the figure source of the beam path of the coupling-out microwave beam with its point-dashed beam axis, correct beam plane, indicated.
  • the left ray representation in the picture reflects twice, on the side wall and left roof wall, the right only at this Roof wall. More leads to confusion and is therefore omitted.
  • the technical data are exemplary.
  • this resonator plates and band-shaped green bodies were cured in homogeneous or composite form over the action of the coupled microwave depending on the extent in a short time for dimensional stability and optionally for mechanical stability.
  • a green sheet of CFRP material 3 mm thick and 20 cm 2, can thus over cross section and area in less than 20 minutes. evenly cured, fuel cell membranes in less than 5 minutes. This is only possible in several hours in a classic autoclave with purely thermal action over the surface of the article.
  • FIG. 3 shows the energy density distribution over the central cross section. In the upper half, in the central area, there is a relatively uniformly uniform distribution, which in this central area is characterized by only slight fluctuations. Strong also occur the two immediate Einkoppel Schemee with the respectively connected rectangular waveguide cross section.
  • FIG. 4 the distribution is shown perpendicular thereto in the center plane to the base plate along the longitudinal center. Process articles which are exposed in the partial volume of the resonator in which these useful, little fluctuating field conditions exist and are exposed to the microwave are uniformly shaped-solidified in the comparatively short process times. In both planes considered, the largest variation is less than 5%.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The aluminum chamber has a wide floor section with elongated parallel resonance unit along each side and two microwave generators whose radiation is reflected off the other four sides of the chamber to provide a uniform pattern. A perforated door allows access.

Description

Die Erfindung betrifft einen modularen Mikrowellenresonator und einen daraus gebildeten thermischen Bereich einer Prozessstrasse. Der Mikrowellenresonator ist bezüglich seiner Frequenz geometrisch derartig dimensioniert, dass sich durch die eingekoppelte Mikrowelle, ausgehend von der Grundmode, hinreichend viele Moden ausbilden, die eine Überlagerung in der Art ermöglichen, dass die im Resonatorvolumen wirksame Intensität einem zur industriellen Prozessierung erforderlichen Gleichmass ausreichend nähe kommt. Wahl der Frequenz, Geometrie des Applikators, sowie der Einkopplung determinieren die Art des sich überlagernden Wellenfeldes. Bei einem monomodigen Resonator wird eine scharfe, reine geometrische Mode angeregt, die im allgemeinen eine sehr inhomogene Verteilung aufweist. Um mehr Moden zuzulassen muss das Applikatorvolumen deutlich vergrößert werden. Im Grenzfall sehr großer Abstände besteht der Übergang zur klassischen geometrischen Optik. Wie in Feher, L., et al.: Sintering of Advanced Ceramics Using a 30-GHz, 10-kW, CW Industrial Gyrotron, IEEE Transactions on Plasma Science, Vol. 27, No. 2, April 1999, pp.547-554 gezeigt wurde, führt die Überlagerung von vielen Moden nicht zwangsläufig zu einer Gleichverteilung oder Homogenisierung, sondern zu fokalen Überlagerungen. Der vorliegende Applikator hat charakteristische Abmessungen von mindestens L > 2λ für jede räumliche Dimension und bleibt in seiner Maximalausdehnung unterhalb des klassischen optischen Grenzfalles ( Feher et al.: Theoretical aspects for microwave ray tracing calculations in screened structures, Proc. Latsis Symposium 1995 on Computational Electromagnetics, ETH Zürich, Switzerland, 1995, pp. 236-241 ). In diesem Bereich zwischen reiner modalen Anregung und klassischer Optik ist eine optimierte Feldformung durch die beschriebenen technischen Voraussetzungen Geometrie, Einkopplungsgestaltung in erforderlicher Weise möglich und zu lösen. In einem solchen mehr-/vielmodigen Mikrowellenresonator werden elektrisch sehr schlecht leitende Materialien im weiten Sinne, entsprechend der Prozess- und Nutzungsanforderung erwärmt. Im Gegensatz zu dielektrischen, mikrowellenpermeablen Materialien (z.B. Alumniumoxidkeramiken, Porzellan, Glasfasern), für die die Beziehung n = ε ,

Figure imgb0001
gilt, sind bei diesen Materialien die Abhängigkeiten der elektrischen Leitfähigkeit nach n 2 = ε r 2 + σ 2 ω 2 ε 0 2
Figure imgb0002
zu berücksichtigen. Zu denken ist einerseits an polymer-gebundene Graphitplatten (Brennstoffzellmembranen), an Kohlefaserverstärkte Verbundwerkstoffe, die aus einem forminstabilen Grünzustand heraus in einen ausgehärteten, formstabilen Zustand gebracht werden sollen, durch den sie für die weitere technische Verwendung ausgezeichnete Eigenschaften aufweisen. Oder aber das Brennen/Sintern von keramischen Grünkörpern. Andrerseits aber auch weniger mit hohen Temperaturen ist an die Erwärmung von Speisen zu denken. Bei all diesen Prozessvorhaben ist gemeinsam, dass in dem Resonatorvolumen ein vorgebbares Teilvolumen bestehen muss, in dem bei einkoppelnder Mikrowelle ein vorgegeben höherer Grad an elektromagnetischer Feldhomogenität besteht, damit darin kontrolliert gleichmäßig auf die Prozesssubstanz eingewirkt werden kann.The invention relates to a modular microwave resonator and a thermal region of a process line formed therefrom. With regard to its frequency, the microwave resonator is dimensioned geometrically such that, due to the coupled-in microwave, starting from the fundamental mode, a sufficient number of modes are formed which enable an overlay in such a way that the intensity effective in the resonator volume becomes sufficiently close to the uniformity required for industrial processing , Choice of frequency, geometry of the applicator, as well as the coupling determine the nature of the overlapping wave field. In a monomode resonator, a sharp, pure geometric mode is excited, which generally has a very inhomogeneous distribution. To allow more modes, the applicator volume must be significantly increased. In the limit of very large distances, the transition to the classical geometric appearance exists. As in Feher, L., et al .: Sintering of Advanced Ceramics Using a 30GHz, 10kW, CW Industrial Gyrotron, IEEE Transactions on Plasma Science, Vol. 2, April 1999, pp.547-554 has been shown, the superposition of many modes does not necessarily lead to an even distribution or homogenization, but to focal superimpositions. The present applicator has characteristic dimensions of at least L> 2λ for each spatial dimension and remains in its maximum extent below the classical optical limit ( Feher et al .: Theoretical Aspects of Microwave Ray Tracing Calculations in Screened Structures, Proc. Latsi's Symposium 1995 on Computational Electromagnetics, ETH Zurich, Switzerland, 1995, pp. 236-241 ). In this area between pure modal excitation and classical optics is an optimized field shaping by the described technical requirements geometry, coupling design in required manner possible and to solve. In such a multi / multi-mode microwave resonator electrically very poorly conductive materials are heated in the broad sense, according to the process and use requirement. In contrast to dielectric, microwave-permeable materials (eg alumina ceramics, porcelain, glass fibers), for which the relationship n ~ = ε .
Figure imgb0001
applies, with these materials, the dependencies of the electrical conductivity after n ~ 2 = ε r 2 + σ 2 ω 2 ε 0 2
Figure imgb0002
to take into account. On the one hand, one thinks of polymer-bound graphite plates (fuel cell membranes), of carbon-fiber-reinforced composite materials which are to be brought from a dimensionally unstable green state into a hardened, dimensionally stable state, by which they have excellent properties for further technical use. Or the burning / sintering of ceramic green bodies. On the other hand, but less with high temperatures is to think of the heating of food. Common to all these process projects is that a prescribable subvolume must exist in the resonator volume in which a predetermined higher degree of electromagnetic field homogeneity exists when the microwave is coupled in so that the process substance can be controlled uniformly in a controlled manner.

In der DE 43 13 806 wird eine Vorrichtung zum Erhitzen von Materialien durch Mikrowellen beschrieben. Die Vorrichtung besteht aus einer Heizkammer, durch die hindurch das zu prozessierende Material transportiert wird. Die Heizkammer hat ein Wandteil, das konkav gekrümmt ist. An dieser wird die einge koppelte Mikrowelle reflektiert und auf das zu erwärmende Materialvolumen fokussiert.
Eine vergleichbare Einrichtung zeigt die WO 90/03714 . Dort dient die Heizkammer zur Speisenerwärmung, um zu versuchen das zu erwärmende Speisenvolumen mit einem Volumen, in dem ein elektromagnetisches Feld mit noch tolerabler Homogenitäts-abweichung besteht, zu umgeben, damit ein gleichmäßigeres Temperaturfeld zustande kommt.
In the DE 43 13 806 An apparatus for heating materials by microwaves is described. The device consists of a heating chamber, through which the material to be processed is transported. The heating chamber has a wall portion which is concavely curved. At this is the coupled microwave reflected and focused on the volume of material to be heated.
A comparable device shows the WO 90/03714 , There, the heating chamber is used for food heating in order to try to surround the food volume to be heated with a volume in which an electromagnetic field with still tolerable deviation from homogeneity exists, so that a more uniform temperature field is established.

In der JP 4-137391 ist die Heizkammer um eine der ersten Reflexionswand gegenüber liegende zweite Reflexionswand erweitert, womit angestrebt wird das Prozessvolumen mit einem verstärkten, gleichmäßigen Feld zu erfüllen, um damit eine gleichmäßige Aufheizung des Gegenstands zu erreichen.In the JP 4-137391 the heating chamber is widened by a second reflection wall opposite the first reflection wall, with the aim of fulfilling the process volume with a reinforced, uniform field in order to achieve a uniform heating of the object.

In der US 5,532,462 wird ein zylindrisches Reaktionsgefäß beschrieben, dessen Inneres mit Mikrowellenenergie geheizt wird. Hierzu wird die Multimod-Mikrowelle in das Gefäß derart eingekoppelt, dass sie an der Innenwand absorbiert und reflektiert wird, und zwar derart, dass die Absorption und Reflexion helikal fortschreitend erfolgen. Das Kesselinnere soll so gleichmäßig geheizt werden.In the US 5,532,462 a cylindrical reaction vessel is described, the interior of which is heated by microwave energy. For this purpose, the multimode microwave is coupled into the vessel in such a way that it is absorbed and reflected on the inner wall, in such a way that the absorption and reflection occur helically progressing. The interior of the boiler should be heated so evenly.

Inhomogene Feldverteilungen führen beim Sintern von Keramiken zu unterschiedlichen Dichten innerhalb einer Charge und zu inhomogenen Verdichtungen in einzelnen Proben, die letztlich mechanische Spannungen hervorrufen, die die Formteile deformieren oder gar zertrümmern. Diese Problematik und die daraus gezogene Erkenntnis, dass eine gleichmäßige Volumenheizung u. a. bei Sinterprozessen von bedeutendem Vorteil und großer Bedeutung bei der thermischen Materialprozessierung sind, werden in dem Aufsatz " Microwave Sintering of Zirconia-Toughened Alumina Composites" von H. D. Kimrey et al. abgehandelt (Mat. Res. Soc. Symp. Proc. Vol. 189, 1991 Material Research Society, Seiten 243 bis 255 ). Es werden zwei hochmodige, zylindrische Mikrowellen" beschrieben, der eine bei 2.45 GHz und der andere bei 28 GHz. Erfolgreich war der Sinterprozess nur bei der hohen Frequenz.Inhomogeneous field distributions lead to different densities in the sintering of ceramics within a batch and to inhomogeneous densities in individual samples, which ultimately cause mechanical stresses that deform or even shatter the shaped parts. This problem and the resulting finding that a uniform volume heating, inter alia, in sintering processes of significant advantage and great importance in the thermal material processing, are in the article " Microwave Sintering of Zirconia-Toughened Alumina Composites "by HD Kimrey et al. (Mat. Res. Soc. Symp. Proc. Vol. 189, 1991 Material Research Society, Pages 243 to 255 ). Two high-speed cylindrical microwaves are described, one at 2.45 GHz and the other at 28 GHz, and the sintering process was only successful at the high frequency.

Anlässlich des MRS Spring Meeting in San Francisco, April 11th, 1996 (Symp. Microwave Processing of Materials V) berichteten L. Feher et al. unter dem Titel "The MiRa/THESIS 3D-Code Package for Resonator Design and Modelling of Millimeter-Wave Material Processing" Über die Simulation der Feldverteilung in einem vom IAP in Nizhny Novgorod benutzten Design eines hochmodigen, zylindrischen Resonators mit sphärischem Deckel. Es wird darin gezeigt, dass Resonatoren mit kreiszylindrischer oder sphärischer Geometrie eine durchweg verbesserungsbedürftige Feldverteilungen haben. Aufgrund ihrer Topologie treten Fokussierungen des Feldes im Resonatorinnern zwangsläufig auf, so dass im Vergleich zum Resonatorvolumen nur ein verhältnismäßig kleines Arbeitsvolumen mit einigermaßen homogener Feldverteilung bleibt. Zusätzliche technische Maßnahmen wie Modenrührer und diffuse Flächen (Streuflächen) bringen zwar Verbesserung, die aber für die gewerbliche bzw. industrielle Anwendung mit zu hohem Aufwand verbunden sind.At the MRS Spring Meeting in San Francisco, April 11th, 1996 (Symp. Microwave Processing of Materials V), L. Feher et al. titled "The MiRa / THESIS 3D Code Package for Resonator Design and Modeling of Millimeter-Wave Material Processing" On the simulation of the field distribution in a design of a high-capacity, cylindrical spherical resonator with a spherical cover used by the IAP in Nizhny Novgorod. It is shown therein that resonators with a circular cylindrical or spherical geometry have a field distribution which is in need of improvement. Due to their topology, focusing of the field inevitably occurs in the interior of the resonator, so that only a comparatively small working volume with reasonably homogeneous field distribution remains compared to the resonator volume. Additional technical measures such as fashion stirrers and diffuse surfaces (scattered surfaces) bring about improvement, but they are too costly for commercial or industrial use.

In der DE 196 33 245 wird ein prismatischer, bezüglich seiner Längsachse symmetrischer Hohlraum mit geradzahlig polygonalem Querschnitt als Resonator beschrieben. Alle Flächensegmente des Resonators sind eben flach. Dadurch bleibt der eingekoppelte Mikrowellenstrahl bei Reflexionen an der Resonatorwand stets divergent und wird nicht wie bei kreiszylindrischen und sphärischen Geometrien immer wieder fokussiert. Der Mikrowellenstrahl wird durch eine Einkoppelöffnung in einer der beiden Stirnwände eingekoppelt, seine Strahlachse ist zu der Längsachse geneigt, und zwar so, dass bei der ersten Reflexion eine symmetrischer Strahlaufteilung erfolgt. Die theoretischen Befunde für die Feldaufteilung wurden rechnerisch als auch experimentell in gutem Masse bestätigt. Eine gleichmäßige Verarbeitung mehrerer zu glühender oder zu brennender Körper kann mit verringertem Ausschuss durchgeführt werden.In the DE 196 33 245 a prismatic, with respect to its longitudinal axis symmetrical cavity with even polygonal cross section is described as a resonator. All surface segments of the resonator are flat. As a result, the coupled-in microwave beam always remains divergent in the case of reflections on the resonator wall and is not repeatedly focused, as in the case of circular-cylindrical and spherical geometries. The microwave beam is coupled through a coupling opening in one of the two end walls, its beam axis is inclined to the longitudinal axis, in such a way that at the first reflection, a symmetrical beam splitting takes place. The theoretical Findings for the field division were confirmed mathematically as well as experimentally in good measure. Uniform processing of several bodies that are too glowing or burning can be carried out with reduced rejects.

Die bislang vorgestellten, bestehenden technischen Vorrichtungen lösen das Problem durch monomodige oder optische Ansätze, beschränkt in einer endlichen Geometrie, und sind hinsichtlich der technischen Nutzung unter den Anforderungen großflächiger, membranartiger Strukturen und Beladungen in ihren Ausbildungen insbesondere zur Realisierung von linienförmigen Prozessstrassen nicht zweckmäßig oder verwendbar.The previously presented, existing technical devices solve the problem by monomode or optical approaches, limited in a finite geometry, and are in terms of technical use under the requirements of large-scale, membrane-like structures and loads in their training, especially for the realization of linear process lines not useful or usable ,

Der Erfindung liegt die Aufgabe zugrunde, eine Erwärmung, Temperierung und Prozessierung ausgedehnter flächiger Materialien in der Form für die industrielle Anwendung zu ermöglichen, dass, durch außerordentliche Feldhomogenität bedingt, durch die bauliche Geometrie, die Art der Quellen- und Wellenleitereinkopplung sowie der Abstimmung Frequenz und Größe des Applikators selbst sensible polymere Strukturen zu hochqualitativen Produkten mit bisher nicht erreichbaren Materialeigenschaften thermisch prozessiert und damit ausgehärtet werden können. Die Beschickung soll dabei in einer Ausbildung stapelartig, also durch Vollpacken des Applikators, oder in der andern Ausbildung im Durchflussverfahren möglich sein.The invention has for its object to enable heating, temperature control and processing of extended sheet materials in the mold for industrial application that, due to extraordinary field homogeneity, by the structural geometry, the type of source and waveguide coupling and tuning frequency and Size of the applicator even sensitive polymer structures can be thermally processed to high quality products with previously unattainable material properties and thus cured. In this case, the charge should be possible in a stack-like manner, ie by full packing of the applicator, or in the other embodiment in the flow-through method.

Die Aufgabe wird durch einen hochmodigen Mikrowellenresonator gemäss den kennzeichnenden Merkmalen des Anspruchs 1, in dem sich insbesondere neben der Grundmode hinreichend viele höhere Moden ausbilden können, gelöst.The object is achieved by a high-mode microwave resonator according to the characterizing features of claim 1, in which, in addition to the fundamental mode sufficiently many higher modes can form, in particular.

Der Resonator hat prismatisch säulenförmige Gestalt mit pentagonalem, nach außen gewölbtem (konvexem) Querschnitt. Die Mikrowelle wird über Einkoppelöffnungen in einer der fünf Mantelseiten in den Resonator eingekoppelt. Diese Einkoppelöffnungen sind Linienstrahler und liegen parallel zu der Kante der Mantelwand. Dadurch tritt aus jeder Einkoppelöffnung ein divergenter Mikrowellenstrahl mit einer Strahlebene statt Strahlachse, ein Linienstrahlbündel, aus. Die Strahlebenen sind so gerichtet, dass sich die eingekoppelten Mikrowellenlinienstrahlenbündel im Resonator auffächern und sich in einem vorgegebenen zentralen Volumen um und entlang der Längsachse des Resonators zu einer zumindest weitestgehend homogenen Verteilung des elektromagnetischen Feldes darin überlagern.The resonator has a prismatic columnar shape with a pentagonal, outwardly curved (convex) cross section. The microwave is via Einkoppelöffnungen in one of the five Jacket sides coupled into the resonator. These coupling openings are line radiators and lie parallel to the edge of the jacket wall. As a result, a divergent microwave beam with a beam plane instead of the beam axis, a line beam, emerges from each coupling-in opening. The beam planes are directed so that the coupled-in microwave line beam bundles fan out in the resonator and superimpose themselves in a predetermined central volume around and along the longitudinal axis of the resonator to an at least largely homogeneous distribution of the electromagnetic field therein.

In den Unteransprüchen 2 bis 10 werden vorteilhafte und für den Betrieb zweckmäßige Ausgestaltungen des Resonators beschrieben:

  • Eine spezielle, symmetrische Querschnittsform des Resonators ist die zur Seitenhalbierenden der Grundseite symmetrische Querschnitt (Anspruch 2), insbesondere wenn die beiden Seitenwände auch noch senkrecht auf der Grundplatte/Rückwand stehen (Anspruch 3). Der letztere Fall insbesondere ergibt sich aus rechnerischen Feldbetrachtungen, Felduntersuchungen und Symmetriebetrachtungen an einem Resonator mit hexagonalem Querschnitt (siehe DE 196 33.245 ). Aus diesen Untersuchungen und den Ableitungen aus Symmetriegründen darin wird dieser spezielle Querschnitt des Resonators gemäss Anspruch 4 als semihexagonal bezeichnet, weil er sich durch den mittigen Schnitt durch die jeweilige Längsmitte zweier paralleler und einander senkrecht gegenüberliegender Wände des Mantels eines Resonators mit hexagonalem Querschnitts ergibt.
In the dependent claims 2 to 10 advantageous and suitable for the operation of the resonator embodiments are described:
  • A special, symmetrical cross-sectional shape of the resonator is symmetrical to the Seitenhalbierenden the base side cross-section (claim 2), in particular when the two side walls are still perpendicular to the base plate / rear wall (claim 3). The latter case in particular results from computational field observations, field investigations and symmetry considerations on a resonator with hexagonal cross-section (see DE 196 33,245 ). From these investigations and the derivations for reasons of symmetry therein, this particular cross-section of the resonator according to claim 4 is referred to as semi-hexagonal, because it results through the central section through the respective longitudinal center of two parallel and mutually perpendicular walls of the shell of a resonator with hexagonal cross-section.

Bezüglich der geforderten Qualität der elektromagnetischen Feldverteilung im Innern des Resonators hat sich experimentell gezeigt, dass der Anbau der zur Einkopplungsvorrichtung gehörigen Mikrowelle an der einen oder andern Stirnseite, und damit bei Betrachtung beider Einkopplungsvorrichtungen gleichartig oder auf unterschiedlicher Stirnseite - im einen oder andern Fall messbare, im allgemeinen jedoch nicht stark ausgeprägte Verbesserungen bringt (Anspruch 5).With regard to the required quality of the electromagnetic field distribution in the interior of the resonator, it has been shown experimentally that the mounting of the microwave belonging to the coupling device is similar on one or the other end side, and thus in the case of both coupling devices or on a different face - in one case or another measurable, but in general not very pronounced improvements brings (claim 5).

Ablagerungen in den Einkoppelöffnungen würden die Auskopplung der Mikrowelle und damit die Feldverteilung im Resonator nachteilig beeinträchtigen. Es ist deshalb sinnvoll und zweckmäßig die Einkoppelöffnungen mikrowellentransparent, umgebungs- und prozessinert mit einem Dielektrikum zu verschließen / abzudecken (Anspruch 6). Das kann beispielsweise einen Teflonfolie sein aber auch sonst eine , eventuell zusätzlich mechanisch belastbare Abdeckung/Lage.Deposits in the coupling openings would adversely affect the decoupling of the microwave and thus the field distribution in the resonator. It is therefore useful and useful to close the coupling openings microwave transparent, ambient and prozessinert with a dielectric / cover (claim 6). This may for example be a Teflon film but also otherwise, possibly additionally mechanically loadable cover / layer.

In Anspruch 7 wird der stirnseitige Zugang zum Resonator hervorgehoben. Das kann von einer Stirnseite aus sein, es wird dann von da aus mit Prozessgut beschickt und dasselbe daraus entnommen. Der Resonator kann aber auch im Durchlauf benutzt werden, wenn über beide Stirnseiten Zugang besteht. Ein derartig benutzter Resonator wird dann im allgemeinen auf einer der fünf Mantelwände stehen, wobei die Mantelwand mit den Einkoppelöffnungen je nach Bedarf exponiert werden kann. Sitzt der Resonator auf einem Gestell beispielsweise, könnte diese Mantelwand gleichzeitig Bodenwand sein. Bei geforderter leichter Zugänglichkeit zu den mikrowellentechnischen Einrichtungen, kann diese Mantelwand auch zur Seite oder nach oben exponiert sein. Das aber wird schließlich durch Prozessgegebenheiten bestimmt.In claim 7, the frontal access to the resonator is highlighted. This can be from one end face, it is then loaded from there with process material and the same taken from it. However, the resonator can also be used in the pass if access is available via both end faces. A resonator used in this way will then generally stand on one of the five jacket walls, wherein the jacket wall with the coupling openings can be exposed as required. For example, if the resonator is seated on a rack, this casing wall could be the bottom wall at the same time. If required easy accessibility to the microwave equipment, this shell wall may also be exposed to the side or upwards. But this is ultimately determined by process conditions.

In Anspruch 8 ist beschrieben, dass der Zugang ins Resonatorinnere über mindestens eine der übrigen vier Mantelwände außer der Mantelwand mit den Einkoppelöffnungen eingerichtet ist, vorzugsweise über eine dieser Mantelwand mit Einkoppelöffnungen gegenüberliegende oder beide. Bei dieser Forderung könnte dann der Resonator auf eine Stirnwand gestellt und schrankartig zugänglich sein. Steht er in dieser Art auf Rollen oder einem Rollengestell, ist er darüber hinaus noch mobil. In welche Richtung, von der Resonatorbeschickung und - entnahme aus gesehen, die Mantelfläche mit den Einkoppelöffnungen exponiert wird, ist wie oben angemerkt, von den weiteren Prozessgegebenheiten abhängig. Beispielhaft ist der Zugang zu einem Schrank mit Klapptür oder Klapptüren mit den mikrowellentechnischen Anbauten auf der Rückwand.In claim 8 it is described that the entrance into the interior of the resonator is arranged via at least one of the remaining four shell walls except the jacket wall with the coupling openings, preferably via one of these shell wall with coupling openings opposite or both. In this case, the resonator could then be placed on an end wall and be cabinet accessible. If he is in this way on wheels or a caster frame, he is also still mobile. In which direction, viewed from the resonator feed and removal, the lateral surface with the coupling openings is exposed, as noted above, depends on the other process conditions. An example is the access to a cabinet with hinged door or folding doors with the microwave equipment on the rear wall.

Neben den beiden entlang der Mantelwandkante sitzenden Einkoppelvorrichtungen besteht nach Anspruch 9 eine weitere, gleichartig dazwischenliegende, über die zusätzlich elektromagnetisch eingekoppelt werden kann, um die Feldhomogenität im Nutzvolumen innerhalb des Resonators hinsichtlich der Verteilungscharakteristik fein zu manipulieren. Das Hauptfeld wird über die beiden äußeren Einkopplungen eingestellt.In addition to the two along the mantle wall edge fitting Einkoppelvorrichtungen exists according to claim 9 another, similar intermediate, can be coupled via the additional electromagnetic to finely manipulate the field homogeneity in the useful volume within the resonator with respect to the distribution characteristic. The main field is set via the two outer couplings.

Über die Zahl der Einkoppelvorrichtungen kann grundsätzlich auch eine andere elektromagnetische Feldverteilungen als die hier um die zentrale Längsachse des Resonators ausgebildete eingestellt werden. Die ausgekoppelten Mikrowelle/n reflektieren an den Innenwänden des Resonators aufweitend und nicht fokussierend. Das ist für eine homogene Feldverteilung eine grundlegende Voraussetzung, weil fokale Feldüberhöhungen, Kaustiken, wie bei runder Mantelwand nicht auftreten können.By way of the number of coupling devices, a different electromagnetic field distribution than that formed here about the central longitudinal axis of the resonator can in principle also be set. The decoupled microwave / n reflect on the inner walls of the resonator expanding and not focusing. This is a fundamental prerequisite for a homogeneous field distribution, because focal field peaks, caustics, as in the case of a circular mantle wall, can not occur.

Schließlich ergibt sich aus mikrowellentheoretischen Betrachtungen, dass bei einfachen Strukturen eine Welligkeit mit frequenzberücksichtigender Dimension für den Grad der Gleichmäßigkeit des elektromagnetischen Feldes in Teilvolumen des Resonators vorteilhaft ist. Experimentell bestätigte sich das für den Resonator, wenn die Welligkeit w sich in dem Band. λ / 16 < w < λ / 2

Figure imgb0003
bewegt (Anspruch 10).Finally, it results from microwave theoretical considerations that in simple structures a ripple with frequency-taking dimension is advantageous for the degree of uniformity of the electromagnetic field in the partial volume of the resonator. Experimentally, this was confirmed for the resonator when the ripple w is in the band. λ / 16 < w < λ / 2
Figure imgb0003
moved (claim 10).

Orientiert an dem Prozess, der gefahren, und dem Material, das prozessiert werden soll, sowie dem monetären Aufwand, der für eine solche mikrowellentechnologische Einrichtung aufgewandt werden muss, wird man zum Bau auf Mikrowellenkomponenten/quellen zugreifen, die ab 100 MHz bis in den Bereich von 25 GHz Standard sind. Für die Speisenerwärmung beispielsweise ist die Haushaltsmikrowelle eine bekannte Einrichtung. Sie arbeitet mit einem Magnetron als Mikrowellenquelle und erzeugt eine Hochfrequenz von 2,45 GHz. Bei der Keramiksinterung ist die thermische Prozessierung bei dieser Frequenz aber auch bei etwa 24,5 GHz sinnvoll. Hier spielt die Ankopplungseigenschaft der Prozesssubstanz eine gewichtige Rolle, die zudem noch temperaturabhängig ist. Aus der Homogenitätsforderung an das elektromagnetische Feld in mindestens einem Teilvolumen des Resonatorinnern und der Prozesskörperdimensionen ergibt sich die Frequenzwahl und Geometrie des Resonators, wobei der Durchmesser des Resonatorquerschnitts und die Länge des Resonators aus den Feldrechnungen und -betrachtungen heraus zur Einstellung des geforderten Grades an Feldhomogenität im notwendigen Teilvolumen stets größer als die Wellenlänge λ der angewandten Mikrowelle, vorzugsweise 2λ ist.Based on the process being driven and the material to be processed, as well as the monetary outlay that must be expended for such a microwave equipment, one will access microwave components / sources ranging from 100 MHz up to the area of construction of 25 GHz standard. For the food warming example, the household microwave is a known device. It works with a magnetron as a microwave source and generates a high frequency of 2.45 GHz. In ceramic sintering, the thermal processing at this frequency but also at about 24.5 GHz makes sense. Here, the coupling property of the process substance plays an important role, which is also still temperature-dependent. From the homogeneity requirement to the electromagnetic field in at least a partial volume of the resonator interior and the process body dimensions results in the frequency selection and geometry of the resonator, the diameter of the Resonatorquerschnitts and the length of the resonator from the field calculations and considerations out to set the required degree of field homogeneity in necessary sub-volume is always greater than the wavelength λ of the applied microwave, preferably 2λ.

Das Durchführungsbeispiel ist ein Resonator in der geometrischen Form gemäss Anspruch 4 mit pentagonalem Querschnitt, speziell, da aus einem regelmäßig hexagonalen Querschnitt durch Halbierung hervorgehend, semihexagonalem Querschnitt. Diese spezielle, beispielhafte Geometrie wird im folgenden noch näher erläutert. Die Zeichnung dazu besteht aus den Figuren 1 bis 4:

  • Figur 1 die Erzeugung des Resonatorquerschnitts,
  • Figur 2 der Resonator mit semihexagonalem Querschnitt perspektivisch,
  • Figur 3 die Energiedichteverteilung über dem Querschnitt,Figur 4 die mittige Energiedichteverteilung über der Resonatorlänge.
The implementation example is a resonator in the geometric shape according to claim 4 with pentagonal cross-section, especially, as from a regular hexagonal cross section by halving out, semi-hexagonal cross-section. This special, exemplary geometry will be explained in more detail below. The drawing to it consists of the FIGS. 1 to 4 :
  • FIG. 1 the generation of the resonator cross-section,
  • FIG. 2 the resonator with semi-hexagonal cross section in perspective,
  • FIG. 3 the energy density distribution over the cross section, FIG. 4 the central energy density distribution over the resonator length.

Der Resonator mit semihexagonalem Querschnitt ist in Rahmenbauweise aus Aluminiumprofilen aufgebaut, wie Figur 2 zeigt. Er ist ein Laboraufbau. Die Mantelwände bestehen aus Aluminiumblech, das von innen an den Rahmen befestigt ist. Die beiden Stirnseiten sind hier perforierte Bleche, die am Bodenrahmen über ein Scharnier schwenkbar sind. Entlang der beiden Mantelkanten der Bodenwand sitzen die beiden Längseinkopplungen, siehe Figur 1. Die rechte Einkoppeleinrichtung hat an ihrer hinteren Stirn, an der hinteren Resonatorstirnwand die Mikrowellenquelle, ein Magnetron, mit Abstimmeinheit (Schieber sitzen) zum Abgleich sitzen. In Figur 2 deutet sich das durch die Schlauchzuführungen und sichtbaren Rechteckteile an. Die Mikrowellenquelle der parallel gegenüberliegenden Einkoppelvorrichtung sitzt vorne an der in der Figur linken unteren Ecke entsprechend. Der Aufbau ist notwendigerweise hochfrequenzdicht, wie an den Stirnkanten durch das anliegende, gewebeartige Metallband ersichtlich. In der Bodenwand liegt innen eine Teflonplatte aus, die den gesamten Boden abdeckt und die beiden band-/linienförmigen Einkoppelöffnungen entlang der jeweiligen Mantelwandkante verdeckt. Figur 1 zeigt ihre Lage im Resonatorquerschnitt. Der Resonatorquerschnitt ist konvex pentagonal und lässt durch Spiegelung an der Grundkante zu einem regelmäßigen Hexagon vervollständigen, wie in Figur 1 dargestellt.The resonator with semi-hexagonal cross section is constructed in frame construction of aluminum profiles, such as FIG. 2 shows. He is a laboratory setup. The shell walls are made of aluminum sheet, which is attached to the frame from the inside. The two end faces are here perforated sheets, which are pivotable on the bottom frame via a hinge. Along the two lateral edges of the bottom wall are the two longitudinal couplings, see FIG. 1 , The right coupling device has on its rear forehead, on the rear resonator end wall, the microwave source, a magnetron, sitting with tuning unit (slide sit) for adjustment. In FIG. 2 This is indicated by the hose feeders and visible rectangular parts. The microwave source of the parallel opposite coupling device sits in front of the bottom left corner in the figure accordingly. The structure is necessarily high frequency-tight, as seen at the front edges by the fitting, fabric-like metal band. In the bottom wall lies inside a Teflon plate, which covers the entire floor and covers the two band / linear coupling openings along the respective outer wall edge. FIG. 1 shows its position in the resonator cross section. The resonator cross section is convex pentagonal and can be completed by mirroring at the base edge to a regular hexagon, as in FIG. 1 shown.

In Figur 1 ist an der in der Figur linken Quelle der Strahlengang des auskoppelnden Mikrowellenstrahls mit seiner punktgestrichelten Strahlachse, richtiger Strahlebene, angedeutet. Die im Bild linke Strahlrepräsentierung reflektiert zweimal, an der Seitenwand und linken Dachwand, die rechte nur an dieser Dachwand. Mehr führe zur Unübersichtlichkeit und ist deshalb unterlassen.In FIG. 1 is on the left in the figure source of the beam path of the coupling-out microwave beam with its point-dashed beam axis, correct beam plane, indicated. The left ray representation in the picture reflects twice, on the side wall and left roof wall, the right only at this Roof wall. More leads to confusion and is therefore omitted.

Die Betriebesdaten und die Geometrie des Resonators mit semihexagonalem Querschnitt sind:

  • Die Betriebsfrequenz ist 2,45 GHz und damit eine Wellenlänge λ im Vakuum von etwa 12 cm. Als Mikrowellenquelle wird pro Einkoppelvorrichtung ein Magnetron verwendet. Die beiden Magnetrone sind pulsbar mit steuerbarem Puls-Breiten-Verhältnis, so dass kontinuierlich eine Mikrowellenleistung von null bis zum Nennmaximum eingestellt werden kann. Das Resonator hat die zehnfache Vakuumwellenlänge, also etwa 1,2 m, die Seitenwand hat eine Innenhöhe von etwa 30 cm und die beiden Dachmantelwände sind jeweils 60 cm breit.
The operating data and geometry of the semi-hexagonal section resonator are:
  • The operating frequency is 2.45 GHz and thus a wavelength λ in a vacuum of about 12 cm. The microwave source used per coupling device is a magnetron. The two magnetrons are pulsable with controllable pulse width ratio, so that a microwave power can be continuously set from zero to the nominal maximum. The resonator has ten times the vacuum wavelength, ie about 1.2 m, the side wall has an internal height of about 30 cm and the two roof walls are each 60 cm wide.

Die technischen Daten sind beispielhaft. In diesem Resonator wurden und werden Platten und bandförmige Grünkörper in homogener oder verbundtechnische Form über die Einwirkung der eingekoppelten Mikrowelle je nach Ausdehnung in kurzer Zeit zur Formstabilität und gegebenenfalls zur mechanischen Stabilität ausgehärtet. Eine Grünplatte aus CFK-Material, 3 mm dick und 20 cm2 kann so über Querschnitt und Fläche in weniger als 20 Minuten. gleichmäßig ausgehärtet werden, Brennstoffzellmembranen in weniger als 5 Minuten. Das gelingt in einem klassischen Autoklaven bei rein thermischer Einwirkung über die Gegenstandsoberfläche nur in mehreren Stunden.The technical data are exemplary. In this resonator plates and band-shaped green bodies were cured in homogeneous or composite form over the action of the coupled microwave depending on the extent in a short time for dimensional stability and optionally for mechanical stability. A green sheet of CFRP material, 3 mm thick and 20 cm 2, can thus over cross section and area in less than 20 minutes. evenly cured, fuel cell membranes in less than 5 minutes. This is only possible in several hours in a classic autoclave with purely thermal action over the surface of the article.

Die ausgezeichneten Prozesszeiten werden anhand der Figuren 3 und 4 mit den dargestellten Feldverteilungen erklärt. Figur 3 zeigt die Energiedichteverteilung über den mittigen Querschnitt. hervortritt in der oberen Hälfte im zentralen Bereich ein verhältnismäßig gleichmäßig gleichdunkle Verteilung, die in diesem zentralen Bereich von nur geringen Schwankungen bekleidet ist. Stark treten auch die beiden unmittelbaren Einkoppelbereiche mit dem jeweils angeschlossenen Rechteckhohlleiterquerschnitt hervor.
In Figur 4 ist die Verteilung senkrecht dazu in der Mittenebene zur Grundplatte entlang der Längsmitte dargestellt. Prozessgegenstände, die in dem Teilvolumen des Resonators, in dem diese brauchbaren, wenig schwankenden Feldverhältnisse bestehen, exponiert und der Mikrowelle ausgesetzt werden, werden in den vergleichbar kurzen Prozesszeiten gleichmäßig formverfestigt.
In beiden betrachteten Ebenen ist die größte Schwankung kleiner als 5%.
The excellent process times are based on the Figures 3 and 4 explained with the illustrated field distributions. FIG. 3 shows the energy density distribution over the central cross section. In the upper half, in the central area, there is a relatively uniformly uniform distribution, which in this central area is characterized by only slight fluctuations. Strong also occur the two immediate Einkoppelbereiche with the respectively connected rectangular waveguide cross section.
In FIG. 4 the distribution is shown perpendicular thereto in the center plane to the base plate along the longitudinal center. Process articles which are exposed in the partial volume of the resonator in which these useful, little fluctuating field conditions exist and are exposed to the microwave are uniformly shaped-solidified in the comparatively short process times.
In both planes considered, the largest variation is less than 5%.

Claims (10)

  1. High mode microwave resonator for thermally processing materials, wherein the resonator has a prismatic columnar shape with a pentagonal cross section curved outwards, characterized in that
    a) at least two identically linear coupling-in devices for a microwave are situated parallel to the two outside edges of one of the five outside walls in the same, via which coupling devices the microwave is coupled-in into the resonator in each case in the form of a line beam bundle,
    b) one microwave source each is used per coupling device and
    c) the two microwave sources are pulsable with controllable pulse rate/width ratio such that a microwave output is adjustable in a continuous manner from zero up to the rated maximum and
    d) the coupled-in microwaves overlap in the resonator.
  2. Microwave resonator according to Claim 1, characterized in that the cross section of the resonator is mirror-symmetrical in relation to the median of the baseline of the cross section.
  3. Microwave resonator according to Claim 2, characterized in that the two side walls to be placed on the bottom surface of the resonator stand vertically on said surface.
  4. Microwave resonator according to Claim 3, characterized in that the cross section of the resonator is the symmetrical half of a hexagonal cross section - semi-hexagonal.
  5. Microwave resonator according to Claim 4, characterized in that the respective microwave source of the two outer coupling-in devices is attached to the identical or to the oppositely situated end face of the resonator.
  6. Microwave resonator according to Claim 5, characterized in that the coupling-in openings for the microwave are closed/covered by a microwave-transparent, environment-inert and process-inert dielectric.
  7. Microwave resonator according to Claim 6, characterized in that said microwave is accessible via at least one of its two end walls.
  8. Microwave resonator according to Claim 6, characterized in that said microwave resonator is accessibly via at least one of the two outside walls, which are situated opposite the outside wall with the coupling-in openings.
  9. Microwave resonator according to Claims 7 and 8, characterized in that between the two outer coupling-in openings there is another parallel one, via which a microwave of adjustable power is also coupled for adapting to the field homogeneity.
  10. Microwave resonator according to Claim 9, characterized in that the inside walls of the resonator have an undulation w within the range λ / 16 < w < λ / 2
    Figure imgb0005
EP04007895A 2003-07-01 2004-04-01 High mode microwave resonator for thermal processing Expired - Lifetime EP1494506B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10329412 2003-07-01
DE10329412A DE10329412B4 (en) 2003-07-01 2003-07-01 Highly modern microwave resonator for thermal processing

Publications (3)

Publication Number Publication Date
EP1494506A2 EP1494506A2 (en) 2005-01-05
EP1494506A3 EP1494506A3 (en) 2008-01-23
EP1494506B1 true EP1494506B1 (en) 2010-07-14

Family

ID=33426791

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04007895A Expired - Lifetime EP1494506B1 (en) 2003-07-01 2004-04-01 High mode microwave resonator for thermal processing

Country Status (4)

Country Link
EP (1) EP1494506B1 (en)
AT (1) ATE474437T1 (en)
DE (2) DE10329412B4 (en)
ES (1) ES2348391T3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021126661B4 (en) 2021-10-14 2024-03-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Motor vehicle bumper

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631380A (en) * 1983-08-23 1986-12-23 Durac Limited System for the microwave treatment of materials
NZ220550A (en) * 1986-06-05 1990-10-26 Nearctic Research Centre Austr Microwave drier cavity: configuration maximises energy in drying zone while minimising energy reflected back to source
GB8822703D0 (en) * 1988-09-28 1988-11-02 Core Consulting Group Microwave-powered heating chamber
JPH0754744B2 (en) * 1990-09-26 1995-06-07 財団法人ファインセラミックスセンター Microwave heating device and microwave heating method
DE4313806A1 (en) * 1993-04-27 1994-11-03 Rene Salina Device for heating materials in a heating chamber which can be irradiated with microwaves, and method for producing ceramic products, in which the raw product (unfinished product) is dried by means of microwaves
US5532462A (en) * 1994-04-29 1996-07-02 Communications & Power Industries Method of and apparatus for heating a reaction vessel with microwave energy
AU716305B2 (en) * 1996-05-17 2000-02-24 Technology Finance Corporation (Proprietary) Limited Dielectric heating device
GB2315654B (en) * 1996-07-25 2000-08-09 Ea Tech Ltd Radio-frequency and microwave-assisted processing of materials
DE19633245C1 (en) * 1996-08-17 1997-11-27 Karlsruhe Forschzent High mode microwave resonator for high temperature treatment of materials
SE517608C2 (en) * 1999-03-22 2002-06-25 Leif Goesta Zettergren Procedure for heat treatment
DE20006527U1 (en) * 2000-04-08 2000-09-28 Prozeßautomation Kohler GmbH, 35510 Butzbach Slot waveguide
AUPR346001A0 (en) * 2001-03-01 2001-03-29 BKW Investments Pty Ltd An apparatus for heating a food product and a heating device and feed assembly therefor

Also Published As

Publication number Publication date
EP1494506A2 (en) 2005-01-05
ES2348391T3 (en) 2010-12-03
EP1494506A3 (en) 2008-01-23
DE502004011386D1 (en) 2010-08-26
ATE474437T1 (en) 2010-07-15
DE10329412B4 (en) 2005-09-22
DE10329412A1 (en) 2005-02-03

Similar Documents

Publication Publication Date Title
EP1060355B1 (en) Method and device for microwave sintering of nuclear fuel
DE69431394T2 (en) Device for coupling microwave energy during the processing of sheet material
DE69020332T2 (en) TREATMENT BY HIGH FREQUENCY OF A MATERIAL BY A SELECTED SEQUENCE OF FASHIONS.
DE69713775T2 (en) PROCESSING MATERIALS BY RADIO FREQUENCY AND MICROWAVES
DE69304383T2 (en) Microwave emitter and plasma reactor using this device
EP0950341A1 (en) Baking oven for the high-temperature treatment of materials with a low dielectric loss factor
DE10329411B4 (en) Microwave resonator, a process line constructed modularly from such a microwave resonator, a method for operating and by this method thermally processed objects / workpieces by means of a microwave
DE102018102509A1 (en) Microsynthesis of high throughput multi-component materials
EP0823190B1 (en) Method and device for the heat treatment of materials in a microwave oven and use of this method and this device
DE10128038C1 (en) Microwave through-flow heater, for domestic, medical or industrial applications, has dimensions of microwave applicator matched to wavelength of microwaves
DE19633245C1 (en) High mode microwave resonator for high temperature treatment of materials
DE69609671T2 (en) Rectangular microwave applicator
EP1494506B1 (en) High mode microwave resonator for thermal processing
DE69204722T2 (en) Device and method for the thermal treatment of ceramic composite bodies by means of ultra-high frequency.
DE4100462C2 (en)
DE2819762A1 (en) RESONANT MICROWAVE APPLICATOR
DE102011111884B3 (en) Device for generating thermodynamic cold plasma by microwaves, has resonance chambers distributed in evacuated, electrically conductive anode, where plasma is generated by microwaves under standard atmospheric conditions
EP0457948B1 (en) Microwaveapparatus
DE102020113578A1 (en) Microwave treatment facility
DE102007055548A1 (en) Apparatus for introducing heating microwaves into reaction chamber, for effecting high pressure reactions, includes generator, aerial and aerial holder sealed by shrink-fitted ring
DE102008001637B4 (en) Microwave oven for the thermal treatment of goods
Galek Modeling of Microwave Absorption Mechanisms in Metallic Powders
EP0780496A1 (en) Apparatus for growing zeolite crystals from an aqueous solution
DE102010015768A1 (en) Microwave reactor for microwave-assisted catalytic conversion of a liquid substance or gaseous medium, comprises an inner space enclosure, housing with walls made of reflective material for microwaves, and a hollow cylinder
DE3730086A1 (en) Microwave-plasma CVD appts. - with multi-element microwave inlet window having cavity resonance structure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20080208

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090731

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KARLSRUHER INSTITUT FUER TECHNOLOGIE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LINK, GUIDO, DR.

Inventor name: FEHER, LAMBERT, DR.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502004011386

Country of ref document: DE

Date of ref document: 20100826

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100714

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20101123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101014

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101115

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101015

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

26N No opposition filed

Effective date: 20110415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004011386

Country of ref document: DE

Effective date: 20110415

BERE Be: lapsed

Owner name: KARLSRUHER INSTITUT FUR TECHNOLOGIE

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 474437

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20150427

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150428

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160401

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160402

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200421

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200423

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230418

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 502004011386

Country of ref document: DE