EP1492988B1 - Verarbeitung von flüssigerdgas - Google Patents

Verarbeitung von flüssigerdgas Download PDF

Info

Publication number
EP1492988B1
EP1492988B1 EP03718136A EP03718136A EP1492988B1 EP 1492988 B1 EP1492988 B1 EP 1492988B1 EP 03718136 A EP03718136 A EP 03718136A EP 03718136 A EP03718136 A EP 03718136A EP 1492988 B1 EP1492988 B1 EP 1492988B1
Authority
EP
European Patent Office
Prior art keywords
stabilizer
overhead
lng
recovery tower
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03718136A
Other languages
English (en)
French (fr)
Other versions
EP1492988A2 (de
Inventor
Kenneth Reddick
Noureddine Belhateche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howe Baker Engineers LLC
Original Assignee
Howe Baker Engineers LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/115,150 external-priority patent/US6941771B2/en
Application filed by Howe Baker Engineers LLC filed Critical Howe Baker Engineers LLC
Publication of EP1492988A2 publication Critical patent/EP1492988A2/de
Application granted granted Critical
Publication of EP1492988B1 publication Critical patent/EP1492988B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/064Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • F25J3/0214Liquefied natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0605Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
    • F25J3/061Natural gas or substitute natural gas
    • F25J3/0615Liquefied natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0635Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons

Definitions

  • the present invention is directed toward the recovery of hydrocarbons heavier than methane from liquefied natural gas (LNG) and in particular to an improved process that uses a portion of the LNG as reflux in the separation process to aid in the recovery of the heavier than methane hydrocarbons.
  • LNG liquefied natural gas
  • Natural gas typically contains up to 15 vol. % of hydrocarbons heavier than methane. Thus, natural gas is typically separated to provide a pipeline quality gaseous fraction and a less volatile liquid hydrocarbon fraction. These valuable natural gas liquids (NGL) are comprised of ethane, propane, butane, and minor amounts of other heavy hydrocarbons.
  • NGL natural gas liquids
  • natural gas at remote locations is liquefied and transported in special LNG tankers to appropriate LNG handling and storage terminals.
  • the LNG can then be revaporized and used as a gaseous fuel in the same fashion as natural gas. Because the LNG is comprised of at least 80 mole percent methane it is often necessary to separate the methane from the heavier natural gas hydrocarbons to conform to pipeline specifications for heating value.
  • it is desirable to recover the NGL because its components have a higher value as liquid products, where they are used as petrochemical feedstocks, compared to their value as fuel gas.
  • NGL is typically recovered from natural gas streams by many well-known processes including "lean oil” adsorption, refrigerated “lean oil” absorption, and condensation at cryogenic temperatures. Although there are many known processes, there is always a compromise between high recovery and process simplicity (i.e., low capital investment).
  • the most common process for recovering NGL from LNG is to pump and vaporize the LNG, and then redirect the resultant gaseous fluid to a typical industry standard turbo-expansion type cyrogenic NGL recovery process. Such a process requires a large pressure drop across the turbo-expander or J.T. valve to generate cryogenic temperatures.
  • prior processes typically require that the resultant gaseous fluid, after LPG extraction, be compressed to attain the pre-expansion step pressure.
  • Our invention provides another alternative NGL recovery process that produces a low-pressure, liquid methane-rich stream that can be directed to the main LNG export pumps where it can be pumped to pipeline pressures and eventually routed to the main LNG vaporizers. Moreover, our invention uses a portion of the LNG feed directly as an external reflux in the separation process to achieve high yields of NGL as described in the specification below and defined in the claims which follow.
  • Another example of a process of recovering hydrocarbons heavier than methane from LNG is disclosed in US-A-3837821 .
  • our invention as defined by the claims is directed to an improved process for the recovery of NGL from LNG which avoids the need for dehydration, the removal of acid gases and other impurities.
  • a further advantage of our process is that it significantly reduces the overall energy and fuel requirements because the residue gas compression requirements associated with a typical NGL recovery facility are virtually eliminated.
  • Our process also does not require a large pressure drop across a turbo-expander or J.T. value to generate cryogenic temperatures. This reduces the capital investment to construct our process by 30 to 50% compared to a typical cryogenic NGL recovery facility.
  • our process recovers hydrocarbons heavier than methane using low pressure liquefied natural gas (for example, directly from an LNG storage system) by using a portion of the LNG feed, without heating or other treatment, as an external reflux during the separation of the methane-rich stream from the heavier hydrocarbon liquids, thus producing high yields of NGL.
  • the methane-rich stream from the separation step is routed to the suction side of a low temperature, low head compressor to re-liquefy the methane rich stream.
  • This re-liquefied LNG is then directed to main LNG export pumps.
  • compression of the methane rich stream is unnecessary when high pressure LNG is used in heat exchange with stabilizer overhead and pumps are used on the recovery bottoms bypassed feed stream.
  • the low pressure liquid LNG feed is split twice to supply two external reflux streams to two separation columns (for example, a cold separator and a stabilizer).
  • the overhead from each of these towers is combined to form a methane rich stream substantially free of NGL.
  • Possible variations of our process include recovering substantially all of the ethane and heavier hydrocarbons from the LNG, rejecting the ethane while recovering the propane and heavier hydrocarbons, or similarly performing this split of any desired molecular weight hydrocarbon.
  • boil-off vapor can be added to the methane rich stream prior to heat exchange with the incoming low pressure liquid LNG. Boil-off vapor is typically obtained from LNG storage tanks as waste or escaped vapor.
  • ethane recoveries are in the range of about 91 to 95% with 99+% propane-plus recovery.
  • a typical propane recovery in the ethane rejection mode of operation is from about 94 to about 96% with 99+% butane-plus recovery.
  • propane could be left in the gaseous stream while recovering 94 to 96% of the butanes.
  • Natural gas liquids are recovered from low-pressure liquefied natural gas (LNG) without the need for external refrigeration or feed turboexpanders as used in prior processes.
  • process 100 shows the incoming LNG feed stream 1 enters pump 2 at very low pressures, typically in the range of 0-5 psig and at a temperature of less than -200°F.
  • Pump 2 may be any pump design typically used for pumping LNG provided that it is capable of increasing the pressure of the LNG several hundred pounds to approximately 100-500 psig, preferably the process range of 300-350 psig.
  • the resultant stream 3 from pump 2 is physically split into a first portion and a second portion forming streams 4 and 5 respectively, with a first portion (stream 5 ) preferably being 85-90% of stream 3 and the second portion (stream 4 ) preferably being 10-15% of stream 3.
  • the split of stream 3 is necessary to the separation process because of the external reflux that stream 4 provides.
  • the preferred relative portions of streams 4 and 5 are beneficial in providing the optimal amount of external reflux (depending on inlet stream composition) in order to maximize NGL recovery while maintaining low capital investment.
  • the first portion of the LNG feed in stream 5 is warmed by cross-exchange in heat exchanger 6 with substantially NGL-free residue gas in stream 15 exiting the process 100.
  • the LNG in stream 7 can be further warmed, if needed during process start-up, with an optional heat exchanger 8 (external heat supply) and then fed to separator 10.
  • Separator 10 may be comprised of a single separation process or a series flow arrangement of several unit operations routinely used to separate fractions of LNG feedstocks.
  • the internal configuration of the particular separator(s) used is a matter of routine engineering design and is not critical to our invention.
  • the second portion of LNG feed in stream 4 is bypassed around heat exchangers 6 and 8 and is fed as an external reflux to the top of separator 10.
  • the overhead from separator 10 is removed as methane-rich stream 12 and is substantially free of NGL.
  • the bottoms of separator 10 is removed from process 100 through stream 11 and contains the recovered NGL product.
  • the methane-rich gas overhead in stream 12 is routed to the suction of a low temperature, low head compressor 13.
  • Compressor 13 is needed to provide enough boost in pressure so that stream 14 maintains an adequate temperature difference in the main gas heat exchanger 6 to re-liquefy the methane-rich gas to form stream 15.
  • Compressor 13 is designed to achieve a marginal pressure increase of about 75 to 115 psi, preferably increasing the pressure from about 300 psig to about 350-425 psig.
  • Process 100 can also be operated in an "ethane rejection mode."
  • the flow schematic for this mode is substantially similar to FIG 1 .
  • the main difference in this mode of operation is that it is desirable to drive the majority of the ethane contained in feed stream 1 overhead in separator 10 so that stream 15 is comprised of mainly methane and ethane and the recovered NGL product stream 11 is comprised of propane and heavier hydrocarbons. Operation of this mode is typically accomplished by addition pre-heating of stream 9 and/or additional heating to the bottom of separator 10.
  • FIG. 2 shows an alternate example where stream 7 first undergoes separation in cold separator 20.
  • Equivalent stream and equipment reference numbers are used to indicate identical equipment and stream compositions to those described previously in reference to FIG. 1 .
  • An NGL rich bottom stream 21 is removed from Separator 20 and eventually routed to a second separation process, such as stabilizer 22.
  • a methane-rich overhead stream 23 is removed from cold separator 20 and eventually combined with methane-rich overhead stream 24 removed from stabilizer 22.
  • a recovered NGL product stream 11 is removed from stabilizer 22 and routed to NGL storage or pumped to an NGL pipeline or fractionator (not shown).
  • incoming LNG feed 1 is separated after pump 2 to produce a slip stream 4 containing untreated LNG.
  • Stream 4 is used as an external reflux in stabilizer 22 to assist in the separation of the methane-rich components from the NGL products, which are eventually removed via stream 11.
  • Stream 4 works extremely well as a reflux because it is very cold (typically around -250°F) and because it is very lean.
  • Stream 4 is mostly comprised of methane; thus, it is very effective in removing heavier hydrocarbon compounds from the overhead of stabilizer 22.
  • FIG. 3 Yet another example is shown in FIG. 3 , where, like the process of FIG. 2 , two or more separators (cold separator 20 and stabilizer 22 ) are used in series to achieve ethane recoveries of 91 to 95% and 99+% propane recover.
  • the LNG feed is split twice, first to create stream 5 that is used in heat exchange with compressed methane-rich stream 14 and also to create stream 4 comprising untreated LNG feed.
  • Stream 4 is then split into streams 31 and 32, which are used as external reflux for stabilizer 22 and cold separator 20, respectively.
  • process 200 recovers NGL from a feed of low-pressure LNG 201, which enters process 200 via a pump (not shown) and is split into two streams 202 and 203, respectively.
  • Stream 202 is heat exchanged in cold box 204 with several process streams, including high pressure LNG obtained from the LNG storage facility, a combination of compressed boil-off vapor and recovery tower overhead in stream 206 and stabilizer overhead 209.
  • Stream 203 containing a portion of the incoming low pressure LNG and without heat exchange or other process treatment, is used as reflux for recovery tower 210 and stabilizer 211.
  • stream 221 which is fed to recovery tower 210 where a methane-rich stream 217 is removed as recovery tower overhead and is optionally combined with boil-off vapor 207, compressed in compressor 208, fed to cold box 204 and eventually removed from process 200 after mixing with heat exchanged stabilizer overhead 209 in mixer 219.
  • Stream 221 can have an optional start-up hear exchanger (not shown) to further increase the temperature of the LNG after heat exchange in cold box 204.
  • the bottom of recovery tower 210 is removed as stream 213 and fed to stabilizer 211 where bottoms 214 are removed as an NGL product.
  • the NGL product may be sent to fractionation, pipeline or storage.
  • FIG. 5 shows another alternative process flow scheme of our invention. Where process streams and equipment are equivalent to those shown in FIG. 4 .
  • the process embodiment in FIG. 5 uses a pre-chiller 306 to heat exchange the high pressure LNG in stream 205 with the compressed boil-off vapor 207 and recovery tower overhead 217 prior to heat exchange with a portion of the low-pressure LNG feed 202 in cold-box 204.
  • stabilizer overhead 209 is heat exchanged with recovery tower bottoms 213 using exchanger 302 prior to heat exchange in cold box 204.
  • exchanger 302 avoids the need to split feed stream 203 into two separate reflux streams and instead uses reflux accumulator 308 to produce reflux stream 307.
  • Feed 221 is also preheated using exchanger 301 prior to being fed to recovery tower 210.
  • heat exchanged recover tower bottoms 303 is heated using heat exchangers 309 prior to being fed to stabilizer 211.
  • FIGS. 6 and 7 two other embodiments of our invention are illustrated as processes 400 and 500, respectively. Again, where the equipment and streams are equivalent to what is illustrated in FIG. 4 , the reference numerals are the same.
  • Each of these alternative embodiments are characterized in that the cryogenic compressor used to compress the recovery tower overhead is eliminated. This is possible because of a combination of feed pumps 401 and 402, and heat exchanger 404 which provides heat from high pressure LNG 405.
  • feed stream 203 which is bypassed around cold box 204 is not split as it is in FIG. 6 and instead is directed via pump 402 directly to stabilizer 211 as reflux.
  • Recovery tower 210 bottoms is directed via pump 401 to stabilizer 211.
  • a portion of the recovery bottoms 407 is directed to exchanger 403 where it is heat exchanged with stabilizer overhead 209 subsequent to being heat exchanged with the high pressure LNG 405.
  • Stabilizer bottoms 406 comprises the NGL product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Claims (14)

  1. Verfahren (200) zum Rückgewinnen von Kohlenwasserstoffen, die schwerer als Methan sind, aus verflüssigtem Naturgas (LNG), umfassend:
    a) Pumpen von flüssigem Niederdruck-LNG (1) auf einen Druck von mehr als 689 kPa (100 psia);
    b) Aufteilen des unter Druck stehenden, flüssigen LNG (201) aus Schritt a) in erste und zweite Teile (202, 203);
    c) Leiten des ersten Teils (202) an unter Druck stehendem, flüssigem LNG aus Schritt b) zu einer Cold Box (204), wo ein Wärmeaustausch stattfindet, um dessen Temperatur zu erhöhen;
    d) Umgehen der Cold Box (204) mit dem zweiten Teil (203) an unter Druck stehendem, flüssigem LNG und Verwenden desselben als ein externer Rückfluss in einem Rückgewinnungsturm (210), wo zusammen mit dem wärmeausgetauschten ersten Teil (221) an unter Druck stehendem LNG aus Schritt c) ein Rückgewinnungsturm-Kopfprodukt (217) und eine Stabilisator-Einspeisung (213) erzeugt werden;
    e) Leiten der Stabilisator-Einspeisung (213) zu einem Stabilisator (211), um ein Stabilisator-Kopfprodukt (209) und einen NGL-Strom (214) zu erzeugen;
    f) Verdichten des Rückgewinnungsturm-Kopfprodukts (217), um einen methanreichen Strom (206) auszubilden;
    g) Leiten des methanreichen Stroms (206) und des Stabilisator-Kopfprodukts (209) zu der Cold Box (204), wo sie mit dem ersten Teil (202) an unter Druck stehendem, flüssigem LNG wärmeausgetauscht werden; und
    h) Mischen des wärmeausgetauschten methanreichen Stroms und Stabilisator-Kopfprodukts.
  2. Verfahren (200) nach Anspruch 1, wobei verdampfter Dampf ("boil-off vapor") (207) mit dem Rückgewinnungsturm-Kopfprodukt (217) vor einer Verdichtung vereinigt wird, um den methanreichen Strom (206) auszubilden.
  3. Verfahren (200) nach Anspruch 1, das ferner dadurch charakterisiert ist, dass das Stabilisator-Kopfprodukt (209) mit der Stabilisator-Einspeisung (213) wärmeausgetauscht wird.
  4. Verfahren (200) nach Anspruch 1, wobei
    in Schritt d) der zweite Teil (203) an unter Druck stehendem, flüssigem LNG aus Schritt b) die Cold Box (204) umgeht und in einen ersten Rückfluss und einen zweiten Rückfluss aufgeteilt wird, und der wärmeausgetauschte erste Teil (221) an unter Druck stehendem, flüssigem LNG aus Schritt c) zu einem Rückgewinnungsturm (210) geleitet wird, wo zusammen mit dem ersten Rückfluss ohne Wärmeaustausch ein Rückgewinnungsturm-Kopfprodukt (217) und eine Stabilisator-Einspeisung (213) erzeugt werden; und
    in Schritt e) die Stabilisator-Einspeisung (213) zu einem Stabilisator (211) geleitet wird, wo zusammen mit dem zweiten Rückfluss ohne Wärmeaustausch ein Stabilisator-Kopfprodukt (209) und ein NGL-Strom (214) erzeugt werden.
  5. Verfahren (200) nach Anspruch 4, wobei verdampfter Dampf (207) mit dem Rückgewinnungsturm-Kopfprodukt (217) vor einer Verdichtung vereinigt wird, um den methanreichen Strom (206) auszubilden.
  6. Verfahren (200) nach Anspruch 4, das ferner dadurch charakterisiert ist, dass der methanreiche Strom (206) mit Hochdruck-LNG (205) vor einem Eintritt in die Cold Box (204) wärmeausgetauscht wird.
  7. Verfahren (200) nach Anspruch 4, das ferner dadurch charakterisiert ist, dass Hochdruck-LNG (205) zu der Cold Box (204) für einen Wärmeaustausch mit dem ersten Teil (202) an unter Druck stehendem, flüssigem LNG geleitet wird.
  8. Verfahren (200) nach Anspruch 1, wobei
    in Schritt d) der zweite Teil (203) an unter Druck stehendem, flüssigem LNG aus Schritt b) die Cold Box (204) umgeht und in einen ersten Rückfluss und einen zweiten Rückfluss aufgeteilt wird, und der wärmeausgetauschte erste Teil (221) an unter Druck stehendem, flüssigem LNG aus Schritt c) zu einem Rückgewinnungsturm (210) geleitet wird, wo zusammen mit dem ersten Rückfluss ohne Wärmeaustausch ein Rückgewinnungsturm-Kopfprodukt (217) und eine Stabilisator-Einspeisung (213) erzeugt werden;
    in Schritt e) die Stabilisator-Einspeisung (213) zu einem Stabilisator (211) geleitet wird, wo zusammen mit dem zweiten Rückfluss ohne Wärmeaustausch ein Stabilisator-Kopfprodukt (209) und ein NGL-Strom (214) erzeugt werden; und
    der Schritt eines Verdichtens des Rückgewinnungsturm-Kopfprodukts (217) nach dem Schritt eines Leitens des Rückgewinnungsturm-Kopfprodukts (217) und des Stabilisator-Kopfprodukts (209) zu der Cold Box (204), wo sie mit dem ersten Teil (202) an unter Druck stehendem, flüssigem LNG wärmeausgetauscht werden, und vor dem Schritt eines Mischens des wärmeausgetauschten Stabilisator-Kopfprodukts und des verdichteten, wärmeausgetauschten Rückgewinnungsturm-Kopfprodukts durchgeführt wird.
  9. Verfahren (200) nach Anspruch 8, das ferner dadurch charakterisiert ist, dass verdampfter Dampf zu der Cold Box (204) für einen Wärmeaustausch mit dem ersten Teil (202) an unter Druck stehendem, flüssigem LNG geleitet wird.
  10. Verfahren (200) nach Anspruch 8, das ferner dadurch charakterisiert ist, dass Hochdruck-LNG (205) zu der Cold Box (204) für einen Wärmeaustausch mit dem ersten Teil (202) an unter Druck stehendem, flüssigem LNG geleitet wird.
  11. Verfahren (200) zum Rückgewinnen von Kohlenwasserstoffen, die schwerer als Methan sind, aus verflüssigtem Naturgas (LNG), umfassend:
    a) Pumpen von flüssigem Niedrigdruck-LNG (1) auf einen Druck von mehr als 689 kPa (100 psia);
    b) Aufteilen des unter Druck stehenden, flüssigen LNG (201) aus Schritt a) in erste und zweite Teile (202, 203);
    c) Leiten des ersten Teils (202) an unter Druck stehendem, flüssigem LNG aus Schritt b) zu einer Cold Box (204), wo ein Wärmeaustausch stattfindet, um dessen Temperatur zu erhöhen;
    d) Umgehen der Cold Box (204) mit dem zweiten Teil (203) an unter Druck stehendem, flüssigem LNG aus Schritt b) und Erhöhen des Drucks des zweiten Teils (203), um einen Stabilisator-Rückfluss auszubilden;
    e) Leiten des wärmeausgetauschten ersten Teils (221) an unter Druck stehendem, flüssigem LNG aus Schritt c) zu einem Rückgewinnungsturm (210), um einen Rückgewinnungsturm-Kopfprodukt-Strom (217) und eine Stabilisator-Einspeisung (213) zu erzeugen;
    f) Leiten eines ersten Teils der Stabilisator-Einspeisung (213) zu einem Stabilisator (211);
    g) Wärmeaustauschen eines zweiten Teils (407) der Stabilisator-Einspeisung (213) mit einem Stabilisator-Kopfprodukt (209) und Einspeisen des wärmeausgetauschten zweiten Teils an Stabilisator-Einspeisung (213) in den Stabilisator (211), wo zusammen mit dem Rückfluss das Stabilisator-Kopfprodukt (209) und ein NGL-Strom (406) erzeugt werden;
    h) Wärmeaustauschen des Stabilisator-Kopfprodukts (209) mit Hochdruck-LNG (405) vor einem Wärmeaustauschen mit dem zweiten Teil (407) an Stabilisator-Einspeisung (213);
    i) Leiten des Rückgewinnungsturm-Kopfprodukt-Stroms (217) und des zweifach wärmeausgetauschten Stabilisator-Kopfprodukts zu der Cold Box (204), wo sie mit dem ersten Teil (202) an unter Druck stehendem, flüssigem LNG wärmeausgetauscht werden; und
    j) Mischen des wärmeausgetauschten Rückgewinnungsturm-Kopfprodukt-Stroms und des Stabilisator-Kopfprodukts.
  12. Verfahren (200) nach Anspruch 11, wobei verdampfter Dampf (207) mit dem Rückgewinnungsturm-Kopfprodukt-Strom (217) vor einem Einbringen des Rückgewinnungsturm-Kopfprodukts (217) in die Cold Box (204) vereinigt wird.
  13. Verfahren (200) nach Anspruch 11, wobei
    in Schritt d) der zweite Teil (203) an unter Druck stehendem, flüssigem LNG aus Schritt b) die Cold Box (204) umgeht und in einen ersten Rückfluss und einen zweiten Rückfluss aufgeteilt wird, und der Druck des zweiten Rückflusses vor einem Leiten desselben zu einem Stabilisator (211) erhöht wird; und
    in Schritt g) ein zweiter Teil der Stabilisator-Einspeisung (213) mit dem Stabilisator-Kopfprodukt (209) wärmeausgetauscht wird, und der wärmeausgetauschte zweite Teil der Stabilisator-Einspeisung (213) in den Stabilisator (211) eingespeist wird, wo zusammen mit dem zweiten Rückfluss das Stabilisator-Kopfprodukt (209) und der NGL-Strom (406) erzeugt werden.
  14. Verfahren (200) nach Anspruch 13, wobei verdampfter Dampf (207) mit dem Rückgewinnungsturm-Kopfprodukt (217) vor dem Einbringen des Rückgewinnungsturm-Kopfprodukts (217) in die Cold Box (204) vereinigt wird.
EP03718136A 2002-04-03 2003-03-31 Verarbeitung von flüssigerdgas Expired - Lifetime EP1492988B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US155150 1980-05-30
US237847 1999-01-27
US10/115,150 US6941771B2 (en) 2002-04-03 2002-04-03 Liquid natural gas processing
US10/237,847 US6604380B1 (en) 2002-04-03 2002-09-09 Liquid natural gas processing
PCT/US2003/009948 WO2003085340A2 (en) 2002-04-03 2003-03-31 Liquid natural gas processing

Publications (2)

Publication Number Publication Date
EP1492988A2 EP1492988A2 (de) 2005-01-05
EP1492988B1 true EP1492988B1 (de) 2011-04-27

Family

ID=28793871

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03718136A Expired - Lifetime EP1492988B1 (de) 2002-04-03 2003-03-31 Verarbeitung von flüssigerdgas

Country Status (4)

Country Link
EP (1) EP1492988B1 (de)
AU (1) AU2003222145B2 (de)
MX (1) MXPA04010908A (de)
WO (1) WO2003085340A2 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3341454A4 (de) * 2015-08-28 2019-03-27 Uop Llc Verfahren zur stabilisierung eines flüssigen kohlenwasserstoffstroms
JP7051372B2 (ja) * 2017-11-01 2022-04-11 東洋エンジニアリング株式会社 炭化水素の分離方法及び装置
JP7043126B6 (ja) * 2017-11-06 2022-04-18 東洋エンジニアリング株式会社 Lngから複数種の炭化水素を分離回収するための装置
US11585598B2 (en) * 2020-12-18 2023-02-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Operation of natural gas liquids stabilizer column

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB958191A (en) * 1963-01-02 1964-05-21 Conch Int Methane Ltd A method of processing a mixture of liquefied gases
FR1501013A (fr) * 1966-09-13 1967-11-10 Air Liquide Procédé de production d'un gaz riche en méthane, sous pression élevée à partirde gaz naturel liquide sous basse pression
US3405530A (en) * 1966-09-23 1968-10-15 Exxon Research Engineering Co Regasification and separation of liquefied natural gas
US3837821A (en) * 1969-06-30 1974-09-24 Air Liquide Elevating natural gas with reduced calorific value to distribution pressure
US5114451A (en) * 1990-03-12 1992-05-19 Elcor Corporation Liquefied natural gas processing
US6510706B2 (en) * 2000-05-31 2003-01-28 Exxonmobil Upstream Research Company Process for NGL recovery from pressurized liquid natural gas
US6564579B1 (en) * 2002-05-13 2003-05-20 Black & Veatch Pritchard Inc. Method for vaporizing and recovery of natural gas liquids from liquefied natural gas

Also Published As

Publication number Publication date
AU2003222145A1 (en) 2003-10-20
WO2003085340A2 (en) 2003-10-16
EP1492988A2 (de) 2005-01-05
WO2003085340A8 (en) 2010-02-18
MXPA04010908A (es) 2005-09-20
WO2003085340A3 (en) 2004-04-08
AU2003222145B2 (en) 2006-05-11

Similar Documents

Publication Publication Date Title
US6604380B1 (en) Liquid natural gas processing
EP1920205B1 (de) Flüssigerdgasverarbeitung
US6907752B2 (en) Cryogenic liquid natural gas recovery process
EP1504229B1 (de) Verfahren zur verdampfung von flüssigem erdgas und gewinnung von flüssigkohlenwasserstoffen
EP1789739B1 (de) Verfahren zur extraktion von ethan aus flüssigerdgas
US6964181B1 (en) Optimized heating value in natural gas liquids recovery scheme
MXPA05009293A (es) Produccion de gas natural licuado (gnl) en plantas criogenicas de procesamiento de gas natural.
EP1824583A2 (de) Konfigurationen und verfahren zur lng-rückvergasung und btu-steuerung
JP2008527287A (ja) 液化天然ガスからc2+富化留分を分離する方法
EP1492988B1 (de) Verarbeitung von flüssigerdgas
US20130104598A1 (en) Ngl extraction from liquefied natural gas
WO2010077614A2 (en) Liquid natural gas processing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041029

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: REDDICK, KENNETH

Inventor name: BELHATECHE, NOUREDDINE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BELHATECHE, NOUREDDINE

Inventor name: REDDICK, KENNETH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60336896

Country of ref document: DE

Date of ref document: 20110609

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60336896

Country of ref document: DE

Effective date: 20110609

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110728

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60336896

Country of ref document: DE

Effective date: 20120130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120402

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190327

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190404

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20200310

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60336896

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401