EP1488255A2 - Zweidimensionaler detektor ionisierender teilchen, der eine matrix von erkennungsfasern aufweist - Google Patents

Zweidimensionaler detektor ionisierender teilchen, der eine matrix von erkennungsfasern aufweist

Info

Publication number
EP1488255A2
EP1488255A2 EP03735786A EP03735786A EP1488255A2 EP 1488255 A2 EP1488255 A2 EP 1488255A2 EP 03735786 A EP03735786 A EP 03735786A EP 03735786 A EP03735786 A EP 03735786A EP 1488255 A2 EP1488255 A2 EP 1488255A2
Authority
EP
European Patent Office
Prior art keywords
liquid scintillator
detector
dimensional detector
scintillator
detector according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03735786A
Other languages
English (en)
French (fr)
Inventor
Laurent Disdier
Alexandre Fedotoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1488255A2 publication Critical patent/EP1488255A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/201Measuring radiation intensity with scintillation detectors using scintillating fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/204Measuring radiation intensity with scintillation detectors the detector being a liquid

Definitions

  • the invention relates to a two-dimensional detector of ionizing particles.
  • the invention applies, for example, to the field of imaging of particles with high penetrating power.
  • Such detectors are used, for example, in the fusion of deuterium (DD) or of a mixture of deuterium (D) and tritium (T) by inertial confinement using a power laser.
  • the fusion of these isotopes of hydrogen occurs in a volume of characteristic dimension 50 ⁇ .
  • the nuclear fusion reaction is accompanied by the release of a fast neutron of 14.1 MeV for a DT mixture or
  • the neutron image allows to locate the area where burning isotopes • hydrogen.
  • the neutron image or the gamma image is formed either by a pinhole camera or by a coded aperture such as a penumbra diaphragm or a ring. Detectors with high detection efficiency and capable of locating the interaction point of the particle are necessary for the recording of this image.
  • the two-dimensional detectors of Ionizing particles are produced by assembling thousands of fibers with a plastic scintillator, each fiber typically having a length of between 1 and 10 cm and constituting a detector pixel.
  • a detector is shown in Figures 1A and IB.
  • a set of fibers 2 with plastic scintillator are held in a cylinder 1.
  • Each fiber with plastic scintillator 2 has a diameter D substantially equal, for example, to 1mm.
  • a plastic scintillator fiber is shown in FIG. 2. It consists of a plastic scintillator bar 3 with a high refractive index (typically of the order of 1.6) surrounded by a sheath 4 of lower optical index ( typically around 1.5).
  • the incident particles to detect P have a trajectory parallel to the axis of the fiber and deposit their energy in the plastic scintillator.
  • Tertiary photons Ph3 constitute a visible scintillation light which is guided to one end of the fiber where an image is recorded using a CCD detector (CCD (Charge Coupled Device)).
  • CCD detector Charge Coupled Device
  • this technology limits the minimum fiber diameter to around 0.5 mm.
  • sampling an image limits the ultimate resolution in the source to twice the size of a pixel divided by the magnification of the imaging system.
  • the magnification of an imaging system must therefore be of the order of 200 to obtain spatial resolutions lower than the size of the source, for example resolutions of the order of 5 ⁇ m.
  • the measuring instrument then extends over significant distances which can be greater than ten meters.
  • the realization of a detector is obtained by the tedious assembly of several thousand pixels one by one. This results in imperfections in the regular arrangement of the pixels.
  • the lack of rigidity of the fibers with plastic scintillator and their significant expansion does not guarantee a precise collinearity between each fiber.
  • the interaction of fast neutrons in a plastic scintillator is dominated by elastic scattering on hydrogen.
  • the recoil ions I deposit their energy on a cylinder with a typical diameter of 1 mm when the incident particles (neutrons, gamma radiation) have an energy of 14.1 MeV.
  • Another limitation of the spatial resolution in the source is therefore the width of the energy deposit (diameter of the cylinder) divided by the magnification.
  • the technology for manufacturing two-dimensional detectors limits it. it the performance of the instruments in which these detectors are installed.
  • the spatial resolution of the neutron detector is limited to 1.4 mm for neutrons of 14.1 MeV and to 1 mm for neutrons of 2, 45 MeV.
  • the invention does not have the drawbacks mentioned above.
  • the invention relates to a two-dimensional detector of ionizing particles comprising a matrix of detector fibers, each detector fiber constituting a pixel of the detector and comprising a scintillator for emitting scintillation light, characterized in that each detector fiber consists of a glass capillary filled with liquid scintillator, the chemical composition of which is chosen so that the mean free path of primary scintillation photons is negligible compared to the diameter of the capillary.
  • FIG. 1A shows a two-dimensional detector of ionizing particles according to the prior art
  • Figure IB shows a detailed view of Figure 1A
  • FIG. 2 shows the interaction of ionizing particles to be detected in a plastic scintillator fiber according to the prior art
  • FIG. 3 shows a two-dimensional detector of ionizing particles according to a preferred embodiment of the invention.
  • FIG. 3 represents a two-dimensional detector of ionizing particles according to the invention.
  • the two-dimensional detector according to the invention comprises a matrix of capillaries 6 filled with liquid scintillator.
  • the matrix of capillaries. 6 is placed in a tank 5.
  • the capillaries have, for example, a lower average diameter of than or equal to 500 .mu.m up to, for example, 20 microns.
  • the refractive index of the glass of the capillaries is, for example, 1.49.
  • the parallelism of the capillaries is less than 100 micro-radians.
  • the trajectory of the incident particles is parallel to the axis of the capillaries.
  • the liquid scintillator for example, has a refractive index of 1.57.
  • the chemical composition of the liquid scintillator is chosen so that the primary scintillation photons have a negligible mean free path in front of the capillary diameter.
  • the primary scintillation photons induced in the solvent for example, have a wavelength of 300 nm.
  • the liquid scintillator is either a binary liquid scintillator or a ternary liquid scintillator. In the first case, the liquid scintillator comprises a first scintillator component which absorbs the UV photons of primary scintillation to emit a secondary emission of greater wavelength, for example 370 nm.
  • the liquid scintillator comprises, in addition to the first component, a second scintillator component which absorbs the secondary emission emitted by the first component to in turn emit at a wavelength between 400 nm and 500 nm, by example 420nm.
  • the refractive index of the scintillating liquid and the refractive index of the glass which constitutes the capillary are chosen to guide the scintillation light towards an exit end of the capillary.
  • the solvent that makes up the capillary is, for example, PXE (PXE for phenyl-o-xylylethane).
  • PXE PXE for phenyl-o-xylylethane
  • the binary liquid scintillator has a spatial resolution of 6 ⁇ m and emits at 370 nm and the ternary liquid scintillator has a spatial resolution of 7 ⁇ m and emits at 420 nm.
  • the binary and ternary scintillators can thus be, for example, the components marketed respectively under the references EJ-399-05C2 and EJ-399-05C1.
  • the liquid scintillator contains deuterium.
  • deuterium advantageously makes it possible to reduce by a factor of 2 the width of the neutron energy deposition zone around from its point of interaction.
  • the liquid may also contain a solution of lithium or of an element with an atomic mass greater than lithium.
  • the scintillation emission sees its intensity divided by the factor e (e ⁇ 2.71828) in a few nanoseconds. This property makes it possible to select the energy band of the neutrons by time of flight. This property also makes it possible to differentiate neutrons from photons which generally accompany the production of neutrons.
  • the binary scintillator has a rise time of a few tens of pico-seconds.
  • the tank 5 comprises a first wall 7 provided with a glass porthole transparent to the scintillation wavelength and a second wall 8, located opposite the second wall, and made of a mirror reflecting this length of wave.
  • the capillaries are placed between the window and the mirror and their axis is perpendicular to the mirror and the window.
  • the particles to be detected enter the detector through the mirror.
  • the scintillation light is collected by the window 7. This light being emitted isotropically, the fraction of light emitted which leaves towards the mirror is reflected by the latter and returned to the outlet window.
  • respective elastic membranes 9 and 10 absorb the thermal expansions of the scintillator.
  • the detector array has, for example, a section of the order of 100 ⁇ 100 mm 2 and a thickness E which can range from 10 to 50 mm. It is produced in a single block by multiple assembly of macro beams containing elementary beams. This technique makes it possible to produce large section monolithic detectors.
  • the capillary matrix is preferably produced on a thickness much greater than the desired thickness so as to ensure good collinearity between capillaries (for example less than 100 ⁇ radians).
  • a digital example of a detector used to acquire the neutron image of a 1 mm diameter capsule, filled with deuterium and imploded by a 30 kJ laser is given below.
  • the capillary matrix is a paver with a side of 100 mm and a thickness of 50 mm. Each capillary has a diameter of 250 ⁇ m.
  • the stainless steel tank is closed by a mirror and a glass porthole. Four elastic membranes allow thermal expansion of the scintillator.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
EP03735786A 2002-03-26 2003-03-24 Zweidimensionaler detektor ionisierender teilchen, der eine matrix von erkennungsfasern aufweist Withdrawn EP1488255A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0203749A FR2837930B1 (fr) 2002-03-26 2002-03-26 Detecteur bidimensionnel de particules ionisantes
FR0203749 2002-03-26
PCT/FR2003/000919 WO2003081279A2 (fr) 2002-03-26 2003-03-24 Detecteur bidimensionnel de particules ionisantes comprenant une matrice de fibres detectrices

Publications (1)

Publication Number Publication Date
EP1488255A2 true EP1488255A2 (de) 2004-12-22

Family

ID=27839190

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03735786A Withdrawn EP1488255A2 (de) 2002-03-26 2003-03-24 Zweidimensionaler detektor ionisierender teilchen, der eine matrix von erkennungsfasern aufweist

Country Status (11)

Country Link
US (1) US7238951B2 (de)
EP (1) EP1488255A2 (de)
JP (1) JP2005521061A (de)
CN (1) CN100342245C (de)
AU (1) AU2003236868A1 (de)
CA (1) CA2480112A1 (de)
FR (1) FR2837930B1 (de)
IL (1) IL164056A0 (de)
NO (1) NO20044619L (de)
RU (1) RU2332688C2 (de)
WO (1) WO2003081279A2 (de)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7963695B2 (en) 2002-07-23 2011-06-21 Rapiscan Systems, Inc. Rotatable boom cargo scanning system
US8275091B2 (en) 2002-07-23 2012-09-25 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US6928141B2 (en) 2003-06-20 2005-08-09 Rapiscan, Inc. Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers
US7471764B2 (en) 2005-04-15 2008-12-30 Rapiscan Security Products, Inc. X-ray imaging system having improved weather resistance
US7679060B2 (en) * 2005-12-21 2010-03-16 Los Alamos National Security, Llc Nanophosphor composite scintillator with a liquid matrix
US7526064B2 (en) 2006-05-05 2009-04-28 Rapiscan Security Products, Inc. Multiple pass cargo inspection system
US7919758B2 (en) * 2007-06-19 2011-04-05 Material Innovations, Inc. Neutron detector
US7514694B2 (en) * 2007-06-19 2009-04-07 Material Innovations, Inc. Neutron detector
US20080315108A1 (en) * 2007-06-19 2008-12-25 Stephan Andrew C Neutron detector
US7923698B2 (en) * 2007-06-19 2011-04-12 Material Innovations, Inc. Neutron detector
US7741612B2 (en) * 2008-02-07 2010-06-22 General Electric Company Integrated neutron-gamma radiation detector with optical waveguide and neutron scintillating material
US8314399B2 (en) * 2008-02-07 2012-11-20 General Electric Company Radiation detector with optical waveguide and neutron scintillating material
GB0809110D0 (en) 2008-05-20 2008-06-25 Rapiscan Security Products Inc Gantry scanner systems
US8963094B2 (en) 2008-06-11 2015-02-24 Rapiscan Systems, Inc. Composite gamma-neutron detection system
GB0810638D0 (en) 2008-06-11 2008-07-16 Rapiscan Security Products Inc Photomultiplier and detection systems
US9310323B2 (en) 2009-05-16 2016-04-12 Rapiscan Systems, Inc. Systems and methods for high-Z threat alarm resolution
WO2011063154A2 (en) * 2009-11-19 2011-05-26 Saint-Gobain Ceramics & Plastics, Inc. Radiation detector and method of using a radiation detector
US20110293057A1 (en) * 2010-05-27 2011-12-01 Honeywell Federal Manufacturing & Technologies Llc Apparatus for detecting neutrons and methods for fabricating such apparatuses
EP3270185B1 (de) 2011-02-08 2023-02-01 Rapiscan Systems, Inc. Verdeckte überwachung unter verwendung multimodaler erfassung
US9218933B2 (en) 2011-06-09 2015-12-22 Rapidscan Systems, Inc. Low-dose radiographic imaging system
RU2469353C1 (ru) * 2011-06-09 2012-12-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" Нейтронный детектор
RU2469352C1 (ru) * 2011-06-09 2012-12-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" Нейтронный детектор
RU2469356C1 (ru) * 2011-06-09 2012-12-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" Датчик быстрых нейтронов
RU2469354C1 (ru) * 2011-06-09 2012-12-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" Нейтронный детектор
RU2470329C1 (ru) * 2011-06-09 2012-12-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" Нейтронный датчик
RU2469355C1 (ru) * 2011-06-09 2012-12-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" Нейтронный детектор
GB201208418D0 (en) * 2012-05-14 2012-06-27 Optasence Holdings Ltd Radiation detector
EP2952068B1 (de) 2013-01-31 2020-12-30 Rapiscan Systems, Inc. Tragbares sicherheitsinspektionssystem
US9557427B2 (en) 2014-01-08 2017-01-31 Rapiscan Systems, Inc. Thin gap chamber neutron detectors
FR3030776B1 (fr) 2014-12-22 2017-02-10 Commissariat Energie Atomique Scintillateur organique solide structure charge au plomb
FR3030777B1 (fr) * 2014-12-22 2017-02-10 Commissariat Energie Atomique Scintillateur organique solide structure charge au bismuth
CN104629751A (zh) * 2015-01-28 2015-05-20 西南科技大学 一种氘代液体闪烁体及其制备方法
EP3128347A1 (de) * 2015-08-06 2017-02-08 Nokia Technologies Oy Vorrichtung zur detektion von röntgenstrahlen und verfahren zur bereitstellung einer vorrichtung zur detektion von röntgenstrahlen
CN106371133B (zh) * 2016-11-08 2019-04-02 中国工程物理研究院激光聚变研究中心 一种大动态快中子产额测量系统的实现方法
CN108919335A (zh) * 2018-07-09 2018-11-30 中国工程物理研究院激光聚变研究中心 快中子图像探测装置及快中子探测器阵列的制作方法
CA3207580A1 (en) 2021-02-23 2022-09-01 Neil Duncan CARRINGTON Systems and methods for eliminating cross-talk in scanning systems having multiple x-ray sources
CN116728811A (zh) * 2023-06-14 2023-09-12 中国矿业大学 一种新型塑料光纤复合闪烁体制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686695A (en) * 1979-02-05 1987-08-11 Board Of Trustees Of The Leland Stanford Junior University Scanned x-ray selective imaging system
US4359641A (en) * 1981-06-01 1982-11-16 The United States Of America As Represented By The United States Department Of Energy Liquid scintillators for optical fiber applications
FR2555321A1 (fr) * 1983-11-17 1985-05-24 Centre Nat Rech Scient Dispositif de detection de rayonnements x a scintillation
US5864146A (en) * 1996-11-13 1999-01-26 University Of Massachusetts Medical Center System for quantitative radiographic imaging
US5135679A (en) * 1990-01-24 1992-08-04 Jeffrey Mirsky Liquid scintillation medium with a 1,2-dicumylethane solvent
FI902332A (fi) * 1990-05-10 1991-11-11 Wallac Oy Foerfarande foer observering, registrering och analysering av scintillationsfoereteelser vid scintillationsraekning.
US5859946A (en) * 1997-06-27 1999-01-12 Southeastern Univ. Research Assn. Liquid-core light guide designed to withstand interior bubble formation from temperature-induced volumetric variations
US6078052A (en) * 1997-08-29 2000-06-20 Picker International, Inc. Scintillation detector with wavelength-shifting optical fibers
RU2161320C2 (ru) * 1998-11-13 2000-12-27 Производственное объединение "МАЯК" Радиометрическое устройство для измерения низкоэнергетических ионизирующих излучений
US20050105665A1 (en) * 2000-03-28 2005-05-19 Lee Grodzins Detection of neutrons and sources of radioactive material
US6388260B1 (en) * 2000-03-06 2002-05-14 Sandia Corporation Solid state neutron detector and method for use
SE531661C2 (sv) * 2000-12-14 2009-06-23 Xcounter Ab Detektering av strålning och positronemissionstomografi

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03081279A2 *

Also Published As

Publication number Publication date
WO2003081279A3 (fr) 2004-04-01
CN1643400A (zh) 2005-07-20
AU2003236868A1 (en) 2003-10-08
AU2003236868A8 (en) 2003-10-08
RU2332688C2 (ru) 2008-08-27
JP2005521061A (ja) 2005-07-14
NO20044619L (no) 2004-10-26
WO2003081279A2 (fr) 2003-10-02
US20050161611A1 (en) 2005-07-28
RU2004131564A (ru) 2005-05-10
CN100342245C (zh) 2007-10-10
FR2837930A1 (fr) 2003-10-03
FR2837930B1 (fr) 2004-05-21
CA2480112A1 (fr) 2003-10-02
US7238951B2 (en) 2007-07-03
IL164056A0 (en) 2005-12-18

Similar Documents

Publication Publication Date Title
WO2003081279A2 (fr) Detecteur bidimensionnel de particules ionisantes comprenant une matrice de fibres detectrices
US7372041B1 (en) Neutron detectors and related methods
FR2883074A1 (fr) Systeme de detection bidimensionnelle pour rayonnement neutrons
FR2462719A1 (fr) Detecteur de rayonnement a haute resolution
EP0433101A2 (de) Lineare Strahlungssonde
FR2668612A1 (fr) Dispositif d'imagerie de radiations ionisantes.
WO2014154556A1 (fr) Detecteur de traces de particules ionisantes
FR2459488A1 (fr) Detecteur a scintillation utilisable dans un appareil de tomographie
FR2657694A1 (fr) Detecteur de scintillations en mosauique a deux dimensions.
EP3117243B1 (de) Optimierungsverfahren der sammlung von photonen in szintillationskristallen, entsprechender kristall und entsprechende anwendungen
EP3542185B1 (de) Szintillationsdetektor zur detektion und/oder messung von radionukliden in einer flüssigkeit
FR2718852A1 (fr) Dispositif de détection à distance de rayonnement.
EP1794648A1 (de) Detektion von laserinduzierten fluoreszenzemissionen
EP0525169A1 (de) In einem radiographischen abbildungssystem verwendbarer sensor für ionisierende strahlung
EP3502750A1 (de) Strukturierter plastikszintillator
EP4154036A1 (de) System zur korrelation von alpha- und gamma-spektrometriemessungen zur in-situ-radiologischen charakterisierung einer probe
FR3000807A1 (fr) Scintillateur pour la detection de neutrons et/ou de photons gamma et detecteur associe
FR2738669A1 (fr) Tube generateur de neutrons equipe d'un detecteur de particules alpha
FR2555321A1 (fr) Dispositif de detection de rayonnements x a scintillation
WO2021058752A1 (fr) Dispositif et procede de detection de neutrinos
Annis et al. Experimental results from a large volume active target made of glass capillaries and liquid scintillator
Pihet et al. Wavelength-shifting light traps for SWGO and other applications
EP4119991A1 (de) Neutronendetektionsvorrichtung mit ionisierungskammer und optischer wandlung, die mehrere optische hohlräume umfasst, in denen jeweils das freie ende einer optischen faser untergebracht ist
Annis et al. A new vertex detector made of glass capillaries
Geleoc Study of the optical monitoring system of the scintillating crystal involved in the electromagnetic calorimeter of CMS experiment

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040811

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091001