EP1485266A1 - Method for controlling a hybrid drive of a vehicle - Google Patents

Method for controlling a hybrid drive of a vehicle

Info

Publication number
EP1485266A1
EP1485266A1 EP02776661A EP02776661A EP1485266A1 EP 1485266 A1 EP1485266 A1 EP 1485266A1 EP 02776661 A EP02776661 A EP 02776661A EP 02776661 A EP02776661 A EP 02776661A EP 1485266 A1 EP1485266 A1 EP 1485266A1
Authority
EP
European Patent Office
Prior art keywords
vehicle
control
drive
braking
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02776661A
Other languages
German (de)
French (fr)
Other versions
EP1485266B1 (en
Inventor
Claus Bischoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1485266A1 publication Critical patent/EP1485266A1/en
Application granted granted Critical
Publication of EP1485266B1 publication Critical patent/EP1485266B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/106Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
    • B60L3/108Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels whilst braking, i.e. ABS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/12Dynamic electric regenerative braking for vehicles propelled by dc motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/113Stepped gearings with two input flow paths, e.g. double clutch transmission selection of one of the torque flow paths by the corresponding input clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/091Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears including a single countershaft
    • F16H3/0915Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears including a single countershaft with coaxial input and output shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • F16H3/728Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path with means to change ratio in the mechanical gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/613ESP features related thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0052Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising six forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/724Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines
    • F16H3/725Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines with means to change ratio in the mechanical gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0806Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with a plurality of driving or driven shafts
    • F16H37/0826Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with a plurality of driving or driven shafts with only one output shaft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to a method for controlling a hybrid drive of a vehicle, the hybrid drive comprising " an internal combustion engine and at least one electrical machine as drive machines" and the output shafts of the drive machines being operatively connectable to a drive train of the vehicle.
  • Hybrid drives for vehicles are known.
  • an internal combustion engine is combined with at least one electrical machine, so that several drive sources for . the vehicle is available.
  • the drive sources can optionally feed their drive torques into a drive train of the vehicle. In a manner known per se, this results in different drive design options, depending on specific driving situations, which in particular the serve to improve driving comfort and reduce energy consumption and reduce pollutant emissions.
  • coordinated control of the drive machines of the hybrid drive is required, which is known to be carried out by a so-called engine control unit.
  • the drive machines can be controlled based on a target operating state of the hybrid drive to be determined by the engine control unit.
  • the aim in determining this target operating state is, in particular, low fuel consumption, dynamic driving behavior of the vehicle and low pollutant emissions.
  • the method according to the invention with the features mentioned in claim 1 offers the advantage that the energy consumption of the vehicle can be reduced with the aid of braking energy regeneration.
  • an optimal regenerative braking strategy can be carried out here, wherein different braking strategies, in particular purely regenerative braking, simultaneous regenerative and mechanical braking or purely mechanical braking, can be implemented by the Kennfeid-based control of at least one electrical machine.
  • the maximum possible braking energy regeneration corresponding to the selected operating modes is possible with the exact implementation of the desired braking torque. This can be done via the generator operation of the electrical machine in the vehicle electrical system and possibly in a motor vehicle. Stuff battery are fed, so that no additional external energy requirement, for example via the operation of the internal combustion engine, are applied for this braking energy gained uss. Overall, this contributes to a reduction in fuel consumption and thus to a reduction in pollutant emissions from the vehicle.
  • Figure 1 is a block diagram for controlling a hybrid drive and braking system
  • FIG. 2 shows a schematic view of a hybrid drive in a specific exemplary embodiment
  • Figure 3 shows a control map of an electrical machine according to the embodiment in Figure 2 and
  • FIG. 4 shows a shift map of a transmission according to the exemplary embodiment in FIG. 2. Description of the embodiments
  • FIG. 1 schematically shows a drive train and a braking system of a vehicle in a block diagram.
  • the vehicles addressed here comprise a hybrid drive 10, which comprises an internal combustion engine 12, a transmission 14 and ' at least one electrical machine 16.
  • the electrical machine 16 is connected to a traction battery 18 integrated into an on-board electrical system of the vehicle, from which it draws electrical energy in motor operation or into which it feeds electrical energy in generator operation.
  • the electrical machine 16 - and also the internal combustion engine 12 - is integrated into a cooling circuit 20 through which a cooling medium, for example water, flows.
  • the vehicle also includes an electronically controllable brake system 22, for example an electro-hydraulic or electromechanical brake system.
  • Hybrid drive 10 and brake system 22 act on a drive arrangement 24, which in particular comprises drive shafts, drive axles, vehicle wheels and the like.
  • the hybrid drive 10 and the brake system 22 are controlled by a control unit 26.
  • the structure, arrangement and interaction of control unit 26, hybrid drive 10, brake system 22 and drive arrangement 24 are generally known, so that this is not discussed in more detail in the context of the present description - is gone.
  • the control of the hybrid drive 10 according to the invention is discussed in particular in the event of a negative torque request to the drive arrangement 24.
  • This negative momentary request can, for example, by actuation. a brake pedal or a driving machine.
  • a target braking torque is to be applied to the wheels of the drive arrangement 24.
  • the control unit 26 includes, among other things, an interface 28 via which signals 30 from vehicle components can be received.
  • signals 30 are received from a higher-level vehicle control system, from the units of the hybrid drive 10, the brake system 22 and the drive arrangement 24.
  • the signals 30 include, among others, a gearbox output shaft setpoint torque M A , the average wheel speed n wheel of the drive axle, an ESP intervention flag ESP F ⁇ a g, a current battery current Ißa, a battery charging input Bat La df, a current generator current I Gen and a cooling water temperature T kuh i of the cooling circuit 20 provided.
  • the transmission output shaft target torque M A is obtained, for example, from an interpretation of an accelerator pedal and / or brake pedal (operated by the vehicle driver) or an automatic drive. •
  • the averaged wheel speed and the ESP intervention flag ESP F i a g are supplied, for example, by a wheel slip control system.
  • the interface 28 also determines a derivation of the output shaft target torque M A / dt and a reference speed from the averaged wheel speed n wheel. speed v about the gear ratio between the output shaft of the hybrid drive 10 and wheel.
  • the information corresponding to the signals 30 is passed on to a regeneration strategy block 32.
  • the regeneration strategy block 32 supplies the hybrid drive 10 with a signal 34 which, as control variables, specifies a setpoint torque M 6 and a set speed n 6 for the electric machine 16 and a set ratio i 4 for the transmission 14.
  • a signal 34 which, as control variables, specifies a setpoint torque M 6 and a set speed n 6 for the electric machine 16 and a set ratio i 4 for the transmission 14.
  • other variables for vehicle control are determined and output, but these are not to be considered in the context of the present description.
  • the regeneration strategy block 32 comprises four function modules, namely a vehicle-specific strategy block 36, a brake module selector 38, a switching logic 40 and an aggregate control 42.
  • the regeneration strategy block 32 provides different operating strategies for different operating states of the aggregates of the hybrid drive 10 and of the entire vehicle. For this purpose, 38 basic operating strategies are provided in the brake module selector. First, a distinction is made between the following basic options:
  • Proportionate ' regenerative and mechanical braking on the drive axle The power of the electrical machine 16 is not sufficient to apply the full target deceleration torque for the vehicle.
  • the electrical machine 16 is in generator mode and feeds electrical power into the vehicle electrical system and into the battery 18.
  • the mechanical brake takes over the target-actual difference.
  • cooling medium has a suitable coolant temperature
  • braking is only regenerative if the generator current I g is negative, that is to say that the electrical machine 16 can effectively deliver electrical power.
  • operating mode 2 is selected. If a charging current is detected on the battery 18, the battery must be ready to charge available. In this case, operating mode 3 is activated. If this is not the case, the moment of the electrical machine 16 must be limited so that the operating mode 2 is reached again.
  • the unit control 42 outputs the control variables
  • Unit control 42 selected a characteristic-based selection of the control variables as a function of the target torque M Aso ⁇ and the vehicle speed v.
  • the control characteristic diagrams are designed in such a way that the generator current I g of the electrical machine 16 is maximum for a required target torque M Aso n and the current vehicle speed v.
  • the unit control 42 also takes into account a characteristic curve for the maximum torque, the maximum regeneration torque characteristic curve being derived from the relationship
  • M MaxReg (v Fzg ) min (M MaxGe n (V Fzg ), M maxLad (V F2; g )) results.
  • M MaxGen (v) represents the maximum torque characteristic of the electrical machine 16 ' and M ax ad (v) the moments at which the maximum battery charging current I Bat can be generated.
  • a minimum limiting torque characteristic M M i nRe g (v) can also be taken into account. This minimal limit torque characteristic delimits operating modes 2 and 3 from each other. This results in a boundary line between the operating modes that enable an active entry of electrical power into the electrical system and those that load the electrical system with electrical power.
  • control characteristic diagrams and the maximum torque characteristic curve of the unit control 42 can be determined and / or calculated in advance on the basis of known parameters of the hybrid drive 10, and can be stored in corresponding memory modules within the regeneration strategy block 32.
  • control characteristic diagrams and maximum torque characteristic curves must be determined and stored for each of the possible permissible transmission ratios i of the transmission 14. The selection is then based on the actual transmission ratio i of the transmission 14, it being then npound taken by the switching logic 40 Ei '.
  • the switching logic 40 can cause 'that speed change by the regenerative efficiency of the engine can be improved electro- fresh 16 when it is in the regenerative mode, and operatively connected to the transmission 14, is.
  • the gear ratios that are optimal for regenerative braking processes are stored in a shift map that uses the target output torque M Aso ⁇ and the current vehicle speed v as parameters. These switching maps are also stored in memory modules of the regeneration strategy blocks 32.
  • the shift map is determined for all operating points that can be represented with several gears or several gear stages with the help of an optimization.
  • the generator current I g can be calculated for each permissible transmission ratio by means of the control characteristics of the unit control 42, and the transmission ratio at which the maximum generator current I g can be realized can be stored as optimum efficiency.
  • the current target gear ratio of the transmission 14 for regenerative braking must be compared with the target gear ratio of the transmission 14 for the drive case during constant travel at the current vehicle speed v , It can be provided that only one gear step difference between the two target gear ratios is allowed. This prevents an unnecessarily high gear change effort when switching from braking to drive operation of the vehicle. If the target deceleration torque on the drive axle is below a predeterminable threshold value and / or if a gradient of the target deceleration torque is positive, that is to say that an actuation of the brake pedal is withdrawn, a switch is made to the target gear ratio of the transmission 14 for driving during regenerative braking. The positive gradient of the deceleration torque indicates that the driver or a driving machine requests driving of the vehicle again.
  • the vehicle-specific parameter or strategy block 36 contains vehicle and drive train-specific information, such as, for example, the desired cooling water temperature T K ühis o i ⁇ or the maximum battery charging current I Bat M a a . Furthermore, additional, vehicle-specific decision criteria for the selection of the operating modes can be carried out the brake module selector 38 be provided.
  • FIG. 2 schematically shows a hybrid drive 10 in a specific embodiment, on the basis of which the implementation of the braking energy regeneration strategy is to be clarified.
  • the hybrid drive 10 shown here is a so-called power-branching dual-E drive.
  • the hybrid drive 10 comprises the internal combustion engine 12, the first electrical machine 16 and a second electrical machine 16 '.
  • a crankshaft 44 of the internal combustion engine 12 and drive shafts 46 and 48 of the electrical machines 16, 16 ' are operatively connected to the transmission 14. bound.
  • the crankshaft 14 is also coupled to a dual-mass flywheel 50 and a freewheel 52.
  • the drive shaft 46 of the electrical machine 16 is connected to a first planetary gear 54 and the drive shaft 48 of the electrical machine 16 ′ to a second planetary gear 56.
  • a ring gear of the planetary gear 54 is connected to a manual transmission 58 and a ring gear of the planetary gear 56 is connected to a manual transmission 60.
  • the manual transmissions 58 and 60 are in turn operatively connected to an output shaft 62 of the transmission arrangement 14.
  • the output shaft 62 is operatively connected to the drive arrangement 24 via an axle gear 64 and the brake system 22.
  • the gearbox 58 and 60 permit by operating a switch actuator in a known manner, the insertion of different transitions, which are designated here with the gears 1, 2, 3, 4, 5 and 6, and 'with a reverse gear R.
  • the electrical machines 16, 16 ' can also each operate in generator mode. are driven and serve, for example, to provide an on-board electrical system voltage of the motor vehicle and to charge the motor vehicle battery 18.
  • the electrical machines 16 are each assigned braking devices 66 and 68 with which the rotors of the electrical machines 16 can be mechanically braked.
  • the braking system 22 can be used to mechanically brake the drive train 24.
  • braking is usually always carried out mechanically on a front axle, so that only a deceleration component of the deceleration torque applied by the electrical machine 16 in generator operation on the rear axle can be regenerated in whole or in part and fed into the vehicle electrical system.
  • the interface 28 additionally receives signals 30 which correspond to the current actual moments of the electrical machines 16 and 16 '.
  • the possible operating modes that are selected by the brake module selector 38 also apply to this specific embodiment of the hybrid drive 10.
  • the shift logic 40 can influence the shift stage of the transmission 14.
  • FIG. 4 shows a shift map for the transmission 14, the shift stages 2, 3 and 4 being designated, which are suitable for regenerative braking with the corresponding operating points which are dependent on the target output torque M A and the vehicle speed v.
  • the unit control 42 which specifies the control variables for the electrical machine 16, works with the control map shown, for example, in FIG. 3.
  • This control map of the electrical machine 16 is related to the drive stage 2 of the transmission 14.
  • the limit torque curves which apply to the maximum torque M MaXRe gi and the minimum torque M M i nReg ⁇ are entered in the control map .
  • a setpoint torque M ⁇ 6 results for the electric machine 16 from the control map.
  • the hybrid drive 10 has two electrical machines 16, 16 '(the illustration in FIG. 3 relates only to the control map of the one electric machine 16), absolute maximum limit torque characteristics and absolute minimum limit torque characteristics result, From which the electrical machines 16 and 16 'can make an effective entry into the electrical system as a sum of M Maxl6 and M Max i 6 ' or M ini6 and M Minl6 ..
  • the hybrid drive 10 according to FIG. 2 has a continuous and a discrete degree of freedom.
  • the continuous degree of freedom depends on the torque distribution between the electrical machines 16 and 16 '.
  • the discrete degree of freedom depends on the selection of the drive level of the transmission 14.
  • the actual torques of the electrical machines 16, 16 ' are compared with the target torques Mi ß , i ß . If the actual torque is below the target values, it is assumed that the torque of the electrical machines 16, 16 'has been automatically limited, for example by the pulse-controlled inverter controlling the electrical machines 16, 16'. This can be the case if there is an overvoltage in the vehicle electrical system. In this case, the target transmission output torque M A is replaced by the actual torque of the electrical machines 16 and this reduced actual torque via the engine control unit 26 to the electronically actuated brake system. 22 reported.

Abstract

The invention relates to a method for controlling a hybrid drive of a vehicle. According to said method, the hybrid drive comprises an internal combustion engine and at least one electric motor as the drive mechanisms and the output shafts of the drive mechanisms are actively connected to a drive train of the vehicle. The invention is characterised in that during a negative moment demand (brakes) made on the drive train of the vehicle, the electric motor(s) (16) and the gearbox are controlled based on a characteristic diagram in the generator operating mode.

Description

Verfahren zur Steuerung eines Hybridantriebes eines FahrzeugesMethod for controlling a hybrid drive of a vehicle
Die Erfindung betrifft ein Verfahren zur Steuerung eines Hybridantriebes eines Fahrzeuges, wobei der Hybridantrieb als Antriebsmaschinen " eine Verbrennungskraftmaschine und wenigstens eine elektrische Maschine umfasst und die Abtriebswellen der Antriebsmaschinen mit einem Antriebsstrang .des Fahrzeuges wirkverbindbar sind.The invention relates to a method for controlling a hybrid drive of a vehicle, the hybrid drive comprising " an internal combustion engine and at least one electrical machine as drive machines" and the output shafts of the drive machines being operatively connectable to a drive train of the vehicle.
Stand der TechnikState of the art
Hybridantriebe für Fahrzeuge sind bekannt. Bei den hier angesprochenen Hybridantrieben wird eine Verbrennungskraftmaschine mit wenigstens einer elektrischen Maschine kombiniert, so dass mehrere Antriebs- quellen für . das Fahrzeug zur Verfügung stehen. Entsprechend vorgegebener Anforderungen durch einen Fahrzeugführer können hierbei die Antriebsquellen wahlweise ihre Antriebsmomente in einen Antriebsstrang des Fahrzeuges einspeisen. Hierdurch ergeben sich in an sich bekannter Weise in Abhängigkeit konkreter Fahrsituationen unterschiedliche Antriebsgestaltungsmöglichkeiten, die insbesondere der Ver- besserung eines Fahrkomforts und der Reduzierung eines Energieeinsatzes sowie der Reduzierung einer Schadstoffemission dienen.Hybrid drives for vehicles are known. In the hybrid drives mentioned here, an internal combustion engine is combined with at least one electrical machine, so that several drive sources for . the vehicle is available. In accordance with predetermined requirements by a vehicle driver, the drive sources can optionally feed their drive torques into a drive train of the vehicle. In a manner known per se, this results in different drive design options, depending on specific driving situations, which in particular the serve to improve driving comfort and reduce energy consumption and reduce pollutant emissions.
Bei Hybridantrieben für Fahrzeuge sind serielle Anordnungen, parallele Anordnungen und gemischte Anord- . nungen von Verbrennungskraftmaschine und elektrischen Maschinen bekannt. Je nach Anordnung sind die elektrischen Maschinen direkt oder indirekt in den An- triebsstrang der Verbrennungskraftmaschine schaltbar. Zur Wirkverbindung der Verbrennungskraftmaschine und/oder der elektrischen Maschinen ist bekannt, diese über Getriebe, beispielsweise Planetengetriebe oder dergleichen, und Kupplungen miteinander wirkver- bindbar anzuordnen.In hybrid drives for vehicles are serial arrangements, parallel arrangements and mixed arrangements. Solutions of internal combustion engine and electrical machines known. Depending on the arrangement, the electrical machines can be switched directly or indirectly into the drive train of the internal combustion engine. For the active connection of the internal combustion engine and / or the electrical machines, it is known to arrange them operatively connected to one another via gears, for example planetary gears or the like, and couplings.
Um einen Fahrerwunsch nach einer Antriebsleistung des Hybridantriebes optimal umsetzen zu können, ist eine koordinierte Ansteuerung der Antriebsmaschinen des Hybridantriebes erforderlich, die bekanntermaßen durch ein so genanntes Motorsteuergerät erfolgt. Die Ansteuerung der Antriebsmaschinen kann hierbei basierend auf einem durch das Motorsteuergerät zu bestimmenden Soll-Betriebszustand des Hybridantriebes erfolgen. Ziel bei der Bestimmung dieses Soll-Betriebszustandes ist insbesondere ein geringer Kraftstoff erbrauch, ein dynamisches Fahrverhalten des Fahrzeuges und eine geringe Schadstoffemission.In order to be able to optimally implement a driver's request for a drive power of the hybrid drive, coordinated control of the drive machines of the hybrid drive is required, which is known to be carried out by a so-called engine control unit. The drive machines can be controlled based on a target operating state of the hybrid drive to be determined by the engine control unit. The aim in determining this target operating state is, in particular, low fuel consumption, dynamic driving behavior of the vehicle and low pollutant emissions.
Ferner ist allgemein bekannt, Fahrzeuge mit einem elektronisch ansteuerbaren Bremssyste , beispiels- weise einer elektrohydraulischen Bremse oder einer elektromechanischen Bremse, auszustatten.Furthermore, it is generally known to use vehicles with an electronically controllable braking system, for example as an electrohydraulic brake or an electromechanical brake.
Vorteile der ErfindungAdvantages of the invention
Das erfindungsgemäße Verfahren mit den in Anspruch 1 genannten Merkmalen bietet den Vorteil, dass mit Hilfe einer Bremsenergieregeneration der Energieverbrauch des Fahrzeuges gesenkt werden kann. Da- durch, dass bei einer negativen Momentanforderung an den Antriebsstrang des Fahrzeuges eine kennfeld- basierte Ansteuerung der wenigstens einen elektrischen Maschine im generatorischen Betriebsmodus erfolgt, wird vorteilhaft möglich, aus dem Soll-Brems- moment abgeleitete optimierte Steuergrößen für die wenigstens eine elektrische Maschine abzuleiten. Insbesondere gilt es dabei, mit der generatorisch arbeitenden elektrischen Maschine einen möglichst großen Energieeintrag in das Bordnetz des Fahrzeuges zu erzielen. Insbesondere kann hier eine optimale regenerative Bremsstrategie gefahren werden, wobei durch die kennfeidbasierte Ansteuerung wenigstens einer elektrischen Maschine unterschiedliche Bremsstrategien, insbesondere rein regeneratives Bremsen, gleichzeitiges regeneratives und mechanisches Bremsen oder rein mechanisches Bremsen, realisiert werden können. Jeweils wird unter exakter Umsetzung des gewünschten Soll-Bremsmomentes eine den gewählten Betriebsmodi entsprechende maximal mögliche Brems- energieregeneration möglich. Diese kann über den generatorischen Betrieb der elektrischen Maschine in das Bordnetz und gegebenenfalls in eine Kraftfahr-' zeugbatterie eingespeist werden, so dass für diese gewonnene Bremsenergie kein zusätzlicher externer Energiebedarf, beispielsweise über den Betrieb der Verbrennungskraftmaschine, aufgebracht werden uss. Dies trägt insgesamt zur Reduzierung des Kraftstoffverbrauches und somit zur Reduzierung einer Schadstoffemission des Fahrzeuges bei.The method according to the invention with the features mentioned in claim 1 offers the advantage that the energy consumption of the vehicle can be reduced with the aid of braking energy regeneration. The fact that in the event of a negative torque request to the drive train of the vehicle, the at least one electrical machine is controlled in the generator operating mode, it is advantageously possible to derive optimized control variables for the at least one electrical machine derived from the desired braking torque , In particular, it is important to achieve the greatest possible energy input into the vehicle electrical system with the electrical machine operating as a generator. In particular, an optimal regenerative braking strategy can be carried out here, wherein different braking strategies, in particular purely regenerative braking, simultaneous regenerative and mechanical braking or purely mechanical braking, can be implemented by the Kennfeid-based control of at least one electrical machine. In each case, the maximum possible braking energy regeneration corresponding to the selected operating modes is possible with the exact implementation of the desired braking torque. This can be done via the generator operation of the electrical machine in the vehicle electrical system and possibly in a motor vehicle. Stuff battery are fed, so that no additional external energy requirement, for example via the operation of the internal combustion engine, are applied for this braking energy gained uss. Overall, this contributes to a reduction in fuel consumption and thus to a reduction in pollutant emissions from the vehicle.
Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den ünteransprüchen genannten Merkmalen.Further preferred embodiments of the invention result from the other features mentioned in the subclaims.
Zeichnungendrawings
Die Erfindung wird nachfolgend in Ausführungsbeispie- len anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:The invention is explained in more detail below in exemplary embodiments with reference to the associated drawings. Show it:
Figur 1 ein Blockschaltbild zur Steuerung eines Hybridantriebes und Bremssystems einesFigure 1 is a block diagram for controlling a hybrid drive and braking system
Fahrzeuges;vehicle;
Figur 2 eine schematische Ansicht eines Hybridantriebes in einem konkreten Ausführungsbei- spiel;FIG. 2 shows a schematic view of a hybrid drive in a specific exemplary embodiment;
Figur 3 ein Steuerkennfeld einer elektrischen Maschine gemäß dem Ausführungsbeispiel in Figur 2 undFigure 3 shows a control map of an electrical machine according to the embodiment in Figure 2 and
Figur 4 ein Schaltkennfeld eines Getriebes gemäß dem Ausführungsbeispiel in Figur 2. Beschreibung der AusführungsbeispieleFIG. 4 shows a shift map of a transmission according to the exemplary embodiment in FIG. 2. Description of the embodiments
In Figur 1 zeigt schematisch in einem Blockschaltbild einen Antriebsstrang und ein Bremssystem eines Fahr- zeuges. Die hier angesprochenen Fahrzeuge umfassen einen Hybridantrieb 10, der eine Verbrennungskraftmaschine 12, ein Getriebe 14 und' wenigstens eine elektrische Maschine 16 umfasst. Die elektrische Maschine 16 ist mit einer in ein Bordnetz des Fahr- zeuges eingebundenen Traktionsbatterie 18 verbunden, aus der sie im motorischen Betrieb elektrische Energie bezieht beziehungsweise in die sie im generatorischen Betrieb elektrische Energie einspeist. Ferner ist die elektrische Maschine 16 - und auch die Verbrennungskraftmaschine 12 - in einen Kühlkreislauf 20 eingebunden, durch den ein Kühlmedium, beispielsweise Wasser, strömt.FIG. 1 schematically shows a drive train and a braking system of a vehicle in a block diagram. The vehicles addressed here comprise a hybrid drive 10, which comprises an internal combustion engine 12, a transmission 14 and ' at least one electrical machine 16. The electrical machine 16 is connected to a traction battery 18 integrated into an on-board electrical system of the vehicle, from which it draws electrical energy in motor operation or into which it feeds electrical energy in generator operation. Furthermore, the electrical machine 16 - and also the internal combustion engine 12 - is integrated into a cooling circuit 20 through which a cooling medium, for example water, flows.
Das Fahrzeug umfasst ferner ein elektronisch ansteu- erbares Bremssystem 22, beispielsweise ein elektro- hydraulisches oder elektromechanisches Bremssystem. Hybridantrieb 10 und Bremssystem 22 wirken auf eine Antriebsanordnung 24 ein, die insbesondere Antriebswellen, Antriebsachsen, Fahrzeugräder und dergleichen umfasst.The vehicle also includes an electronically controllable brake system 22, for example an electro-hydraulic or electromechanical brake system. Hybrid drive 10 and brake system 22 act on a drive arrangement 24, which in particular comprises drive shafts, drive axles, vehicle wheels and the like.
Die Steuerung des Hybridantriebes 10 und des Brems-' Systems 22 erfolgt durch ein Steuergerät 26. Aufbau, Anordnung und Zusammenwirken von Steuergerät 26, Hybridantrieb 10, Bremssystem 22 und Antriebsanordnung 24 sind allgemein bekannt, so dass hierauf im Rahmen der vorliegenden Beschreibung nicht näher ein- gegangen wird. Nachfolgend wird insbesondere auf die erfindungsgemäße Steuerung des Hybridantriebes 10 bei einer negativen Momentanforderung an die Antriebsanordnung 24 eingegangen. Diese negative Momentanforderung kann beispielsweise durch ein Betätigen . eines Bremspedals oder einen Fahrautomaten erfolgen. Entsprechend dieser negativen Momentanforderung ist ein Soll-Bremsmoment an den Rädern der Antriebsanordnung 24 aufzubringen.The hybrid drive 10 and the brake system 22 are controlled by a control unit 26. The structure, arrangement and interaction of control unit 26, hybrid drive 10, brake system 22 and drive arrangement 24 are generally known, so that this is not discussed in more detail in the context of the present description - is gone. In the following, the control of the hybrid drive 10 according to the invention is discussed in particular in the event of a negative torque request to the drive arrangement 24. This negative momentary request can, for example, by actuation. a brake pedal or a driving machine. In accordance with this negative torque requirement, a target braking torque is to be applied to the wheels of the drive arrangement 24.
Das Steuergerät 26 umfasst unter anderem eine Schnittstelle 28, über die Signale 30 von Fahrzeugkomponenten empfangbar sind. Hierbei werden insbesondere Signale 30 von einer übergeordneten Fahrzeug- Steuerung, von den Aggregaten des Hybridantriebes 10, dem Bremssystem 22 sowie der Antriebsanordnung 24 empfangen. Als Signale 30 werden unter anderem ein Getriebeausgangswellensollmoment MA, die gemittelte Raddrehzahl nRad der Antriebsachse, ein ESP-Ein- griffsflag ESPFιag, ein aktueller Batteriestrom Ißa eine Batterieladef eigabe BatLadf ein aktueller Generatorstrom IGen und eine Kühlwassertemperatur TKühi des Kühlkreislaufes 20 bereitgestellt. Das Getriebeaus- gangswellensollmoment MA wird beispielsweise aus einer Interpretation eines Fahrpedals und/oder Bremspedals (durch Fahrzeugführer betätigt) oder eines Fahrautomaten gewonnen. • Die gemittelte Raddrehzahl und das ESP-Eingriffsflag ESPFiag werden beispielsweise von einem Radschlupfregelsystem geliefert. Die Schnittstelle 28 ermittelt weiterhin eine Ableitung des Äusgangswellensollmomentes MA/dt und aus der- gemittelten Raddrehzahl nRad eine Referenzgeschwindig- keit v über das Übersetzungsverhältnis zwischen Ausgangswelle des Hybridantriebes 10 und Rad.The control unit 26 includes, among other things, an interface 28 via which signals 30 from vehicle components can be received. In particular, signals 30 are received from a higher-level vehicle control system, from the units of the hybrid drive 10, the brake system 22 and the drive arrangement 24. The signals 30 include, among others, a gearbox output shaft setpoint torque M A , the average wheel speed n wheel of the drive axle, an ESP intervention flag ESP F ι a g, a current battery current Ißa, a battery charging input Bat La df, a current generator current I Gen and a cooling water temperature T Küh i of the cooling circuit 20 provided. The transmission output shaft target torque M A is obtained, for example, from an interpretation of an accelerator pedal and / or brake pedal (operated by the vehicle driver) or an automatic drive. • The averaged wheel speed and the ESP intervention flag ESP F i a g are supplied, for example, by a wheel slip control system. The interface 28 also determines a derivation of the output shaft target torque M A / dt and a reference speed from the averaged wheel speed n wheel. speed v about the gear ratio between the output shaft of the hybrid drive 10 and wheel.
Einem Regenerationsstrategieblock 32 werden die den Signalen 30 entsprechenden Informationen weitergegeben. Der Regenerationsstrategieblock 32 liefert dem Hybridantrieb 10 ein Signal 34, das als Steuergrößen ein Soll-Moment Mι6 und eine Soll-Drehzahl nι6 für die elektrische Maschine 16 und eine Soll-Übersetzung iι4 für das Getriebe 14 vorgibt. Daneben werden selbstverständlich weitere Größen für die Fahrzeugsteuerung ermittelt und ausgegeben, die jedoch im Rahmen der vorliegenden Beschreibung nicht näher betrachtet werden sollen.The information corresponding to the signals 30 is passed on to a regeneration strategy block 32. The regeneration strategy block 32 supplies the hybrid drive 10 with a signal 34 which, as control variables, specifies a setpoint torque M 6 and a set speed n 6 for the electric machine 16 and a set ratio i 4 for the transmission 14. In addition, of course, other variables for vehicle control are determined and output, but these are not to be considered in the context of the present description.
Der Regenerationsstrategieblock 32 umfasst vier Funktionsmodule, nämlich einen fahrzeugspezifischen Strategieblock 36, einen Bremsmodulselektor 38, eine Schaltlogik 40 und eine Aggregatsteuerung 42.The regeneration strategy block 32 comprises four function modules, namely a vehicle-specific strategy block 36, a brake module selector 38, a switching logic 40 and an aggregate control 42.
Der Regenerationsstrategieblock 32 sieht für unterschiedliche Betriebszustände der Aggregate des Hybridantriebes 10 und des Gesamtfahrzeuges unter-' schiedliche Betriebsstrategien vor. Hierzu sind- im Bremsmodulselektor 38 Basisbetriebsstrategien vorgesehen. Hierbei wird zunächst zwischen folgenden grundsätzlichen Möglichkeiten unterschieden:The regeneration strategy block 32 provides different operating strategies for different operating states of the aggregates of the hybrid drive 10 and of the entire vehicle. For this purpose, 38 basic operating strategies are provided in the brake module selector. First, a distinction is made between the following basic options:
1. rein regeneratives Bremsen an der Antriebsachse, jedoch reicht die mechanische Leistung zum Antrieb der elektrischen Maschine 16 im Generatorbetrieb nicht aus, um Wandlungsverluste der elektrischen Maschine zu decken. Obwohl die elektrische Maschine 16 im Generatorbetrieb arbeitet, muss sie aus dem Bordnetz zusätzlich mit elektrischer- Leistung versorgt werden.1. purely regenerative braking on the drive axle, however, the mechanical power for driving the electrical machine 16 in generator mode is not sufficient for conversion losses of the electrical Cover machine. Although the electrical machine 16 operates in generator mode, it must also be supplied with electrical power from the vehicle electrical system.
2. rein regeneratives Bremsen an der Antriebsachse und die elektrische Maschine 16 befindet sich im Generatorbetrieb und speist elektrische Leistung in das Bordnetz ein.2. purely regenerative braking on the drive axle and the electrical machine 16 is in generator mode and feeds electrical power into the vehicle electrical system.
3. rein regeneratives Bremsen an der Antriebsachse und die elektrische Maschine 16 befindet sich im Generatorbetrieb und speist elektrische Leistung in das Bordnetz und in die Batterie 18 ein.3. purely regenerative braking on the drive axle and the electrical machine 16 is in generator mode and feeds electrical power into the vehicle electrical system and into the battery 18.
4. anteiliges' regeneratives und mechanisches Bremsen an der Antriebsachse. Die Leistung der elektrischen Maschine 16 reicht nicht aus, um das volle Soll-Verzögerungsmoment für das Fahrzeug aufzubringen. Die elektrische Maschine 16 befindet sich im Generatorbetrieb und speist elektrische Leistung in das Bordnetz und in die Batterie 18 ein. Die mechanische Bremse übernimmt die Soll-Ist-Differenz .4. Proportionate ' regenerative and mechanical braking on the drive axle. The power of the electrical machine 16 is not sufficient to apply the full target deceleration torque for the vehicle. The electrical machine 16 is in generator mode and feeds electrical power into the vehicle electrical system and into the battery 18. The mechanical brake takes over the target-actual difference.
5. rein mechanisches Bremsen.5. purely mechanical braking.
Der Bremsmodulselektor 38 aktiviert Betriebsmodi in Abhängigkeit von den an der Schnittstelle 28 anliegenden Signalen 30 unter Zuhilfenahme der nachfolgen- den Entscheidungsmatrix (0=nein, l=ja) : The brake module selector 38 activates operating modes depending on the signals 30 present at the interface 28 with the aid of the following decision matrix (0 = no, l = yes):
Nur wenn in einer Bremssituation kein ESP-Eingriff erfolgt, das heißt ESPFιag=0, und kein Fehler an den beim regenerativen Bremsen aktiven Aggregaten vorliegt, das heißt FRekFιag=0, ist regeneratives Bremsen nach einem der Betriebsmodi 1 bis 4 zulässig. Im Betriebsmodus 1 kann keine elektrische Energie gewonnen werden. Es muss Batterieleistung aufgewendet werden, um die gewünschte Verzögerungsleistung aufzubringen. Dieser Modus ist beispielsweise nach einer Kaltstartphase des Hybridantriebes 10 sinnvoll, um das Kühlmedium des Kühlkreislaufes 20 auf optimale Betriebstemperatur zu bringen.Only if there is no ESP intervention in a braking situation, i.e. ESP F ι ag = 0, and there is no fault on the units active during regenerative braking, i.e. FRek F ι ag = 0, is regenerative braking according to one of the operating modes 1 to 4 permitted. No electrical energy can be obtained in operating mode 1. Battery power must be used to provide the desired deceleration power. This mode is useful, for example, after a cold start phase of the hybrid drive 10 in order to bring the cooling medium of the cooling circuit 20 to the optimum operating temperature.
Hat das Kühlmedium eine geeignete Kühlmitteltemperatur, wird nur dann regenerativ- gebremst, wenn der Generatorstrom Ig negativ ist, das heißt, die elektrische Maschine 16 kann effektiv elektrische Leistung abgeben. Solange die regenerierte Leistung die von den Bordnetzverbrauchern angeforderte Leistung nicht übersteigt, das heißt IBat 0,' kann das regenerative Bremsen auch ohne Ladebereitschaft an der Batterie erfolgen (Batrek=0) . Dann wird der Betriebsmodus 2 ausgewählt . Wird ein Ladestrom an der Batterie 18 detektiert, muss eine Ladebereitschaft Batterie vorliegen. In diesem Fall wird der Betriebsmodus 3 aktiviert. Ist dies nicht gegeben, muss das Moment der elektrischen Maschine 16 so begrenzt werden, dass der Betriebsmodus 2 wieder erreicht wird.If the cooling medium has a suitable coolant temperature, braking is only regenerative if the generator current I g is negative, that is to say that the electrical machine 16 can effectively deliver electrical power. As long as the regenerated power does not exceed the power requested by the on-board electrical system consumers, i.e.I Bat 0, ' regenerative braking can also take place without the battery being ready to charge (Bat rec = 0). Then operating mode 2 is selected. If a charging current is detected on the battery 18, the battery must be ready to charge available. In this case, operating mode 3 is activated. If this is not the case, the moment of the electrical machine 16 must be limited so that the operating mode 2 is reached again.
Steigt die Verzögerungsleistung auf Werte über der maximalen Regenerationsmomentenkennlinie MAmax (abhän- gig von der Fahrzeuggeschwindigkeit v) , muss das Überschussmoment MAüber =Masoiι-MÄmax durch das Bremssystem 22 aufgebracht werden. Dann wird Betriebsmodus 4 angefahren.If the deceleration power increases to values above the maximum regeneration torque characteristic curve M Am a x (depending on the vehicle speed v), the excess torque M Aüber = Ma so iι-M Ämax must be applied by the brake system 22. Then operating mode 4 is started.
Die Aggregatsteuerung 42 gibt die SteuergrößenThe unit control 42 outputs the control variables
(Signale 34; Soll-Moment und Soll-Drehzahl) für die elektrische Maschine 16 vor. Hierbei wird durch die(Signals 34; target torque and target speed) for the electric machine 16. Here, the
Aggregatesteuerung 42 eine kennfeidbasierte Auswahl der Steuergrößen in Abhängigkeit des Soll-Momentes MAsoιι und der Fahrzeuggeschwindigkeit v ausgewählt. Die Steuerkennfelder sind hierbei so ausgelegt, dass für ein gefordertes Soll-Moment MAson und die aktuelle Fahrzeuggeschwindigkeit v der Generatorstrom Ig der elektrischen Maschine 16 maximal ist.Unit control 42 selected a characteristic-based selection of the control variables as a function of the target torque M Aso ιι and the vehicle speed v. The control characteristic diagrams are designed in such a way that the generator current I g of the electrical machine 16 is maximum for a required target torque M Aso n and the current vehicle speed v.
Die Aggregatsteuerung 42 berücksichtigt ferner eine Kennlinie für das Maximalmoment, wobei die maximale Regenerations-Momentkennlinie sich aus der BeziehungThe unit control 42 also takes into account a characteristic curve for the maximum torque, the maximum regeneration torque characteristic curve being derived from the relationship
MMaxReg ( vFzg ) = min ( MMaxGen ( VFzg ) , MmaxLad ( VF2;g ) ) ergibt. Hierbei stellt MMaxGen(v) die maximale Momentenkennlinie der elektrischen Maschine 16 'dar und Max ad(v) die Momente, bei denen der maximale Batterieladestrom IBat erzeugt werden kann. Es kann auch eine minimale Grenzmomentkennlinie MMinReg(v) berücksichtigt werden. Diese minimale Grenzmomentkennlinie grenzt die Betriebsmodi 2 und 3 voneinander ab. Hierdurch ergibt sich eine Grenzlinie zwischen den Betriebsmodi, die einen aktiven Eintrag elektrischer Leistung in das Bordnetz ermöglichen, und solchen, die das Bordnetz mit elektrischer Leistung belasten.M MaxReg (v Fzg ) = min (M MaxGe n (V Fzg ), M maxLad (V F2; g )) results. M MaxGen (v) represents the maximum torque characteristic of the electrical machine 16 ' and M ax ad (v) the moments at which the maximum battery charging current I Bat can be generated. A minimum limiting torque characteristic M M i nRe g (v) can also be taken into account. This minimal limit torque characteristic delimits operating modes 2 and 3 from each other. This results in a boundary line between the operating modes that enable an active entry of electrical power into the electrical system and those that load the electrical system with electrical power.
, Die Steuerkennfelder und die Maximal omentenkennlinie der Aggregatsteuerung 42 können anhand bekannter Parameter des Hybridantriebes 10 vorab ermittelt und/oder berechnet werden .und in entsprechenden Speichermodulen innerhalb des Regenerationsstrategieblockes 32 abgelegt sein.The control characteristic diagrams and the maximum torque characteristic curve of the unit control 42 can be determined and / or calculated in advance on the basis of known parameters of the hybrid drive 10, and can be stored in corresponding memory modules within the regeneration strategy block 32.
Die Steuerkennfelder - und Maximal omentenkennlinien müssen hierbei für jede der möglichen zulässigen Übersetzungsverhältnisse i des Getriebes 14 bestimmt und abgespeichert sein. Die Auswahl erfolgt dann anhand des tatsächlichen Übersetzungsverhältnisses i des Getriebes 14, wobei hierauf durch die Schaltlogik 40 Ei'nfluss genommen werden kann.The control characteristic diagrams and maximum torque characteristic curves must be determined and stored for each of the possible permissible transmission ratios i of the transmission 14. The selection is then based on the actual transmission ratio i of the transmission 14, it being then nfluss taken by the switching logic 40 Ei '.
Die Schaltlogik 40 kann bewirken, ' dass durch Gangwechsel der generatorische Wirkungsgrad der elek- frischen Maschine 16 verbessert werden kann, wenn sich diese im generatorischen Betrieb befindet und mit dem Getriebe 14 wirkverbunden, ist. Die für regenerative Bremsvorgänge optimalen Übersetzungen, beispielsweise Soll-Gänge, sind in einem Schaltkennfeld abgelegt, das als Parameter das Soll- Ausgangsmoment MAsoιι und die aktuelle Fahrzeug- geschwindigkeit v nutzt. Diese Schaltkennfelder sind ebenfalls in Speichermodulen der Regenerationsstrategieblocks 32 abgelegt.The switching logic 40 can cause 'that speed change by the regenerative efficiency of the engine can be improved electro- fresh 16 when it is in the regenerative mode, and operatively connected to the transmission 14, is. The gear ratios that are optimal for regenerative braking processes, for example target gears, are stored in a shift map that uses the target output torque M Aso ιι and the current vehicle speed v as parameters. These switching maps are also stored in memory modules of the regeneration strategy blocks 32.
Das Schaltkennfeld wird für alle Betriebspunkte, die mit mehreren Gängen oder mehreren Schaltstufen dargestellt werden können, unter Zuhilfenahme einer Optimierung ermittelt. Hierzu kann beispielsweise der Generatorstrom Ig mittels der Steuerkennfelder der Aggregatesteuerung 42 für jede zulässige Übersetzung berechnet werden und dann diejenige Übersetzung als wirkungsgradoptimal abgelegt werden, bei der der maximale Generatorstrom Ig realisierbar ist.The shift map is determined for all operating points that can be represented with several gears or several gear stages with the help of an optimization. For this purpose, for example, the generator current I g can be calculated for each permissible transmission ratio by means of the control characteristics of the unit control 42, and the transmission ratio at which the maximum generator current I g can be realized can be stored as optimum efficiency.
Ist in der übergeordneten Fahrzeugsteuerung ein Schaltprogramm für das Antreiben hinterlegt, so ist ein Abgleich der aktuellen Soll-Übersetzung des Getriebes 14 für das regenerative Bremsen mit der Soll-Übersetzung des Getriebes 14 für den Antriebsfall bei einer Konstantfahrt mit der aktuellen Fahr- Zeuggeschwindigkeit v vorzunehmen. So kann vorgesehen sein, nur eine Gangstufe Differenz zwischen den beiden Soll-Übersetzungen zuzulassen. Hierdurch wird verhindert, dass ein unnötig hoher Gangwechselaufwand beim Umschalten vom Bremsbetrieb in den Antriebs- betrieb des Fahrzeuges erforderlich ist. Liegt das Soll-Verzögerungsmoment an der Antriebsachse unter einem vorgebbaren Schwellenwert und/oder ist ein Gradient des Soll-Verzögerungsmomentes positiv, das heißt, eine Betätigung des Bremspedals wird zurückgenommen, wird beim regenerativen Bremsen auf die Soll-Übersetzung des Getriebes 14 zum Antreiben umgeschaltet. Durch den positiven Gradienten des Verzögerungsmomentes wird angezeigt, dass durch den Fahrer oder einen Fahrautomaten wieder ein Vortrieb des Fahrzeuges angefordert wird.If a shift program for driving is stored in the higher-level vehicle control system, the current target gear ratio of the transmission 14 for regenerative braking must be compared with the target gear ratio of the transmission 14 for the drive case during constant travel at the current vehicle speed v , It can be provided that only one gear step difference between the two target gear ratios is allowed. This prevents an unnecessarily high gear change effort when switching from braking to drive operation of the vehicle. If the target deceleration torque on the drive axle is below a predeterminable threshold value and / or if a gradient of the target deceleration torque is positive, that is to say that an actuation of the brake pedal is withdrawn, a switch is made to the target gear ratio of the transmission 14 for driving during regenerative braking. The positive gradient of the deceleration torque indicates that the driver or a driving machine requests driving of the vehicle again.
Der fahrzeugspezifische Parameter- .beziehungsweise Strategieblock 36 enthält fahrzeug- und antriebs- strangspezifische Informationen, wie beispielsweise die Soll-Kühlwassertemperatur TKühisoiι oder den maximalen Batterieladestrom IBatMaχ- Ferner können zusätzliche, fahrzeugspezifische Entscheidungskriterien für die Auswahl der Betriebsmodi durch den Bremsmodulselektor 38 vorgehalten sein.The vehicle-specific parameter or strategy block 36 contains vehicle and drive train-specific information, such as, for example, the desired cooling water temperature T K ühis o iι or the maximum battery charging current I Bat M a a . Furthermore, additional, vehicle-specific decision criteria for the selection of the operating modes can be carried out the brake module selector 38 be provided.
Figur 2 zeigt schematisch einen Hybridantrieb 10 in einer konkreten Ausführungsform, anhand der die Umsetzung der Bremsenergieregenerationsstrategie verdeutlicht werden soll. Bei dem hier dargestellten Hybridantrieb 10 handelt es sich um einen so genannten leistungsverzweigenden Dual-E-Antrieb . Der Hybridantrieb 10 umfasst die Verbrennungskraftmaschine 12, die erste elektrische Maschine 16 sowie eine zweite elektrische Maschine 16'. Eine Kurbel- welle 44 der Verbrennungskraftmaschine 12 und Antriebswellen 46 beziehungsweise 48 der elektrischen Maschinen 16, 16' sind mit dem Getriebe 14 wirkver- bunden . Die Kurbelwelle 14 ist hierbei noch mit einem Zweimassenschwungrad 50 sowie einem Freilauf 52 gekoppelt.FIG. 2 schematically shows a hybrid drive 10 in a specific embodiment, on the basis of which the implementation of the braking energy regeneration strategy is to be clarified. The hybrid drive 10 shown here is a so-called power-branching dual-E drive. The hybrid drive 10 comprises the internal combustion engine 12, the first electrical machine 16 and a second electrical machine 16 '. A crankshaft 44 of the internal combustion engine 12 and drive shafts 46 and 48 of the electrical machines 16, 16 'are operatively connected to the transmission 14. bound. The crankshaft 14 is also coupled to a dual-mass flywheel 50 and a freewheel 52.
Die Antriebswelle 46 der elektrischen Maschine 16 ist mit einem ersten Planetengetriebe 54 und die Antriebswelle 48 der elektrischen Maschine 16' mit einem zweiten Planetengetriebe 56 verbunden. Ein Hohlrad des Planetengetriebes 54 ist mit einem Schaltgetriebe 58 und ein Hohlrad des Planetengetriebes 56 mit einem Schaltgetriebe 60 verbunden. Die Schaltgetriebe 58 und 60 wiederum sind mit einer Abtriebswelle 62 der Getriebeanordnung 14 wirkverbunden. Die Abtriebswelle 62 ist über ein Achs- getriebe 64 sowie dem Bremssystem 22 mit der Antriebsanordnung 24 wirkverbunden.The drive shaft 46 of the electrical machine 16 is connected to a first planetary gear 54 and the drive shaft 48 of the electrical machine 16 ′ to a second planetary gear 56. A ring gear of the planetary gear 54 is connected to a manual transmission 58 and a ring gear of the planetary gear 56 is connected to a manual transmission 60. The manual transmissions 58 and 60 are in turn operatively connected to an output shaft 62 of the transmission arrangement 14. The output shaft 62 is operatively connected to the drive arrangement 24 via an axle gear 64 and the brake system 22.
Aufbau und Wirkungsweise eines derartigen Hybridantriebes 10 sind allgemein bekannt, so dass im' Rah- men der vorliegenden Beschreibung hierauf nicht näher eingegangen wird. Insbesondere kann durch gezielte Ansteuerung der Verbrennungskraftmaschine 12 und/oder der elektrischen Maschinen 16, 16' von diesen ein unterschiedliches Antriebsmoment, auf die Abtriebs- welle 62 abgefordert werden. Somit lassen sich verschiedene Betriebsmodi des Hybridantriebes 10 einstellen. Die Schaltgetriebe 58 und 60 gestatten durch Betätigen eines Schaltgebers in bekannter Weise das Einlegen unterschiedlicher Gänge, die hier mit den Gängen 1, 2, 3, 4, 5 und 6 sowie 'mit einem Rückwärtsgang R bezeichnet sind. Die elektrischen Maschinen 16,16' können auch jeweils im Generatorbetrieb be- trieben werden und dienen beispielsweise der Bereitstellung einer Bordnetzspannung des Kraftfahrzeuges und dem Aufladen der Kraftfahrzeugbatterie 18. Den elektrischen Maschinen 16 sind jeweils Bremseinrich- tungen 66 und 68 zugeordnet, mit denen Rotoren der elektrischen Maschinen 16 mechanisch gebremst werden können.Design and operation of such a hybrid drive 10 are generally known, so that in the 'men framework of the present description will not be discussed in detail. In particular, through a targeted control of the internal combustion engine 12 and / or the electrical machines 16, 16 ', a different drive torque can be requested from them on the output shaft 62. Different operating modes of the hybrid drive 10 can thus be set. The gearbox 58 and 60 permit by operating a switch actuator in a known manner, the insertion of different transitions, which are designated here with the gears 1, 2, 3, 4, 5 and 6, and 'with a reverse gear R. The electrical machines 16, 16 'can also each operate in generator mode. are driven and serve, for example, to provide an on-board electrical system voltage of the motor vehicle and to charge the motor vehicle battery 18. The electrical machines 16 are each assigned braking devices 66 and 68 with which the rotors of the electrical machines 16 can be mechanically braked.
Mittels des Bremssystems 22 kann ein mechanisches Bremsen des Antriebsstranges 24 erfolgen. Bei Standardantrieben für Fahrzeugen wird an einer Vorderachse üblicherweise immer mechanisch gebremst, so dass nur ein Verzögerungsanteil der von sich im Generatorbetrieb befindenden elektrischen Maschine 16 aufgebrachten Verzögerungsmoment an der Hinterachse ganz oder teilweise regeneriert und in das Bordnetz des Fahrzeuges eingespeist werden kann.The braking system 22 can be used to mechanically brake the drive train 24. In standard drives for vehicles, braking is usually always carried out mechanically on a front axle, so that only a deceleration component of the deceleration torque applied by the electrical machine 16 in generator operation on the rear axle can be regenerated in whole or in part and fed into the vehicle electrical system.
Bezogen auf die anhand Figur 1 erläuterten allgemei- nen Zusammenhänge für die erfindungsgemäße Bremsenergieregeneration ergeben sich folgende Modifikationen.The following modifications result in relation to the general relationships for the braking energy regeneration according to the invention explained with reference to FIG. 1.
Die Schnittstelle 28 erhält zusätzlich Signale 30, die den aktuellen Ist-Momenten der elektrischen Maschinen 16 und 16' entsprechen. Die möglichen Betriebsmodi, die durch den Bremsmodulselektor 38 ausgewählt werden, gelten auch für diese konkrete Ausgestaltung des Hybridantriebes 10.The interface 28 additionally receives signals 30 which correspond to the current actual moments of the electrical machines 16 and 16 '. The possible operating modes that are selected by the brake module selector 38 also apply to this specific embodiment of the hybrid drive 10.
Die Schaltlogik 40 kann Einfluss auf die Schaltstufe des Getriebes 14 nehmen. Bei der konkreten Ausführungsvariante gemäß Figur 2 sind insgesamt fünf Fahr- stufen möglich. Figur 4 zeigt ein Schaltkennfeld für das Getriebe 14, wobei die Schaltstufen 2, 3 und 4 bezeichnet sind, welche für das regenerative Bremsen mit den entsprechenden Betriebspunkten, die abhängig von dem Ausgangssollmoment MA und der Fahrzeuggeschwindigkeit v sind, geeignet sind.The shift logic 40 can influence the shift stage of the transmission 14. In the specific embodiment variant according to FIG. 2, a total of five driving levels possible. FIG. 4 shows a shift map for the transmission 14, the shift stages 2, 3 and 4 being designated, which are suitable for regenerative braking with the corresponding operating points which are dependent on the target output torque M A and the vehicle speed v.
Die Aggregatsteuerung 42, die die Steuergrößen für die elektrische Maschine 16 vorgibt, arbeitet mit dem beispielsweise in Figur 3 dargestellten Steuerkennfeld. Dieses Steuerkennfeld der elektrischen Maschine 16 ist bezogen auf die Fahrstufe 2 des Getriebes 14. In dem Steuerkennfeld sind die Grenzmomentenkenn- linien eingetragen, die für das Maximalmoment MMaXRegi und das Minimalmoment MMinRegι gelten. Abhängig von dem Getriebeausgangswellensollmoment MA und der Fahrzeuggeschwindigkeit v- ergibt sich aus dem Steuerkennfeld ein Sollmoment Mι6 für die elektrische Maschine 16.The unit control 42, which specifies the control variables for the electrical machine 16, works with the control map shown, for example, in FIG. 3. This control map of the electrical machine 16 is related to the drive stage 2 of the transmission 14. The limit torque curves which apply to the maximum torque M MaXRe gi and the minimum torque M M i nReg ι are entered in the control map . Depending on the gearbox output shaft setpoint torque M A and the vehicle speed v-, a setpoint torque Mι 6 results for the electric machine 16 from the control map.
Da gemäß dem Ausführungsbeispiel in Figur 2 der Hybridantrieb 10 über zwei elektrische Maschinen 16, 16' verfügt (die Abbildung in Figur 3 bezieht sich nur auf das Steuerkennfeld der einen elektrischen Maschine 16) , ergeben sich absolute maximale Grenz- momentkennlinien und absolute minimale Grenzmomentkennlinien, ab der die elektrischen Maschinen 16 und 16' einen effektiven Eintrag ins Bordnetz leisten können als Summe von MMaxl6 und MMaxi6' beziehungsweise Mini6 und MMinl6..Since, according to the exemplary embodiment in FIG. 2, the hybrid drive 10 has two electrical machines 16, 16 '(the illustration in FIG. 3 relates only to the control map of the one electric machine 16), absolute maximum limit torque characteristics and absolute minimum limit torque characteristics result, From which the electrical machines 16 and 16 'can make an effective entry into the electrical system as a sum of M Maxl6 and M Max i 6 ' or M ini6 and M Minl6 ..
Im Bremsregenerationsfall verfügt der Hybridantrieb 10 gemäß Figur 2 über einen kontinuierlichen und einen diskreten Freiheitsgrad. Der kontinuierliche Freiheitsgrad richtet sich der Momentenaufteilung auf die elektrischen Maschinen 16 beziehungsweise 16'. Der diskrete Freiheitsgrad richtet sich nach der Wahl der Fahrstufe des Getriebes 14. Durch die Vorgabe des Soll-Momentes Mι6 der elektrischen Maschine 16 über das Steuerkennfeld gemäß Figur 3 und eine Soll-Fahrstufe durch die Schaltlogik 40 gemäß dem Schaltkennfeld gemäß Figur 4 sind die Betriebspunkte für den Bremsregenerationsfall festgelegt.In the case of brake regeneration, the hybrid drive 10 according to FIG. 2 has a continuous and a discrete degree of freedom. The continuous degree of freedom depends on the torque distribution between the electrical machines 16 and 16 '. The discrete degree of freedom depends on the selection of the drive level of the transmission 14. By specifying the desired torque M 6 of the electrical machine 16 via the control map according to FIG. 3 and a desired drive level by the switching logic 40 according to the shift map according to FIG Operating points for the brake regeneration case determined.
Der fahrzeugspezifische Strategieblock 36 für den Hybridantrieb 10 gemäß dem Ausführungsbeispiel in Figur 2 enthält beispielsweise als optimale Kühlmit- teltemperatur den Wert TKuhi = 90 °C und für den maximalen Batteriestrom den Wert IBat = 500 A.The vehicle-specific strategy block 36 for the hybrid drive 10 according to the exemplary embodiment in FIG. 2 contains, for example, the value T K uhi = 90 ° C. as the optimal coolant temperature and the value I Ba t = 500 A for the maximum battery current.
Ferner werden die Ist—Momente der elektrischen Maschinen 16, 16' mit den Soll-Momenten Miß, iß- ver- glichen. Liegt das Ist—Moment unter den Soll-Werten, wird davon ausgegangen, dass das Moment der elektrischen Maschinen 16, 16 ' selbsttätig begrenzt wurde, beispielsweise durch die die elektrischen Maschinen 16, 16' ansteuernden Pulswechselrichter. Dies kann der Fall sein, wenn eine Überspannung im Bordnetz vorliegt. In diesem Fall wird das Sollgetriebeaus- gangsmoment MA durch das Ist-Moment der elektrischen Maschinen 16 ersetzt und dieses reduzierte Ist-Moment über das Motorsteuergerät 26 an das elektronisch betätigbare Bremssystein. 22 gemeldet. Liegt das Ist- Moment der elektrischen Maschinen 16 und 16' über den Soll-Wertvorgaben oder das Ist-Moment den Wert 0, so wird auf • einen Fehler erkannt und der interne Fehler- flag FRekFiag wird auf 1 gesetzt, so dass durch den Regenerationsstrategieblock 32 die Betriebsmodi 1 bis 4 nicht vorgegeben werden können. Furthermore, the actual torques of the electrical machines 16, 16 'are compared with the target torques Mi ß , i ß . If the actual torque is below the target values, it is assumed that the torque of the electrical machines 16, 16 'has been automatically limited, for example by the pulse-controlled inverter controlling the electrical machines 16, 16'. This can be the case if there is an overvoltage in the vehicle electrical system. In this case, the target transmission output torque M A is replaced by the actual torque of the electrical machines 16 and this reduced actual torque via the engine control unit 26 to the electronically actuated brake system. 22 reported. If the actual torque of the electrical machines 16 and 16 'is above the target value or the actual torque is 0, then an error is recognized and the internal error flag FRek F iag is set to 1, so that the operating modes 1 to 4 cannot be specified by the regeneration strategy block 32.

Claims

Patentansprüche claims
1. Verfahren zur Steuerung eines Hybridantriebes eines Fahrzeuges, wobei der Hybridantrieb als Antriebsmaschinen eine Verbrennungskraftmaschine und wenigstens eine elektrische Maschine umfasst und die Abtriebswellen der Antriebsmaschinen mit einem Antriebsstrang des Fahrzeuges wirkverbindbar sind, dadurch gekennzeichnet, dass bei einer negativen Momentenanforderung (Bremsen) an den Antriebsstrang des Fahrzeuges eine kennfeidbasierte Ansteuerung der wenigstens einen elektrischen Maschine (16) im generatorischen Betriebsmodus erfolgt.1. A method for controlling a hybrid drive of a vehicle, wherein the hybrid drive comprises an internal combustion engine and at least one electric machine as drive machines and the output shafts of the drive machines can be operatively connected to a drive train of the vehicle, characterized in that in the event of a negative torque request (braking) to the drive train the vehicle is controlled by the Kennfeid-based control of the at least one electrical machine (16) in the generator operating mode.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Ansteuerung der wenigstens einen elektrischen Maschine (16) in Abhängigkeit von einem Soll- Bremsmoment (MAΞoιι) und einer Fahrzeuggeschwindigkeit2. The method according to claim 1, characterized in that the control of the at least one electrical machine (16) in dependence on a target braking torque (M AΞo ιι) and a vehicle speed
(v) erfolgt.(tracked.
3. -Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ansteuerung von einem Regenerationsstrategieblock (32) erfolgt, der über eine Schnittstelle (28) die erforderlichen Signale (30) erhält und der über Funktionsmodule (36, 38, 40, 42)' verfügt, die Steuersignale (34) für die wenigstens eine elektrische Maschine (16) generieren. 3. Method according to one of the preceding claims, characterized in that the activation is carried out by a regeneration strategy block (32) which receives the required signals (30) via an interface (28) and which is via function modules (36, 38, 40, 42 ) ' , which generate control signals (34) for the at least one electrical machine (16).
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass ein Bremsmodulselektor (38) in Abhängigkeit von den an der Schnittstelle (28) anliegenden Signalen (30) wahlweise unterschiedliche Betriebsmodi für das Bremsen aktiviert.4. The method according to claim 3, characterized in that a brake module selector (38) depending on the signals present at the interface (28) optionally activates different operating modes for braking.
5. Verfahren nach -einen der vorgehenden Ansprüche, dadurch gekennzeichnet, dass als Betriebsmodi rein regeneratives Bremsen, kombiniertes regeneratives und mechanisches Bremsen und rein mechanisches Bremsen zur Verfügen stehen.5. The method according to one of the preceding claims, characterized in that purely regenerative braking, combined regenerative and mechanical braking and purely mechanical braking are available as operating modes.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Aggregatesteuerung (42) ein Soll-Moment (Miβ) und/oder eine Soll-Drehzahl (nie) für die wenigstens . eine elektrische Maschine (16) als Steuersignale (34) vorgibt.6. The method according to any one of the preceding claims, characterized in that a unit control (42) a target torque (Miβ) and / or a target speed (never) for the at least. an electrical machine (16) specifies as control signals (34).
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Steuersignale (34) aus einem Steuerkennfeld ausgelesen werden.7. The method according to claim 6, characterized in that the control signals (34) are read from a control map.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Steuerkennfelder (34) als Parameter einen maximalen Generatorstrom (IG) der elektrischen Maschine (16) berücksichtigen.8. The method according to claim 7, characterized in that the control maps (34) take into account as parameters a maximum generator current (I G ) of the electrical machine (16).
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuerkennfeider von Grenzkennlinien eingegrenzt sind, die den Betriebsbereich der Bremsenergieregeneration begrenzen. 9. The method according to any one of the preceding claims, characterized in that the control indicators are delimited by limit characteristics which limit the operating range of the braking energy regeneration.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass eine maximale Regenerationskennlinie einen Übergang vom regenerativen Betrieb zum kombinierten regenerativen und mechanischen Betrieb definiert.10. The method according to claim 9, characterized in that a maximum regeneration characteristic defines a transition from regenerative operation to combined regenerative and mechanical operation.
11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass eine minimale Regenerationskennlinie einen Übergang definiert, bei dem ein aktiver Eintrag elektrischer Leistung in ein Bordnetz möglich ist oder das Bordnetz mit elektrischer Leistung belastet ist .11. The method according to claim 9, characterized in that a minimum regeneration characteristic defines a transition in which an active entry of electrical power into an electrical system is possible or the electrical system is loaded with electrical power.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Schaltlogik (40) eine Schaltstufe eines Getriebes (14) auswählt, mit der ein optimierter generatorischer Wirkungsgrad der elektrischen Maschine (16) erzielbar ist.12. The method according to any one of the preceding claims, characterized in that a switching logic (40) selects a gear stage of a transmission (14) with which an optimized generator efficiency of the electrical machine (16) can be achieved.
13. Verfahren nach Anspruch 12, dadurch gekennzeich- net, dass die Schaltlogik (40) auf Schaltkennfelder zurückgreift .13. The method according to claim 12, characterized in that the switching logic (40) uses switching maps.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schaltlogik (40) von einer übergeordneten Fahrzeugsteuerung vorgegebene Ist-Schaltstufen berücksichtigt, insbesondere bei Abweichungen von mehr als einer Schaltstufe, die Bremsregenerationsschaltstufen nachführt.14. The method according to any one of the preceding claims, characterized in that the shift logic (40) takes into account actual shift stages specified by a higher-level vehicle control, in particular in the event of deviations from more than one shift stage, which tracks the brake regeneration shift stages.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schaltlogik (40) einen Gradienten des Soll-Verzögerungsmomentes berücksichtigt .15. The method according to any one of the preceding claims, characterized in that the switching logic (40) takes into account a gradient of the target deceleration torque.
16. Verfahren nach einem der vorhergehenden Ansprü- ' 5 ehe, dadurch gekennzeichnet, dass die Steuerkennfelder und/oder die Schaltkennfelder anhand konkreter Ist-Parameter des Hybridantriebes (10) berechnet und/oder ermittelt werden.16. The method according to any one of the preceding claims, characterized in that the control maps and / or the shift maps are calculated and / or ascertained on the basis of concrete actual parameters of the hybrid drive (10).
10 17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuerkennfelder und Schaltkennfelder in einem Steuergerät (26) im Fahrzeug abgelegt sind, auf das der Regenerationsstrategieblock (32) Zugriff hat.17. The method according to any one of the preceding claims, characterized in that the control maps and shift maps are stored in a control unit (26) in the vehicle, to which the regeneration strategy block (32) has access.
1515
20 20
EP02776661A 2002-01-24 2002-09-07 Method for controlling a hybrid drive of a vehicle Expired - Lifetime EP1485266B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10202531 2002-01-24
DE10202531A DE10202531A1 (en) 2002-01-24 2002-01-24 Method for controlling a hybrid drive of a vehicle
PCT/DE2002/003342 WO2003062004A1 (en) 2002-01-24 2002-09-07 Method for controlling a hybrid drive of a vehicle

Publications (2)

Publication Number Publication Date
EP1485266A1 true EP1485266A1 (en) 2004-12-15
EP1485266B1 EP1485266B1 (en) 2006-05-24

Family

ID=7712888

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02776661A Expired - Lifetime EP1485266B1 (en) 2002-01-24 2002-09-07 Method for controlling a hybrid drive of a vehicle

Country Status (5)

Country Link
US (1) US7363122B2 (en)
EP (1) EP1485266B1 (en)
JP (1) JP3914920B2 (en)
DE (2) DE10202531A1 (en)
WO (1) WO2003062004A1 (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005040780B4 (en) * 2005-08-29 2018-11-22 Robert Bosch Gmbh Method and engine control unit for increasing the availability of motor vehicle engines
DE102005040784A1 (en) 2005-08-29 2007-03-08 Robert Bosch Gmbh Method for controlling a vehicle drive unit
DE102005040783A1 (en) 2005-08-29 2007-03-08 Robert Bosch Gmbh Method for controlling a vehicle drive unit
DE102005040786A1 (en) 2005-08-29 2007-03-01 Robert Bosch Gmbh Drive unit e.g. petrol engine, controlling method for motor vehicle, involves transmitting message related to possible torque to control engine that is assigned to one control device, when provided possibility has positive result
DE102005041663A1 (en) * 2005-09-02 2007-03-15 Robert Bosch Gmbh Moment monitoring for a hybrid drive
DE102005047092A1 (en) * 2005-09-30 2007-04-05 Robert Bosch Gmbh Transmission channel, has input and output, where channel provides correlation between input parameter and output parameter, and output parameter is linear interpolated between lower and upper ranges of area of characteristics diagram
US11345236B2 (en) 2005-11-17 2022-05-31 Invently Automotive Inc. Electric vehicle power management system
US11390165B2 (en) 2005-11-17 2022-07-19 Invently Automotive Inc. Electric vehicle power management system
US11267338B2 (en) 2005-11-17 2022-03-08 Invently Automotive Inc. Electric vehicle power management system
US11230190B2 (en) 2005-11-17 2022-01-25 Invently Automotive Inc. Electric vehicle power management system
US11254211B2 (en) 2005-11-17 2022-02-22 Invently Automotive Inc. Electric vehicle power management system
US10882399B2 (en) 2005-11-17 2021-01-05 Invently Automotive Inc. Electric vehicle power management system
US11180025B2 (en) 2005-11-17 2021-11-23 Invently Automotive Inc. Electric vehicle power management system
US11247564B2 (en) 2005-11-17 2022-02-15 Invently Automotive Inc. Electric vehicle power management system
US11279233B2 (en) 2005-11-17 2022-03-22 Invently Automotive Inc. Electric vehicle power management system
US11214144B2 (en) 2005-11-17 2022-01-04 Invently Automotive Inc. Electric vehicle power management system
US11186173B2 (en) 2005-11-17 2021-11-30 Invently Automotive Inc. Electric vehicle power management system
US11370302B2 (en) 2005-11-17 2022-06-28 Invently Automotive Inc. Electric vehicle power management system
DE102005062868A1 (en) * 2005-12-29 2007-07-05 Robert Bosch Gmbh Drive system`s e.g. hybrid drive, instantaneous distribution monitoring method, involves generating resultant torque after torque distribution, where resultant torque is continuously compared with torque before torque distribution
JP4685655B2 (en) * 2006-02-15 2011-05-18 トヨタ自動車株式会社 Control device for electric vehicle
DE102006012859A1 (en) 2006-03-21 2007-09-27 Robert Bosch Gmbh Braking strategy for a hybrid drive of a vehicle
US8010263B2 (en) * 2006-03-22 2011-08-30 GM Global Technology Operations LLC Method and apparatus for multivariate active driveline damping
US7464780B2 (en) * 2006-07-20 2008-12-16 Ford Global Technologies, Llc System and method for recovering regenerative power in a vehicle, and vehicle using the same
DE102006041155B4 (en) 2006-09-01 2021-09-02 Volkswagen Ag Method for shift control of a drive train of a motor vehicle
DE102006049297B4 (en) * 2006-10-19 2020-09-03 Man Truck & Bus Se Method and device for regulating a motor vehicle drive
JP2008201391A (en) * 2007-02-23 2008-09-04 Tcm Corp Forward/backward movement switching device of electric drive type cargo handling vehicle
CN101925497B (en) * 2008-02-08 2015-03-25 沃尔沃技术公司 Method for operating hybrid vehicle and hybrid vehicle
DE102009030816A1 (en) 2009-05-19 2010-11-25 Volkswagen Ag Device and method for controlling a driving dynamics
DE102010010914B4 (en) * 2010-03-10 2016-03-17 Audi Ag Drive device for a motor vehicle
DE102010041853A1 (en) * 2010-10-01 2012-04-05 Continental Teves Ag & Co. Ohg Method for controlling a motor vehicle brake system
DE102011121608A1 (en) 2011-12-17 2013-06-20 Volkswagen Aktiengesellschaft Optimized operating point determination method for e.g. permanent magnet-energized synchronous machine of electric car, involves determining optimized operating point in dependence of modified operating point
EP2832608B1 (en) * 2012-03-26 2019-10-09 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle drive control device
TWI495597B (en) * 2012-05-16 2015-08-11 Cheng Ta Chung Oil and electricity hybrid system
JP2014058286A (en) * 2012-09-19 2014-04-03 Toyota Motor Corp Control unit of hybrid vehicle
WO2014080414A1 (en) * 2012-11-26 2014-05-30 Khan Sarfaraz Mehboob Gear box of generator
DE102013204200A1 (en) * 2013-03-12 2014-09-18 Robert Bosch Gmbh Electric machine in a motor vehicle with speed signal input
US9193339B2 (en) * 2013-11-22 2015-11-24 Arvinmeritor Technology, Llc Vehicle brake system and method of control
US10344692B2 (en) 2015-01-12 2019-07-09 Tula Technology, Inc. Adaptive torque mitigation by micro-hybrid system
CN110043377B (en) 2015-01-12 2021-10-08 图拉技术公司 Vehicle and method of operating a vehicle
US10060368B2 (en) 2015-01-12 2018-08-28 Tula Technology, Inc. Engine torque smoothing
US10196995B2 (en) * 2015-01-12 2019-02-05 Tula Technology, Inc. Engine torque smoothing
US10578037B2 (en) 2015-01-12 2020-03-03 Tula Technology, Inc. Adaptive torque mitigation by micro-hybrid system
US10954877B2 (en) 2017-03-13 2021-03-23 Tula Technology, Inc. Adaptive torque mitigation by micro-hybrid system
DE102017208024B4 (en) * 2017-05-12 2019-07-25 Audi Ag Method for operating a power supply device of a vehicle electrical system for a motor vehicle
KR101973870B1 (en) * 2017-12-18 2019-04-29 현대트랜시스 주식회사 Control apparatus and control method for vehicle
DE102018219211A1 (en) 2018-11-12 2020-05-14 Audi Ag Method for operating a motor vehicle with hybrid drive and motor vehicle with hybrid drive
DE102018219210A1 (en) 2018-11-12 2020-05-14 Audi Ag Method for operating a motor vehicle with hybrid drive and motor vehicle with hybrid drive
DE102018219208A1 (en) 2018-11-12 2020-05-14 Audi Ag Method for operating a motor vehicle and motor vehicle
DE102020207169A1 (en) * 2020-06-08 2021-12-09 Dana Belgium N.V. Two-motor electric drive and control method
US11555461B2 (en) 2020-10-20 2023-01-17 Tula Technology, Inc. Noise, vibration and harshness reduction in a skip fire engine control system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH099407A (en) 1995-06-16 1997-01-10 Aisin Aw Co Ltd Controller of drive power for vehicle
US5720690A (en) * 1995-06-16 1998-02-24 Aisin Aw Co., Ltd. Shift control system for controlling a transmission of a vehicle having an engine and a motor generator drive source
JP3322084B2 (en) 1995-08-07 2002-09-09 トヨタ自動車株式会社 Electric vehicle braking system
DE19810656A1 (en) * 1998-03-12 1999-09-16 Itt Mfg Enterprises Inc Braking control method for electric or hybrid vehicles
JP3680734B2 (en) 1999-02-08 2005-08-10 トヨタ自動車株式会社 Vehicle braked by electric motor torque and control method thereof
DE19961435A1 (en) * 1999-12-20 2001-06-21 Volkswagen Ag Over-voltage protection device for dual-voltage motor vehicle on-board supply network, includes switching element in branch of electrical supply network, operating at high voltage level
JP2001359202A (en) 2000-06-13 2001-12-26 Nissan Diesel Motor Co Ltd Device for controlling braking of hybrid vehicle
GB2370130B (en) * 2000-10-11 2004-10-06 Ford Motor Co A control system for a hybrid electric vehicle
JP4032639B2 (en) * 2000-11-30 2008-01-16 トヨタ自動車株式会社 Vehicle regeneration control device
US6655484B2 (en) * 2000-12-02 2003-12-02 Ford Motor Company Hybrid powertrain having rotary electric machine, including engine-disconnect clutch, between internal combustion engine and transmission
DE10100525A1 (en) * 2001-01-08 2002-07-18 Bosch Gmbh Robert Method for controlling the starting torque and starting power of an internal combustion engine
FR2823030B1 (en) * 2001-01-31 2003-06-20 Valeo Equip Electr Moteur CONTROL METHOD FOR A MULTI-PHASE AND REVERSIBLE ROTATING ELECTRIC MACHINE FOR A MOTOR VEHICLE WITH A HEAT ENGINE
US6687581B2 (en) * 2001-02-07 2004-02-03 Nissan Motor Co., Ltd. Control device and control method for hybrid vehicle
US6735502B2 (en) * 2001-10-01 2004-05-11 Ford Global Technologies, Llc Control system and method for a parallel hybrid electric vehicle
US20030105562A1 (en) * 2001-11-30 2003-06-05 Industrial Technology Research Institute Power output control system for electric vehicle with hybrid fuel cell
US6629025B2 (en) * 2002-01-03 2003-09-30 General Motors Corporation Surge suppression control for a motor vehicle drivetrain
US6670788B2 (en) * 2002-04-17 2003-12-30 Visteon Global Technologies, Inc. Method and apparatus for maximizing hybrid vehicle energy management
US6838778B1 (en) * 2002-05-24 2005-01-04 Hamilton Sundstrand Corporation Integrated starter generator drive having selective torque converter and constant speed transmission for aircraft having a constant frequency electrical system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03062004A1 *

Also Published As

Publication number Publication date
WO2003062004A1 (en) 2003-07-31
US7363122B2 (en) 2008-04-22
US20050119805A1 (en) 2005-06-02
DE10202531A1 (en) 2003-08-07
JP3914920B2 (en) 2007-05-16
EP1485266B1 (en) 2006-05-24
DE50206941D1 (en) 2006-06-29
JP2005515114A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
EP1485266B1 (en) Method for controlling a hybrid drive of a vehicle
EP1472108B1 (en) Method for adjusting an operating point of a hybrid drive of a vehicle
EP2217480B1 (en) Method and device for controlling a creep mode of a vehicle comprising a hybrid drive
EP3377353A1 (en) Operation of a drive apparatus of a hybrid vehicle and hybrid vehicle
DE102015222690A1 (en) Controlling a drive device of a hybrid vehicle and hybrid vehicle
EP3377378A1 (en) Operating a drive device of a hybrid vehicle and hybrid vehicle
EP1755912B1 (en) Method for operating a hybrid motor vehicle
EP2190710A2 (en) Method for load point displacement during hybrid operation in a parallel hybrid vehicle
DE102007055828A1 (en) Method and device for operating a hybrid vehicle
WO2009077321A2 (en) Method and device for operating a hybrid drive of a vehicle
DE102005037713A1 (en) Drive train for a motor vehicle and method for operating a drive train
DE102010007634A1 (en) hybrid vehicle
EP1467886B1 (en) Method for controlling the hybrid drive of a vehicle
WO2012010615A1 (en) Method and device for operating a vehicle which comprises at least one electric machine
DE102010005532A1 (en) Method for determining a desired transmission gear for a hybrid vehicle
WO2003053733A1 (en) Method for setting a desired operating state of a hybrid drive of a vehicle
WO2012031695A1 (en) Method for controlling a drive system
WO2018162535A1 (en) Method for controlling a motor vehicle and motor vehicle
DE102011087122A1 (en) Method for controlling powertrain in electric car, involves adjusting ratio of rotational torques, provided by drive units for preset rotational torque, independent of power efficiency, applied for drive units, in one mode of operation
EP1575797B1 (en) Method for setting the operating point of a drivetrain
DE102007055824A1 (en) Method for operating hybrid drive of motor vehicle, involves providing parallel hybrid drive strand, internal combustion engine, electric motor and switching element that is arranged between internal combustion engine and electric motor
DE102011002890A1 (en) Method for controlling shifting of operation range of internal combustion engine and electric engine with different responding behaviors in hybrid driving mode in parallel-hybrid-drive train, involves controlling torque of electric engine
WO2009065689A2 (en) Method for splitting torque in a parallel hybrid vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040824

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT TR

17Q First examination report despatched

Effective date: 20050304

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50206941

Country of ref document: DE

Date of ref document: 20060629

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060920

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070227

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190923

Year of fee payment: 18

Ref country code: IT

Payment date: 20190920

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190924

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191125

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50206941

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200907