EP1484947A2 - Switch circuit arrangement for driving lamps - Google Patents
Switch circuit arrangement for driving lamps Download PDFInfo
- Publication number
- EP1484947A2 EP1484947A2 EP04009454A EP04009454A EP1484947A2 EP 1484947 A2 EP1484947 A2 EP 1484947A2 EP 04009454 A EP04009454 A EP 04009454A EP 04009454 A EP04009454 A EP 04009454A EP 1484947 A2 EP1484947 A2 EP 1484947A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- control
- bipolar transistor
- circuit
- field effect
- effect transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/26—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
- H05B41/28—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
- H05B41/282—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/26—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
- H05B41/28—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
- H05B41/282—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
- H05B41/2825—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
Definitions
- the present invention relates to a control circuit for the operation of at least one Lamp in an associated load circuit, in which the connections for the at least one Lamp are arranged with two switches in a half-bridge arrangement.
- FIG. 1 Such a control circuit known from the prior art is shown schematically in FIG. 1.
- the so-called intermediate circuit voltage U zw is present on the input side.
- This is a DC voltage that is usually generated from the mains voltage using circuits familiar to those skilled in the art.
- Two switches S1, S2 are arranged in series in a half-bridge arrangement and are controlled via a respective input circuit E1, E2, not shown.
- the connection point of the two switches is connected via a choke L to the lamp La, through which the lamp current I L flows during operation.
- the two coupling capacitors C K1 , C K2 complete the circuit.
- Alternative circuit structures are familiar to the person skilled in the art, but are not described in more detail below, since they are irrelevant for the implementation of the invention.
- the switches S1, S2 When used in the so-called medium voltage range, the switches S1, S2 must be designed to switch voltages between 400 and 1000 volts.
- the switching frequency is in the order of 40 to 50 kHz.
- the duty cycle of the circuit shown in Figure 1 is 50 percent.
- the network power to be switched is more than 100 watts.
- MOSFETs metal oxide semiconductor field effect transistors
- IGBTs insulated gate bipolar transistors
- the IGBTs have large transmission losses.
- components designed for such boundary conditions are cheaper because they require less chip area, but their poor dynamic switching behavior has a negative effect. Since the collector current cannot be switched off quickly enough, the switching overlaps with the collector-emitter voltage result in high switching losses.
- the present invention is therefore based on the object of a generic control circuit to develop in such a way that they operate at medium currents of approx. 1 to 10 amperes has low transmission losses, at the same time low costs and given controllability from microcontrollers or integrated control modules.
- the present invention is based on the knowledge that a fast Switching can be achieved when combined with a low voltage MOSFET a bipolar transistor is used.
- the MOSFET therefore only needs the small control voltage for the bipolar transistor and can therefore be designed small and cheap become.
- the bipolar transistor whose power loss is only linear with the one flowing through it When electricity is linked, it can be dimensioned at low cost for large currents. This is the advantage of the MOSFET - high dynamics and controllability from an integrated Circuit and that of the bipolar transistor - large, processable at an affordable price Performance - optimally linked.
- the second finding on which the invention is based is that such Control circuit can be started easily if part of the in the load circuit flowing energy is transferred to the input circuit of the respective switch. Since it is a bipolar transistor is essentially a current-controlled component, A corresponding control current must be made available to him at the base. To do this a primary winding of a transformer is formed in the load circuit, its secondary windings are arranged in the input circuit of each bipolar transistor and thus the base of the bipolar transistor supply with electricity. To reduce the conduction losses of the bipolar transistors it is preferred to dimension the transformer so that the base current is approx Makes up a fifth of the collector current. With a practical current gain of 20 the bipolar transistor is overdriven by a factor of 4. This results in low transmission losses. While driving the bipolar transistor as a result of the large required Control currents from an integrated circuit would not be possible, this is the case with the MOSFET an essentially voltage-controlled component is very possible.
- Cascode circuits with a bipolar transistor and a are from the prior art MOSFET transistor known, but which are used for completely different purposes: So is it is known from EP 0 753 987 D1, such a cascode circuit in which the bipolar transistors controlled by MOSFETS arranged in the emitter, for switching off to use a half-bridge arrangement when the lamp to be operated has aged.
- EP 0 753 987 D1 such a cascode circuit in which the bipolar transistors controlled by MOSFETS arranged in the emitter, for switching off to use a half-bridge arrangement when the lamp to be operated has aged.
- FIG. 4 there, is also a cascode circuit of this type used, but here lies a constant due to the different purpose Voltage at the base of the bipolar transistor 20 on.
- Figure 6 is also such a cascode circuit is shown, but in contrast to the present Invention, no defined magnetic reversal of the transformer takes place.
- the duty cycle of the two switches is Half bridge is essentially 50 percent, ensuring that the transformer is not goes into saturation because it is remagnetized by the other transistor current.
- a preferred embodiment of the present invention is characterized in that that a diode is arranged such that it turns on in the case of an npn bipolar transistor Outflow of a positive base current through the secondary winding, in the case of a pnp bipolar transistor an outflow of a negative base current through the secondary winding prevented.
- This is important because the base current flows through the secondary winding the formation of a voltage between the control electrode of the bipolar transistor and would prevent the reference electrode of the field effect transistor and thus the Formation of a sufficiently high base-emitter voltage.
- Parallel to the control electrode of the Bipolar transistor and the reference electrode of the field effect transistor can be at least one Diode or a zener diode between the potential of the control electrode of the bipolar transistor and the potential of the reference electrode of the field effect transistor.
- a Zener diode In order to is at least the voltage at the pn junction of the diode as the base-emitter voltage at the pn junction of the bipolar transistor. An opening of the bipolar transistor can thus be ensured. The same applies when using a Zener diode.
- Parallel to the control electrode of the bipolar transistor and the reference electrode of the field effect transistor is also preferably a series connection of an ohmic resistor and a capacitor arranged. This is a simple and inexpensive way to start implement the control circuit according to the invention. Detailed information on this follow below.
- the control electrode of the field effect transistor is preferred with a integrated driver circuit connected. As already mentioned, it is one Field effect transistor around a voltage-controlled element, which is due to the low requirement can be controlled at control current from an integrated circuit.
- the diode or the zener diode, which is parallel to the control electrode of the bipolar transistor and the reference electrode of the field effect transistor between the potential of the control electrode of the bipolar transistor and the potential of the reference electrode of the field effect transistor is preferably dimensioned such that a voltage of at least 1 volt, preferably, is applied to it approx. 2 volts, drops.
- the reference electrode of the field effect transistor of each switch is preferably a first Reference potential connected while the control electrode of the bipolar transistor of each switch is connected to a second reference potential via a high-resistance resistor.
- This resistor is used to supply charge carriers to the base of the bipolar transistor, as long as the secondary winding of the transformer has no charge carriers in the Introduces input circle, especially at the start.
- bipolar transistor It is also preferred between the control and the reference electrode of the bipolar transistor an ohmic resistor is arranged on each switch. This ensures that the transistor is not switched on at the wrong time by interference pulses when switched off. In a Cascode circuit as here, it can also be used to charge or discharge parasitic Capacities of the field effect transistor serve. Finally, it also increases the dielectric strength of bipolar transistors.
- the switches are preferably designed such that they operate at a frequency between 100 Hz and 300 kHz and a voltage of 100 to 1000 volts can be operated. Further advantageous embodiments result from the subclaims.
- FIGS 2 and 3 show embodiments of the input circuit E2 of Figure 1 in a drive circuit according to the invention. Identical components are provided with the same reference symbols and are only explained once.
- a bipolar transistor B2 and a field effect transistor F2 in a cascode arrangement form the switch S2.
- the gate of the field effect transistor F2 is connected via its connection 10 to the output of an integrated driver circuit.
- a transformer preferably designed as a toroid, is located in the load circuit with its primary winding L 0 . Secondary windings are arranged in the respective input circuit, in the present case the secondary winding L2 in the input circuit E2.
- a diode D21 prevents charge carriers from flowing out of the base via the secondary winding L2.
- a high-resistance resistor R21 which is connected on the one hand to the base of the bipolar transistor B2, and on the other hand with the intermediate circuit voltage U zw , charge carriers can be provided on the base.
- the base of the bipolar transistor is connected to the reference potential via a parallel connection of a diode D22 and, on the other hand, via a parallel connection of a diode D22 and a resistor R22, on which the reference electrode of the field effect transistor F2 is located. This allows a sufficiently large base-emitter voltage to be generated with which the circuit arrangement can be started.
- a resistor R23 is used to withstand the voltage of the associated bipolar transistor.
- a typical value for R21 is 1 M ⁇ , a typical value for R22 is 100 ⁇ .
- Diode D22 can also provide a Zener diode, of course in reverse order his.
- the series circuit comprising secondary winding L2 and diode D21 is connected in parallel with a Zener diode Z2 on the one hand, and the series circuit with a resistor R22 and a capacitor C2 on the other hand.
- the base of the transistor is in turn connected to the intermediate circuit voltage U zw via a high-resistance resistor R21 and to the working electrode of the field effect transistor F2 via a resistor R23.
- the Zener diode Z2 dimensioned to two volts
- the field effect transistor F2 is switched on via a suitable signal at the connection 10, which opens the bipolar transistor B2
- the capacitor C2 discharges and leads to a base current I B of 100 mA when the resistor R22 is dimensioned to 10 ⁇ .
- the switch S2 is switched on for one to two microseconds, a load current I L begins to flow and a signal is coupled into the input circuit E2 by linking primary winding L 0 and secondary winding L2, as a result of which the circuit arrangement is started.
- the switch-off behavior of the circuit is also improved by this solution.
- the problem is that when the field effect transistor F2 is switched off, the emitter current I E of the bipolar transistor suddenly goes to zero.
- the collector current I C wants to continue to flow, the base is flooded with charge carriers, which leads to long switch-off times. Long switch-off times are associated with the problem that the collector current I C and collector-emitter voltage U CE have positive values over a certain period of time. Since the product of these two sizes dominates the transmission loss, this results in undesirably high power losses.
- a downsider C2 in the embodiment according to FIG. 3 becomes a on the base side low-resistance branch provided to ground.
- the collector current I C can therefore continue to flow to the ground almost unhindered after the field effect transistor F2 has been switched off as a negative base current -I B. This results in fast switch-off times.
- the resistor R23 is dimensioned, for example, with 100 ⁇ and serves to ensure that no current can flow out as long as the field effect transistor is high-resistance.
- Figures 2 and 3 show an example of the input circuit E2. It is obvious to the person skilled in the art that the input circuit E1 should be designed symmetrically for this in a corresponding manner is.
Landscapes
- Electronic Switches (AREA)
- Circuit Arrangements For Discharge Lamps (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft eine Ansteuerschaltung für den Betrieb mindestens einer Lampe in einem dazugehörigen Lastkreis, in dem die Anschlüsse für die mindestens eine Lampe angeordnet sind, mit zwei Schaltern in Halbbrückenanordnung.The present invention relates to a control circuit for the operation of at least one Lamp in an associated load circuit, in which the connections for the at least one Lamp are arranged with two switches in a half-bridge arrangement.
Eine derartige aus dem Stand der Technik bekannte Ansteuerschaltung ist schematisch in Figur 1 dargestellt. Eingangsseitig liegt die sogenannte Zwischenkreisspannung Uzw an. Hierbei handelt es sich um eine Gleichspannung, die gewöhnlich über dem Fachmann geläufige Schaltungen aus der Netzspannung erzeugt wird. Zwei Schalter S1, S2 sind seriell in Halbbrückenanordnung angeordnet und werden über einen nicht dargestellten jeweiligen Eingangskreis E1, E2 angesteuert. Der Verbindungspunkt der beiden Schalter ist über eine Drossel L mit der Lampe La verbunden, welche im Betrieb vom Lampenstrom IL durchflossen wird. Ausgangsseitig schließen die zwei Koppelkondensatoren CK1, CK2 die Schaltung ab. Alternative Schaltungsstrukturen sind dem Fachmann geläufig, werden jedoch nachfolgend nicht detaillierter beschrieben, da sie für die Realisierung der Erfindung ohne Relevanz sind. Bei Einsatz im sogenannten Mittelspannungsbereich müssen die Schalter S1, S2 ausgelegt sein, Spannungen zwischen 400 und 1000 Volt zu schalten. Die Schaltfrequenz liegt in der Größenordnung von 40 bis 50 kHz. Der Duty-Cycle der in Figur 1 dargestellten Schaltung beträgt 50 Prozent. Die zu schaltende Netzleistung beträgt hierbei mehr als 100 Watt. Um weiterhin eine relativ einfache Steuerbarkeit aus Mikrocontrollern beziehungsweise integrierten Steuerbausteinen zu ermöglichen, werden als Schalter derzeit MOSFETs (Metall Oxyd Semiconductor Field Effect Transistor) und IGBTs (Insulated Gate Bipolar Transistors) eingesetzt. Da beim Feldeffekttransistor die Durchlassverluste mit dem Quadrat des Stroms steigen, und die Chipfläche mit den Durchlassverlusten korreliert zu sein hat, werden MOSFETs bei Strömen oberhalb ein Ampere und mittleren Spannungen von ca. 600 Volt relativ teuer. Bei den IGBTs ergeben sich hingegen große Durchlassverluste. Bei reinen Bipolartransistoren, bei denen die Durchlassverluste zum Strom direkt proportional sind, sind für derartige Randbedingungen konzipierte Bauteile zwar billiger, da sie weniger Chipfläche benötigen, jedoch wirkt sich ihr schlechtes dynamisches Schaltverhalten negativ aus. Da der Kollektorstrom nicht schnell genug abgeschaltet werden kann, ergeben sich durch die zeitlichen Überlappungen mit der Kollektor-Emitter- Spannung hohe Schaltverluste.Such a control circuit known from the prior art is shown schematically in FIG. 1. The so-called intermediate circuit voltage U zw is present on the input side. This is a DC voltage that is usually generated from the mains voltage using circuits familiar to those skilled in the art. Two switches S1, S2 are arranged in series in a half-bridge arrangement and are controlled via a respective input circuit E1, E2, not shown. The connection point of the two switches is connected via a choke L to the lamp La, through which the lamp current I L flows during operation. On the output side, the two coupling capacitors C K1 , C K2 complete the circuit. Alternative circuit structures are familiar to the person skilled in the art, but are not described in more detail below, since they are irrelevant for the implementation of the invention. When used in the so-called medium voltage range, the switches S1, S2 must be designed to switch voltages between 400 and 1000 volts. The switching frequency is in the order of 40 to 50 kHz. The duty cycle of the circuit shown in Figure 1 is 50 percent. The network power to be switched is more than 100 watts. In order to enable a relatively simple controllability from microcontrollers or integrated control modules, MOSFETs (metal oxide semiconductor field effect transistors) and IGBTs (insulated gate bipolar transistors) are currently used as switches. Since the forward losses increase with the square of the current in the field effect transistor, and the chip area has to be correlated with the forward losses, MOSFETs become relatively expensive for currents above one ampere and average voltages of approximately 600 volts. The IGBTs, on the other hand, have large transmission losses. In the case of pure bipolar transistors, in which the conduction losses are directly proportional to the current, components designed for such boundary conditions are cheaper because they require less chip area, but their poor dynamic switching behavior has a negative effect. Since the collector current cannot be switched off quickly enough, the switching overlaps with the collector-emitter voltage result in high switching losses.
Der vorliegenden Erfindung liegt deshalb die Aufgabe zu Grunde, eine gattungsgemäße Ansteuerschaltung derart weiterzubilden, dass sie bei mittleren Strömen von ca. 1 bis 10 Ampere geringe Durchlassverluste aufweist, bei zugleich niedrigen Kosten und gegebener Ansteuerbarkeit aus Mikrocontrollern beziehungsweise integrierten Steuerbausteinen.The present invention is therefore based on the object of a generic control circuit to develop in such a way that they operate at medium currents of approx. 1 to 10 amperes has low transmission losses, at the same time low costs and given controllability from microcontrollers or integrated control modules.
Diese Aufgabe wird gelöst durch eine Ansteuerschaltung mit den Merkmalen von Patentanspruch
1.This object is achieved by a control circuit with the features of
Der vorliegenden Erfindung liegt einerseits die Erkenntnis zu Grunde, dass ein schnelles Schalten erreicht werden kann, wenn ein Niederspannungs-MOSFET in Kombination mit einem Bipolartransistor verwendet wird. Der MOSFET muss daher nur die kleine Steuerspannung für den Bipolartransistor aufbringen und kann daher klein und billig konzipiert werden. Der Bipolartransistor, dessen Verlustleistung nur linear mit dem ihn durchfließenden Strom verknüpft ist, kann zu geringen Kosten für große Ströme dimensioniert werden. Damit sind die Vorteile des MOSFETs - hohe Dynamik und Ansteuerbarkeit aus einer integrierten Schaltung- und die des Bipolartransistors - große, zu einem günstigen Preis verarbeitbare Leistung - optimal miteinander verknüpft.On the one hand, the present invention is based on the knowledge that a fast Switching can be achieved when combined with a low voltage MOSFET a bipolar transistor is used. The MOSFET therefore only needs the small control voltage for the bipolar transistor and can therefore be designed small and cheap become. The bipolar transistor, whose power loss is only linear with the one flowing through it When electricity is linked, it can be dimensioned at low cost for large currents. This is the advantage of the MOSFET - high dynamics and controllability from an integrated Circuit and that of the bipolar transistor - large, processable at an affordable price Performance - optimally linked.
Die zweite der Erfindung zu Grunde liegende Erkenntnis besteht darin, dass eine derartige Ansteuerschaltung auf einfache Weise gestartet werden kann, wenn ein Teil der im Lastkreis fließenden Energie in den Eingangskreis des jeweiligen Schalters übertragen wird. Da es sich bei einem Bipolartransistor im Wesentlichen um ein stromgesteuertes Bauelement handelt, muss für ihn ein entsprechender Steuerstrom an der Basis bereitgestellt werden. Hierzu wird im Lastkreis eine Primärwicklung eines Übertragers ausgebildet, dessen Sekundärwicklungen im Eingangskreis jedes Bipolartransistors angeordnet sind und damit die Basis des Bipolartransistors mit Strom versorgen. Zur Verringerung der Durchlassverluste der Bipolartransistoren ist es bevorzugt, den Übertrager so zu dimensionieren, dass der Basisstrom ca. ein Fünftel des Kollektorstroms ausmacht. Bei einer praxisnahen Stromverstärkung von 20 wird der Bipolartransistor als mit dem Faktor 4 übersteuert. Dies resultiert in geringen Durchlassverlusten. Während eine Ansteuerung des Bipolartransistors in Folge der großen benötigten Steuerströme aus einer integrierten Schaltung nicht möglich wäre, ist dies beim MOSFET als ein im Wesentlichen spannungsgesteuerten Bauelement sehr gut möglich.The second finding on which the invention is based is that such Control circuit can be started easily if part of the in the load circuit flowing energy is transferred to the input circuit of the respective switch. Since it is a bipolar transistor is essentially a current-controlled component, A corresponding control current must be made available to him at the base. To do this a primary winding of a transformer is formed in the load circuit, its secondary windings are arranged in the input circuit of each bipolar transistor and thus the base of the bipolar transistor supply with electricity. To reduce the conduction losses of the bipolar transistors it is preferred to dimension the transformer so that the base current is approx Makes up a fifth of the collector current. With a practical current gain of 20 the bipolar transistor is overdriven by a factor of 4. This results in low transmission losses. While driving the bipolar transistor as a result of the large required Control currents from an integrated circuit would not be possible, this is the case with the MOSFET an essentially voltage-controlled component is very possible.
Aus dem Stand der Technik sind Kaskodeschaltungen mit einem Bipolartransistor und einem MOSFET-Transistor bekannt, die jedoch für völlig andere Zwecke eingesetzt werden: So ist es aus der EP 0 753 987 D1 bekannt, eine derartige Kaskodeschaltung, bei der die Bipolartransistoren durch im Emitter angeordnete MOSFETS gesteuert werden, zum Abschalten einer Halbbrückenanordnung zu verwenden, wenn die zu betreibende Lampe gealtert ist. In der US 5,998,942, siehe dort die Figur 4, wird ebenfalls eine derartige Kaskodeschaltung verwendet, jedoch liegt hier aufgrund des andersgearteten Einsatzzwecks eine konstante Spannung an der Basis des Bipolartransistors 20 an. In der US 4,894,587, Figur 6, ist ebenfalls eine derartige Kaskodeschaltung dargestellt, bei der jedoch, im Gegensatz zur vorliegenden Erfindung, keine definierte Ummagnetisierung des Übertragers stattfindet. Um eine Sättigung zu verhindern, dürfte dieser nur kurzfristig eingeschaltet werden, anschließend müsste mindestens die doppelte Zeit gewartet werden, bis sich das Magnetfeld wieder abgebaut hat. Daher wäre eine derartige Schaltungsstruktur in der vorliegenden Erfindung nicht einsetzbar. Verwendet wird überdies nur ein derartiger Schalter zur Realisierung eines Dim-Geräts. Bei der vorliegenden Erfindung beträgt der Duty-Cycle der beiden Schalter der Halbbrücke im Wesentlichen 50 Prozent, so dass sichergestellt ist, dass der Übertrager nicht in Sättigung geht, da er durch den jeweils anderen Transistorstrom ummagnetisiert wird.Cascode circuits with a bipolar transistor and a are from the prior art MOSFET transistor known, but which are used for completely different purposes: So is it is known from EP 0 753 987 D1, such a cascode circuit in which the bipolar transistors controlled by MOSFETS arranged in the emitter, for switching off to use a half-bridge arrangement when the lamp to be operated has aged. In US 5,998,942, see FIG. 4 there, is also a cascode circuit of this type used, but here lies a constant due to the different purpose Voltage at the base of the bipolar transistor 20 on. In US 4,894,587, Figure 6, is also such a cascode circuit is shown, but in contrast to the present Invention, no defined magnetic reversal of the transformer takes place. To one To prevent saturation, it should only be switched on for a short time, then you would have to wait at least twice as long until the magnetic field is reduced again Has. Therefore, such a circuit structure would not be in the present invention used. In addition, only such a switch is used to implement a dim device. In the present invention, the duty cycle of the two switches is Half bridge is essentially 50 percent, ensuring that the transformer is not goes into saturation because it is remagnetized by the other transistor current.
Eine bevorzugte Ausführungsform der vorliegenden Erfindung zeichnet sich dadurch aus, dass eine Diode derart angeordnet ist, dass sie im Falle eines npn-Bipolartransistors ein Abfließen eines positiven Basisstromes über die Sekundärwicklung, im Falle eines pnp-Bipolartransistors ein Abfließen eines negativen Basisstromes über die Sekundärwicklung verhindert. Dies ist von Bedeutung, da ein Abfließen des Basisstromes über die Sekundärwicklung die Ausbildung einer Spannung zwischen der Steuerelektrode des Bipolartransistors und der Bezugselektrode des Feldeffekttransistors verhindern würde und damit die Ausbildung einer genügend hohen Basis-Emitter-Spannung. Parallel zur Steuerelektrode des Bipolartransistors und der Bezugselektrode des Feldeffekttransistors kann mindestens eine Diode oder eine Zenerdiode zwischen dem Potential der Steuerelektrode des Bipolartransistors und dem Potential der Bezugselektrode des Feldeffekttransistors angeordnet sein. Damit liegt zumindest die Spannung am pn-Übergang der Diode als Basis-Emitter-Spannung am pn-Übergang des Bipolartransistors an. Ein Öffnen des Bipolartransistors kann damit sichergestellt werden. Selbiges gilt bei Verwendung einer Zenerdiode.A preferred embodiment of the present invention is characterized in that that a diode is arranged such that it turns on in the case of an npn bipolar transistor Outflow of a positive base current through the secondary winding, in the case of a pnp bipolar transistor an outflow of a negative base current through the secondary winding prevented. This is important because the base current flows through the secondary winding the formation of a voltage between the control electrode of the bipolar transistor and would prevent the reference electrode of the field effect transistor and thus the Formation of a sufficiently high base-emitter voltage. Parallel to the control electrode of the Bipolar transistor and the reference electrode of the field effect transistor can be at least one Diode or a zener diode between the potential of the control electrode of the bipolar transistor and the potential of the reference electrode of the field effect transistor. In order to is at least the voltage at the pn junction of the diode as the base-emitter voltage at the pn junction of the bipolar transistor. An opening of the bipolar transistor can thus be ensured. The same applies when using a Zener diode.
Parallel zur Steuerelektrode des Bipolartransistors und der Bezugselektrode des Feldeffekttransistors ist weiterhin bevorzugt eine Serienschaltung eines ohmschen Widerstandes und eines Kondensators angeordnet. Damit lässt sich auf einfache Weise kostengünstig der Start der erfindungsgemäßen Ansteuerschaltung realisieren. Detaillierte Ausführungen hierzu folgen weiter unten. Bevorzugt ist die Steuerelektrode des Feldeffekttransistors mit einer integrierten Treiberschaltung verbunden. Wie bereits erwähnt, handelt es sich bei einem Feldeffekttransistor um ein spannungsgesteuertes Element, das in Folge des geringen Bedarfs an Steuerstrom von einer integrierten Schaltung aus gesteuert werden kann.Parallel to the control electrode of the bipolar transistor and the reference electrode of the field effect transistor is also preferably a series connection of an ohmic resistor and a capacitor arranged. This is a simple and inexpensive way to start implement the control circuit according to the invention. Detailed information on this follow below. The control electrode of the field effect transistor is preferred with a integrated driver circuit connected. As already mentioned, it is one Field effect transistor around a voltage-controlled element, which is due to the low requirement can be controlled at control current from an integrated circuit.
Die Diode oder die Zenerdiode, die parallel zur Steuerelektrode des Bipolartransistors und der Bezugselektrode des Feldeffekttransistors zwischen dem Potential der Steuerelektrode des Bipolartransistors und dem Potential der Bezugelektrode des Feldeffekttransistors angeordnet ist, ist bevorzugt so bemessen, da an ihr eine Spannung von mindestens 1 Volt, bevorzugt ca. 2 Volt, abfällt.The diode or the zener diode, which is parallel to the control electrode of the bipolar transistor and the reference electrode of the field effect transistor between the potential of the control electrode of the bipolar transistor and the potential of the reference electrode of the field effect transistor is preferably dimensioned such that a voltage of at least 1 volt, preferably, is applied to it approx. 2 volts, drops.
Die Bezugselektrode des Feldeffekttransistors jedes Schalters ist bevorzugt mit einem ersten Bezugspotential verbunden, während die Steuerelektrode des Bipolartransistors jedes Schalters über einen hochohmigen Widerstand mit einem zweiten Bezugspotential verbunden ist. Dieser Widerstand dient der Zuführung von Ladungsträgern an die Basis des Bipolartransistors, solange die Sekundärwicklung des Übertragers noch keine Ladungsträger in den Eingangskreis einbringt, insbesondere beim Start.The reference electrode of the field effect transistor of each switch is preferably a first Reference potential connected while the control electrode of the bipolar transistor of each switch is connected to a second reference potential via a high-resistance resistor. This resistor is used to supply charge carriers to the base of the bipolar transistor, as long as the secondary winding of the transformer has no charge carriers in the Introduces input circle, especially at the start.
Bevorzugt ist weiterhin zwischen der Steuer- und der Bezugselektrode des Bipolartransistors jedes Schalters ein ohmscher Widerstand angeordnet. Dieser sorgt dafür, dass der Transistor im abgeschalteten Zustand nicht durch Störimpulse zur Unzeit eingeschaltet wird. In einer Kaskode-Schaltung wie vorliegend, kann er auch zum Auf- oder Entladen von parasitären Kapazitäten des Feldeffekttransistors dienen. Schließlich erhöht er auch die Spannungsfestigkeit der Bipolartransistoren. It is also preferred between the control and the reference electrode of the bipolar transistor an ohmic resistor is arranged on each switch. This ensures that the transistor is not switched on at the wrong time by interference pulses when switched off. In a Cascode circuit as here, it can also be used to charge or discharge parasitic Capacities of the field effect transistor serve. Finally, it also increases the dielectric strength of bipolar transistors.
Bevorzugt sind die Schalter so ausgelegt, dass sie im Betrieb mit einer Frequenz zwischen 100 Hz und 300 kHz und einer Spannung von 100 bis 1000 Volt betrieben werden können. Weitere vorteilhafte Ausführungsformen ergeben sich aus den Unteransprüchen.The switches are preferably designed such that they operate at a frequency between 100 Hz and 300 kHz and a voltage of 100 to 1000 volts can be operated. Further advantageous embodiments result from the subclaims.
Im Nachfolgenden werden Ausführungsbeispiele der Erfindung unter Bezugnahme auf die beigefügten Zeichnungen näher beschrieben. Es stellen dar:
Figur 1- in schematischer Darstellung ein Prinzipschaltbild mit einer aus einer Halbbrückenschaltung angesteuerten Lampe;
- Figur 2
- ein erstes Ausführungsbeispiel eines Eingangskreises einer erfindungsgemäßen Ansteuerschaltung;
- Figur 3
- ein zweites Ausführungsbeispiel eines Eingangskreises einer erfindungsgemäßen Ansteuerschaltung; und
- Figur 4
- den zeitlichen Verlauf des Basisstroms, des Kollektorstroms und der Kollektor-Emitter-Spannung bei einem Abschaltvorgang des Schalters der Halbbrückenanordnung in einer erfindungsgemäßen Ansteuerschaltung.
- Figure 1
- a schematic representation of a basic circuit diagram with a lamp controlled from a half-bridge circuit;
- Figure 2
- a first embodiment of an input circuit of a drive circuit according to the invention;
- Figure 3
- a second embodiment of an input circuit of a drive circuit according to the invention; and
- Figure 4
- the time course of the base current, the collector current and the collector-emitter voltage when the switch of the half-bridge arrangement is switched off in a drive circuit according to the invention.
Figuren 2 und 3 zeigen Ausführungsbeispiele des Eingangskreises E2 von Figur 1 bei einer
erfindungsgemäßen Ansteuerschaltung. Identische Bauelemente sind mit denselben Bezugszeichen
versehen und werden nur einmal erklärt. Ein Bipolartransistor B2 und ein
Feldeffekttransistor F2 in Kaskodeanordnung bilden den Schalter S2. Das Gate des
Feldeffekttransistors F2 ist über seinen Anschluss 10 mit dem Ausgang einer integrierten
Treiberschaltung verbunden. Ein Transformator, vorzugsweise als Ringkern ausgebildet,
befindet sich mit seiner Primärwicklung L0 im Lastkreis. Sekundärwicklungen sind im
jeweiligen Eingangskreis angeordnet, vorliegend die Sekundärwicklung L2 im Eingangskreis
E2. Eine Diode D21 verhindert ein Abfließen von Ladungsträgern aus der Basis über die
Sekundärwicklung L2. Unter Verwendung eines hochohmigen Widerstands R21, der
einerseits mit der Basis des Bipolartransistors B2 verbunden ist, andererseits mit der Zwischenkreisspannung
Uzw können Ladungsträger an die Basis bereitgestellt werden. Die Basis
des Bipolartransistors ist andererseits über eine Parallelschaltung einer Diode D22 und eines
andererseits über eine Parallelschaltung einer Diode D22 und eines Widerstands R22 mit
dem Bezugspotential verbunden, auf dem die Bezugselektrode des Feldeffekttransistors F2
liegt. Damit lässt sich eine ausreichend große Basis-Emitter-Spannung erzeugen, mit der die
Schaltungsanordnung gestartet werden kann. Ein Widerstand R23 dient der Spannungsfestigkeit
des zugeordneten Bipolartransistors.Figures 2 and 3 show embodiments of the input circuit E2 of Figure 1 in a drive circuit according to the invention. Identical components are provided with the same reference symbols and are only explained once. A bipolar transistor B2 and a field effect transistor F2 in a cascode arrangement form the switch S2. The gate of the field effect transistor F2 is connected via its
Ein typischer Wert für R21 ist 1 MΩ, ein typischer Wert für R22 ist 100 Ω. An Stelle der Diode D22 kann auch eine Zenerdiode, selbstverständlich in umgekehrter Anordnung, vorgesehen sein.A typical value for R21 is 1 MΩ, a typical value for R22 is 100 Ω. Instead of Diode D22 can also provide a Zener diode, of course in reverse order his.
In Figur 3 ist der Serienschaltung aus Sekundärwicklung L2 und Diode D21 einerseits eine Zenerdiode Z2 parallel geschaltet, andererseits die Serienschaltung aus einem Widerstand R22 und einem Kondensator C2. Die Basis des Transistors ist wiederum über einen hochohmigen Widerstand R21 mit der Zwischenkreisspannung Uzw verbunden und über einen Widerstand R23 mit der Arbeitselektrode des Feldeffekttransistors F2.In FIG. 3, the series circuit comprising secondary winding L2 and diode D21 is connected in parallel with a Zener diode Z2 on the one hand, and the series circuit with a resistor R22 and a capacitor C2 on the other hand. The base of the transistor is in turn connected to the intermediate circuit voltage U zw via a high-resistance resistor R21 and to the working electrode of the field effect transistor F2 via a resistor R23.
Wird beispielsweise die Zenerdiode Z2 auf zwei Volt dimensioniert, so wird beim Anlegen
der Zwischenkreisspannung Uzw der Kondensator C2 über die Widerstände R22 und R21 auf
ca. 2 Volt aufgeladen. Beim Einschalten des Feldeffekttransistors F2 über ein geeignetes
Signal am Anschluss 10, wodurch der Bipolartransistor B2 öffnet, entlädt sich der Kondensator
C2 und führt bei Dimensionierung des Widerstands R22 auf 10 Ω zu einem Basisstrom
IB von 100 mA. Hierdurch wird der Schalter S2 für ein bis zwei µs eingeschaltet, ein Laststrom
IL beginnt zu fließen und über die Verknüpfung von Primärwicklung L0 und Sekundärwicklung
L2 wird ein Signal in den Eingangskreis E2 eingekoppelt, wodurch die Schaltungsanordnung
gestartet wird.If for example the Zener diode Z2 dimensioned to two volts, upon application, the intermediate circuit voltage U ZW of the capacitor C2 via resistors R22 and R21 charged to about 2 volts. When the field effect transistor F2 is switched on via a suitable signal at the
In besonders vorteilhafter Weise wird durch diese Lösung auch das Ausschaltverhalten der Schaltung verbessert. Das Problem besteht nämlich darin, dass beim Abschalten des Feldeffekttransistors F2 der Emitterstrom IE des Bipolartransistors schlagartig auf Null geht. Da der Kollektorstrom IC jedoch weiterfließen will, wird die Basis mit Ladungsträgern überschwemmt, was zu langen Ausschaltzeiten führt. Lange Ausschaltzeiten gehen nun aber mit dem Problem einher, dass Kollektorstrom IC und Kollektor-Emitter-Spannung UCE über einen bestimmten Zeitraum gleichzeitig positive Werte haben. Da das Produkt dieser beiden Größen den Durchlassverlust dominiert, ergeben sich hierdurch unerwünscht hohe Verlustleistungen. Durch die Parallelschaltung von Diode D22 und ohmschem Widerstand R22 in Figur 2 sowie der Zenerdiode Z2 und der Serienschaltung aus Widerstand R22 und Kondensator C2 in der Ausführungsform gemäß Figur 3 wird auf der Basisseite ein niedersator C2 in der Ausführungsform gemäß Figur 3 wird auf der Basisseite ein niederohmiger Zweig zur Masse bereitgestellt. Der Kollektorstrom IC kann daher nach dem Abschalten des Feldeffektransistors F2 als negativer Basisstrom -IB nahezu ungehindert zur Masse weiterfließen. Schnelle Abschaltzeiten sind die Folge. Der Widerstand R23 ist beispielsweise mit 100 Ω dimensioniert und dient dazu sicherzustellen, dass kein Strom abfließen kann, solange der Feldeffekttransistor hochohmig ist.In a particularly advantageous manner, the switch-off behavior of the circuit is also improved by this solution. The problem is that when the field effect transistor F2 is switched off, the emitter current I E of the bipolar transistor suddenly goes to zero. However, since the collector current I C wants to continue to flow, the base is flooded with charge carriers, which leads to long switch-off times. Long switch-off times are associated with the problem that the collector current I C and collector-emitter voltage U CE have positive values over a certain period of time. Since the product of these two sizes dominates the transmission loss, this results in undesirably high power losses. Through the parallel connection of diode D22 and ohmic resistor R22 in FIG. 2 and the Zener diode Z2 and the series connection of resistor R22 and capacitor C2 in the embodiment according to FIG. 3, a downsider C2 in the embodiment according to FIG. 3 becomes a on the base side low-resistance branch provided to ground. The collector current I C can therefore continue to flow to the ground almost unhindered after the field effect transistor F2 has been switched off as a negative base current -I B. This results in fast switch-off times. The resistor R23 is dimensioned, for example, with 100 Ω and serves to ensure that no current can flow out as long as the field effect transistor is high-resistance.
In Figur 4 wird dies durch eine grafisch dargestellte Beispielmessung an einem Labormuster bestätigt, wobei die Auflösung des Basisstroms IB etwa das Hundertfache der Auflösung des Kollektorstroms IC beträgt. Der Basisstrom IB sinkt nach dem Ausschalten des Feldeffekttransistors zu sehr großen negativen Werten, nämlich zu -IC und steigt nach relativ kurzer Zeit wieder auf seinen Nullwert an. Der Kollektorstrom geht nach einigen wenigen Schwingungen ebenfalls auf Null. Die Kollektorspannung UCE steigt an, jedoch erst zu einem Zeitpunkt zu dem der Kollektorstrom IC bereits sehr weit abgesunken ist. Die Verlustleistung, siehe beispielsweise den mit P markierten Punkt, der das Maximum definiert, fällt sehr gering aus. Bezulinie A kennzeichnet die Nulllinie für den Kollektorstrom IC, Bezugslinie D die Nullinie für den Basisstrom IB.This is confirmed in FIG. 4 by a graphically represented example measurement on a laboratory sample, the resolution of the base current I B being approximately one hundred times the resolution of the collector current I C. After the field-effect transistor is switched off, the base current I B drops to very large negative values, namely to -I C, and rises again to its zero value after a relatively short time. The collector current also goes to zero after a few oscillations. The collector voltage U CE increases, but only at a point in time when the collector current I C has already dropped very far. The power loss, see for example the point marked P, which defines the maximum, is very low. Leading line A denotes the zero line for the collector current I C , reference line D the zero line for the base current I B.
Die Figuren 2 und 3 zeigen beispielhaft den Eingangskreis E2. Für den Fachmann ist offensichtlich, dass der Eingangskreis E1 in entsprechender Weise symmetrisch hierzu auszulegen ist.Figures 2 and 3 show an example of the input circuit E2. It is obvious to the person skilled in the art that the input circuit E1 should be designed symmetrically for this in a corresponding manner is.
Claims (10)
dadurch gekennzeichnet, dass die Diode (D21) derart angeordnet ist, dass sie im Falle eines npn-Bipolartransistors (B2) ein Abfließen eines positiven Basisstromes (IB) über die Sekundärwicklung (L2), im Falle eines pnp-Bipolartransistors ein Abfließen eines negativen Basisstromes über die Sekundärwicklung verhindert.Control circuit according to claim 1,
characterized in that the diode (D21) is arranged in such a way that, in the case of an npn bipolar transistor (B2), a positive base current (I B ) flows out via the secondary winding (L2), in the case of a pnp bipolar transistor, a negative one flows out Base current prevented through the secondary winding.
dadurch gekennzeichnet, dass parallel zur Steuerelektrode des Bipolartransistors (B2) und der Bezugselektrode des Feldeffekttransistors (F2) mindestens eine Diode (D22) oder eine Zenerdiode (Z2) zwischen dem Potential der Steuerelektrode des Bipolartransistors (B2) und dem Potential der Bezugselektrode des Feldeffekttransistors (F2) angeordnet ist. Control circuit according to one of claims 1 or 2,
characterized in that parallel to the control electrode of the bipolar transistor (B2) and the reference electrode of the field effect transistor (F2) at least one diode (D22) or a Zener diode (Z2) between the potential of the control electrode of the bipolar transistor (B2) and the potential of the reference electrode of the field effect transistor ( F2) is arranged.
dadurch gekennzeichnet, dass parallel zur Steuerelektrode des Bipolartransistors (B2) und der Bezugselektrode des Feldeffekttransistors (F2) eine Serienschaltung eines ohmschen Widerstandes (R22) und eines Kondensators (C2) angeordnet ist.Control circuit according to one of the preceding claims,
characterized in that a series circuit of an ohmic resistor (R22) and a capacitor (C2) is arranged parallel to the control electrode of the bipolar transistor (B2) and the reference electrode of the field effect transistor (F2).
dadurch gekennzeichnet, dass die Steuerelektrode des Feldeffekttransistors (F2) mit einer integrierten Treiberschaltung verbunden ist.Control circuit according to one of the preceding claims,
characterized in that the control electrode of the field effect transistor (F2) is connected to an integrated driver circuit.
dadurch gekennzeichnet, dass der Duty-Cycle der beiden Schalter (S1, S2) der Halbbrücke im wesentlichen 50 Prozent beträgt.Control circuit according to one of the preceding claims,
characterized in that the duty cycle of the two switches (S1, S2) of the half-bridge is essentially 50 percent.
dadurch gekennzeichnet, dass die Diode (D22) oder die Zenerdiode (Z2) so bemessen ist, dass an ihr eine Spannung von mindestens 1 V, bevorzugt ca. 2 V, abfällt.Control circuit according to one of Claims 3 to 6,
characterized in that the diode (D22) or the zener diode (Z2) is dimensioned such that a voltage of at least 1 V, preferably approximately 2 V, drops across it.
dadurch gekennzeichnet, dass die Bezugselektrode des Feldeffekttransistors (F2) jedes Schalters (S1, S2) mit einem ersten Bezugspotential verbunden ist und die Steuerelektrode des Bipolartransistors mindestens eines Schalters über einen hochohmigen Widerstand (R21) mit einem zweiten Bezugspotential (UZW).Control circuit according to one of the preceding claims,
characterized in that the reference electrode of the field effect transistor (F2) of each switch (S1, S2) is connected to a first reference potential and the control electrode of the bipolar transistor of at least one switch via a high-resistance resistor (R21) to a second reference potential (U ZW ).
dadurch gekennzeichnet, dass zwischen der Steuer- und der Bezugselektrode des Bipolartransistors (B2) jedes Schalters (S1, S2) ein ohmscher Widerstand (R23) angeordnet ist.Control circuit according to one of the preceding claims,
characterized in that an ohmic resistor (R23) is arranged between the control and the reference electrode of the bipolar transistor (B2) of each switch (S1, S2).
dadurch gekennzeichnet, dass die Schalter (S1, S2) ausgelegt sind, im Betrieb mit einer Frequenz zwischen 100 Hz und 300 kHz und einer Spannung von 100 bis 1000 V betrieben zu werden.Control circuit according to one of the preceding claims,
characterized in that the switches (S1, S2) are designed to be operated in operation with a frequency between 100 Hz and 300 kHz and a voltage of 100 to 1000 V.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10325872 | 2003-06-06 | ||
DE10325872A DE10325872A1 (en) | 2003-06-06 | 2003-06-06 | Control circuit for the operation of at least one lamp in an associated load circuit |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1484947A2 true EP1484947A2 (en) | 2004-12-08 |
EP1484947A3 EP1484947A3 (en) | 2006-01-18 |
EP1484947B1 EP1484947B1 (en) | 2009-08-19 |
Family
ID=33154586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04009454A Expired - Lifetime EP1484947B1 (en) | 2003-06-06 | 2004-04-21 | Switch circuit arrangement for driving lamps |
Country Status (7)
Country | Link |
---|---|
US (1) | US7057355B2 (en) |
EP (1) | EP1484947B1 (en) |
KR (1) | KR20040105592A (en) |
CN (1) | CN100574549C (en) |
CA (1) | CA2469575A1 (en) |
DE (2) | DE10325872A1 (en) |
TW (1) | TW200503584A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012112391B4 (en) * | 2012-12-17 | 2018-10-04 | Phoenix Contact Gmbh & Co. Kg | Switching power supply with a cascode circuit |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0261018A1 (en) * | 1986-09-09 | 1988-03-23 | Compagnie Française d' Electrothermie Industrielle | Voltage frequency auto-piloted converter |
US4894587A (en) * | 1984-08-17 | 1990-01-16 | Lutron Electronics Co., Inc. | High frequency gas discharge lamp dimming ballast |
EP0753987A1 (en) * | 1995-07-12 | 1997-01-15 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Circuit and method of operation for electric lamps |
EP0936845A1 (en) * | 1998-02-10 | 1999-08-18 | STMicroelectronics S.A. | Device for lighting and operating a fluorescent lamp |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2118933C (en) * | 1992-07-17 | 1998-05-05 | John G. Konopka | Power supply circuit |
TW307980B (en) * | 1994-04-28 | 1997-06-11 | Toshiba Light Technic Kk | |
DE19830368A1 (en) * | 1998-07-07 | 2000-02-03 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Electronic ballast with inrush current limitation |
DE10200047A1 (en) * | 2002-01-02 | 2003-07-17 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Ballast for a lamp and method for operating a ballast for a lamp |
-
2003
- 2003-06-06 DE DE10325872A patent/DE10325872A1/en not_active Withdrawn
-
2004
- 2004-04-21 EP EP04009454A patent/EP1484947B1/en not_active Expired - Lifetime
- 2004-04-21 DE DE502004009910T patent/DE502004009910D1/en not_active Expired - Lifetime
- 2004-05-06 TW TW093112716A patent/TW200503584A/en unknown
- 2004-05-24 US US10/851,227 patent/US7057355B2/en not_active Expired - Fee Related
- 2004-06-02 CA CA002469575A patent/CA2469575A1/en not_active Abandoned
- 2004-06-05 KR KR1020040041155A patent/KR20040105592A/en active IP Right Grant
- 2004-06-07 CN CNB2004100484862A patent/CN100574549C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4894587A (en) * | 1984-08-17 | 1990-01-16 | Lutron Electronics Co., Inc. | High frequency gas discharge lamp dimming ballast |
EP0261018A1 (en) * | 1986-09-09 | 1988-03-23 | Compagnie Française d' Electrothermie Industrielle | Voltage frequency auto-piloted converter |
EP0753987A1 (en) * | 1995-07-12 | 1997-01-15 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Circuit and method of operation for electric lamps |
EP0936845A1 (en) * | 1998-02-10 | 1999-08-18 | STMicroelectronics S.A. | Device for lighting and operating a fluorescent lamp |
Also Published As
Publication number | Publication date |
---|---|
EP1484947B1 (en) | 2009-08-19 |
CN1575079A (en) | 2005-02-02 |
US7057355B2 (en) | 2006-06-06 |
DE502004009910D1 (en) | 2009-10-01 |
EP1484947A3 (en) | 2006-01-18 |
TW200503584A (en) | 2005-01-16 |
CA2469575A1 (en) | 2004-12-06 |
DE10325872A1 (en) | 2004-12-23 |
US20040245938A1 (en) | 2004-12-09 |
KR20040105592A (en) | 2004-12-16 |
CN100574549C (en) | 2009-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2232950B1 (en) | Buck converter and method for providing a current for at least one led | |
DE3126525C2 (en) | "Voltage-controlled semiconductor switch and voltage converter circuit provided with it" | |
EP1783910B1 (en) | Circuit and a method for the galvanically separated control of a semiconductor switch | |
EP2232686B1 (en) | Buck converter for making power available to at least one led | |
DE112012001674T5 (en) | Cascade switch with self-locking and normally-on components and circuits comprising the switches | |
EP2412096A2 (en) | Switching device having a cascode circuit | |
EP1710898B1 (en) | Switchable voltage converter | |
DE102014106417A1 (en) | Systems and methods for eliminating transient losses in DC-DC converters | |
DE4302056A1 (en) | Resonant inverter | |
DE10229633A1 (en) | Control for a half-bridge inverter | |
DE1952576A1 (en) | Switching device for a load circuit | |
DE3813672C2 (en) | Inverter for an inductive load | |
EP0155059A2 (en) | Circuit arrangement for switching the current in an inductive load | |
DE3243660C2 (en) | ||
DE10126236B4 (en) | amplifier | |
EP0982862A1 (en) | Bipolar bridge circuit without resistors | |
DE60316105T2 (en) | Control circuit for a control terminal of a bipolar transistor with switched and a resonant load | |
EP1071210B1 (en) | Cicuit arrangement | |
EP1484947B1 (en) | Switch circuit arrangement for driving lamps | |
DE3712998C2 (en) | ||
DE3519414C2 (en) | Transistor inverter circuit | |
DE3338627A1 (en) | Drive circuit for a solid-state switch which consists of a series circuit of a bipolar transistor and a field-effect transistor | |
DE3021890C2 (en) | ||
EP2140735B1 (en) | Circuit configuration for starting and operating at least one discharge lamp | |
EP0122907A1 (en) | Control circuit for a switching transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
17P | Request for examination filed |
Effective date: 20060206 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20060928 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 502004009910 Country of ref document: DE Date of ref document: 20091001 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20100520 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110427 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20110414 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20110421 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20110620 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004009910 Country of ref document: DE Owner name: OSRAM AG, DE Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE Effective date: 20111213 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120421 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20121228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120421 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004009910 Country of ref document: DE Effective date: 20121101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120430 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121101 |