EP1483204A1 - Preparation of waste water containing sodium chloride for use in chlor-alkali electrolysis - Google Patents

Preparation of waste water containing sodium chloride for use in chlor-alkali electrolysis

Info

Publication number
EP1483204A1
EP1483204A1 EP03702616A EP03702616A EP1483204A1 EP 1483204 A1 EP1483204 A1 EP 1483204A1 EP 03702616 A EP03702616 A EP 03702616A EP 03702616 A EP03702616 A EP 03702616A EP 1483204 A1 EP1483204 A1 EP 1483204A1
Authority
EP
European Patent Office
Prior art keywords
extraction
chlor
wastewater
waste water
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03702616A
Other languages
German (de)
French (fr)
Inventor
Jürgen HEUSER
Werner Verhoeven
Domien Sluyts
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Publication of EP1483204A1 publication Critical patent/EP1483204A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/04Chlorides
    • C01D3/06Preparation by working up brines; seawater or spent lyes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/14Purification
    • C01D3/18Purification with selective solvents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/26Treatment of water, waste water, or sewage by extraction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/38Polymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Definitions

  • the present invention relates to a process for the treatment of saline wastewater, characterized in that an aqueous saline solution is obtained by a certain sequence of acidification, extraction, alkalization and stripping steps, which can be used directly in chlor-alkali electrolysis ,
  • Saline wastewater is produced in many chemical processes.
  • phase interface process for the production of polycarbonate or the production of diphenyl carbonate also in the phase interface process and many other chemical reactions in which sodium chloride is formed directly or indirectly (see, for example, Schnell, “Chemistry and Physics of Polycarbonates”, polymer
  • waste water could be better disposed of.
  • a possible option would be the use of such waste water in chlor-alkali electrolysis. Firstly, this would not pollute the environment with salt, secondly, resources would be saved and raw material costs would be saved. For use in chlor-alkali electrolysis, however, only waste water is considered which contains chlorides as anions practically exclusively. Therefore, wastewater, which still contains other anions and organic impurities, must be treated accordingly beforehand.
  • wastewater generated in the production of polycarbonate or diaryl carbonate contains carbonate from phosgene hydrolysis in addition to saline concentrations of 2 to 20%.
  • organic contaminants are also present. So there are still residues of phenols or bisphenols, catalyst and solvent. All these
  • Impurities would have to be reduced to a minimum to enable use in chlor-alkali electrolysis.
  • reaction salts containing saline such as are obtained, for example, from the interfacial processes for polycarbonate or diphenyl carbonate synthesis, can be worked up by means of reactive extraction after acidification in such a way that a solution suitable for introduction into the environment is obtained becomes. It is also pointed out that this solution can be used in chlor-alkali electrolysis after appropriate concentration. However, the process described there is not suitable for directly delivering a solution suitable for use in chlor-alkali electrolysis. The residual organic load still present according to this process would also be concentrated if it was concentrated, making the solution unsuitable for chlor-alkali electrolysis.
  • saline process wastewater can be treated in such a way that the remaining saline solution can be used directly in the chlor-alkali electrolysis by using the process wastewater acidified with HCI and then degassed with an organic solvent, the aqueous phase alkalized and stripped with steam.
  • the salt solution obtained can be used directly in the electrolysis, a concentration is not necessary. In the case of membrane electrolysis, salt cleaning is no longer necessary and the water can be recycled.
  • the extracted phenols can be used again as raw materials in the synthesis.
  • Reactive extraction are operated. 7.
  • the COD value achieved in the treated wastewater is below 30 ppm and thus below the application limit of the COD process. The value is therefore not exactly determinable but very low.
  • the wastewater from the reaction is first with HCl, preferably with commercially available 37% aqueous acid, up to a pH of 1-5, preferably from 3 to 4, very particularly preferably 3 acidified.
  • the carbonates are thus converted into carbonic acid, which escapes as a gas.
  • the carbonic acid can possibly be recovered in order to convert it to CO in a reformer.
  • phenolic anions are converted into the corresponding free phenolic compounds.
  • Apolar organic solvents such as e.g. Methylene chloride, chlorobenzene or a mixture of these two, MIBK (methyl isobutyl ketone) or ether, preferably methylene chloride, chlorobenzene or a mixture of these two, can be used.
  • MIBK methyl isobutyl ketone
  • ether preferably methylene chloride, chlorobenzene or a mixture of these two
  • Base preferably long chain tertiary amines such as e.g. Use alamin or tri-iso-octyl-amine, especially tri-iso-octyl-amine, as the reactive extractant, dissolved in inert apolar organic solvents such as petroleum fractions, e.g. Shell-Sol AB.
  • inert apolar organic solvents such as petroleum fractions, e.g. Shell-Sol AB.
  • inert organic solvents is preferred. This removes the phenolic compounds and other organic compounds from the aqueous solution. This extraction takes place in several, preferably 4-10 stages.
  • Mixer-settlers or extraction columns, preferably extraction columns, particularly preferably pulsed filling or sieve plate columns, can be used for this purpose, see FIG. z. B. Perry's Chemical Engineering Handbook, Mc Graw Hill, New York,
  • Sodium hydroxide solution in a concentration of 1-30%, preferably 5 to 20% NaOH, re-extracted.
  • the alkaline aqueous phase is used in a significant deficit as an extractant in order to achieve the highest possible phenolate concentrations in the alkaline aqueous phase.
  • a ratio of aqueous sodium hydroxide solution to organic phase of about 1:50 to 1: 1000, preferably 1: 400 to 1: 1000, would suffice. The exact However, ratios depend on the concentration of phenol in the organic phase to be worked up, since it is a reactive extraction in which approx.
  • Partial flow to mass flow of the extracted organic phase now corresponds to the above-mentioned ratio.
  • the aqueous extract obtained in this way can be treated further in order to recover phenols.
  • a preferred procedure is that the re-extraction with sodium hydroxide solution is carried out in two stages.
  • extralation is carried out with an aqueous sodium hydroxide solution / phenolate solution, which is formed from the partial stream removed in the second extraction stage with the addition of additional NaOH to restore the concentration of 1-30%, preferably 5 to 20%, as described above.
  • the partial stream obtained in this stage is fed directly to the phenol recovery and a corresponding amount of lye from the second stage as fresh lye, with the addition of additional NaOH to restore the concentration of 1-30%, preferably 5 to 20% NaOH, again.
  • a concentration of 1-30%, preferably 5 to 20% NaOH is extracted with NaOH, as described above, the partial stream removed being replaced by fresh liquor and this partial stream, with the addition of additional NaOH, to restore the concentration of 1-30 %, preferably 5 to 20% NaOH, is added as a fresh extractant to the first stage.
  • a concentrated aqueous-alkaline solution of the phenolates is obtained, from which simply by neutralizing with
  • HCI two phases arise, which are separated in a simple separation container can. In this way you get an upper phase, which contains about 90% of the phenane amount, and which can either be used again in a synthesis (eg DPC) or otherwise eliminated.
  • the other phase consists of an aqueous saline solution slightly contaminated with phenol and is returned to the reaction wastewater to be processed.
  • the content of phenolic compounds in the organic phase is reduced to below 1 ppm by this re-extraction.
  • the organic phase thus freed from phenolic compounds is returned to the extraction of the reaction waste water as the extraction agent.
  • the two-stage re-extraction can be designed, for example, in the form of a countercurrent extraction. These re-extractions are preferably carried out in a mixer-settler, e.g. as described in Perry's Chemical Engineering Handbook, Mc Graw Hill, New York, 1999, 15-22 to 15-29.
  • the extracted saline process wastewater largely freed from phenolic and other organic compounds, is now alkalized with aqueous sodium hydroxide solution of any concentration, for example 1-50% NaOH, to a pH of 7-13, preferably 8-12, and with steam at 1- 4, preferably 2-3, particularly preferably 2.5 bar in a stripping column, see. e.g. "Azeotropic Distillation" in Perry's Chemical
  • the amount of water vapor is related to the amount of solution to be stripped, such as 1-5, preferably 2-4, particularly preferably 3-3.5 to 100.
  • both the catalyst and the residual solvent are removed.
  • the top gases of the column therefore contain the catalyst and residual solvent, are condensed and can be returned to the synthesis reaction.
  • the bottom product is a pure saline solution, which can now be used directly in chlor-alkali electrolysis.
  • the content of residual organics in the saline solution thus prepared is ⁇ 0.3, preferably ⁇ 0.1 ppm, bisphenols and catalyst residues are no longer detectable and the residual content of organic solvents is ⁇ lppm, preferably ⁇ 0.1 ppm.
  • Wastewater from diphenyl carbonate production contains 200 ppm phenol, 30 ppm ethyl piperidine (EPP), 2 ppm diphenyl carbonate and 0.25% sodium carbonate.
  • EPP ethyl piperidine
  • the phenol concentration in the wastewater after the extraction column is ⁇ 200 ppb.
  • the ratio of wastewater to extractant (methylene chloride) is 2: 1.
  • the COD is 28 ppm and can therefore no longer be measured reproducibly because the sensitivity of the method is insufficient.
  • the high NaCl content of the solution also leads to increased measured values so that the actual COD is still significantly lower.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Water Treatments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

The invention relates to a method for preparing waste water containing sodium chloride. Said method is characterized in that an aqueous sodium chloride solution is obtained by a specific sequence of acidulation, extraction, alkalization and stripping steps. The sodium chloride solution can then be used immediately for chlor-alkali electrolysis.

Description

Aufbereitung von Kochsalz enthaltenden Abwässern zum Einsatz in der Chlor- Alkali-ElektrolyseTreatment of waste water containing table salt for use in chlor-alkali electrolysis
Die vorliegende Erfindung betrifft ein Verfahren zur Aufbereitung von kochsalzhaltigen Abwässern, dadurch gekennzeichnet, dass durch eine bestimmte Abfolge von Säuerungs-, Extraktions-, Alkalisierungs- und Stripp schritten eine wässrige Kochsalzlösung erhalten wird, welche direkt in der Chlor-Alkali-Elektrolyse eingesetzt werden kann.The present invention relates to a process for the treatment of saline wastewater, characterized in that an aqueous saline solution is obtained by a certain sequence of acidification, extraction, alkalization and stripping steps, which can be used directly in chlor-alkali electrolysis ,
Bei vielen chemischen Prozessen fällt ein kochsalzhaltiges Abwasser an. Beispielsweise beim Phasengrenzflächenprozess zur Herstellung von Polycarbonat, oder der Herstellung von Diphenylcarbonat ebenfalls im Phasengrenzflächenprozess und vielen anderen chemischen Reaktionen, in welchen direkt oder indirekt Kochsalz ent- steht, (sieh z. B. Schnell, „Chemistry and Physics of Polycarbonates", PolymerSaline wastewater is produced in many chemical processes. For example, in the phase interface process for the production of polycarbonate, or the production of diphenyl carbonate also in the phase interface process and many other chemical reactions in which sodium chloride is formed directly or indirectly (see, for example, Schnell, “Chemistry and Physics of Polycarbonates”, polymer
Reviews, Volume 9, hrterscience Publishers, New York, London, Sydney 1964, S. 33 ff.)Reviews, Volume 9, hrterscience Publishers, New York, London, Sydney 1964, pp. 33 ff.)
Um solche Abwässer zu reinigen sind bereits viele Methoden bekannt, so z.B. Aktivkohle- Adsorption, Destillation, Extraktion oder Ozonolyse. Die gereinigten Abwässer sind dann zwar von den meisten Verunreinigungen befreit, jedoch ist das Abwasser aufgrund des verbleibenden Kochsalzes nicht geeignet, um in die Umwelt eingeleitet zu werden. Beispielsweise ist es besonders problematisch, wenn die Einleitung in Süßwassergebiete, die unter Umständen noch zur Trinkwasserver- sorgung benutzt werden, geschieht.Many methods are already known for cleaning such waste water, e.g. Activated carbon adsorption, distillation, extraction or ozonolysis. The cleaned wastewater is then freed of most impurities, but the wastewater is not suitable for being discharged into the environment due to the remaining common salt. For example, it is particularly problematic if it is discharged into freshwater areas that may still be used for drinking water supply.
Es stellt sich daher die Frage, wie man solche Abwässer besser beseitigen könnte. Eine denkbare Möglichkeit wäre der Einsatz solcher Abwässer in der Chlor-Alkali- Elektrolyse. Dadurch würde erstens die Umwelt nicht mit dem Salz belastet, zweitens Ressourcen geschont und dadurch auch Rohstoffkosten eingespart. Für den Einsatz in der Chlor- Alkali-Elektrolyse kommen jedoch nur Abwässer in Frage, die als Anionen praktisch ausschließlich Chloride enthalten. Deshalb müssen Abwässer, welche noch weitere Anionen und organische Verunreinigungen enthalten, zuvor entsprechend aufbereitet werden.The question therefore arises as to how such waste water could be better disposed of. A possible option would be the use of such waste water in chlor-alkali electrolysis. Firstly, this would not pollute the environment with salt, secondly, resources would be saved and raw material costs would be saved. For use in chlor-alkali electrolysis, however, only waste water is considered which contains chlorides as anions practically exclusively. Therefore, wastewater, which still contains other anions and organic impurities, must be treated accordingly beforehand.
Beispielsweise enthalten Abwässer, die bei der Polycarbonat - oder Diarylcarbonat- produktion entstehen, neben Kochsalzkonzentrationen von 2 bis 20 % noch Carbonate aus der Phosgenhydrolyse. Außerdem sind, abgesehen von diesen anorganischen Salzen, auch organische Verunreinigungen anwesend. So sind noch Reste von Phenolen oder Bisphenolen, Katalysator und Lösungsmittel vorhanden. All dieseFor example, wastewater generated in the production of polycarbonate or diaryl carbonate contains carbonate from phosgene hydrolysis in addition to saline concentrations of 2 to 20%. In addition to these inorganic salts, organic contaminants are also present. So there are still residues of phenols or bisphenols, catalyst and solvent. All these
Verunreinigungen müssten auf ein Minimum reduziert werden, um den Einsatz in der Chlor- Alkali-Elektrolyse zu ermöglichen.Impurities would have to be reduced to a minimum to enable use in chlor-alkali electrolysis.
Aus EP AI 0 396 790 ist bekannt, dass man anfallende, verdünnte Lösungen durch Reaktiv-Extraktionsschritte so aufarbeiten kann, dass man ein verwertbares Konzentrat bestimmter Bestandteile erhält. Es wird jedoch keine geschlossene Lösung für alle anfallenden Lösungsströme offenbart. Auch wird nichts über eine mögliche Aufreinigung eines kochsalzhaltigen Abwasserstromes zur Verwendung in der Chlor- Alkali-Elektrolyse gesagt.From EP AI 0 396 790 it is known that resulting, dilute solutions can be worked up by reactive extraction steps in such a way that a usable concentrate of certain constituents is obtained. However, no closed solution for all solution flows is disclosed. Nothing is said about a possible purification of a saline wastewater stream for use in chlor-alkali electrolysis.
Ähnliche Aufarbeitungsmethoden mittels physikalischer Extraktionsschritte sind dem Fachmann ebenfalls bekannt (s. z.B. Ulimanns Enyclopedia of industrial chemistry Volume B3 Seite 6.3 bis 6.6. ) Hier werden jedoch nur verdünnte Abwasserströme durch Extraktionsmethoden so gereinigt, dass man die Verunreinigungen in konzen- triertere Lösungen überführt, die sich dann wesentlich leichter bzw. kostengünstiger entsorgen lassen.Similar work-up methods using physical extraction steps are also known to the person skilled in the art (see, for example, Ulimann's Enyclopedia of industrial chemistry Volume B3, pages 6.3 to 6.6.) Here, however, only dilute wastewater streams are cleaned by extraction methods in such a way that the contaminants are converted into more concentrated solutions, which are then converted have it disposed of much more easily and cost-effectively.
Aus DE-A 195 10 063 ist bekannt, dass man kochsalzhaltige Reaktionsäbwässer, wie sie bspw. aus den Phasengrenzflächenverfahren zur Polycarbonat- oder Diphenyl- carbonatsynthese anfallen, mittels einer Reaktivextraktion nach Ansäuern so Aufarbeiten kann, dass eine zur Einleitung in die Umwelt geeignete Lösung erhalten wird. Es wird auch darauf hingewiesen, dass man diese Lösung nach entsprechender Aufkonzentration in der Chlor-Alkali-Elektrolyse einsetzen kann. Das dort beschriebene Verfahren ist jedoch nicht geeignet um direkt eine für den Einsatz in der Chlor-Alkali-Elektrolyse geeignete Lösung zu liefern. Die nach diesem Verfahren noch vorhandene organische Restfracht würde bei einer Aufkonzentration ebenfalls aufkonzentriert und damit würde die Lösung für die Chlor-Alkali-Elektrolyse ungeeignet. Selbst in der nach diesem Verfahren ohne Aufkonzentration erhältlichen Lösung wäre die organische Restfracht noch zu hoch, um die Lösung im heutzutage bevorzugten Membranverfahren zur Chlor-Alkali-Elektrolyse einzusetzen. So offen- bart die DE-A 195 10 063 lediglich Abwässer mit einem CSB-Wert von bevorzugtFrom DE-A 195 10 063 it is known that reaction salts containing saline, such as are obtained, for example, from the interfacial processes for polycarbonate or diphenyl carbonate synthesis, can be worked up by means of reactive extraction after acidification in such a way that a solution suitable for introduction into the environment is obtained becomes. It is also pointed out that this solution can be used in chlor-alkali electrolysis after appropriate concentration. However, the process described there is not suitable for directly delivering a solution suitable for use in chlor-alkali electrolysis. The residual organic load still present according to this process would also be concentrated if it was concentrated, making the solution unsuitable for chlor-alkali electrolysis. Even in the solution that can be obtained by this method without concentration, the residual organic load would still be too high to use the solution in the membrane method preferred today for chlor-alkali electrolysis. For example, DE-A 195 10 063 only discloses waste water with a COD value of preferred
< 100 ppm, in den Beispielen mindestens 34 ppm. Diese Abwässer wären nicht für den Einsatz in der Chlor-Alkali-Elektrolyse geeignet.<100 ppm, in the examples at least 34 ppm. This waste water would not be suitable for use in chlor-alkali electrolysis.
Diese bekannten Verfahren zur Aufbereitung der Prozessabwässer führen demnach nicht direkt zu einer zum Einsatz in der Chlor-Alkali-Elektrolyse, insbesondere nach dem Membranverfahren, geeigneten, kochsalzhaltigen Lösung. Es findet sich auch kein Hinweis, dass es mit Hilfe der bisher verfügbaren Techniken möglich sein könnte, dies zu erreichen.These known processes for the treatment of process wastewater accordingly do not lead directly to a saline-containing solution suitable for use in chlor-alkali electrolysis, in particular according to the membrane process. There is also no indication that it could be possible to achieve this using the techniques available to date.
Es stellte sich somit, ausgehend vom Stand der Technik, die Aufgabe ein verbessertes Aufbereitungsverfahren für kochsalzhaltige Abwässer verfügbar zu machen, welches zu kochsalzhaltigen Lösungen führt, welche für die direkte Verwendung in der Chlor-Alkali-Elektrolyse geeignet sind, sowie zu einer möglichst geschlossenen Verwendung der Teilströme bei Erhalt möglichst geringer Abfall- mengen.Based on the prior art, it was therefore the task of making an improved treatment process for saline wastewater available, which leads to saline solutions which are suitable for direct use in chlor-alkali electrolysis, and to a use which is as closed as possible of the partial streams while receiving the smallest possible amount of waste.
Es wurde nun überraschenderweise gefunden, dass man kochsalzhaltige Prozess-Ab- wässer sehr wohl so aufbereiten kann, dass die verbleibende Kochsalzlösung direkt in die Chlor-Alkali-Elektrolyse eingesetzt werden kann, indem man das Prozessab- wasser mit HCI ansäuert und entgast anschließend mit einem organischen Lösungsmittel extrahiert, die wässrige Phase alkalisiert und mit Wasserdampf Stripped.It has now surprisingly been found that saline process wastewater can be treated in such a way that the remaining saline solution can be used directly in the chlor-alkali electrolysis by using the process wastewater acidified with HCI and then degassed with an organic solvent, the aqueous phase alkalized and stripped with steam.
Das erfϊndungsgemäße Verfahren erzielt dabei gegenüber den bekannten Verfahren des Standes der Technik folgende überraschenden Vorteile:The method according to the invention achieves the following surprising advantages over the known methods of the prior art:
1. Die erhaltene Salzlösung kann direkt in der Elektrolyse eingesetzt werden, ein Aufkonzentrieren ist nicht notwendig. Im Falle einer Membran-Elektrolyse ist keine Salzreinigung mehr notwendig und das Rezyklieren des Wassers ist möglich.1. The salt solution obtained can be used directly in the electrolysis, a concentration is not necessary. In the case of membrane electrolysis, salt cleaning is no longer necessary and the water can be recycled.
2. Salz- und Wassermengen werden reduziert.2. The amount of salt and water is reduced.
3. Im Falle der Diphenylcarbonatproduktion werden die als Verunreinigung im Abwasser vorhandenen Diphenylcarbonatreste während der Extraktion zu3. In the case of diphenyl carbonate production, the diphenyl carbonate residues present as impurities in the wastewater become during the extraction
Phenol umgesetzt.Phenol implemented.
4. Die extrahierten Phenole kann man wieder als Rohstoff in die Synthese einsetzen.4. The extracted phenols can be used again as raw materials in the synthesis.
5. Es verbleiben nur kleine Mengen Abwasser, was der Umwelt zugute kommt. 6. Das Verfahren kann auch ohne den Einsatz von Komponenten zur5. Only small amounts of waste water remain, which benefits the environment. 6. The method can also be used without the use of components
Reaktivextraktion betrieben werden. 7. Der erzielte CSB-Wert im aufgearbeiteten Abwasser liegt unterhalb von 30 ppm und damit unterhalb der Anwendungsgrenze des CSB-Verfahrens. Der Wert ist daher nicht genau bestimmbar aber sehr gering. 8. Gehalt an phenolischen Verunreinigungen < 1 ppm, an Phenol von < 0,3 ppm, an Bisphenol unter der Nachweisgrenze, Katalysatorreste < 1 ppm und organisches Lösungsmittel < 1 ppm.Reactive extraction are operated. 7. The COD value achieved in the treated wastewater is below 30 ppm and thus below the application limit of the COD process. The value is therefore not exactly determinable but very low. 8. Content of phenolic impurities <1 ppm, phenol of <0.3 ppm, bisphenol below the detection limit, catalyst residues <1 ppm and organic solvent <1 ppm.
Gemäß dem erfindungsgemäßen Verfahren wird das Abwasser aus der Reaktion zuerst mit HCI, bevorzugt mit handelsüblicher 37%iger wässriger Säure, bis zu einem pH- Wert von 1-5, bevorzugt von 3 bis 4, ganz besonders bevorzugt 3 angesäuert. Die Carbonate werden so in Kohlensäure umgesetzt, welche als Gas entweicht. Die Kohlensäure kann man unter Umständen zurückgewinnen, um sie in einem Reformer zu CO umzusetzen. Weiterhin werden phenolische Anionen in die entsprechenden freien phenolischen Verbindungen umgewandelt.In the process according to the invention, the wastewater from the reaction is first with HCl, preferably with commercially available 37% aqueous acid, up to a pH of 1-5, preferably from 3 to 4, very particularly preferably 3 acidified. The carbonates are thus converted into carbonic acid, which escapes as a gas. The carbonic acid can possibly be recovered in order to convert it to CO in a reformer. Furthermore, phenolic anions are converted into the corresponding free phenolic compounds.
Die saure Lösung wird anschließend mit einem Extraktionsmittel in Kontakt gebracht. Als Extraktionsmittel können apolare organische Lösungsmittel, wie z.B. Methylenchlorid, Chlorbenzol oder eine Mischung dieser beiden, MIBK (Meth- ylisobutylketon) oder Ether , bevorzugt Methylenchlorid, Chlorbenzol oder eine Mischung dieser beiden eingesetzt werden. Alternativ kann man eine nicht löslicheThe acidic solution is then brought into contact with an extractant. Apolar organic solvents such as e.g. Methylene chloride, chlorobenzene or a mixture of these two, MIBK (methyl isobutyl ketone) or ether, preferably methylene chloride, chlorobenzene or a mixture of these two, can be used. Alternatively, you can use a non-soluble one
Base, bevorzugt langkettige tertiäre Amine, wie z.B. Alamin oder tri-iso-octyl-amin, insbesondere tri-iso-octyl-amin, als Reaktiv-Extraktionsmittel verwenden, gelöst in inerten apolaren organischen Lösungsmittel wie beispielsweise Erdölfraktionen, bevorzugt wird z.B. Shell-Sol AB. Bevorzugt wird jedoch die physikalische Extraktion mit inerten organischen Lösungsmitteln. Hierbei werden die phenolischen Verbindungen und andere organische Verbindungen aus der wässrigen Lösung entfernt. Diese Extraktion findet in mehreren, bevorzugt 4-10 Stufen statt. Dazu können Mixer-Settler oder Extraktionskolonnen, bevorzugt Extraktionskolonnen, besonders bevorzugt pulsierte Füll-oder Siebbodenkolonnen eingesetzt werden, s. z. B. Perry's Chemical Engineering Handbook, Mc Graw Hill, New York,Base, preferably long chain tertiary amines such as e.g. Use alamin or tri-iso-octyl-amine, especially tri-iso-octyl-amine, as the reactive extractant, dissolved in inert apolar organic solvents such as petroleum fractions, e.g. Shell-Sol AB. However, physical extraction with inert organic solvents is preferred. This removes the phenolic compounds and other organic compounds from the aqueous solution. This extraction takes place in several, preferably 4-10 stages. Mixer-settlers or extraction columns, preferably extraction columns, particularly preferably pulsed filling or sieve plate columns, can be used for this purpose, see FIG. z. B. Perry's Chemical Engineering Handbook, Mc Graw Hill, New York,
1999, 15-44 bis 15-46. Es wird dabei ein Verhältnis von organischer Phase zu wässriger Phase von 5:1 bis 1:5, bevorzugt von 3:1 bis 1:3, ganz besonders bevorzugt von 1 :2 angestrebt.1999, 15-44 to 15-46. A ratio of organic phase to aqueous phase of 5: 1 to 1: 5, preferably from 3: 1 to 1: 3, very particularly preferably from 1: 2 is aimed for.
Die erhaltene organische Extraktionsphase wird anschließend mit einer wässrigenThe organic extraction phase obtained is then with an aqueous
Natronlaugelösung, in einer Konzentration von 1-30%, bevorzugt 5 bis 20 % NaOH, re-extrahiert. Hierbei wird die alkalisch-wässrige Phase in einem deutlichen Unter- schuss als Extraktionsmittel eingesetzt, um möglichst hohe Phenolatkonzentrationen in der alkalisch-wässrigen Phase zu erreichen. Zur Extraktion mit wässriger Natronlauge würde ein Verhältnis von wässriger Natronlauge zu organischer Phase von etwa 1:50 bis 1:1000, bevorzugt 1:400 bis 1:1000 genügen. Die genauen Verhältnisse hängen jedoch von der Konzentration an Phenol in der aufzuarbeitenden organischen Phase ab, da es sich um eine reaktive Extraktion handelt, in welcher ca. 1.1-1.5, bevorzugt 1.2-1.3, besonders bevorzugt 1.25 Mol NaOH pro Mol Phenol eingesetzt werden müssen. Dementsprechend müssen die Mengen jeweils an die Konzentration von Phenol in der organischen Phase angepasst werden. Um jedoch ein mischbares Verhältnis zu erhalten, was bei Verhältnissen von 1:50 bis 1:1000 nicht gegeben ist, wird Natronlauge im Kreis gefahren, wodurch ein tatsächliches Verhältnis von im Kreis gefahrener Natronlauge zu organischer Phase von ca. 1:10 erreicht wird. Von der im Kreis gefahrenen Natronlauge wird jeweils ein Teilstrom entnommen, der durch Frischlauge ersetzt wird. Das Verhältnis entnommenerSodium hydroxide solution, in a concentration of 1-30%, preferably 5 to 20% NaOH, re-extracted. Here, the alkaline aqueous phase is used in a significant deficit as an extractant in order to achieve the highest possible phenolate concentrations in the alkaline aqueous phase. For the extraction with aqueous sodium hydroxide solution, a ratio of aqueous sodium hydroxide solution to organic phase of about 1:50 to 1: 1000, preferably 1: 400 to 1: 1000, would suffice. The exact However, ratios depend on the concentration of phenol in the organic phase to be worked up, since it is a reactive extraction in which approx. 1.1-1.5, preferably 1.2-1.3, particularly preferably 1.25 mol NaOH per mol phenol must be used. Accordingly, the amounts must be adjusted to the concentration of phenol in the organic phase. However, in order to obtain a miscible ratio, which is not the case at ratios of 1:50 to 1: 1000, sodium hydroxide solution is circulated, whereby an actual ratio of sodium hydroxide solution circulated to organic phase of approximately 1:10 is achieved. A partial stream is taken from each of the circulated sodium hydroxide solution, which is replaced by fresh alkali. The ratio taken
Teilstrom zu Mengenstrom der extrahierten organischen Phase entspricht nun dem oben genannten Verhältnis. Das hierbei erhaltene wässrige Extrakt kann man weiter behandeln, um Phenole zurückzugewinnen.Partial flow to mass flow of the extracted organic phase now corresponds to the above-mentioned ratio. The aqueous extract obtained in this way can be treated further in order to recover phenols.
Eine bevorzugte Verfahrensweise besteht darin dass die Re-extraktion mit Natronlauge zweistufig durchgeführt wird. Hierbei wird im ersten Extraktionsschritt mit einer wässrigen Natronlauge/Phenolatlösung, welche aus dem entnommenen Teilstrom der zweiten Extraktionsstufe, unter Zusatz zusätzlicher NaOH zur Wiederherstellung der Konzentration von 1-30%, bevorzugt 5 bis 20 % NaOH, gebildet wird, wie zuvor beschrieben extraliiert. Der in dieser Stufe anfallende Teilstrom wird direkt der Phenolrückgewinnung zugeführt und eine entsprechende Menge an Lauge aus der zweiten Stufe als Frischlauge, unter Zusatz zusätzlicher NaOH zur Wiederherstellung der Konzentration von 1-30%, bevorzugt 5 bis 20 % NaOH, wieder zugeführt. Im zweiten Extraktionsschritt wird mit NaOH einer Konzentration von 1-30%, bevorzugt 5 bis 20 % NaOH, wie oben beschrieben extrahiert, wobei der entnommene Teilstrom durch Frischlauge ersetzt wird und dieser Teilstrom, unter Zusatz zusätzlicher NaOH zur Wiederherstellung der Konzentration von 1-30%, bevorzugt 5 bis 20 % NaOH, als Frischextraktionsmittel der ersten Stufe zugeführt wird. Als entnommenen Teilstrom der ersten Stufe erhält man eine konzentrierte wässrige-alkalische Lösung der Phenolate, aus der durch einfaches Neutralisieren mitA preferred procedure is that the re-extraction with sodium hydroxide solution is carried out in two stages. In the first extraction step, extralation is carried out with an aqueous sodium hydroxide solution / phenolate solution, which is formed from the partial stream removed in the second extraction stage with the addition of additional NaOH to restore the concentration of 1-30%, preferably 5 to 20%, as described above. The partial stream obtained in this stage is fed directly to the phenol recovery and a corresponding amount of lye from the second stage as fresh lye, with the addition of additional NaOH to restore the concentration of 1-30%, preferably 5 to 20% NaOH, again. In the second extraction step, a concentration of 1-30%, preferably 5 to 20% NaOH, is extracted with NaOH, as described above, the partial stream removed being replaced by fresh liquor and this partial stream, with the addition of additional NaOH, to restore the concentration of 1-30 %, preferably 5 to 20% NaOH, is added as a fresh extractant to the first stage. As the partial stream taken from the first stage, a concentrated aqueous-alkaline solution of the phenolates is obtained, from which simply by neutralizing with
HCI zwei Phasen entstehen, die in einem einfachen Trennbehälter getrennt werden können. Auf diese Weise bekommt man eine obere Phase, die etwa 90 % der Phenohnenge enthält, und die man entweder wieder in eine Synthese (z.B. DPC) einsetzen kann oder anderweitig beseitigt. Die andere Phase besteht aus einer geringfügig mit Phenol belasteten wässrigen Kochsalzlösung und wird in das aufzuarbeitende Reaktionsabwasser rückgeführt.HCI two phases arise, which are separated in a simple separation container can. In this way you get an upper phase, which contains about 90% of the phenane amount, and which can either be used again in a synthesis (eg DPC) or otherwise eliminated. The other phase consists of an aqueous saline solution slightly contaminated with phenol and is returned to the reaction wastewater to be processed.
Der Gehalt an phenolischen Verbindungen der organischen Phase wird durch diese Reextraktion auf unterhalb lppm abgesenkt. Die so von phenolischen Verbindungen befreite organische Phase wird als Extraktionsmittel wieder in die Extraktion des Reaktionsabwassers zurückgeführt. Die zweistufige Re-extraktion kann beispielsweise in Form einer Gegenstromextraktion ausgelegt sein. Diese Re-extraktionen werden bevorzugt in einem Mixer-Settler durchgeführt, z.B. wie in Perry's Chemical Engineering Handbook, Mc Graw Hill, New York, 1999, 15-22 bis 15-29 beschrieben.The content of phenolic compounds in the organic phase is reduced to below 1 ppm by this re-extraction. The organic phase thus freed from phenolic compounds is returned to the extraction of the reaction waste water as the extraction agent. The two-stage re-extraction can be designed, for example, in the form of a countercurrent extraction. These re-extractions are preferably carried out in a mixer-settler, e.g. as described in Perry's Chemical Engineering Handbook, Mc Graw Hill, New York, 1999, 15-22 to 15-29.
Das extrahierte, von phenolischen und anderen organischen Verbindungen weitgehend befreite kochsalzhaltige Prozessabwasser wird nun mit wässriger Natronlauge beliebiger Konzentration, bspw. 1-50 % NaOH, bis zu einem pH von 7-13, bevorzugt 8 —12, alkalisiert und mit Wasserdampf bei 1- 4, bevorzugt 2-3, besonders bevorzugt 2,5 bar in einer Strippkolonne, s. z.B. "azeotrope Destillation" in Perry's ChemicalThe extracted saline process wastewater, largely freed from phenolic and other organic compounds, is now alkalized with aqueous sodium hydroxide solution of any concentration, for example 1-50% NaOH, to a pH of 7-13, preferably 8-12, and with steam at 1- 4, preferably 2-3, particularly preferably 2.5 bar in a stripping column, see. e.g. "Azeotropic Distillation" in Perry's Chemical
Engineering Handbook, Mc Graw Hill, New York, 1999, 13-68 bis 13-75, gestrippt. Die Menge an Wasserdampf verhält sich dabei zur Menge an zu strippender Lösung wie 1-5 , bevorzugt 2-4, besonders bevorzugt 3-3,5 zu 100. Bei diesem Schritt wird sowohl der Katalysator als auch das Restlösungsmittel entfernt. Die Kopfgase der Kolonne enthalten daher den Katalysator und Restlösungsmittel, werden kondensiert und können zurück in die Synthesereaktion gegeben werden. Das Sumpfprodukt ist eine reine Kochsalzlösung, die nunmehr direkt in der Chlor-Alkali-Elektrolyse eingesetzt werden kann. Die Gehalt an Restorganica in der so aufbereiteten Kochsalzlösung ist < 0,3, bevorzugt < 0,1 ppm, Bisphenole und Katalysatorreste sind nicht mehr nachweisbar und der Restgehalt an organischen Lösungsmitteln ist < lppm, bevorzugt < 0,1 ppm.Engineering Handbook, Mc Graw Hill, New York, 1999, 13-68 to 13-75, stripped. The amount of water vapor is related to the amount of solution to be stripped, such as 1-5, preferably 2-4, particularly preferably 3-3.5 to 100. In this step, both the catalyst and the residual solvent are removed. The top gases of the column therefore contain the catalyst and residual solvent, are condensed and can be returned to the synthesis reaction. The bottom product is a pure saline solution, which can now be used directly in chlor-alkali electrolysis. The content of residual organics in the saline solution thus prepared is <0.3, preferably <0.1 ppm, bisphenols and catalyst residues are no longer detectable and the residual content of organic solvents is <lppm, preferably <0.1 ppm.
Alle Schritte des erfindungsgemäßen Verfahrens werden, soweit nicht ausdrücklich anders beschrieben, bei Temperaturen unterhalb des niedrigsten Siedepunktes der jeweils verwendeten Lösungsmittel und bei Atmosphärendruck durchgeführt. Bei Bedarf können die Schritte jedoch auch bei Temperaturen oberhalb dieser Temperaturen bei gleichzeitig entsprechend angepasstem Druck durchgeführt werden.Unless expressly stated otherwise, all steps of the process according to the invention are carried out at temperatures below the lowest boiling point of the solvents used in each case and at atmospheric pressure. If necessary, however, the steps can also be carried out at temperatures above these temperatures with a correspondingly adapted pressure.
Die anschließenden Schemata sollen das erfindungsgemäße Verfahren sowie explizit die Reextraktion illustrieren ohne jedoch den Gegenstand der vorliegenden Erfindung einzuschränken. The following diagrams are intended to illustrate the method according to the invention and explicitly the re-extraction without, however, restricting the subject matter of the present invention.
Beispiele:Examples:
Die nachfolgenden Beispiele sollen die vorliegende Erfindung illustrieren ohne sie jedoch einzuschränken:The following examples are intended to illustrate the present invention without restricting it:
Beispiel 1example 1
Ein Abwasser aus der Diphenylcarbonatproduktion enthält 200 ppm Phenol, 30 ppm Ethylpiperidin (EPP), 2 ppm Diphenylcarbonat und 0.25 % Natriumcarbonat.Wastewater from diphenyl carbonate production contains 200 ppm phenol, 30 ppm ethyl piperidine (EPP), 2 ppm diphenyl carbonate and 0.25% sodium carbonate.
98 kg dieses Abwassers werden mit 2 kg 37 %-iger Chlorwasserstoffsäure auf pH 4 gebracht und entgast. Die Restkonzentration an Carbonationen beträgt weniger als 200 ppm.98 kg of this wastewater are brought to pH 4 with 2 kg of 37% hydrochloric acid and degassed. The residual concentration of carbonate ions is less than 200 ppm.
Diese Lösung wird anschließend in einer Extraktionskolonne mit Länge 5 Meter,This solution is then in an extraction column with a length of 5 meters,
0,05 Meter Durchmesser und 50 Siebböden mit der halben Menge (Gewichtsverhältnis) an Methylenchlorid extrahiert.0.05 meter diameter and 50 sieve trays extracted with half the amount (weight ratio) of methylene chloride.
Die Phenolkonzentration im Abwasser nach der Extraktionskolonne beträgt < 200 ppb. Das Verhältnis Abwasser zu Extraktionsmittel (Methylenchlorid) ist 2 : 1.The phenol concentration in the wastewater after the extraction column is <200 ppb. The ratio of wastewater to extractant (methylene chloride) is 2: 1.
Anschließend werden die resultierenden 50 kg Lösungsmittel, die 400 ppm Phenol und 4 - 5 ppm Diphenylcarbonat enthalten, in 2 Mixer Settlern im Gegenstromver- fahren mit 250 g 20 %-ige Natronlauge re-extrahiert. Das Re-Extrakt wird mit 241 g 37%-iger HCI neutralisiert. Diese Lösung entmischt sich und ergibt 19 g organischeThe resulting 50 kg of solvent, which contains 400 ppm phenol and 4-5 ppm diphenyl carbonate, are re-extracted in 2 mixer settlers in a countercurrent process with 250 g 20% sodium hydroxide solution. The re-extract is neutralized with 241 g 37% HCI. This solution separates and gives 19 g of organic
Phase (95 % Phenol) und 493 g Wasserphase ( 1 % Phenol) bei pH 4. Diese 493 g wässrige Phase werden zum Frischabwasser in den Extraktionsbeginn zurückgeführt. 50 kg gereinigtes, wasserhaltiges Lösungsmittel wird wieder in die Extraktion zuräckgeführt. 100 kg extrahiertes Reaktionsabwasser aus der Extraktion wird anschließend in einem Stripper mit 3.15 kg Wasserdampf bei 2.5 bar gestrippt. Als Kopfdestillat verbleiben 1,03 kg an EPP und methylenchlorid enthaltendem Wasser, welches zurück in die Synthese geführt werden kann. Als Sumpf verbleiben 102,3 kg einer wässrigen Kochsalzlösung mit 15-18 % Kochsalz und < 1 ppm EPP und < lppm Methylenchlorid.Phase (95% phenol) and 493 g water phase (1% phenol) at pH 4. These 493 g aqueous phase are returned to the fresh waste water in the start of extraction. 50 kg of cleaned, water-containing solvent is returned to the extraction. 100 kg of extracted reaction wastewater from the extraction is then stripped in a stripper with 3.15 kg of water vapor at 2.5 bar. The top distillate left is 1.03 kg of water containing EPP and methylene chloride, which can be fed back into the synthesis. 102.3 kg of an aqueous saline solution with 15-18% sodium chloride and <1 ppm EPP and <1 ppm methylene chloride remain at the bottom.
Der CSB liegt bei 28 ppm und ist damit nicht mehr reproduzierbar messbar, da die Empfindlichkeit der Methode nicht ausreicht. Der hohe NaCl Gehalt der Lösung führt zudem zu erhöhten Messwerten, so dass der tatsächliche CSB noch deutlich darunter liegt. The COD is 28 ppm and can therefore no longer be measured reproducibly because the sensitivity of the method is insufficient. The high NaCl content of the solution also leads to increased measured values so that the actual COD is still significantly lower.

Claims

Patentansprüche claims
1. Ein Verfahren zur Reinigung von Chloridhaltigen Abwässer, die Säuren, Basen und Lösungsmittelreste enthalten dadurch gekennzeichnet, dass die Abwässer durch Ansäuern, anschließende Extraktion, Alkalisieren und Strippen aufgearbeitet werden.1. A process for the purification of chloride-containing wastewater, which contains acids, bases and solvent residues, characterized in that the wastewater is worked up by acidification, subsequent extraction, alkalizing and stripping.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die Abwässer dem Phasengrenzflächenverfahren zur Polycarbonat- oder Diphenylcarbonat- herstellung entstammen.2. The method according to claim 1, characterized in that the waste water originates from the phase boundary process for polycarbonate or diphenyl carbonate production.
3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass zuerst Carbonate durch Ansäuern und Entgasung entfernt werden.3. The method according to claim 1, characterized in that first carbonates are removed by acidification and degassing.
4. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass durch Extraktion mit Lösungsmittel die phenolischen und andere organische Verbindungen entfernt werden.4. The method according to claim 1, characterized in that the phenolic and other organic compounds are removed by extraction with solvent.
5. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass durch Extraktion mit Basen in einer Reäktiv-Extraktion die Säuren entfernt werden.5. The method according to claim 1, characterized in that the acids are removed by extraction with bases in a reactive extraction.
6. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die Extraktion in einem Kolonne durchgeführt wird.6. The method according to claim 1, characterized in that the extraction is carried out in a column.
7. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass durch Re-Ex- traktion des organischen Extraktionsmittels mit wässrig-alkalischer Lösung und anschließende Neutralisation des wässrigen Re-extrakts die phenolischen Verbindungen zurückgewonnen werden.7. The method according to claim 1, characterized in that the phenolic compounds are recovered by re-extraction of the organic extractant with aqueous alkaline solution and subsequent neutralization of the aqueous re-extract.
8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass die Re-ex- traktion in Mixer-Settlern durchgeführt werden. 8. The method according to claim 7, characterized in that the re-extraction is carried out in mixer settlers.
9. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass die Re-ex- traktione nach dem Gegenstromprinzip durchgeführt werden.9. The method according to claim 7, characterized in that the re-extractions are carried out according to the countercurrent principle.
10. Verfahren gemäss Anspruch 7, dadurch gekennzeichnet, dass die Re-ex- traktion zweistufig durchgeführt wird. 10. The method according to claim 7, characterized in that the re-extraction is carried out in two stages.
EP03702616A 2002-02-22 2003-02-10 Preparation of waste water containing sodium chloride for use in chlor-alkali electrolysis Withdrawn EP1483204A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10207442 2002-02-22
DE10207442A DE10207442A1 (en) 2002-02-22 2002-02-22 Treatment of waste water containing table salt for use in chlor-alkali electrolysis
PCT/EP2003/001282 WO2003070639A1 (en) 2002-02-22 2003-02-10 Preparation of waste water containing sodium chloride for use in chlor-alkali electrolysis

Publications (1)

Publication Number Publication Date
EP1483204A1 true EP1483204A1 (en) 2004-12-08

Family

ID=27740305

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03702616A Withdrawn EP1483204A1 (en) 2002-02-22 2003-02-10 Preparation of waste water containing sodium chloride for use in chlor-alkali electrolysis

Country Status (8)

Country Link
US (1) US20050115901A1 (en)
EP (1) EP1483204A1 (en)
JP (1) JP2005517624A (en)
CN (1) CN1646429A (en)
AU (1) AU2003205750A1 (en)
DE (1) DE10207442A1 (en)
TW (1) TW200306952A (en)
WO (1) WO2003070639A1 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2284146A3 (en) * 2003-11-20 2011-03-02 SOLVAY (Société Anonyme) Process for producing dichloropropanol
KR20080036555A (en) 2005-05-20 2008-04-28 솔베이(소시에떼아노님) Method for making an epoxy starting from a chlorhydrine
US8173823B2 (en) * 2005-05-20 2012-05-08 Solvay (Société Anonyme) Method for making an epoxide
DE102005047460A1 (en) * 2005-09-30 2007-04-05 Basf Ag Treatment of wastewater from an aldolization process comprises acidifying the wastewater and extracting it with an organic liquid produced by stripping the acidified or acidified and extracted wastewater
EP2043984A1 (en) 2006-06-14 2009-04-08 Solvay S.A. Crude glycerol-based product, process for its purification and its use in the manufacture of dichloropropanol
DE102006041465A1 (en) * 2006-09-02 2008-03-06 Bayer Materialscience Ag Process for the preparation of diaryl carbonate
US20100032617A1 (en) * 2007-02-20 2010-02-11 Solvay (Societe Anonyme) Process for manufacturing epichlorohydrin
FR2913684B1 (en) * 2007-03-14 2012-09-14 Solvay PROCESS FOR PRODUCING DICHLOROPROPANOL
TW200911773A (en) * 2007-06-12 2009-03-16 Solvay Epichlorohydrin, manufacturing process and use
TW200911693A (en) * 2007-06-12 2009-03-16 Solvay Aqueous composition containing a salt, manufacturing process and use
FR2918058A1 (en) * 2007-06-28 2009-01-02 Solvay GLYCEROL-BASED PRODUCT, PROCESS FOR ITS PURIFICATION AND USE IN THE MANUFACTURE OF DICHLOROPROPANOL
KR20100068246A (en) * 2007-08-23 2010-06-22 다우 글로벌 테크놀로지스 인크. Brine purification
EP2207617A1 (en) * 2007-10-02 2010-07-21 SOLVAY (Société Anonyme) Use of compositions containing silicon for improving the corrosion resistance of vessels
DE102007058701A1 (en) * 2007-12-06 2009-06-10 Bayer Materialscience Ag Process for the preparation of diaryl carbonate
FR2925045B1 (en) * 2007-12-17 2012-02-24 Solvay GLYCEROL-BASED PRODUCT, PROCESS FOR OBTAINING THE SAME AND USE THEREOF IN THE MANUFACTURE OF DICHLOROPROPANOL
TWI478875B (en) * 2008-01-31 2015-04-01 Solvay Process for degrading organic substances in an aqueous composition
DE102008038031A1 (en) 2008-08-16 2010-02-18 Bayer Materialscience Ag Preparing (co)polycarbonate or diaryl carbonate, useful in e.g. sunglasses, comprises converting di-, mono-phenol and phosgene to chloroformic acid aryl ester, oligo- or diaryl-carbonate, and reacting the product under alkaline solution
EP2090605B1 (en) 2008-02-13 2011-07-13 Bayer MaterialScience AG Method for making polycarbonates
DE102008011473A1 (en) 2008-02-27 2009-09-03 Bayer Materialscience Ag Process for the production of polycarbonate
US8507643B2 (en) * 2008-04-03 2013-08-13 Solvay S.A. Composition comprising glycerol, process for obtaining same and use thereof in the manufacture of dichloropropanol
JP2009285533A (en) * 2008-05-27 2009-12-10 Teijin Chem Ltd Treatment method for waste water
FR2935968B1 (en) * 2008-09-12 2010-09-10 Solvay PROCESS FOR THE PURIFICATION OF HYDROGEN CHLORIDE
FR2939434B1 (en) * 2008-12-08 2012-05-18 Solvay PROCESS FOR TREATING GLYCEROL
DE102009017862A1 (en) * 2009-04-17 2010-10-21 Bayer Materialscience Ag Process for the preparation of diaryl carbonate
DE102009023940A1 (en) 2009-06-04 2010-12-09 Bayer Materialscience Ag Process for the production of polycarbonate
DE102009032020A1 (en) 2009-07-07 2011-01-13 Bayer Materialscience Ag Process for the production of polycarbonate
US9802848B2 (en) 2009-09-17 2017-10-31 Wanhua Chemical (Ningbo) Co., Ltd. Method for treating waste saline water produced in production process of diphenylmethane diisocyanate (MDI)
US9169131B1 (en) * 2010-04-21 2015-10-27 Trinity Manufacturing, Inc. System and process for removing total organic carbons from a brine waste stream
FR2964096A1 (en) * 2010-08-27 2012-03-02 Solvay PROCESS FOR PURIFYING BRINE
WO2012041816A1 (en) 2010-09-30 2012-04-05 Solvay Sa Derivative of epichlorohydrin of natural origin
CN104003424B (en) * 2014-06-09 2017-03-01 国药集团化学试剂有限公司 A kind of method reducing bromide ion and iodide ion content in sodium chloride or potassium chloride
CN104710067B (en) * 2015-02-16 2016-01-20 聊城鲁西聚碳酸酯有限公司 A kind of system of polycarbonate production wastewater treatment and treatment process
EP3497266B1 (en) 2016-08-10 2021-07-21 Covestro Intellectual Property GmbH & Co. KG Process for the electrochemical purification of chloride containing process solutions
CN109231544A (en) * 2018-09-25 2019-01-18 青岛科技大学 A kind of processing method for the effluent brine that polycarbonate production generates in the process
CN109354261B (en) * 2018-12-10 2022-02-15 浙江普洛家园药业有限公司 Treatment process of p-hydroxyphenylglycine synthetic industrial wastewater
CN110270130B (en) * 2019-07-21 2021-06-25 河南师范大学 Lidocaine-based hydrophobic eutectic solvent and preparation method and application thereof
CN111453905A (en) * 2020-03-20 2020-07-28 鲁西化工集团股份有限公司氯碱化工分公司 Recycling treatment process and device for regenerated acid-base wastewater

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2733981A (en) * 1956-02-07 Salt recovery process
GB1053030A (en) * 1963-03-21
US3259567A (en) * 1964-01-31 1966-07-05 Gen Mills Inc Method and apparatus for treatment of detergent-laden wastes
JP2681682B2 (en) * 1989-03-14 1997-11-26 出光石油化学株式会社 Method for producing branched polycarbonate
ES2037904T3 (en) * 1989-05-09 1993-07-01 Bayer Antwerpen N.V. PROCEDURE FOR THE EXTRACTION OF NITRATE AND ORGANIC CONTAMINANTS FROM EFFLUENTS.
USH1467H (en) * 1993-11-16 1995-08-01 Shell Oil Company Detergent formulations containing a surface active composition containing a nonionic surfactant component and a secondary alkyl sulfate anionic surfactant component
DE19510063A1 (en) * 1995-03-20 1996-09-26 Bayer Antwerpen Nv Purifying process waste water contg. phenolic contaminants
DE19823155A1 (en) * 1998-05-23 1999-11-25 Henkel Kgaa Process to reduce the free formaldehyde content of aqueous acidic melamine-formaldehyde solutions
US6340736B1 (en) * 1999-11-29 2002-01-22 General Electric Company Method and apparatus for the production of polycarbonates with brine recycling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03070639A1 *

Also Published As

Publication number Publication date
JP2005517624A (en) 2005-06-16
WO2003070639A1 (en) 2003-08-28
DE10207442A1 (en) 2003-09-11
TW200306952A (en) 2003-12-01
US20050115901A1 (en) 2005-06-02
CN1646429A (en) 2005-07-27
AU2003205750A1 (en) 2003-09-09

Similar Documents

Publication Publication Date Title
WO2003070639A1 (en) Preparation of waste water containing sodium chloride for use in chlor-alkali electrolysis
EP1200359B1 (en) Method of decomposing organic compounds in water
EP1894914B1 (en) Method for manufacturing diaryl carbonate
DE60013992T2 (en) Water splitting process by electrodialysis
DE1642831A1 (en) Method and device for drawing a solvent out of a solution
EP3527696A1 (en) Method for treatment and reuse of process water containing salt
DE10329303A1 (en) Process for working up the wastewater produced during the production of dinitrotoluene
DE2602366C2 (en)
DE69917996T2 (en) Process and apparatus for purifying bromine contaminated chlorine gas
DE3545196C2 (en)
DE19510063A1 (en) Purifying process waste water contg. phenolic contaminants
DE3410520C2 (en)
DE3209929C2 (en) Process for the extraction of phenols from aqueous solutions with a nitrogen-containing heterocyclic compound as the extractant
DE2953595C2 (en) Process for the recovery of bromine from a liquid
DE968067C (en) Process for separating phenol and acetophenone
EP0256504B1 (en) Process for the extraction of nitro-hydroxy-aromates from aqueous solutions
EP0758636A1 (en) Process for the treatment of waste water from a bisphenol-A preparation process
DE2513154A1 (en) PROCESS FOR EXTRACTION OF PHENOLS FROM AQUATIC STREAMS
EP0293849B1 (en) Process for separation of halogenated hydroxy-aromates from aqueous solutions
DE888700C (en) Process for separating low molecular weight phenols from mixtures
EP1018501A1 (en) Process for the removal of organic and/or inorganic acids from splitting products
DE2621334C2 (en) Process for the preparation of epoxy compounds
EP2241550B1 (en) Method for manufacturing diaryl carbonate
DE2839894A1 (en) REMOVAL OF CHROMATIONS FROM Aqueous CHLORATE SOLUTIONS
DE3620822A1 (en) METHOD FOR PROCESSING MOTHER LYES FROM THE PRODUCTION OF BENZTHIAZOLE COMPOUNDS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040922

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17Q First examination report despatched

Effective date: 20061215

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080705