EP1475813A1 - Method and apparatus for controlling switching devices in electrical switchgear - Google Patents
Method and apparatus for controlling switching devices in electrical switchgear Download PDFInfo
- Publication number
- EP1475813A1 EP1475813A1 EP03405322A EP03405322A EP1475813A1 EP 1475813 A1 EP1475813 A1 EP 1475813A1 EP 03405322 A EP03405322 A EP 03405322A EP 03405322 A EP03405322 A EP 03405322A EP 1475813 A1 EP1475813 A1 EP 1475813A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- current
- mess
- contact
- measurement signal
- switch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000005259 measurement Methods 0.000 claims abstract description 53
- 238000004590 computer program Methods 0.000 claims abstract description 8
- 230000003628 erosive effect Effects 0.000 claims description 29
- 230000009471 action Effects 0.000 claims description 4
- 230000001186 cumulative effect Effects 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 claims description 4
- 238000004891 communication Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 2
- 238000001514 detection method Methods 0.000 claims 1
- 230000003466 anti-cipated effect Effects 0.000 abstract 1
- 238000004364 calculation method Methods 0.000 description 18
- 238000012423 maintenance Methods 0.000 description 11
- 230000008901 benefit Effects 0.000 description 8
- 238000012544 monitoring process Methods 0.000 description 6
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/0015—Means for testing or for inspecting contacts, e.g. wear indicator
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H71/00—Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
- H01H71/04—Means for indicating condition of the switching device
- H01H2071/044—Monitoring, detection or measuring systems to establish the end of life of the switching device, can also contain other on-line monitoring systems, e.g. for detecting mechanical failures
Definitions
- the invention relates to the field of secondary technology for electrical switchgear, especially the Monitoring of switches in high, medium or low voltage switchgear. It is based on a procedure a computer program and a device for determination the contact erosion of circuit breakers in one electrical switchgear and a switchgear with such a device according to the preamble of the independent Claims.
- DE 102 04 849 A1 discloses a method for determining contact wear in a tripping unit. A cumulative energy converted in the circuit breaker contacts is calculated, which is proportional to the contact wear. For this purpose, the contact current I is sampled, squared during the contact separation period, multiplied by a fixed time T between samples and summed up for each contact pair in relation to each type of error or as a total.
- the time delay between the opening of the circuit breaker and the contact movement in the circuit breaker can be measured or estimated on the basis of typical mechanism times or those published by the manufacturer. If the adjustable threshold values for contact erosion are exceeded, a warning signal or alarm signal can be issued or the circuit breaker can be switched off or serviced.
- the arc energy can also be determined from voltage times current or approximately from current I times time T. It is disadvantageous that current measurement errors in the case of overcurrents are not taken into account for the determination of arc energy and contact erosion. Another disadvantage is the relatively large measuring and computing effort.
- EP 0 193 732 A1 discloses a monitoring and control device for switching devices and switching device combinations for determining the required maintenance times.
- a plurality of sensors measure or calculate wear states of the switching devices and generate alarm or maintenance information according to urgency.
- the contact erosion can directly, z. B. detected by displacement sensors, rotary angle sensors or light barriers or determined indirectly by linking the current level, switching voltage, phase angle, number of circuits, switching moments, current steepness or time constants.
- the contact erosion is determined indirectly by evaluating the current and temperature of the respective current path. Disadvantages are high measurement requirements and complex signal processing. Measurement errors due to saturation of the current transformer also go unnoticed.
- the object of the present invention is to provide a method, a computer program, a device and a switchgear assembly with such a device for improved and simplified monitoring of switches in electrical switchgear assemblies. According to the invention, this object is achieved by the features of the independent claims.
- the invention consists in a method for determining contact wear in an electrical switch, in particular in electrical switchgear for high or medium voltage, a contact current flowing through the switch during a switching operation being detected with the aid of a current transformer and evaluated with regard to contact wear , in order to determine a state variable characterizing the contact wear, a current measurement signal of the current transformer is first measured as a function of time, the presence of a measurement error is detected when deviations occur between the expected contact current and the current measurement signal, and at least one characteristic current value is detected from the current measurement signal when the measurement error is detected is determined and used to determine the state variable.
- the condition size must be selected so that it represents a reliable measure of the contact erosion.
- the expected contact current is particularly characterized by the temporal course of the contact current, in particular by reaching a maximum current at the end of a quarter or three-quarter period of the mains frequency of the nominal current applied to the switch. Depending on the switching action and type of error, other expected contact currents are also conceivable.
- Contact wear can also be determined with great reliability by the method if the fault current or arcing current relevant for contact erosion is not or cannot be measured correctly. The use of the characteristic current value instead of the complete current measurement signal simplifies and specifies the calculation of the contact wear. Overall, the contact wear can be calculated more accurately and the maintenance of circuit breakers and similar switching devices can be carried out instead of periodically without loss of operational safety, which means that Maintenance costs can be reduced accordingly.
- a saturation of the current measurement signal is detected as a measurement error and a maximum current measurement signal of the current transformer is used as the characteristic current value if it occurs and in particular is detected before a quarter period of an alternating current applied to the switch.
- the saturation of conventional current transformers often makes an exact measurement of the arc overcurrent impossible and thus falsifies the contact burn-up calculation, especially for the fault cases that cause the most contact burn-up. This can now be corrected by calculation.
- the embodiment according to claim 3 has the advantage that high fault currents can be detected and the state size represents a reliable, well-predictable measure of contact erosion.
- the embodiment according to claim 4 has the advantage that a very simple calculation rule for contact wear calculation is specified.
- the embodiment according to claim 5 has the advantage that the reliability of the contact erosion calculation is improved by the exact determination of the arc start.
- the embodiment according to claim 6 has the advantage that a selection of functions for calculating the contact erosion is specified and, if necessary, a special function can be selected for specific switches or fault current events.
- the embodiment according to claim 7 has the advantage that manufacturer information can also be used for improved contact erosion calculation.
- the embodiment according to claim 8 has the advantage that an additional, independent calculation of the contact wear can be carried out.
- the embodiment according to claim 9 has the advantage that the contact erosion can be permanently monitored and / or subsequently determined from archived data. In particular, fault record data can be used, as z. B. in a fault recorder collection system, also called station monitoring system or SMS, are available.
- the invention relates to a computer program for determining contact wear in an electrical switch, the method steps according to claims 1-9 being implemented by program code, furthermore an apparatus for carrying out the method and a switchgear assembly comprising the apparatus.
- Circuit breakers are designed for a certain number of mechanical switching operations or switching cycles. Are z. B. in the event of a fault, larger currents are switched off, the resulting arc burns off the contacts more than calculated in normal switching operations. In order for the circuit breaker to remain functional, the contacts must be replaced before they have completely burned down. The degree of burn-up per switching operation depends on the energy of the arc that occurs. This energy is proportional to the integral ⁇ I 2 dt, where I denotes the current flowing during the arc duration and t the time.
- switches 3 in electrical switchgear systems 1 are monitored for contact wear, in that a contact current I f flowing through the switch 3 during a switching operation is detected at least approximately by a current measurement signal I mess of a current transformer 30 or current sensor 30 as a function of time t, in the event of deviations
- a measurement error ⁇ is detected between the expected contact current I f and the current measurement signal I mess and at least one characteristic current value I char is determined from the current measurement signal I mess and is used to determine a state variable characterizing contact wear. This estimate is often a bit too conservative, but always on the safe side.
- the procedure can be part of a power system monitoring system. 1 shows an exemplary embodiment in which a largely sinusoidal fault current I f is present.
- a current maximum I is run through at the time t max within a quarter period of the fault current signal I f or the mains frequency applied to the switch 3.
- the occurrence of the current maximum I max is detected when the deviation or the measurement error ⁇ between the fault current profile I f (t) and the current measurement signal profile I mess (t) exceeds a tolerance value ⁇ min .
- the contact current I f is typically an overcurrent or short-circuit current I f during a switch-off operation, the course of which is known very precisely beforehand.
- a current maximum I max that occurs in the current measurement signal I mess before reaching a quarter period of the mains frequency is a reliable indication of a measurement error ⁇ .
- the current maximum I max is now defined as a characteristic current value I char and used to calculate the contact erosion state variable.
- the state variable should preferably be a measure of an arc power during the switching operation and in particular a contact current-time integral.
- the current measurement signal I mess is detected from a first point in time t 0 at the start of the current half-wave in which the switching action occurs to a second point in time t max at which a maximum current measurement signal I max occurs, and from second time t max up to a third time t 0 at the end of the current half-wave approximated by the maximum current measurement signal I max .
- the accuracy of the contact erosion calculation depends on how exactly the starting time of the arc can be determined.
- the first time t 0 is to be defined as the start time of the arc of the contact current I f .
- the calculation is most accurate if t o is known as a binary indication in the fault record; t o can also be determined with a time delay based on empirical values from an opening command, a protective trigger command or a contact movement of the switch 3. Any fluctuations in this time value are of minor importance compared to other influencing factors and irregularities in contact burn-off. Systematic errors caused by values of the starting time t 0 that are too large or too small can be corrected if, for. B. on the occasion of maintenance, the expected burnup is compared with the actual one and the time delay is corrected accordingly.
- a time delay value that is too small should be used at the beginning of a contact erosion history rather than a value that is too large, so that the contact erosion is initially overestimated in the calculation.
- a time integral ⁇ f (I mess ) dt is then formed via a function f (I mess ) of the current measurement signal I mess detected and approximated in sections .
- the integral ⁇ I mess 2 dt or ⁇ I mess 1.6 dt is determined with the current measurement signal I mess approximated according to FIG. 1 for the approximate determination of the contact erosion.
- a square root function f (I mess ) (I mess 2 ) 1/2 which defines an effective switch-off current I eff can also be used as function f (I mess ).
- Other functions f (I mess ) are also possible.
- the time integral ⁇ f (I mess ) dt via the function f (I mess ) can be approximated by a summation of function values at interpolation points. B. are given by sampling the current measurement signal I mess .
- the state variable is selected equal to the time integral ⁇ f (I mess ) dt times a contact erosion constant c and the contact erosion constant c from manufacturer information, in particular from curves showing the number of permitted switching operations N (I eff ) as a function of an effective breaking current per switching operation I eff , and / or determined from empirical values for a switch type and switch location.
- a sample value (cnt) of the current measurement signal is read in for each cnt value and the condition sample (cnt ) ⁇ I max checked. If the condition is met, an auxiliary variable CWI and sample (cnt) are set.
- an effective switch-off current I eff can additionally be determined for each switching operation, contact wear as a percentage of the switching operations carried out relative to the total number of permitted switching operations from a curve over the number of permitted switching operations N (I eff ) in function of the effective switch-off current I eff this effective breaking current I eff are determined and the percentages for all relevant switching operations carried out are added up to form a cumulative contact wear.
- the accumulated percentage value represents a control variable for the contact wear state variable Cwsum determined according to the invention.
- FIG. 4 shows a schematic representation of a data acquisition system for the inventive determination of the contact wear state variable Cwsum and / or the accumulated percentage value from N (I eff ).
- Switchgear 1 has switches 3, typically circuit breakers 3, which are equipped with current transformers 30 or current sensors 30, typically conventional current transformers 30 with a saturable core. For example, instrument transformers with 1% accuracy and accounting converters with 0.1% - 0.5% accuracy are saturated at the high currents that cause the most contact wear.
- the current transformers 30 are connected to means 4 for data acquisition at electrical switches 3, in particular with fault recorders 4, protective devices 4 or control devices 4. These data acquisition means 4 are connected via serial communication 5 or via data carriers 5 to a central acquisition unit 6 for calculating contact wear and preferably to a database 7 for data on contact wear. With the help of this device 2 for contact erosion calculation, the method described above can be implemented. In particular, the contact wear can be monitored online, ie continuously during operation, or evaluated retrospectively from archived data, in particular with a function f (I mess ) of the current measurement signal I mess adapted to a switch type or switch location .
- the contact wear can be determined from recordings of switch-off currents I mess from fault recorders 4 or protection and control devices 4 with fault record function, all records of the switch-off currents I mess of a switchgear assembly 1 being collected centrally, in particular in an existing or specially designed fault recorder collection system 4 -6, also called SMS or station monitoring system.
- the invention also extends to such a device 2 for contact erosion calculation, which is integrated, for example, in the system control system (not shown) of the switchgear 1, and to an electrical switchgear 1 which comprises such a device 2. Overall, there is an improved condition-controlled instead of periodic maintenance of switches 3 and their switch contacts.
Landscapes
- Keying Circuit Devices (AREA)
- Arc-Extinguishing Devices That Are Switches (AREA)
- Gas-Insulated Switchgears (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
Description
Die Erfindung bezieht sich auf das Gebiet der Sekundärtechnik für elektrische Schaltanlagen, insbesondere der Überwachung von Schaltern in Hoch-, Mittel- oder Niederspannungsschaltanlagen. Sie geht aus von einem Verfahren, einem Computerprogramm und einer Vorrichtung zur Ermittlung des Kontaktabbrands von Leistungsschaltern in einer elektrischen Schaltanlage sowie von einer Schaltanlage mit einer solchen Vorrichtung gemäss Oberbegriff der unabhängigen Patentansprüche.The invention relates to the field of secondary technology for electrical switchgear, especially the Monitoring of switches in high, medium or low voltage switchgear. It is based on a procedure a computer program and a device for determination the contact erosion of circuit breakers in one electrical switchgear and a switchgear with such a device according to the preamble of the independent Claims.
In den meisten Elektrizitätsversorgungsunternehmen wird
heutzutage die Leistungsschalterwartung periodisch vorgenommen,
gelegentlich mit vorgezogener Wartung, wenn
Schutzabschaltungen mit möglicherweise hohen Strömen aufgetreten
sind. Damit wird in der Regel der Schalter viel
zu häufig gewartet mit dem zusätzlichen Risiko, dass bei
der Wartung Schäden verursacht werden.
In der DE 102 04 849 A1 wird ein Verfahren zur Bestimmung
der Kontaktabnutzung in einer Auslöseeinheit offenbart. Es
wird eine kumulative, in den Leistungsschalterkontakten
umgesetzte Energie berechnet, die proportional zur Kontaktabnutzung
ist. Hierfür wird der Kontaktstrom I während
der Kontakttrenndauer abgetastet, quadriert, mit einer
festen Zeit T zwischen Abtastungen multipliziert und für
jedes Kontaktpaar bezogen auf jeden Fehlertyp oder als Gesamtwert
aufsummiert. Die Zeitverzögerung zwischen Auslösen
des Leistungsschalters und der Kontaktbewegung im
Leistungsschalter kann auf Basis typischer oder vom Hersteller
veröffentlichter Mechanismuszeiten gemessen oder
geschätzt werden. Bei Überschreiten einstellbarer Schwellwerte
für den Kontaktabbrand können ein Warnsignal oder
Alarmsignal ausgegeben werden oder eine Abschaltung oder
Wartung des Leistungsschalters ausgelöst werden. Alternativ
zur I2T-Messung kann die Lichtbogenenergie auch aus
Spannung mal Strom oder approximativ aus Strom I mal Zeit
T bestimmt werden. Nachteilig ist, dass Strommessfehler
bei Überströmen für die Bestimmung von Lichtbogenenergie
und Kontaktabbrand unberücksichtigt bleiben. Nachteilig
ist auch der relativ grosse Mess- und Rechenaufwand.
Die EP 0 193 732 A1 offenbart eine Überwachungs- und Kontrolleinrichtung
für Schaltgeräte und Schaltgerätekombinationen
zur Ermittlung der erforderlichen Wartungszeitpunkte.
Hierfür werden von einer Mehrzahl von Sensoren
Abnutzungszustände der Schaltgeräte gemessen oder errechnet
und nach Dringlichkeit gestufter Alarm oder Wartungsinformation
generiert. Der Kontaktabbrand kann dabei
direkt, z. B. durch Weggeber, Drehwinkelgeber oder Lichtschranken,
erfasst oder indirekt durch Verknüpfung von
Stromhöhe, Schaltspannung, Phasenwinkel, Anzahl Schaltungen,
Schaltaugenblicke, Stromsteilheit oder Zeitkonstanten
bestimmt werden. Insbesondere wird der Kontaktabbrand indirekt
über die Bewertung von Strom und Temperatur der jeweiligen
Strombahn bestimmt. Nachteilig sind hoher Messbedarf
und aufwendige Signalverarbeitung. Auch bleiben
Messfehler durch Sättigung des Stromwandlers unbeachtet.In most electricity supply companies today, circuit breaker maintenance is done periodically, sometimes with early maintenance, when protection trips with possibly high currents have occurred. As a rule, the switch is therefore serviced far too often, with the additional risk that damage will be caused during maintenance.
DE 102 04 849 A1 discloses a method for determining contact wear in a tripping unit. A cumulative energy converted in the circuit breaker contacts is calculated, which is proportional to the contact wear. For this purpose, the contact current I is sampled, squared during the contact separation period, multiplied by a fixed time T between samples and summed up for each contact pair in relation to each type of error or as a total. The time delay between the opening of the circuit breaker and the contact movement in the circuit breaker can be measured or estimated on the basis of typical mechanism times or those published by the manufacturer. If the adjustable threshold values for contact erosion are exceeded, a warning signal or alarm signal can be issued or the circuit breaker can be switched off or serviced. As an alternative to the I 2 T measurement, the arc energy can also be determined from voltage times current or approximately from current I times time T. It is disadvantageous that current measurement errors in the case of overcurrents are not taken into account for the determination of arc energy and contact erosion. Another disadvantage is the relatively large measuring and computing effort.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren,
ein Computerprogramm, eine Vorrichtung und eine Schaltanlage
mit einer solchen Vorrichtung zur verbesserten und
vereinfachten Überwachung von Schaltern in elektrischen
Schaltanlagen anzugeben. Diese Aufgabe wird erfindungsgemäss
durch die Merkmale der unabhängigen Ansprüche gelöst.
In einem ersten Aspekt besteht die Erfindung in einem Verfahren
zur Bestimmung von Kontaktabnutzung in einem elektrischen
Schalter, insbesondere in elektrischen Schaltanlagen
für Hoch- oder Mittelspannung, wobei ein während
einer Schalthandlung durch den Schalter fliessender Kontaktstrom
mit Hilfe eines Stromwandlers erfasst wird und
hinsichtlich Kontaktabnutzung ausgewertet wird, wobei zur
Bestimmung einer die Kontaktabnutzung charakterisierenden
Zustandsgrösse zunächst ein Strommesssignal des Stromwandlers
als Funktion der Zeit gemessen wird, bei Auftreten
von Abweichungen zwischen dem erwarteten Kontaktstrom und
dem Strommesssignal das Vorhandensein eines Messfehlers
detektiert wird und bei Detektion des Messfehlers aus dem
Strommesssignal mindestens ein charakteristischer Stromwert
bestimmt wird und zur Bestimmung der Zustandsgrösse
verwendet wird. Die Zustandsgrösse ist so zu wählen, dass
sie ein zuverlässiges Mass für den Kontaktabbrand darstellt.
Der erwartete Kontaktstrom ist besonders durch den
zeitlichen Kontaktstromverlauf charakterisiert, insbesondere
durch Erreichen eines betragsmässigen Strommaximums
am Ende einer Viertel- oder Dreiviertelperiode der Netzfrequenz
des am Schalter anliegenden Nennstroms. Je nach
Schalthandlung und Fehlerart sind auch andere erwartete
Kontaktströme denkbar. Durch das Verfahren kann eine
Kontaktabnutzung auch dann mit grosser Zuverlässigkeit
bestimmt werden, wenn der für den Kontaktabbrand relevante
Fehler- oder Lichtbogenstrom nicht korrekt gemessen wird
oder werden kann. Dabei stellt die Verwendung des charakteristischen
Stromwerts anstelle des vollständigen Strommesssignals
eine Vereinfachung und Präzisierung der Berechnung
der Kontaktabnutzung dar. Insgesamt kann der Kontaktverschleiss
genauer berechnet werden und die Wartung
von Leistungsschaltern und ähnlichen Schaltgeräten kann
statt periodisch ohne Verlust an Betriebssicherheit nach
Bedarf durchgeführt werden, wodurch die Wartungskosten
entsprechend gesenkt werden. The object of the present invention is to provide a method, a computer program, a device and a switchgear assembly with such a device for improved and simplified monitoring of switches in electrical switchgear assemblies. According to the invention, this object is achieved by the features of the independent claims.
In a first aspect, the invention consists in a method for determining contact wear in an electrical switch, in particular in electrical switchgear for high or medium voltage, a contact current flowing through the switch during a switching operation being detected with the aid of a current transformer and evaluated with regard to contact wear , in order to determine a state variable characterizing the contact wear, a current measurement signal of the current transformer is first measured as a function of time, the presence of a measurement error is detected when deviations occur between the expected contact current and the current measurement signal, and at least one characteristic current value is detected from the current measurement signal when the measurement error is detected is determined and used to determine the state variable. The condition size must be selected so that it represents a reliable measure of the contact erosion. The expected contact current is particularly characterized by the temporal course of the contact current, in particular by reaching a maximum current at the end of a quarter or three-quarter period of the mains frequency of the nominal current applied to the switch. Depending on the switching action and type of error, other expected contact currents are also conceivable. Contact wear can also be determined with great reliability by the method if the fault current or arcing current relevant for contact erosion is not or cannot be measured correctly. The use of the characteristic current value instead of the complete current measurement signal simplifies and specifies the calculation of the contact wear. Overall, the contact wear can be calculated more accurately and the maintenance of circuit breakers and similar switching devices can be carried out instead of periodically without loss of operational safety, which means that Maintenance costs can be reduced accordingly.
In einem ersten Ausführungsbeispiel wird als Messfehler
eine Sättigung des Strommesssignals detektiert und es wird
als charakteristischer Stromwert ein maximales Strommesssignal
des Stromwandlers verwendet, falls es vor Erreichen
einer Viertelperiode eines am Schalter anliegenden Wechselstroms
auftritt und insbesondere detektiert wird. Die
Sättigung konventioneller Stromwandler verunmöglicht oftmals
eine genaue Messung des Lichtbogenüberstroms und verfälscht
dadurch die Kontaktabbrandberechnung gerade für
die Fehlerfälle, die am meisten Kontaktabbrand bringen.
Dies kann nun rechnerisch korrigiert werden.
Das Ausführungsbeispiel gemäss Anspruch 3 hat den Vorteil,
dass hohe Fehlerströme erfassbar sind und die Zustandgrösse
ein zuverlässiges, gut berechenbares Mass für Kontaktabbrand
darstellt.
Das Ausführungsbeispiel gemäss Anspruch 4 hat den Vorteil,
dass eine sehr einfache Rechenvorschrift zur Kontaktabbrandberechnung
angegeben wird.
Das Ausführungsbeispiel gemäss Anspruch 5 hat den Vorteil,
dass durch die exakte Bestimmung des Lichtbogenstarts die
Zuverlässigkeit der Kontaktabbrandberechnung verbessert
wird.
Das Ausführungsbeispiel gemäss Anspruch 6 hat den Vorteil,
dass eine Auswahl von Funktionen zur Berechnung des Kontaktabbrands
angegeben wird und gegebenenfalls für spezifische
Schalter oder Fehlerstromereignisse eine spezielle
Funktion gewählt werden kann.
Das Ausführungsbeispiel gemäss Anspruch 7 hat den Vorteil,
dass auch Herstellerangaben zur verbesserten Kontaktabbrandberechnung
herangezogen werden können.
Das Ausführungsbeispiel gemäss Anspruch 8 hat den Vorteil,
dass eine zusätzliche, unabhängige Berechnung der Kontaktabnutzung
durchgeführt werden kann.
Das Ausführungsbeispiel gemäss Anspruch 9 hat den Vorteil,
dass der Kontaktabbrand permanent überwacht und/oder aus
archivierten Daten nachträglich bestimmt werden kann. Insbesondere
können Störschrieb-Daten verwendet werden, wie
sie z. B. in einem Störschreiber-Sammelsystem, auch Stations-Monitoring-System
oder SMS genannt, vorhanden sind.
In weiteren Aspekten betrifft die Erfindung ein Computerprogramm
zur Bestimmung von Kontaktabnutzung in einem
elektrischen Schalter, wobei die Verfahrenschritte gemäss
den Ansprüchen 1-9 durch Programmcode implementiert sind,
desweiteren eine Vorrichtung zur Ausführung des Verfahrens
und eine Schaltanlage umfassend die Vorrichtung.
Weitere Ausführungen, Vorteile und Anwendungen der Erfindung
ergeben sich aus abhängigen Ansprüchen sowie aus der
nun folgenden Beschreibung und den Figuren.In a first exemplary embodiment, a saturation of the current measurement signal is detected as a measurement error and a maximum current measurement signal of the current transformer is used as the characteristic current value if it occurs and in particular is detected before a quarter period of an alternating current applied to the switch. The saturation of conventional current transformers often makes an exact measurement of the arc overcurrent impossible and thus falsifies the contact burn-up calculation, especially for the fault cases that cause the most contact burn-up. This can now be corrected by calculation.
The embodiment according to
The embodiment according to
The embodiment according to
The embodiment according to
The embodiment according to
The embodiment according to claim 8 has the advantage that an additional, independent calculation of the contact wear can be carried out.
The embodiment according to claim 9 has the advantage that the contact erosion can be permanently monitored and / or subsequently determined from archived data. In particular, fault record data can be used, as z. B. in a fault recorder collection system, also called station monitoring system or SMS, are available.
In further aspects, the invention relates to a computer program for determining contact wear in an electrical switch, the method steps according to claims 1-9 being implemented by program code, furthermore an apparatus for carrying out the method and a switchgear assembly comprising the apparatus.
Further embodiments, advantages and applications of the invention result from the dependent claims and from the following description and the figures.
- Fig. 1
- eine schematische Darstellung zur Stromapproximation bei der erfindungsgemässen Kontaktabbrandberechnung für Leistungsschalter;
- Fig. 2
- ein Algorithmus zur erfindungsgemässen Kontaktabbrandberechnung in Nassi-Schneiderman Diagramdarstellung;
- Fig. 3
- eine Kurvendarstellung der Anzahl erlaubter Schalthandlungen als Funktion des effektiven Abschaltstroms pro Schalthandlung;
- Fig. 4
- ein schematisch dargestelltes erfindungsgemässes Datenerfassungssystem für die Kontaktabnutzung in einer elektrischen Schaltanlage.
- Fig. 1
- a schematic representation of current approximation in the inventive contact erosion calculation for circuit breakers;
- Fig. 2
- an algorithm for the contact erosion calculation according to the invention in Nassi-Schneiderman diagram representation;
- Fig. 3
- a graph of the number of permitted switching operations as a function of the effective switch-off current per switching operation;
- Fig. 4
- a schematically illustrated inventive data acquisition system for contact wear in an electrical switchgear.
Leistungsschalter sind für eine bestimmte Anzahl mechanischer
Schalthandlungen oder Schaltspiele ausgelegt. Werden
mit ihnen z. B. im Fehlerfall grössere Ströme abgeschaltet,
so werden durch den entstehenden Lichtbogen die Kontakte
stärker abgebrannt als bei normalen Schalthandlungen
einberechnet. Damit der Leistungsschalter funktionsfähig
bleibt, müssen die Kontakte ersetzt werden, bevor sie
vollkommen abgebrannt sind. Der Grad des Abbrands pro
Schalthandlung hängt von der Energie des dabei auftretenden
Lichtbogens ab. Diese Energie ist proportional zum Integral
∫I2dt, wobei I den während der Lichtbogendauer
fliessenden Strom und t die Zeit bezeichnet.
Gemäss der Erfindung werden Schalter 3 in elektrischen
Schaltanlagen 1 hinsichtlich Kontaktabnutzung überwacht,
indem ein während einer Schalthandlung durch den Schalter
3 fliessender Kontaktstrom If mindestens näherungsweise
durch ein Strommesssignal Imess eines Stromwandlers 30 oder
Stromsensors 30 als Funktion der Zeit t erfasst wird, bei
Abweichungen zwischen erwartetem Kotaktstrom If und Strommesssignal
Imess ein Messfehler Δ detektiert wird und aus
dem Strommesssignal Imess mindestens ein charakteristischer
Stromwert Ichar bestimmt und zur Bestimmung einer Kontaktabnutzung
charakterisierenden Zustandsgrösse verwendet wird.
Diese Abschätzung ist zwar häufig etwas zu konservativ,
aber immer auf der sicheren Seiten. Das Verfahren kann Bestandteil
eines Power System Monitoring Systems sein.
Fig. 1 zeigt hierzu ein Ausführungsbeispiel, bei dem ein
weitgehend sinusförmiger Fehlerstrom If vorliegt. Im Strommesssignal
Imess tritt eine Sättigung auf und es wird zum
Zeitpunkt tmax innerhalb einer Viertelperiode des Fehlerstromsignals
If oder der am Schalter 3 anliegenden Netzfrequenz
ein Strommaximum I durchlaufen. Das Auftreten des
Strommaximums Imax wird detektiert, wenn die Abweichung
oder der Messfehler Δ zwischen dem Fehlerstromverlauf If(t)
und dem Strommesssignalverlauf Imess(t) einen Toleranzwert
Δmin überschreitet. Der Kontaktstrom If ist typischerweise
ein Überstrom oder Kurzschlussstrom If während einer Abschalthandlung,
dessen Zeitverlauf recht genau im vorhinein
bekannt ist. Insbesondere ist ein Strommaximum Imax,
das im Strommesssignal Imess vor Erreichen einer Viertelperiode
der Netzfrequenz auftritt, ein sicheres Indiz für
einen Messfehler Δ. Das Strommaximum Imax wird nun als charakteristischer
Stromwert Ichar definiert und zur Berechnung
der Kontaktabbrand-Zustandsgrösse verwendet. Die Zustandsgrösse
soll vorzugsweise ein Mass für eine Lichtbogenleistung
während der Schalthandlung und insbesondere ein Kontaktstrom-Zeitintegral
sein.
Im Beispiel gemäss Fig. 1 wird das Strommesssignal Imess von
einem ersten Zeitpunkt t0 zu Beginn der Stromhalbwelle, in
welcher die Schalthandlung auftritt, bis zu einem zweiten
Zeitpunkt tmax, zu dem ein maximales Strommesssignal Imax
auftritt, erfasst, und ab dem zweiten Zeitpunkt tmax bis zu
einem dritten Zeitpunkt t0 am Ende der Stromhalbwelle durch
das maximale Strommesssignal Imax approximiert. Die Genauigkeit
der Kontaktabbrandberechnung ist abhängig davon,
wie genau der Anfangszeitpunkt des Lichtbogens bestimmt
werden kann. Der erste Zeitpunkt t0 soll als Anfangszeit
des Lichtbogens des Kontaktstroms If definiert werden. Die
Berechnung ist am genauesten, wenn to als Binärindikation
im Störschrieb bekannt ist; to kann auch mit einer auf Erfahrungswerten
basierenden Zeitverzögerung aus einem Öffnungsbefehl,
einem Schutztriggerbefehl oder einer Kontaktbewegung
des Schalters 3 bestimmt werden. Eventuelle
Schwankungen dieses Zeitwerts sind von untergeordneter Bedeutung
im Vergleich zu anderen Einflussgrössen und zu Unregelmässigkeiten
beim Kontaktabbrand. Systematische Fehler
durch zu grosse oder zu kleine Werte des Anfangszeitpunkts
t0 können korrigiert werden, wenn z. B. anlässlich
einer Wartung der erwartete Abbrand mit dem tatsächlichen
verglichen und die Zeitverzögerung entsprechend korrigiert
wird. Aus Sicherheitsgründen sollte zu Beginn einer Kontaktabbrandgeschichte
eher ein zu kleiner Wert der Zeitverzögerung
als ein zu grosser Wert benutzt werden, so
dass der Kontaktabbrand in der Berechnung zunächst überschätzt
wird.
Zur Bestimmung der Zustandsgrösse wird dann ein Zeitintegral
∫f(Imess)dt über eine Funktion f(Imess) des streckenweise
erfassten und streckenweise approximierten
Strommesssignals Imess gebildet. Bevorzugt wird als Funktion
f(Imess) des Strommesssignals Imess eine Potenzfunktion
f(Imess)=Imess a mit a=1, 2 ... 2,2, insbesondere a=1,6 ... 2,0,
verwendet. Beispielsweise wird das Integral ∫Imess 2 dt oder
∫Imess 1,6dt mit dem gemäss Fig. 1 approximierten Strommesssignal
Imess zur näherungsweisen Bestimmung der Kontaktabbrands
bestimmt. Als Funktion f(Imess) kann auch eine einen
effektiven Abschaltstrom Ieff definierende Quadratwurzelfunktion
f(Imess) = (Imess 2)1/2 verwendet werden. Andere
Funktionen f(Imess) sind ebenfalls möglich. Das Zeitintegral
∫f(Imess) dt über die Funktion f(Imess) kann durch eine Summation
von Funktionswerten an Stützstellen approximiert werden,
wobei die Stützstellen z. B. durch Abtastung des
Strommesssignals Imess gegeben sind. Insbesondere wird die
Zustandsgrösse gleich dem Zeitintegral ∫f(Imess) dt mal einer
Kontaktabbrandkonstanten c gewählt und die Kontaktabbrandkonstante
c aus Herstellerangaben, insbesondere aus Kurven
über Anzahl erlaubter Schalthandlungen N(Ieff) in Funktion
eines effektiven Abschaltstroms pro Schalthandlung Ieff,
und/oder aus Erfahrungswerten für einen Schaltertyp und
Schaltereinsatzort bestimmt.
Fig. 2 zeigt in Nassi-Schneidermanndarstellung einen Software-Algorithmus
zur Implementierung des Verfahrens in einem
Computerprogramm und Computerprogrammprodukt. Zunächst
werden die Grössen Cwsum (=Zustandsgrösse zur Charakterisierung
des Kontaktabbrands), Imax, cnt (=Zählervariable)
und saturation (Konstante) initialisiert. Dann wird in einer
While-Schlaufe, die durch cnt in einer positiven (oder
alternativ negativen, hier nicht dargestellten) Halbperiode
der Netzwechselspannung bedingt ist, für jeden cnt-Wert
ein Abtastwert sample(cnt) des Strommesssignals eingelesen
und auf die Bedingung sample(cnt)≥Imax geprüft. Falls die
Bedingung erfüllt ist, werden eine Hilfsvariable CWI und
gleich sample(cnt) gesetzt. Falls die Bedingung nicht
erfüllt ist, wird, falls cnt kleiner als die Mitte der positiven
(oder negativen, hier nicht dargestellten) Halbperiode
MidthPositivePeriod ist, saturation true und CWI
gleich Imax gesetzt; falls cnt≥MidthPositivePeriod ist, wird
für saturation=true CWI gleich Imax und für saturation=false
CWI gleich sample(cnt) gesetzt. Schliesslich wird
der Zähler cnt um 1 inkrementiert und zur Kontaktabbrand-Zustandsgrösse
Cwsum die Hilfsvariable CWI zum Quadrat addiert.
Am Ende der Halbperiode ist die Summation oder Integration
von Cwsum abgeschlossen. Cwsum stellt dabei, gemäss
Fig. 1, genau das Zeitintegral über das Quadrat des
approximierten Stromes dar, der im Zeitintervall t0 bis tmax
durch das Strommesssignal Imess, entsprechend den Abtastwerten
sample(cnt), gegeben ist und im Zeitintervall tmax
bis zum nächsten t0 durch das Strommaximum Imax approximiert
wird.
Fig. 3 zeigt ein Beispiel einer Kurve eines Leistungsschalterherstellers,
welche Kurve die maximale Zahl erlaubter
Schalthandlungen N mit einem effektiven Abschaltstrom
pro Schalthandlung Ieff und somit mit einem bestimmten
kumulierten effektiven Abschaltstrom korrelieren. Soll
der Kontaktabbrand mit Hilfe des Integrals ∫I2dt bestimmt
werden, muss noch eine schalterspezifische oder schaltertypspezifische
Proportionalitätskonstante c zwischen dem
Integral und dem Kontaktabbrand berücksichtigt werden, die
vom Schalterhersteller angegeben und/oder über Vergleich
von Messungen mit Berechnungen des Kontaktabbrands bestimmt
werden kann.
Gemäss einer bevorzugten Ausführungsform der Erfindung
kann ergänzend für jede Schalthandlung ein effektiver Ausschaltstrom
Ieff bestimmt werden, aus einer Kurve über Anzahl
erlaubter Schalthandlungen N(Ieff) in Funktion des effektiven
Ausschaltstroms Ieff eine Kontaktabnutzung als
Prozentwert der ausgeführten relativ zur Gesamtzahl erlaubter
Schalthandlungen bei diesem effektiven Ausschaltstrom
Ieff bestimmt werden und die Prozentwerte für alle
relevanten ausgeführten Schalthandlungen zu einer kumulierten
Kontaktabnutzung aufsummiert werden. Der kumulierte
Prozentwert stellt eine Kontrollgrösse für die erfindungsgemäss
bestimmte Kontaktabbrandzustandsgrösse Cwsum dar. Circuit breakers are designed for a certain number of mechanical switching operations or switching cycles. Are z. B. in the event of a fault, larger currents are switched off, the resulting arc burns off the contacts more than calculated in normal switching operations. In order for the circuit breaker to remain functional, the contacts must be replaced before they have completely burned down. The degree of burn-up per switching operation depends on the energy of the arc that occurs. This energy is proportional to the integral ∫I 2 dt, where I denotes the current flowing during the arc duration and t the time.
According to the invention, switches 3 in
1 shows an exemplary embodiment in which a largely sinusoidal fault current I f is present. Saturation occurs in the current measurement signal I mess and a current maximum I is run through at the time t max within a quarter period of the fault current signal I f or the mains frequency applied to the
In the example according to FIG. 1, the current measurement signal I mess is detected from a first point in time t 0 at the start of the current half-wave in which the switching action occurs to a second point in time t max at which a maximum current measurement signal I max occurs, and from second time t max up to a third time t 0 at the end of the current half-wave approximated by the maximum current measurement signal I max . The accuracy of the contact erosion calculation depends on how exactly the starting time of the arc can be determined. The first time t 0 is to be defined as the start time of the arc of the contact current I f . The calculation is most accurate if t o is known as a binary indication in the fault record; t o can also be determined with a time delay based on empirical values from an opening command, a protective trigger command or a contact movement of the
To determine the state variable, a time integral ∫f (I mess ) dt is then formed via a function f (I mess ) of the current measurement signal I mess detected and approximated in sections . The function f (I mess ) of the current measurement signal I mess is preferably a power function f (I mess ) = I mess a with a = 1, 2 ... 2.2, in particular a = 1.6 ... 2.0, used. For example, the integral ∫I mess 2 dt or ∫I mess 1.6 dt is determined with the current measurement signal I mess approximated according to FIG. 1 for the approximate determination of the contact erosion. A square root function f (I mess ) = (I mess 2 ) 1/2 which defines an effective switch-off current I eff can also be used as function f (I mess ). Other functions f (I mess ) are also possible. The time integral ∫f (I mess ) dt via the function f (I mess ) can be approximated by a summation of function values at interpolation points. B. are given by sampling the current measurement signal I mess . In particular, the state variable is selected equal to the time integral ∫f (I mess ) dt times a contact erosion constant c and the contact erosion constant c from manufacturer information, in particular from curves showing the number of permitted switching operations N (I eff ) as a function of an effective breaking current per switching operation I eff , and / or determined from empirical values for a switch type and switch location.
FIG. 2 shows a software algorithm for implementing the method in a computer program and computer program product in Nassi-Schneiderman representation. Initially, the variables Cwsum (= state variable for characterizing the contact erosion), I max , cnt (= counter variable) and saturation (constant) are initialized. Then, in a while loop, which is caused by cnt in a positive (or alternatively negative, half-period of the mains AC voltage, not shown here), a sample value (cnt) of the current measurement signal is read in for each cnt value and the condition sample (cnt ) ≥I max checked. If the condition is met, an auxiliary variable CWI and sample (cnt) are set. If the condition is not met, if cnt is less than the middle of the positive (or negative, MidthPositivePeriod, not shown here), saturation true and CWI equal to I max ; if cnt≥MidthPositivePeriod, saturation = true CWI is set to I max and saturation = false CWI is set to sample (cnt). Finally, the counter cnt is incremented by 1 and the auxiliary variable CWI is added to the square to the contact erosion state variable Cwsum. At the end of the half period, the summation or integration of Cwsum is complete. 1, represents the time integral over the square of the approximated current, which is given in the time interval t 0 to t max by the current measurement signal I mess, corresponding to the sample values sample (cnt), and in the time interval t max to is approximated to the next t 0 by the current maximum I max .
3 shows an example of a curve of a circuit breaker manufacturer, which curve correlates the maximum number of permitted switching operations N with an effective breaking current per switching operation I eff and thus with a certain cumulative effective breaking current. If the contact wear is to be determined with the help of the integral ∫I 2 dt, a switch-specific or switch-type-specific proportionality constant c must be taken into account between the integral and the contact wear, which can be specified by the switch manufacturer and / or determined by comparing measurements with calculations of the contact wear.
According to a preferred embodiment of the invention, an effective switch-off current I eff can additionally be determined for each switching operation, contact wear as a percentage of the switching operations carried out relative to the total number of permitted switching operations from a curve over the number of permitted switching operations N (I eff ) in function of the effective switch-off current I eff this effective breaking current I eff are determined and the percentages for all relevant switching operations carried out are added up to form a cumulative contact wear. The accumulated percentage value represents a control variable for the contact wear state variable Cwsum determined according to the invention.
Beispielsweise kann eine Wartung des Schalters 3 zum ersten
Zeitpunkt veranlasst werden, an dem die Zustandsgrösse
Cwsum einen Grenzwert überschreitet oder der kumulierte
Prozentsatz 100% minus einer Restsicherheitsmarge für die
nächsten ein bis zwei Abschalthandlungen mit dem maximalen
für diesen Schalter 3 zulässigen Ieff erreicht.
Fig. 4 zeigt eine schematische Darstellung eines Datenerfassungssystems
zur erfindungsgemässen Bestimmung der
Kontaktabbrandzustandsgrösse Cwsum und/oder des kumulierten
Prozentwerts aus N(Ieff). Die Schaltanlage 1 weist
Schalter 3, typischerweise Leistungsschalter 3, auf, die
mit Stromwandlern 30 oder Stromsensoren 30, typischerweise
konventionellen Stromwandlern 30 mit sättigbarem Kern,
ausgestattet sind. Beispielsweise werden Messwandler mit
1% Genauigkeit und Verrechnungswandler mit 0,1% - 0,5% Genauigkeit
bei den hohen Strömen gesättigt, die am meisten
Kontaktabbrand bringen. Dadurch werden herkömmliche Kontaktabbrandschätzungen
mit dem Integral ∫Imess 2dt sehr ungenau
und auf jeden Fall zu klein und dadurch ungeeignet
oder riskant für die Bestimmung bedarfsbedingter Wartungszeitpunkte.
Hingegen haben klassische Schutzwandler für
Überstromfunktionen einen grossen Messbereich ohne Sättigung,
sind jedoch für kleine Ströme relativ ungenau, so
dass sie typischerweise einer Genauigkeitsklasse von 2% -
5% angehören. Auch für diese Wandler kann durch die Erfindung
eine verbesserte Kontaktabbrandberechnung erzielt
werden, indem ein charakteristischer Stromwert Ichar gewählt
wird, mit dem der Messfehler Δ im Strommesssignal Imess so
korrigiert werden kann, dass eine möglichst genaue Bestimmung
der Zustandsgrösse Cwsum und insbesondere einer kontaktabbrandrelevanten
Lichtbogenleistung erreicht wird.
Die Stromwandler 30 sind mit Mitteln 4 zur Datenerfassung
an elektrischen Schaltern 3, insbesondere mit Störschreibern
4, Schutzgeräten 4 oder Steuergeräten 4 verbunden.
Diese Datenerfassungsmittel 4 sind über eine serielle Kommunikation
5 oder über Datenträger 5 mit einer zentralen
Erfassungseinheit 6 zur Kontaktabbrandberechnung sowie
vorzugsweise mit einer Datenbank 7 für Daten über Kontaktabnutzung
verbunden.
Mit Hilfe dieser Vorrichtung 2 zur Kontaktabbrandberechnung
kann das oben dargestellte Verfahren implementiert
werden. Insbesondere kann die Kontaktabnutzung on-line,
d. h. laufend während des Betriebes, überwacht werden oder
rückwirkend aus archivierten Daten, insbesondere mit einer
an einen Schaltertyp oder Schaltereinsatzort angepassten
Funktion f(Imess) des Strommesssignals Imess, ausgewertet
werden. Dabei kann die Kontaktabnutzung aus Aufzeichnungen
von Abschaltströmen Imess aus Störschreibern 4 oder Schutz- und
Steuergeräten 4 mit Störschreibfunktion bestimmt werden,
wobei alle Aufzeichnungen der Abschaltströme Imess einer
Schaltanlage 1 zentral gesammelt werden, insbesondere
in einem existierenden oder hierfür speziell konzipierten
Störschreiber-Sammelsystem 4-6, auch SMS oder Stations-Monitoring-System
genannt. Die Erfindung erstreckt sich
auch auf eine solche Vorrichtung 2 zur Kontaktabbrandberechnung,
die beispielsweise im Anlagenleitsystem
(nicht dargestellt) der Schaltanlage 1 integriert ist, und
auf eine elektrische Schaltanlage 1, die eine solche Vorrichtung
2 umfasst. Insgesamt ergibt sich eine verbesserte
bedingungsgesteuerte statt periodische Wartung von Schaltern
3 und deren Schalterkontakten. For example, maintenance of the
FIG. 4 shows a schematic representation of a data acquisition system for the inventive determination of the contact wear state variable Cwsum and / or the accumulated percentage value from N (I eff ).
With the help of this
- 11
- Elektrische SchaltanlageElectrical switchgear
- 22
- Datenerfassungssystem für KontaktabnutzungData acquisition system for contact wear
- 33
- Elektrischer Schalter, LeistungsschalterElectrical switch, circuit breaker
- 3030
- Stromwandler, StromsensorCurrent transformer, current sensor
- 44
- Mittel zur Datenerfassung an elektrischen Schaltern; Störschreiber, Schutzgerät, SteuergerätData acquisition means on electrical switches; Fault recorder, protection device, control device
- 55
- Serielle Kommunikation, DatenträgerSerial communication, data carrier
- 66
- Zentrale Datenerfassung; Mittel zur Berechnung von KontaktabnutzungCentral data acquisition; Means of calculation of contact wear
- 77
- Datenbank für Daten über KontaktabnutzungDatabase for contact wear data
- II
- Kontaktstrom, LichtbogenstromContact current, arc current
- Ichar I char
- charakteristischer Stromwertcharacteristic current value
- Ieff I eff
- effektiver Stromeffective current
- If I f
- Fehlerstromfault current
- Imax I max
- maximaler Strommaximum current
- Imess I mess
- StrommesssignalCurrent measurement signal
- t, t0, tmax Zeitt, t 0 , t max time
- cnt, CWI, Cwsum, Sample Variablen PositivePeriod, MidthPositivePeriod, saturation Konstantencnt, CWI, Cwsum, sample variables PositivePeriod, MidthPositivePeriod, saturation constants
- NN
- Anzahl erlaubter SchalthandlungenNumber of switching operations permitted
Claims (13)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AT03405322T ATE456853T1 (en) | 2003-05-07 | 2003-05-07 | METHOD AND DEVICE FOR MONITORING SWITCHING DEVICES IN ELECTRICAL SWITCHGEARS |
| EP03405322A EP1475813B1 (en) | 2003-05-07 | 2003-05-07 | Method and apparatus for controlling switching devices in electrical switchgear |
| ES03405322T ES2338543T3 (en) | 2003-05-07 | 2003-05-07 | PROCEDURE AND DEVICE FOR SUPERVISION OF SWITCHES IN ELECTRICAL SWITCHING FACILITIES. |
| DE50312381T DE50312381D1 (en) | 2003-05-07 | 2003-05-07 | Method and device for monitoring switching devices in electrical switchgear |
| US10/837,576 US7123461B2 (en) | 2003-05-07 | 2004-05-04 | Method and device for monitoring switchgear in electrical switchgear assemblies |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP03405322A EP1475813B1 (en) | 2003-05-07 | 2003-05-07 | Method and apparatus for controlling switching devices in electrical switchgear |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP1475813A1 true EP1475813A1 (en) | 2004-11-10 |
| EP1475813B1 EP1475813B1 (en) | 2010-01-27 |
Family
ID=32982022
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP03405322A Expired - Lifetime EP1475813B1 (en) | 2003-05-07 | 2003-05-07 | Method and apparatus for controlling switching devices in electrical switchgear |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US7123461B2 (en) |
| EP (1) | EP1475813B1 (en) |
| AT (1) | ATE456853T1 (en) |
| DE (1) | DE50312381D1 (en) |
| ES (1) | ES2338543T3 (en) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005104155A1 (en) * | 2004-04-21 | 2005-11-03 | Siemens Aktiengesellschaft | Method for determining a value for residual contact play representing the wear of switch contacts in a power switch |
| DE102004062266A1 (en) * | 2004-12-23 | 2006-07-13 | Siemens Ag | Method and device for safe operation of a switching device |
| EP2299459A1 (en) * | 2009-09-15 | 2011-03-23 | General Electric Company | Device and method to monitor electrical contact status |
| EP2328159A1 (en) | 2009-11-25 | 2011-06-01 | ABB Research Ltd. | Method and device for determining the wear on a contact element |
| EP2372741A1 (en) * | 2005-11-28 | 2011-10-05 | S & C Electric Company | A Method to determine the end-of-live of a vacuum interrupter |
| WO2012072810A1 (en) | 2010-12-02 | 2012-06-07 | Abb Research Ltd | Method and device for monitoring switching devices |
| DE102011080826A1 (en) * | 2011-08-11 | 2013-02-14 | Siemens Aktiengesellschaft | Method for determining arc power of switch of electrical switchgears, involves determining arc voltage from contact gap distance and current flowing through contacts to determine arc power |
| WO2015043941A1 (en) * | 2013-09-25 | 2015-04-02 | Robert Bosch Gmbh | Method and apparatus for determining the aging of an electronic interrupter element, in particular of a power contactor |
| EP3336560A1 (en) * | 2016-12-16 | 2018-06-20 | Schneider Electric Industries SAS | Method and device for diagnosting wear of an electrical switching unit, and electrical unit comprising such a device |
| EP3575808A1 (en) * | 2018-06-01 | 2019-12-04 | Schneider Electric Industries SAS | Method and device for diagnosing the wear of an electrical switchgear, and electrical switchgear comprising such a device |
| FR3112651A1 (en) * | 2020-07-20 | 2022-01-21 | Schneider Electric Industries Sas | Methods for estimating a property of an electrical switching device, devices for carrying out these methods |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7596459B2 (en) * | 2001-02-28 | 2009-09-29 | Quadlogic Controls Corporation | Apparatus and methods for multi-channel electric metering |
| EP1793235A1 (en) * | 2005-11-30 | 2007-06-06 | ABB Technology AG | Monitoring System for High-Voltage Switch Gears |
| US8560255B2 (en) * | 2008-12-12 | 2013-10-15 | Schneider Electric USA, Inc. | Power metering and merging unit capabilities in a single IED |
| FR2945661A1 (en) * | 2009-05-18 | 2010-11-19 | Schneider Electric Ind Sas | EVALUATION OF THE WEAR OF CONTACTS ENFONCES BY THE VARIATION OF THE ROTATION OF THE TREE OF POLES |
| US20110133743A1 (en) * | 2010-04-30 | 2011-06-09 | Werner Barton | Fault detection device and method for detecting an electrical fault |
| ES2878274T3 (en) * | 2018-08-03 | 2021-11-18 | Rittal Gmbh & Co Kg | Device and procedure for checking a control cabinet content after planning-based assembly |
| CN111505496B (en) * | 2020-05-08 | 2021-02-02 | 西安交通大学 | Vacuum circuit breaker electric service life evaluation method based on arc energy |
| DE102020209645A1 (en) * | 2020-07-30 | 2022-02-03 | Siemens Aktiengesellschaft | Method for determining the status of an electrical switchgear, monitoring unit for an electrical switchgear and electrical switchgear |
| US12087528B2 (en) * | 2021-02-01 | 2024-09-10 | Ge Infrastructure Technology Llc | Enhanced switchgear monitoring and diagnostics in a protection relay |
| CN113552436A (en) * | 2021-07-27 | 2021-10-26 | 中船九江精达科技股份有限公司 | Method for detecting assembly quality of small and medium-sized precision mechanical system |
| CN114076868B (en) * | 2021-11-18 | 2022-08-02 | 广东电网有限责任公司广州供电局 | Switch defect identification method, device, equipment and readable storage medium |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0193732A1 (en) | 1985-02-20 | 1986-09-10 | Licentia Patent-Verwaltungs-GmbH | Device for monitoring and controlling switching devices and combinations of switching devices |
| DE19928192A1 (en) | 1999-06-19 | 2000-12-21 | Abb Patent Gmbh | Current reconstruction method involves deriving maximum and minimum orientation points from at least two measurement windows superimposed on current measurement signal |
| DE10204849A1 (en) * | 2001-02-07 | 2002-08-22 | Gen Electric | Contact wear detection method for electronic trip circuit of circuit breakers, involves integrating sensed signals obtained based on current flow in contacts after contact separation |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SE439692B (en) * | 1983-10-24 | 1985-06-24 | Asea Ab | DEVICE FOR MONITORING THE CONDITION OF AN ELECTRIC APPLIANCE WITH POWER SWITCHING CONNECTORS, IN PARTICULAR A HIGH VOLTAGE SWITCH |
| FR2602610B1 (en) * | 1986-08-08 | 1994-05-20 | Merlin Et Gerin | STATIC TRIGGER OF AN ELECTRIC CIRCUIT BREAKER WITH CONTACT WEAR INDICATOR |
-
2003
- 2003-05-07 DE DE50312381T patent/DE50312381D1/en not_active Expired - Lifetime
- 2003-05-07 ES ES03405322T patent/ES2338543T3/en not_active Expired - Lifetime
- 2003-05-07 EP EP03405322A patent/EP1475813B1/en not_active Expired - Lifetime
- 2003-05-07 AT AT03405322T patent/ATE456853T1/en not_active IP Right Cessation
-
2004
- 2004-05-04 US US10/837,576 patent/US7123461B2/en not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0193732A1 (en) | 1985-02-20 | 1986-09-10 | Licentia Patent-Verwaltungs-GmbH | Device for monitoring and controlling switching devices and combinations of switching devices |
| DE19928192A1 (en) | 1999-06-19 | 2000-12-21 | Abb Patent Gmbh | Current reconstruction method involves deriving maximum and minimum orientation points from at least two measurement windows superimposed on current measurement signal |
| DE10204849A1 (en) * | 2001-02-07 | 2002-08-22 | Gen Electric | Contact wear detection method for electronic trip circuit of circuit breakers, involves integrating sensed signals obtained based on current flow in contacts after contact separation |
Cited By (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005104155A1 (en) * | 2004-04-21 | 2005-11-03 | Siemens Aktiengesellschaft | Method for determining a value for residual contact play representing the wear of switch contacts in a power switch |
| DE102004062266A1 (en) * | 2004-12-23 | 2006-07-13 | Siemens Ag | Method and device for safe operation of a switching device |
| EP2372741A1 (en) * | 2005-11-28 | 2011-10-05 | S & C Electric Company | A Method to determine the end-of-live of a vacuum interrupter |
| CN102820186B (en) * | 2005-11-28 | 2016-12-07 | 施恩禧电气有限公司 | Determine and predict adaptively the method for end-of-life of vacuum interrupter |
| EP2299459A1 (en) * | 2009-09-15 | 2011-03-23 | General Electric Company | Device and method to monitor electrical contact status |
| US9406451B2 (en) | 2009-11-25 | 2016-08-02 | Abb Research Ltd | Method and apparatus for determining the wear on a contact element |
| CN102714101A (en) * | 2009-11-25 | 2012-10-03 | Abb研究有限公司 | Method and device for determining wear of a contact element |
| CN102714101B (en) * | 2009-11-25 | 2015-04-08 | Abb研究有限公司 | Method and apparatus for determination of wear to a contact element |
| RU2551645C2 (en) * | 2009-11-25 | 2015-05-27 | Абб Рисерч Лтд | Method and device for determination of wear of contact elements |
| WO2011064064A1 (en) | 2009-11-25 | 2011-06-03 | Abb Research Ltd | Method and apparatus for determination of wear to a contact element |
| EP2328159A1 (en) | 2009-11-25 | 2011-06-01 | ABB Research Ltd. | Method and device for determining the wear on a contact element |
| WO2012072810A1 (en) | 2010-12-02 | 2012-06-07 | Abb Research Ltd | Method and device for monitoring switching devices |
| DE102011080826A1 (en) * | 2011-08-11 | 2013-02-14 | Siemens Aktiengesellschaft | Method for determining arc power of switch of electrical switchgears, involves determining arc voltage from contact gap distance and current flowing through contacts to determine arc power |
| DE102011080826B4 (en) * | 2011-08-11 | 2016-01-21 | Siemens Aktiengesellschaft | Method for determining the arc performance of a switch, method for triggering a switch based on the arc power and method for determining the load of the contacts of a switch based on the arc energy |
| US10101394B2 (en) | 2013-09-25 | 2018-10-16 | Robert Bosch Gmbh | Method and apparatus for determining the aging of an electronic interrupter element, in particular of a power contactor |
| WO2015043941A1 (en) * | 2013-09-25 | 2015-04-02 | Robert Bosch Gmbh | Method and apparatus for determining the aging of an electronic interrupter element, in particular of a power contactor |
| CN105580055A (en) * | 2013-09-25 | 2016-05-11 | 罗伯特·博世有限公司 | Method and apparatus for determining the aging of an electronic interrupter element, in particular of a power contactor |
| EP3336560A1 (en) * | 2016-12-16 | 2018-06-20 | Schneider Electric Industries SAS | Method and device for diagnosting wear of an electrical switching unit, and electrical unit comprising such a device |
| FR3060758A1 (en) * | 2016-12-16 | 2018-06-22 | Schneider Electric Industries Sas | METHOD AND DEVICE FOR DIAGNOSING WEAR OF AN ELECTRIC CUTTING APPARATUS, AND ELECTRIC APPARATUS COMPRISING SUCH A DEVICE |
| US11404223B2 (en) | 2016-12-16 | 2022-08-02 | Schneider Electric Industries Sas | Method and device for diagnosing wear of an electrical switching unit, and electrical unit comprising such a device |
| EP3575808A1 (en) * | 2018-06-01 | 2019-12-04 | Schneider Electric Industries SAS | Method and device for diagnosing the wear of an electrical switchgear, and electrical switchgear comprising such a device |
| FR3082005A1 (en) * | 2018-06-01 | 2019-12-06 | Schneider Electric Industries Sas | METHOD AND DEVICE FOR DIAGNOSING WEAR OF AN ELECTRICAL CUT-OFF APPARATUS, AND ELECTRICAL APPARATUS COMPRISING SUCH A DEVICE |
| JP2020012813A (en) * | 2018-06-01 | 2020-01-23 | シュネーデル、エレクトリック、インダストリーズ、エスアーエスSchneider Electric Industries Sas | Method and device for diagnosing wear of an electrical switching unit, and electrical unit comprising such a device |
| US11079435B2 (en) | 2018-06-01 | 2021-08-03 | Schneider Electric Industries Sas | Method and device for diagnosing wear of an electrical switching unit, and electrical unit comprising such a device |
| JP7644565B2 (en) | 2018-06-01 | 2025-03-12 | シュネーデル、エレクトリック、インダストリーズ、エスアーエス | Method and device for diagnosing wear in an electrical switching unit, and an electrical unit equipped with such a device - Patents.com |
| FR3112651A1 (en) * | 2020-07-20 | 2022-01-21 | Schneider Electric Industries Sas | Methods for estimating a property of an electrical switching device, devices for carrying out these methods |
| EP3944274A1 (en) * | 2020-07-20 | 2022-01-26 | Schneider Electric Industries SAS | Methods for estimating a property of an electrical switching apparatus, devices for implementing these methods |
| US11728101B2 (en) | 2020-07-20 | 2023-08-15 | Schneider Electric Industries Sas | Methods for estimating a property of an electrical switching device, devices for implementing these methods |
Also Published As
| Publication number | Publication date |
|---|---|
| ES2338543T3 (en) | 2010-05-10 |
| US20040223276A1 (en) | 2004-11-11 |
| DE50312381D1 (en) | 2010-03-18 |
| EP1475813B1 (en) | 2010-01-27 |
| ATE456853T1 (en) | 2010-02-15 |
| US7123461B2 (en) | 2006-10-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1475813B1 (en) | Method and apparatus for controlling switching devices in electrical switchgear | |
| EP2017867B1 (en) | Measuring device for measuring a periodic analogue signal | |
| EP0694937B1 (en) | Method and apparatus for determining the residual life of contacts in switching devices | |
| EP0193732B1 (en) | Device for monitoring and controlling switching devices and combinations of switching devices | |
| DE69601218T3 (en) | ELECTRICAL DIFFERENTIAL PROTECTIVE DEVICE WITH TEST CIRCUIT | |
| DE202007018709U1 (en) | Determination and display of the contact abrasion on a high-power switch | |
| DE102016107598B3 (en) | DEVICE AND METHOD FOR MONITORING A HIGH-VOLTAGE PROTECTOR IN A VEHICLE | |
| EP0877948B1 (en) | Method of detecting a fault in a monitored section of an electric transmission line using distance protection techniques | |
| DE2406197C3 (en) | Method and device for the detection of short circuits | |
| DE102014200946A1 (en) | Overload monitoring device and method for overload monitoring | |
| DE2727378A1 (en) | Contact wear monitor with comparison system - compares reference wear value with instantaneous wear values determined from load current | |
| EP4377984B1 (en) | Circuit breaker device and method | |
| DE102008012605A1 (en) | Protective switching device for monitoring the electrical current flow to an electrical consumption or method for monitoring the electrical current flow to an electrical consumer by a protective switching device | |
| WO2012072810A1 (en) | Method and device for monitoring switching devices | |
| DE102012215166B4 (en) | Switching device for a single-phase motor and a three-phase motor | |
| DE102004020045A1 (en) | Method for determining a residual shift play value indicating wear of switch contacts of a circuit breaker | |
| DE19901119B4 (en) | Monitoring system for a gas-insulated high-voltage switchgear | |
| DE102022201960A1 (en) | Method and circuit breaker for determining information relating to a load | |
| DE102007006564A1 (en) | Circuit breaker or circuit breaker | |
| EP3977496B1 (en) | Method for predicting the failure of elementary relays | |
| DE4111831A1 (en) | Release method for overcurrent protection switch - using measured current values and corresponding current gradients obtained by differentiation to trigger switch | |
| EP0239965B1 (en) | Method and circuit for excitation of a multiphase distance protection | |
| DE102021203218B4 (en) | Method for monitoring the functionality of a high-voltage switch, high-voltage switch, computer program product and computer-readable medium | |
| EP1986203A1 (en) | Method to detect a contact isolation layer in a switching element having contacts and a switch having such a switching element | |
| EP1994620B1 (en) | Protective device and method for monitoring the appliance temperature of an appliance |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
| AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
| 17P | Request for examination filed |
Effective date: 20050414 |
|
| AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
| 17Q | First examination report despatched |
Effective date: 20070420 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REF | Corresponds to: |
Ref document number: 50312381 Country of ref document: DE Date of ref document: 20100318 Kind code of ref document: P |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2338543 Country of ref document: ES Kind code of ref document: T3 |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20100127 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100527 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100127 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100127 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100127 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100127 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100428 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100127 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100127 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100127 |
|
| BERE | Be: lapsed |
Owner name: ABB TECHNOLOGY A.G. Effective date: 20100531 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100127 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100127 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100427 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100531 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| 26N | No opposition filed |
Effective date: 20101028 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100127 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100531 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100127 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100531 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100507 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100728 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100507 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100127 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20160512 Year of fee payment: 14 Ref country code: GB Payment date: 20160520 Year of fee payment: 14 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20160519 Year of fee payment: 14 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50312381 Country of ref document: DE Owner name: HITACHI ENERGY SWITZERLAND AG, CH Free format text: FORMER OWNER: ABB TECHNOLOGY AG, ZUERICH, CH Ref country code: DE Ref legal event code: R081 Ref document number: 50312381 Country of ref document: DE Owner name: ABB SCHWEIZ AG, CH Free format text: FORMER OWNER: ABB TECHNOLOGY AG, ZUERICH, CH Ref country code: DE Ref legal event code: R081 Ref document number: 50312381 Country of ref document: DE Owner name: ABB POWER GRIDS SWITZERLAND AG, CH Free format text: FORMER OWNER: ABB TECHNOLOGY AG, ZUERICH, CH Ref country code: DE Ref legal event code: R082 Ref document number: 50312381 Country of ref document: DE Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE Ref country code: DE Ref legal event code: R082 Ref document number: 50312381 Country of ref document: DE Representative=s name: ZIMMERMANN & PARTNER PATENTANWAELTE MBB, DE |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170507 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170508 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170507 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20180703 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170508 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: ABB SCHWEIZ AG, CH Effective date: 20180912 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50312381 Country of ref document: DE Owner name: HITACHI ENERGY SWITZERLAND AG, CH Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH Ref country code: DE Ref legal event code: R082 Ref document number: 50312381 Country of ref document: DE Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE Ref country code: DE Ref legal event code: R081 Ref document number: 50312381 Country of ref document: DE Owner name: ABB POWER GRIDS SWITZERLAND AG, CH Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50312381 Country of ref document: DE Owner name: HITACHI ENERGY SWITZERLAND AG, CH Free format text: FORMER OWNER: ABB POWER GRIDS SWITZERLAND AG, BADEN, CH |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20220523 Year of fee payment: 20 Ref country code: DE Payment date: 20220519 Year of fee payment: 20 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50312381 Country of ref document: DE |