EP1475813A1 - Method and apparatus for controlling switching devices in electrical switchgear - Google Patents

Method and apparatus for controlling switching devices in electrical switchgear Download PDF

Info

Publication number
EP1475813A1
EP1475813A1 EP03405322A EP03405322A EP1475813A1 EP 1475813 A1 EP1475813 A1 EP 1475813A1 EP 03405322 A EP03405322 A EP 03405322A EP 03405322 A EP03405322 A EP 03405322A EP 1475813 A1 EP1475813 A1 EP 1475813A1
Authority
EP
European Patent Office
Prior art keywords
current
mess
contact
measurement signal
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03405322A
Other languages
German (de)
French (fr)
Other versions
EP1475813B1 (en
Inventor
Wimmer Wolfgang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Technology AG
Original Assignee
ABB Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Technology AG filed Critical ABB Technology AG
Priority to AT03405322T priority Critical patent/ATE456853T1/en
Priority to EP03405322A priority patent/EP1475813B1/en
Priority to ES03405322T priority patent/ES2338543T3/en
Priority to DE50312381T priority patent/DE50312381D1/en
Priority to US10/837,576 priority patent/US7123461B2/en
Publication of EP1475813A1 publication Critical patent/EP1475813A1/en
Application granted granted Critical
Publication of EP1475813B1 publication Critical patent/EP1475813B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0015Means for testing or for inspecting contacts, e.g. wear indicator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/04Means for indicating condition of the switching device
    • H01H2071/044Monitoring, detection or measuring systems to establish the end of life of the switching device, can also contain other on-line monitoring systems, e.g. for detecting mechanical failures

Definitions

  • the invention relates to the field of secondary technology for electrical switchgear, especially the Monitoring of switches in high, medium or low voltage switchgear. It is based on a procedure a computer program and a device for determination the contact erosion of circuit breakers in one electrical switchgear and a switchgear with such a device according to the preamble of the independent Claims.
  • DE 102 04 849 A1 discloses a method for determining contact wear in a tripping unit. A cumulative energy converted in the circuit breaker contacts is calculated, which is proportional to the contact wear. For this purpose, the contact current I is sampled, squared during the contact separation period, multiplied by a fixed time T between samples and summed up for each contact pair in relation to each type of error or as a total.
  • the time delay between the opening of the circuit breaker and the contact movement in the circuit breaker can be measured or estimated on the basis of typical mechanism times or those published by the manufacturer. If the adjustable threshold values for contact erosion are exceeded, a warning signal or alarm signal can be issued or the circuit breaker can be switched off or serviced.
  • the arc energy can also be determined from voltage times current or approximately from current I times time T. It is disadvantageous that current measurement errors in the case of overcurrents are not taken into account for the determination of arc energy and contact erosion. Another disadvantage is the relatively large measuring and computing effort.
  • EP 0 193 732 A1 discloses a monitoring and control device for switching devices and switching device combinations for determining the required maintenance times.
  • a plurality of sensors measure or calculate wear states of the switching devices and generate alarm or maintenance information according to urgency.
  • the contact erosion can directly, z. B. detected by displacement sensors, rotary angle sensors or light barriers or determined indirectly by linking the current level, switching voltage, phase angle, number of circuits, switching moments, current steepness or time constants.
  • the contact erosion is determined indirectly by evaluating the current and temperature of the respective current path. Disadvantages are high measurement requirements and complex signal processing. Measurement errors due to saturation of the current transformer also go unnoticed.
  • the object of the present invention is to provide a method, a computer program, a device and a switchgear assembly with such a device for improved and simplified monitoring of switches in electrical switchgear assemblies. According to the invention, this object is achieved by the features of the independent claims.
  • the invention consists in a method for determining contact wear in an electrical switch, in particular in electrical switchgear for high or medium voltage, a contact current flowing through the switch during a switching operation being detected with the aid of a current transformer and evaluated with regard to contact wear , in order to determine a state variable characterizing the contact wear, a current measurement signal of the current transformer is first measured as a function of time, the presence of a measurement error is detected when deviations occur between the expected contact current and the current measurement signal, and at least one characteristic current value is detected from the current measurement signal when the measurement error is detected is determined and used to determine the state variable.
  • the condition size must be selected so that it represents a reliable measure of the contact erosion.
  • the expected contact current is particularly characterized by the temporal course of the contact current, in particular by reaching a maximum current at the end of a quarter or three-quarter period of the mains frequency of the nominal current applied to the switch. Depending on the switching action and type of error, other expected contact currents are also conceivable.
  • Contact wear can also be determined with great reliability by the method if the fault current or arcing current relevant for contact erosion is not or cannot be measured correctly. The use of the characteristic current value instead of the complete current measurement signal simplifies and specifies the calculation of the contact wear. Overall, the contact wear can be calculated more accurately and the maintenance of circuit breakers and similar switching devices can be carried out instead of periodically without loss of operational safety, which means that Maintenance costs can be reduced accordingly.
  • a saturation of the current measurement signal is detected as a measurement error and a maximum current measurement signal of the current transformer is used as the characteristic current value if it occurs and in particular is detected before a quarter period of an alternating current applied to the switch.
  • the saturation of conventional current transformers often makes an exact measurement of the arc overcurrent impossible and thus falsifies the contact burn-up calculation, especially for the fault cases that cause the most contact burn-up. This can now be corrected by calculation.
  • the embodiment according to claim 3 has the advantage that high fault currents can be detected and the state size represents a reliable, well-predictable measure of contact erosion.
  • the embodiment according to claim 4 has the advantage that a very simple calculation rule for contact wear calculation is specified.
  • the embodiment according to claim 5 has the advantage that the reliability of the contact erosion calculation is improved by the exact determination of the arc start.
  • the embodiment according to claim 6 has the advantage that a selection of functions for calculating the contact erosion is specified and, if necessary, a special function can be selected for specific switches or fault current events.
  • the embodiment according to claim 7 has the advantage that manufacturer information can also be used for improved contact erosion calculation.
  • the embodiment according to claim 8 has the advantage that an additional, independent calculation of the contact wear can be carried out.
  • the embodiment according to claim 9 has the advantage that the contact erosion can be permanently monitored and / or subsequently determined from archived data. In particular, fault record data can be used, as z. B. in a fault recorder collection system, also called station monitoring system or SMS, are available.
  • the invention relates to a computer program for determining contact wear in an electrical switch, the method steps according to claims 1-9 being implemented by program code, furthermore an apparatus for carrying out the method and a switchgear assembly comprising the apparatus.
  • Circuit breakers are designed for a certain number of mechanical switching operations or switching cycles. Are z. B. in the event of a fault, larger currents are switched off, the resulting arc burns off the contacts more than calculated in normal switching operations. In order for the circuit breaker to remain functional, the contacts must be replaced before they have completely burned down. The degree of burn-up per switching operation depends on the energy of the arc that occurs. This energy is proportional to the integral ⁇ I 2 dt, where I denotes the current flowing during the arc duration and t the time.
  • switches 3 in electrical switchgear systems 1 are monitored for contact wear, in that a contact current I f flowing through the switch 3 during a switching operation is detected at least approximately by a current measurement signal I mess of a current transformer 30 or current sensor 30 as a function of time t, in the event of deviations
  • a measurement error ⁇ is detected between the expected contact current I f and the current measurement signal I mess and at least one characteristic current value I char is determined from the current measurement signal I mess and is used to determine a state variable characterizing contact wear. This estimate is often a bit too conservative, but always on the safe side.
  • the procedure can be part of a power system monitoring system. 1 shows an exemplary embodiment in which a largely sinusoidal fault current I f is present.
  • a current maximum I is run through at the time t max within a quarter period of the fault current signal I f or the mains frequency applied to the switch 3.
  • the occurrence of the current maximum I max is detected when the deviation or the measurement error ⁇ between the fault current profile I f (t) and the current measurement signal profile I mess (t) exceeds a tolerance value ⁇ min .
  • the contact current I f is typically an overcurrent or short-circuit current I f during a switch-off operation, the course of which is known very precisely beforehand.
  • a current maximum I max that occurs in the current measurement signal I mess before reaching a quarter period of the mains frequency is a reliable indication of a measurement error ⁇ .
  • the current maximum I max is now defined as a characteristic current value I char and used to calculate the contact erosion state variable.
  • the state variable should preferably be a measure of an arc power during the switching operation and in particular a contact current-time integral.
  • the current measurement signal I mess is detected from a first point in time t 0 at the start of the current half-wave in which the switching action occurs to a second point in time t max at which a maximum current measurement signal I max occurs, and from second time t max up to a third time t 0 at the end of the current half-wave approximated by the maximum current measurement signal I max .
  • the accuracy of the contact erosion calculation depends on how exactly the starting time of the arc can be determined.
  • the first time t 0 is to be defined as the start time of the arc of the contact current I f .
  • the calculation is most accurate if t o is known as a binary indication in the fault record; t o can also be determined with a time delay based on empirical values from an opening command, a protective trigger command or a contact movement of the switch 3. Any fluctuations in this time value are of minor importance compared to other influencing factors and irregularities in contact burn-off. Systematic errors caused by values of the starting time t 0 that are too large or too small can be corrected if, for. B. on the occasion of maintenance, the expected burnup is compared with the actual one and the time delay is corrected accordingly.
  • a time delay value that is too small should be used at the beginning of a contact erosion history rather than a value that is too large, so that the contact erosion is initially overestimated in the calculation.
  • a time integral ⁇ f (I mess ) dt is then formed via a function f (I mess ) of the current measurement signal I mess detected and approximated in sections .
  • the integral ⁇ I mess 2 dt or ⁇ I mess 1.6 dt is determined with the current measurement signal I mess approximated according to FIG. 1 for the approximate determination of the contact erosion.
  • a square root function f (I mess ) (I mess 2 ) 1/2 which defines an effective switch-off current I eff can also be used as function f (I mess ).
  • Other functions f (I mess ) are also possible.
  • the time integral ⁇ f (I mess ) dt via the function f (I mess ) can be approximated by a summation of function values at interpolation points. B. are given by sampling the current measurement signal I mess .
  • the state variable is selected equal to the time integral ⁇ f (I mess ) dt times a contact erosion constant c and the contact erosion constant c from manufacturer information, in particular from curves showing the number of permitted switching operations N (I eff ) as a function of an effective breaking current per switching operation I eff , and / or determined from empirical values for a switch type and switch location.
  • a sample value (cnt) of the current measurement signal is read in for each cnt value and the condition sample (cnt ) ⁇ I max checked. If the condition is met, an auxiliary variable CWI and sample (cnt) are set.
  • an effective switch-off current I eff can additionally be determined for each switching operation, contact wear as a percentage of the switching operations carried out relative to the total number of permitted switching operations from a curve over the number of permitted switching operations N (I eff ) in function of the effective switch-off current I eff this effective breaking current I eff are determined and the percentages for all relevant switching operations carried out are added up to form a cumulative contact wear.
  • the accumulated percentage value represents a control variable for the contact wear state variable Cwsum determined according to the invention.
  • FIG. 4 shows a schematic representation of a data acquisition system for the inventive determination of the contact wear state variable Cwsum and / or the accumulated percentage value from N (I eff ).
  • Switchgear 1 has switches 3, typically circuit breakers 3, which are equipped with current transformers 30 or current sensors 30, typically conventional current transformers 30 with a saturable core. For example, instrument transformers with 1% accuracy and accounting converters with 0.1% - 0.5% accuracy are saturated at the high currents that cause the most contact wear.
  • the current transformers 30 are connected to means 4 for data acquisition at electrical switches 3, in particular with fault recorders 4, protective devices 4 or control devices 4. These data acquisition means 4 are connected via serial communication 5 or via data carriers 5 to a central acquisition unit 6 for calculating contact wear and preferably to a database 7 for data on contact wear. With the help of this device 2 for contact erosion calculation, the method described above can be implemented. In particular, the contact wear can be monitored online, ie continuously during operation, or evaluated retrospectively from archived data, in particular with a function f (I mess ) of the current measurement signal I mess adapted to a switch type or switch location .
  • the contact wear can be determined from recordings of switch-off currents I mess from fault recorders 4 or protection and control devices 4 with fault record function, all records of the switch-off currents I mess of a switchgear assembly 1 being collected centrally, in particular in an existing or specially designed fault recorder collection system 4 -6, also called SMS or station monitoring system.
  • the invention also extends to such a device 2 for contact erosion calculation, which is integrated, for example, in the system control system (not shown) of the switchgear 1, and to an electrical switchgear 1 which comprises such a device 2. Overall, there is an improved condition-controlled instead of periodic maintenance of switches 3 and their switch contacts.

Landscapes

  • Keying Circuit Devices (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

The method involves detecting contact current during switching with a current converter and evaluating for contact wear. A state parameter characteristic of contact wear is determined by measuring the current converter measurement signal (I mess) as a function of time (t), detecting a measurement error (delta) if it deviates from the anticipated contact current (I f) and if so deriving a characteristic current value (I char) from the measurement signal and using it to determine the state parameter. Independent claims are also included for the following: (a) a computer program for determining switching device contact wear in electrical switching systems (b) an arrangement for implementing the inventive method (c) and an electrical switching system with an inventive arrangement.

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die Erfindung bezieht sich auf das Gebiet der Sekundärtechnik für elektrische Schaltanlagen, insbesondere der Überwachung von Schaltern in Hoch-, Mittel- oder Niederspannungsschaltanlagen. Sie geht aus von einem Verfahren, einem Computerprogramm und einer Vorrichtung zur Ermittlung des Kontaktabbrands von Leistungsschaltern in einer elektrischen Schaltanlage sowie von einer Schaltanlage mit einer solchen Vorrichtung gemäss Oberbegriff der unabhängigen Patentansprüche.The invention relates to the field of secondary technology for electrical switchgear, especially the Monitoring of switches in high, medium or low voltage switchgear. It is based on a procedure a computer program and a device for determination the contact erosion of circuit breakers in one electrical switchgear and a switchgear with such a device according to the preamble of the independent Claims.

STAND DER TECHNIKSTATE OF THE ART

In den meisten Elektrizitätsversorgungsunternehmen wird heutzutage die Leistungsschalterwartung periodisch vorgenommen, gelegentlich mit vorgezogener Wartung, wenn Schutzabschaltungen mit möglicherweise hohen Strömen aufgetreten sind. Damit wird in der Regel der Schalter viel zu häufig gewartet mit dem zusätzlichen Risiko, dass bei der Wartung Schäden verursacht werden.
In der DE 102 04 849 A1 wird ein Verfahren zur Bestimmung der Kontaktabnutzung in einer Auslöseeinheit offenbart. Es wird eine kumulative, in den Leistungsschalterkontakten umgesetzte Energie berechnet, die proportional zur Kontaktabnutzung ist. Hierfür wird der Kontaktstrom I während der Kontakttrenndauer abgetastet, quadriert, mit einer festen Zeit T zwischen Abtastungen multipliziert und für jedes Kontaktpaar bezogen auf jeden Fehlertyp oder als Gesamtwert aufsummiert. Die Zeitverzögerung zwischen Auslösen des Leistungsschalters und der Kontaktbewegung im Leistungsschalter kann auf Basis typischer oder vom Hersteller veröffentlichter Mechanismuszeiten gemessen oder geschätzt werden. Bei Überschreiten einstellbarer Schwellwerte für den Kontaktabbrand können ein Warnsignal oder Alarmsignal ausgegeben werden oder eine Abschaltung oder Wartung des Leistungsschalters ausgelöst werden. Alternativ zur I2T-Messung kann die Lichtbogenenergie auch aus Spannung mal Strom oder approximativ aus Strom I mal Zeit T bestimmt werden. Nachteilig ist, dass Strommessfehler bei Überströmen für die Bestimmung von Lichtbogenenergie und Kontaktabbrand unberücksichtigt bleiben. Nachteilig ist auch der relativ grosse Mess- und Rechenaufwand.
Die EP 0 193 732 A1 offenbart eine Überwachungs- und Kontrolleinrichtung für Schaltgeräte und Schaltgerätekombinationen zur Ermittlung der erforderlichen Wartungszeitpunkte. Hierfür werden von einer Mehrzahl von Sensoren Abnutzungszustände der Schaltgeräte gemessen oder errechnet und nach Dringlichkeit gestufter Alarm oder Wartungsinformation generiert. Der Kontaktabbrand kann dabei direkt, z. B. durch Weggeber, Drehwinkelgeber oder Lichtschranken, erfasst oder indirekt durch Verknüpfung von Stromhöhe, Schaltspannung, Phasenwinkel, Anzahl Schaltungen, Schaltaugenblicke, Stromsteilheit oder Zeitkonstanten bestimmt werden. Insbesondere wird der Kontaktabbrand indirekt über die Bewertung von Strom und Temperatur der jeweiligen Strombahn bestimmt. Nachteilig sind hoher Messbedarf und aufwendige Signalverarbeitung. Auch bleiben Messfehler durch Sättigung des Stromwandlers unbeachtet.
In most electricity supply companies today, circuit breaker maintenance is done periodically, sometimes with early maintenance, when protection trips with possibly high currents have occurred. As a rule, the switch is therefore serviced far too often, with the additional risk that damage will be caused during maintenance.
DE 102 04 849 A1 discloses a method for determining contact wear in a tripping unit. A cumulative energy converted in the circuit breaker contacts is calculated, which is proportional to the contact wear. For this purpose, the contact current I is sampled, squared during the contact separation period, multiplied by a fixed time T between samples and summed up for each contact pair in relation to each type of error or as a total. The time delay between the opening of the circuit breaker and the contact movement in the circuit breaker can be measured or estimated on the basis of typical mechanism times or those published by the manufacturer. If the adjustable threshold values for contact erosion are exceeded, a warning signal or alarm signal can be issued or the circuit breaker can be switched off or serviced. As an alternative to the I 2 T measurement, the arc energy can also be determined from voltage times current or approximately from current I times time T. It is disadvantageous that current measurement errors in the case of overcurrents are not taken into account for the determination of arc energy and contact erosion. Another disadvantage is the relatively large measuring and computing effort.
EP 0 193 732 A1 discloses a monitoring and control device for switching devices and switching device combinations for determining the required maintenance times. For this purpose, a plurality of sensors measure or calculate wear states of the switching devices and generate alarm or maintenance information according to urgency. The contact erosion can directly, z. B. detected by displacement sensors, rotary angle sensors or light barriers or determined indirectly by linking the current level, switching voltage, phase angle, number of circuits, switching moments, current steepness or time constants. In particular, the contact erosion is determined indirectly by evaluating the current and temperature of the respective current path. Disadvantages are high measurement requirements and complex signal processing. Measurement errors due to saturation of the current transformer also go unnoticed.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren, ein Computerprogramm, eine Vorrichtung und eine Schaltanlage mit einer solchen Vorrichtung zur verbesserten und vereinfachten Überwachung von Schaltern in elektrischen Schaltanlagen anzugeben. Diese Aufgabe wird erfindungsgemäss durch die Merkmale der unabhängigen Ansprüche gelöst.
In einem ersten Aspekt besteht die Erfindung in einem Verfahren zur Bestimmung von Kontaktabnutzung in einem elektrischen Schalter, insbesondere in elektrischen Schaltanlagen für Hoch- oder Mittelspannung, wobei ein während einer Schalthandlung durch den Schalter fliessender Kontaktstrom mit Hilfe eines Stromwandlers erfasst wird und hinsichtlich Kontaktabnutzung ausgewertet wird, wobei zur Bestimmung einer die Kontaktabnutzung charakterisierenden Zustandsgrösse zunächst ein Strommesssignal des Stromwandlers als Funktion der Zeit gemessen wird, bei Auftreten von Abweichungen zwischen dem erwarteten Kontaktstrom und dem Strommesssignal das Vorhandensein eines Messfehlers detektiert wird und bei Detektion des Messfehlers aus dem Strommesssignal mindestens ein charakteristischer Stromwert bestimmt wird und zur Bestimmung der Zustandsgrösse verwendet wird. Die Zustandsgrösse ist so zu wählen, dass sie ein zuverlässiges Mass für den Kontaktabbrand darstellt. Der erwartete Kontaktstrom ist besonders durch den zeitlichen Kontaktstromverlauf charakterisiert, insbesondere durch Erreichen eines betragsmässigen Strommaximums am Ende einer Viertel- oder Dreiviertelperiode der Netzfrequenz des am Schalter anliegenden Nennstroms. Je nach Schalthandlung und Fehlerart sind auch andere erwartete Kontaktströme denkbar. Durch das Verfahren kann eine Kontaktabnutzung auch dann mit grosser Zuverlässigkeit bestimmt werden, wenn der für den Kontaktabbrand relevante Fehler- oder Lichtbogenstrom nicht korrekt gemessen wird oder werden kann. Dabei stellt die Verwendung des charakteristischen Stromwerts anstelle des vollständigen Strommesssignals eine Vereinfachung und Präzisierung der Berechnung der Kontaktabnutzung dar. Insgesamt kann der Kontaktverschleiss genauer berechnet werden und die Wartung von Leistungsschaltern und ähnlichen Schaltgeräten kann statt periodisch ohne Verlust an Betriebssicherheit nach Bedarf durchgeführt werden, wodurch die Wartungskosten entsprechend gesenkt werden.
The object of the present invention is to provide a method, a computer program, a device and a switchgear assembly with such a device for improved and simplified monitoring of switches in electrical switchgear assemblies. According to the invention, this object is achieved by the features of the independent claims.
In a first aspect, the invention consists in a method for determining contact wear in an electrical switch, in particular in electrical switchgear for high or medium voltage, a contact current flowing through the switch during a switching operation being detected with the aid of a current transformer and evaluated with regard to contact wear , in order to determine a state variable characterizing the contact wear, a current measurement signal of the current transformer is first measured as a function of time, the presence of a measurement error is detected when deviations occur between the expected contact current and the current measurement signal, and at least one characteristic current value is detected from the current measurement signal when the measurement error is detected is determined and used to determine the state variable. The condition size must be selected so that it represents a reliable measure of the contact erosion. The expected contact current is particularly characterized by the temporal course of the contact current, in particular by reaching a maximum current at the end of a quarter or three-quarter period of the mains frequency of the nominal current applied to the switch. Depending on the switching action and type of error, other expected contact currents are also conceivable. Contact wear can also be determined with great reliability by the method if the fault current or arcing current relevant for contact erosion is not or cannot be measured correctly. The use of the characteristic current value instead of the complete current measurement signal simplifies and specifies the calculation of the contact wear. Overall, the contact wear can be calculated more accurately and the maintenance of circuit breakers and similar switching devices can be carried out instead of periodically without loss of operational safety, which means that Maintenance costs can be reduced accordingly.

In einem ersten Ausführungsbeispiel wird als Messfehler eine Sättigung des Strommesssignals detektiert und es wird als charakteristischer Stromwert ein maximales Strommesssignal des Stromwandlers verwendet, falls es vor Erreichen einer Viertelperiode eines am Schalter anliegenden Wechselstroms auftritt und insbesondere detektiert wird. Die Sättigung konventioneller Stromwandler verunmöglicht oftmals eine genaue Messung des Lichtbogenüberstroms und verfälscht dadurch die Kontaktabbrandberechnung gerade für die Fehlerfälle, die am meisten Kontaktabbrand bringen. Dies kann nun rechnerisch korrigiert werden.
Das Ausführungsbeispiel gemäss Anspruch 3 hat den Vorteil, dass hohe Fehlerströme erfassbar sind und die Zustandgrösse ein zuverlässiges, gut berechenbares Mass für Kontaktabbrand darstellt.
Das Ausführungsbeispiel gemäss Anspruch 4 hat den Vorteil, dass eine sehr einfache Rechenvorschrift zur Kontaktabbrandberechnung angegeben wird.
Das Ausführungsbeispiel gemäss Anspruch 5 hat den Vorteil, dass durch die exakte Bestimmung des Lichtbogenstarts die Zuverlässigkeit der Kontaktabbrandberechnung verbessert wird.
Das Ausführungsbeispiel gemäss Anspruch 6 hat den Vorteil, dass eine Auswahl von Funktionen zur Berechnung des Kontaktabbrands angegeben wird und gegebenenfalls für spezifische Schalter oder Fehlerstromereignisse eine spezielle Funktion gewählt werden kann.
Das Ausführungsbeispiel gemäss Anspruch 7 hat den Vorteil, dass auch Herstellerangaben zur verbesserten Kontaktabbrandberechnung herangezogen werden können.
Das Ausführungsbeispiel gemäss Anspruch 8 hat den Vorteil, dass eine zusätzliche, unabhängige Berechnung der Kontaktabnutzung durchgeführt werden kann.
Das Ausführungsbeispiel gemäss Anspruch 9 hat den Vorteil, dass der Kontaktabbrand permanent überwacht und/oder aus archivierten Daten nachträglich bestimmt werden kann. Insbesondere können Störschrieb-Daten verwendet werden, wie sie z. B. in einem Störschreiber-Sammelsystem, auch Stations-Monitoring-System oder SMS genannt, vorhanden sind.
In weiteren Aspekten betrifft die Erfindung ein Computerprogramm zur Bestimmung von Kontaktabnutzung in einem elektrischen Schalter, wobei die Verfahrenschritte gemäss den Ansprüchen 1-9 durch Programmcode implementiert sind, desweiteren eine Vorrichtung zur Ausführung des Verfahrens und eine Schaltanlage umfassend die Vorrichtung.
Weitere Ausführungen, Vorteile und Anwendungen der Erfindung ergeben sich aus abhängigen Ansprüchen sowie aus der nun folgenden Beschreibung und den Figuren.
In a first exemplary embodiment, a saturation of the current measurement signal is detected as a measurement error and a maximum current measurement signal of the current transformer is used as the characteristic current value if it occurs and in particular is detected before a quarter period of an alternating current applied to the switch. The saturation of conventional current transformers often makes an exact measurement of the arc overcurrent impossible and thus falsifies the contact burn-up calculation, especially for the fault cases that cause the most contact burn-up. This can now be corrected by calculation.
The embodiment according to claim 3 has the advantage that high fault currents can be detected and the state size represents a reliable, well-predictable measure of contact erosion.
The embodiment according to claim 4 has the advantage that a very simple calculation rule for contact wear calculation is specified.
The embodiment according to claim 5 has the advantage that the reliability of the contact erosion calculation is improved by the exact determination of the arc start.
The embodiment according to claim 6 has the advantage that a selection of functions for calculating the contact erosion is specified and, if necessary, a special function can be selected for specific switches or fault current events.
The embodiment according to claim 7 has the advantage that manufacturer information can also be used for improved contact erosion calculation.
The embodiment according to claim 8 has the advantage that an additional, independent calculation of the contact wear can be carried out.
The embodiment according to claim 9 has the advantage that the contact erosion can be permanently monitored and / or subsequently determined from archived data. In particular, fault record data can be used, as z. B. in a fault recorder collection system, also called station monitoring system or SMS, are available.
In further aspects, the invention relates to a computer program for determining contact wear in an electrical switch, the method steps according to claims 1-9 being implemented by program code, furthermore an apparatus for carrying out the method and a switchgear assembly comprising the apparatus.
Further embodiments, advantages and applications of the invention result from the dependent claims and from the following description and the figures.

KURZE BESCHREIBUNG DER ZEICHNUNGENBRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1
eine schematische Darstellung zur Stromapproximation bei der erfindungsgemässen Kontaktabbrandberechnung für Leistungsschalter;
Fig. 2
ein Algorithmus zur erfindungsgemässen Kontaktabbrandberechnung in Nassi-Schneiderman Diagramdarstellung;
Fig. 3
eine Kurvendarstellung der Anzahl erlaubter Schalthandlungen als Funktion des effektiven Abschaltstroms pro Schalthandlung;
Fig. 4
ein schematisch dargestelltes erfindungsgemässes Datenerfassungssystem für die Kontaktabnutzung in einer elektrischen Schaltanlage.
In den Figuren sind gleiche Teile mit gleichen Bezugszeichen versehen.
Fig. 1
a schematic representation of current approximation in the inventive contact erosion calculation for circuit breakers;
Fig. 2
an algorithm for the contact erosion calculation according to the invention in Nassi-Schneiderman diagram representation;
Fig. 3
a graph of the number of permitted switching operations as a function of the effective switch-off current per switching operation;
Fig. 4
a schematically illustrated inventive data acquisition system for contact wear in an electrical switchgear.
In the figures, the same parts are provided with the same reference symbols.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS OF CARRYING OUT THE INVENTION

Leistungsschalter sind für eine bestimmte Anzahl mechanischer Schalthandlungen oder Schaltspiele ausgelegt. Werden mit ihnen z. B. im Fehlerfall grössere Ströme abgeschaltet, so werden durch den entstehenden Lichtbogen die Kontakte stärker abgebrannt als bei normalen Schalthandlungen einberechnet. Damit der Leistungsschalter funktionsfähig bleibt, müssen die Kontakte ersetzt werden, bevor sie vollkommen abgebrannt sind. Der Grad des Abbrands pro Schalthandlung hängt von der Energie des dabei auftretenden Lichtbogens ab. Diese Energie ist proportional zum Integral ∫I2dt, wobei I den während der Lichtbogendauer fliessenden Strom und t die Zeit bezeichnet.
Gemäss der Erfindung werden Schalter 3 in elektrischen Schaltanlagen 1 hinsichtlich Kontaktabnutzung überwacht, indem ein während einer Schalthandlung durch den Schalter 3 fliessender Kontaktstrom If mindestens näherungsweise durch ein Strommesssignal Imess eines Stromwandlers 30 oder Stromsensors 30 als Funktion der Zeit t erfasst wird, bei Abweichungen zwischen erwartetem Kotaktstrom If und Strommesssignal Imess ein Messfehler Δ detektiert wird und aus dem Strommesssignal Imess mindestens ein charakteristischer Stromwert Ichar bestimmt und zur Bestimmung einer Kontaktabnutzung charakterisierenden Zustandsgrösse verwendet wird. Diese Abschätzung ist zwar häufig etwas zu konservativ, aber immer auf der sicheren Seiten. Das Verfahren kann Bestandteil eines Power System Monitoring Systems sein.
Fig. 1 zeigt hierzu ein Ausführungsbeispiel, bei dem ein weitgehend sinusförmiger Fehlerstrom If vorliegt. Im Strommesssignal Imess tritt eine Sättigung auf und es wird zum Zeitpunkt tmax innerhalb einer Viertelperiode des Fehlerstromsignals If oder der am Schalter 3 anliegenden Netzfrequenz ein Strommaximum I durchlaufen. Das Auftreten des Strommaximums Imax wird detektiert, wenn die Abweichung oder der Messfehler Δ zwischen dem Fehlerstromverlauf If(t) und dem Strommesssignalverlauf Imess(t) einen Toleranzwert Δmin überschreitet. Der Kontaktstrom If ist typischerweise ein Überstrom oder Kurzschlussstrom If während einer Abschalthandlung, dessen Zeitverlauf recht genau im vorhinein bekannt ist. Insbesondere ist ein Strommaximum Imax, das im Strommesssignal Imess vor Erreichen einer Viertelperiode der Netzfrequenz auftritt, ein sicheres Indiz für einen Messfehler Δ. Das Strommaximum Imax wird nun als charakteristischer Stromwert Ichar definiert und zur Berechnung der Kontaktabbrand-Zustandsgrösse verwendet. Die Zustandsgrösse soll vorzugsweise ein Mass für eine Lichtbogenleistung während der Schalthandlung und insbesondere ein Kontaktstrom-Zeitintegral sein.
Im Beispiel gemäss Fig. 1 wird das Strommesssignal Imess von einem ersten Zeitpunkt t0 zu Beginn der Stromhalbwelle, in welcher die Schalthandlung auftritt, bis zu einem zweiten Zeitpunkt tmax, zu dem ein maximales Strommesssignal Imax auftritt, erfasst, und ab dem zweiten Zeitpunkt tmax bis zu einem dritten Zeitpunkt t0 am Ende der Stromhalbwelle durch das maximale Strommesssignal Imax approximiert. Die Genauigkeit der Kontaktabbrandberechnung ist abhängig davon, wie genau der Anfangszeitpunkt des Lichtbogens bestimmt werden kann. Der erste Zeitpunkt t0 soll als Anfangszeit des Lichtbogens des Kontaktstroms If definiert werden. Die Berechnung ist am genauesten, wenn to als Binärindikation im Störschrieb bekannt ist; to kann auch mit einer auf Erfahrungswerten basierenden Zeitverzögerung aus einem Öffnungsbefehl, einem Schutztriggerbefehl oder einer Kontaktbewegung des Schalters 3 bestimmt werden. Eventuelle Schwankungen dieses Zeitwerts sind von untergeordneter Bedeutung im Vergleich zu anderen Einflussgrössen und zu Unregelmässigkeiten beim Kontaktabbrand. Systematische Fehler durch zu grosse oder zu kleine Werte des Anfangszeitpunkts t0 können korrigiert werden, wenn z. B. anlässlich einer Wartung der erwartete Abbrand mit dem tatsächlichen verglichen und die Zeitverzögerung entsprechend korrigiert wird. Aus Sicherheitsgründen sollte zu Beginn einer Kontaktabbrandgeschichte eher ein zu kleiner Wert der Zeitverzögerung als ein zu grosser Wert benutzt werden, so dass der Kontaktabbrand in der Berechnung zunächst überschätzt wird.
Zur Bestimmung der Zustandsgrösse wird dann ein Zeitintegral ∫f(Imess)dt über eine Funktion f(Imess) des streckenweise erfassten und streckenweise approximierten Strommesssignals Imess gebildet. Bevorzugt wird als Funktion f(Imess) des Strommesssignals Imess eine Potenzfunktion f(Imess)=Imess a mit a=1, 2 ... 2,2, insbesondere a=1,6 ... 2,0, verwendet. Beispielsweise wird das Integral ∫Imess 2 dt oder ∫Imess 1,6dt mit dem gemäss Fig. 1 approximierten Strommesssignal Imess zur näherungsweisen Bestimmung der Kontaktabbrands bestimmt. Als Funktion f(Imess) kann auch eine einen effektiven Abschaltstrom Ieff definierende Quadratwurzelfunktion f(Imess) = (Imess 2)1/2 verwendet werden. Andere Funktionen f(Imess) sind ebenfalls möglich. Das Zeitintegral ∫f(Imess) dt über die Funktion f(Imess) kann durch eine Summation von Funktionswerten an Stützstellen approximiert werden, wobei die Stützstellen z. B. durch Abtastung des Strommesssignals Imess gegeben sind. Insbesondere wird die Zustandsgrösse gleich dem Zeitintegral ∫f(Imess) dt mal einer Kontaktabbrandkonstanten c gewählt und die Kontaktabbrandkonstante c aus Herstellerangaben, insbesondere aus Kurven über Anzahl erlaubter Schalthandlungen N(Ieff) in Funktion eines effektiven Abschaltstroms pro Schalthandlung Ieff, und/oder aus Erfahrungswerten für einen Schaltertyp und Schaltereinsatzort bestimmt.
Fig. 2 zeigt in Nassi-Schneidermanndarstellung einen Software-Algorithmus zur Implementierung des Verfahrens in einem Computerprogramm und Computerprogrammprodukt. Zunächst werden die Grössen Cwsum (=Zustandsgrösse zur Charakterisierung des Kontaktabbrands), Imax, cnt (=Zählervariable) und saturation (Konstante) initialisiert. Dann wird in einer While-Schlaufe, die durch cnt in einer positiven (oder alternativ negativen, hier nicht dargestellten) Halbperiode der Netzwechselspannung bedingt ist, für jeden cnt-Wert ein Abtastwert sample(cnt) des Strommesssignals eingelesen und auf die Bedingung sample(cnt)≥Imax geprüft. Falls die Bedingung erfüllt ist, werden eine Hilfsvariable CWI und gleich sample(cnt) gesetzt. Falls die Bedingung nicht erfüllt ist, wird, falls cnt kleiner als die Mitte der positiven (oder negativen, hier nicht dargestellten) Halbperiode MidthPositivePeriod ist, saturation true und CWI gleich Imax gesetzt; falls cnt≥MidthPositivePeriod ist, wird für saturation=true CWI gleich Imax und für saturation=false CWI gleich sample(cnt) gesetzt. Schliesslich wird der Zähler cnt um 1 inkrementiert und zur Kontaktabbrand-Zustandsgrösse Cwsum die Hilfsvariable CWI zum Quadrat addiert. Am Ende der Halbperiode ist die Summation oder Integration von Cwsum abgeschlossen. Cwsum stellt dabei, gemäss Fig. 1, genau das Zeitintegral über das Quadrat des approximierten Stromes dar, der im Zeitintervall t0 bis tmax durch das Strommesssignal Imess, entsprechend den Abtastwerten sample(cnt), gegeben ist und im Zeitintervall tmax bis zum nächsten t0 durch das Strommaximum Imax approximiert wird.
Fig. 3 zeigt ein Beispiel einer Kurve eines Leistungsschalterherstellers, welche Kurve die maximale Zahl erlaubter Schalthandlungen N mit einem effektiven Abschaltstrom pro Schalthandlung Ieff und somit mit einem bestimmten kumulierten effektiven Abschaltstrom korrelieren. Soll der Kontaktabbrand mit Hilfe des Integrals ∫I2dt bestimmt werden, muss noch eine schalterspezifische oder schaltertypspezifische Proportionalitätskonstante c zwischen dem Integral und dem Kontaktabbrand berücksichtigt werden, die vom Schalterhersteller angegeben und/oder über Vergleich von Messungen mit Berechnungen des Kontaktabbrands bestimmt werden kann.
Gemäss einer bevorzugten Ausführungsform der Erfindung kann ergänzend für jede Schalthandlung ein effektiver Ausschaltstrom Ieff bestimmt werden, aus einer Kurve über Anzahl erlaubter Schalthandlungen N(Ieff) in Funktion des effektiven Ausschaltstroms Ieff eine Kontaktabnutzung als Prozentwert der ausgeführten relativ zur Gesamtzahl erlaubter Schalthandlungen bei diesem effektiven Ausschaltstrom Ieff bestimmt werden und die Prozentwerte für alle relevanten ausgeführten Schalthandlungen zu einer kumulierten Kontaktabnutzung aufsummiert werden. Der kumulierte Prozentwert stellt eine Kontrollgrösse für die erfindungsgemäss bestimmte Kontaktabbrandzustandsgrösse Cwsum dar.
Circuit breakers are designed for a certain number of mechanical switching operations or switching cycles. Are z. B. in the event of a fault, larger currents are switched off, the resulting arc burns off the contacts more than calculated in normal switching operations. In order for the circuit breaker to remain functional, the contacts must be replaced before they have completely burned down. The degree of burn-up per switching operation depends on the energy of the arc that occurs. This energy is proportional to the integral ∫I 2 dt, where I denotes the current flowing during the arc duration and t the time.
According to the invention, switches 3 in electrical switchgear systems 1 are monitored for contact wear, in that a contact current I f flowing through the switch 3 during a switching operation is detected at least approximately by a current measurement signal I mess of a current transformer 30 or current sensor 30 as a function of time t, in the event of deviations A measurement error Δ is detected between the expected contact current I f and the current measurement signal I mess and at least one characteristic current value I char is determined from the current measurement signal I mess and is used to determine a state variable characterizing contact wear. This estimate is often a bit too conservative, but always on the safe side. The procedure can be part of a power system monitoring system.
1 shows an exemplary embodiment in which a largely sinusoidal fault current I f is present. Saturation occurs in the current measurement signal I mess and a current maximum I is run through at the time t max within a quarter period of the fault current signal I f or the mains frequency applied to the switch 3. The occurrence of the current maximum I max is detected when the deviation or the measurement error Δ between the fault current profile I f (t) and the current measurement signal profile I mess (t) exceeds a tolerance value Δ min . The contact current I f is typically an overcurrent or short-circuit current I f during a switch-off operation, the course of which is known very precisely beforehand. In particular, a current maximum I max that occurs in the current measurement signal I mess before reaching a quarter period of the mains frequency is a reliable indication of a measurement error Δ. The current maximum I max is now defined as a characteristic current value I char and used to calculate the contact erosion state variable. The state variable should preferably be a measure of an arc power during the switching operation and in particular a contact current-time integral.
In the example according to FIG. 1, the current measurement signal I mess is detected from a first point in time t 0 at the start of the current half-wave in which the switching action occurs to a second point in time t max at which a maximum current measurement signal I max occurs, and from second time t max up to a third time t 0 at the end of the current half-wave approximated by the maximum current measurement signal I max . The accuracy of the contact erosion calculation depends on how exactly the starting time of the arc can be determined. The first time t 0 is to be defined as the start time of the arc of the contact current I f . The calculation is most accurate if t o is known as a binary indication in the fault record; t o can also be determined with a time delay based on empirical values from an opening command, a protective trigger command or a contact movement of the switch 3. Any fluctuations in this time value are of minor importance compared to other influencing factors and irregularities in contact burn-off. Systematic errors caused by values of the starting time t 0 that are too large or too small can be corrected if, for. B. on the occasion of maintenance, the expected burnup is compared with the actual one and the time delay is corrected accordingly. For safety reasons, a time delay value that is too small should be used at the beginning of a contact erosion history rather than a value that is too large, so that the contact erosion is initially overestimated in the calculation.
To determine the state variable, a time integral ∫f (I mess ) dt is then formed via a function f (I mess ) of the current measurement signal I mess detected and approximated in sections . The function f (I mess ) of the current measurement signal I mess is preferably a power function f (I mess ) = I mess a with a = 1, 2 ... 2.2, in particular a = 1.6 ... 2.0, used. For example, the integral ∫I mess 2 dt or ∫I mess 1.6 dt is determined with the current measurement signal I mess approximated according to FIG. 1 for the approximate determination of the contact erosion. A square root function f (I mess ) = (I mess 2 ) 1/2 which defines an effective switch-off current I eff can also be used as function f (I mess ). Other functions f (I mess ) are also possible. The time integral ∫f (I mess ) dt via the function f (I mess ) can be approximated by a summation of function values at interpolation points. B. are given by sampling the current measurement signal I mess . In particular, the state variable is selected equal to the time integral ∫f (I mess ) dt times a contact erosion constant c and the contact erosion constant c from manufacturer information, in particular from curves showing the number of permitted switching operations N (I eff ) as a function of an effective breaking current per switching operation I eff , and / or determined from empirical values for a switch type and switch location.
FIG. 2 shows a software algorithm for implementing the method in a computer program and computer program product in Nassi-Schneiderman representation. Initially, the variables Cwsum (= state variable for characterizing the contact erosion), I max , cnt (= counter variable) and saturation (constant) are initialized. Then, in a while loop, which is caused by cnt in a positive (or alternatively negative, half-period of the mains AC voltage, not shown here), a sample value (cnt) of the current measurement signal is read in for each cnt value and the condition sample (cnt ) ≥I max checked. If the condition is met, an auxiliary variable CWI and sample (cnt) are set. If the condition is not met, if cnt is less than the middle of the positive (or negative, MidthPositivePeriod, not shown here), saturation true and CWI equal to I max ; if cnt≥MidthPositivePeriod, saturation = true CWI is set to I max and saturation = false CWI is set to sample (cnt). Finally, the counter cnt is incremented by 1 and the auxiliary variable CWI is added to the square to the contact erosion state variable Cwsum. At the end of the half period, the summation or integration of Cwsum is complete. 1, represents the time integral over the square of the approximated current, which is given in the time interval t 0 to t max by the current measurement signal I mess, corresponding to the sample values sample (cnt), and in the time interval t max to is approximated to the next t 0 by the current maximum I max .
3 shows an example of a curve of a circuit breaker manufacturer, which curve correlates the maximum number of permitted switching operations N with an effective breaking current per switching operation I eff and thus with a certain cumulative effective breaking current. If the contact wear is to be determined with the help of the integral ∫I 2 dt, a switch-specific or switch-type-specific proportionality constant c must be taken into account between the integral and the contact wear, which can be specified by the switch manufacturer and / or determined by comparing measurements with calculations of the contact wear.
According to a preferred embodiment of the invention, an effective switch-off current I eff can additionally be determined for each switching operation, contact wear as a percentage of the switching operations carried out relative to the total number of permitted switching operations from a curve over the number of permitted switching operations N (I eff ) in function of the effective switch-off current I eff this effective breaking current I eff are determined and the percentages for all relevant switching operations carried out are added up to form a cumulative contact wear. The accumulated percentage value represents a control variable for the contact wear state variable Cwsum determined according to the invention.

Beispielsweise kann eine Wartung des Schalters 3 zum ersten Zeitpunkt veranlasst werden, an dem die Zustandsgrösse Cwsum einen Grenzwert überschreitet oder der kumulierte Prozentsatz 100% minus einer Restsicherheitsmarge für die nächsten ein bis zwei Abschalthandlungen mit dem maximalen für diesen Schalter 3 zulässigen Ieff erreicht.
Fig. 4 zeigt eine schematische Darstellung eines Datenerfassungssystems zur erfindungsgemässen Bestimmung der Kontaktabbrandzustandsgrösse Cwsum und/oder des kumulierten Prozentwerts aus N(Ieff). Die Schaltanlage 1 weist Schalter 3, typischerweise Leistungsschalter 3, auf, die mit Stromwandlern 30 oder Stromsensoren 30, typischerweise konventionellen Stromwandlern 30 mit sättigbarem Kern, ausgestattet sind. Beispielsweise werden Messwandler mit 1% Genauigkeit und Verrechnungswandler mit 0,1% - 0,5% Genauigkeit bei den hohen Strömen gesättigt, die am meisten Kontaktabbrand bringen. Dadurch werden herkömmliche Kontaktabbrandschätzungen mit dem Integral ∫Imess 2dt sehr ungenau und auf jeden Fall zu klein und dadurch ungeeignet oder riskant für die Bestimmung bedarfsbedingter Wartungszeitpunkte. Hingegen haben klassische Schutzwandler für Überstromfunktionen einen grossen Messbereich ohne Sättigung, sind jedoch für kleine Ströme relativ ungenau, so dass sie typischerweise einer Genauigkeitsklasse von 2% - 5% angehören. Auch für diese Wandler kann durch die Erfindung eine verbesserte Kontaktabbrandberechnung erzielt werden, indem ein charakteristischer Stromwert Ichar gewählt wird, mit dem der Messfehler Δ im Strommesssignal Imess so korrigiert werden kann, dass eine möglichst genaue Bestimmung der Zustandsgrösse Cwsum und insbesondere einer kontaktabbrandrelevanten Lichtbogenleistung erreicht wird. Die Stromwandler 30 sind mit Mitteln 4 zur Datenerfassung an elektrischen Schaltern 3, insbesondere mit Störschreibern 4, Schutzgeräten 4 oder Steuergeräten 4 verbunden. Diese Datenerfassungsmittel 4 sind über eine serielle Kommunikation 5 oder über Datenträger 5 mit einer zentralen Erfassungseinheit 6 zur Kontaktabbrandberechnung sowie vorzugsweise mit einer Datenbank 7 für Daten über Kontaktabnutzung verbunden.
Mit Hilfe dieser Vorrichtung 2 zur Kontaktabbrandberechnung kann das oben dargestellte Verfahren implementiert werden. Insbesondere kann die Kontaktabnutzung on-line, d. h. laufend während des Betriebes, überwacht werden oder rückwirkend aus archivierten Daten, insbesondere mit einer an einen Schaltertyp oder Schaltereinsatzort angepassten Funktion f(Imess) des Strommesssignals Imess, ausgewertet werden. Dabei kann die Kontaktabnutzung aus Aufzeichnungen von Abschaltströmen Imess aus Störschreibern 4 oder Schutz- und Steuergeräten 4 mit Störschreibfunktion bestimmt werden, wobei alle Aufzeichnungen der Abschaltströme Imess einer Schaltanlage 1 zentral gesammelt werden, insbesondere in einem existierenden oder hierfür speziell konzipierten Störschreiber-Sammelsystem 4-6, auch SMS oder Stations-Monitoring-System genannt. Die Erfindung erstreckt sich auch auf eine solche Vorrichtung 2 zur Kontaktabbrandberechnung, die beispielsweise im Anlagenleitsystem (nicht dargestellt) der Schaltanlage 1 integriert ist, und auf eine elektrische Schaltanlage 1, die eine solche Vorrichtung 2 umfasst. Insgesamt ergibt sich eine verbesserte bedingungsgesteuerte statt periodische Wartung von Schaltern 3 und deren Schalterkontakten.
For example, maintenance of the switch 3 can be initiated at the first point in time at which the state variable Cwsum exceeds a limit value or the accumulated percentage reaches 100% minus a residual safety margin for the next one or two shutdown operations with the maximum I eff permissible for this switch 3.
FIG. 4 shows a schematic representation of a data acquisition system for the inventive determination of the contact wear state variable Cwsum and / or the accumulated percentage value from N (I eff ). Switchgear 1 has switches 3, typically circuit breakers 3, which are equipped with current transformers 30 or current sensors 30, typically conventional current transformers 30 with a saturable core. For example, instrument transformers with 1% accuracy and accounting converters with 0.1% - 0.5% accuracy are saturated at the high currents that cause the most contact wear. As a result, conventional contact erosion estimates with the integral ∫I mess 2 dt become very inaccurate and in any case too small, making them unsuitable or risky for determining need-based maintenance times. In contrast, classic protective transformers for overcurrent functions have a large measuring range without saturation, but are relatively imprecise for small currents, so that they typically belong to an accuracy class of 2% - 5%. For these converters, too, an improved contact erosion calculation can be achieved by the invention by selecting a characteristic current value I char with which the measurement error Δ in the current measurement signal I mess can be corrected in such a way that the state variable Cwsum and in particular a contact erosion-relevant arcing power are determined as precisely as possible is achieved. The current transformers 30 are connected to means 4 for data acquisition at electrical switches 3, in particular with fault recorders 4, protective devices 4 or control devices 4. These data acquisition means 4 are connected via serial communication 5 or via data carriers 5 to a central acquisition unit 6 for calculating contact wear and preferably to a database 7 for data on contact wear.
With the help of this device 2 for contact erosion calculation, the method described above can be implemented. In particular, the contact wear can be monitored online, ie continuously during operation, or evaluated retrospectively from archived data, in particular with a function f (I mess ) of the current measurement signal I mess adapted to a switch type or switch location . The contact wear can be determined from recordings of switch-off currents I mess from fault recorders 4 or protection and control devices 4 with fault record function, all records of the switch-off currents I mess of a switchgear assembly 1 being collected centrally, in particular in an existing or specially designed fault recorder collection system 4 -6, also called SMS or station monitoring system. The invention also extends to such a device 2 for contact erosion calculation, which is integrated, for example, in the system control system (not shown) of the switchgear 1, and to an electrical switchgear 1 which comprises such a device 2. Overall, there is an improved condition-controlled instead of periodic maintenance of switches 3 and their switch contacts.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

11
Elektrische SchaltanlageElectrical switchgear
22
Datenerfassungssystem für KontaktabnutzungData acquisition system for contact wear
33
Elektrischer Schalter, LeistungsschalterElectrical switch, circuit breaker
3030
Stromwandler, StromsensorCurrent transformer, current sensor
44
Mittel zur Datenerfassung an elektrischen Schaltern; Störschreiber, Schutzgerät, SteuergerätData acquisition means on electrical switches; Fault recorder, protection device, control device
55
Serielle Kommunikation, DatenträgerSerial communication, data carrier
66
Zentrale Datenerfassung; Mittel zur Berechnung von KontaktabnutzungCentral data acquisition; Means of calculation of contact wear
77
Datenbank für Daten über KontaktabnutzungDatabase for contact wear data
II
Kontaktstrom, LichtbogenstromContact current, arc current
Ichar I char
charakteristischer Stromwertcharacteristic current value
Ieff I eff
effektiver Stromeffective current
If I f
Fehlerstromfault current
Imax I max
maximaler Strommaximum current
Imess I mess
StrommesssignalCurrent measurement signal
t, t0, tmax Zeitt, t 0 , t max time
cnt, CWI, Cwsum, Sample Variablen PositivePeriod, MidthPositivePeriod, saturation Konstantencnt, CWI, Cwsum, sample variables PositivePeriod, MidthPositivePeriod, saturation constants
NN
Anzahl erlaubter SchalthandlungenNumber of switching operations permitted

Claims (13)

Verfahren zur Bestimmung von Kontaktabnutzung in einem elektrischen Schalter (3), insbesondere in elektrischen Schaltanlagen (1) für Hoch- oder Mittelspannung, wobei ein während einer Schalthandlung durch den Schalter (3) fliessender Kontaktstrom (If) mit Hilfe eines Stromwandlers (30) erfasst wird und hinsichtlich Kontaktabnutzung ausgewertet wird, dadurch gekennzeichnet, dass a) zur Bestimmung einer die Kontaktabnutzung charakterisierenden Zustandsgrösse (Cwsum) zunächst ein Strommesssignal (Imess) des Stromwandlers (30) als Funktion der Zeit (t) gemessen wird, b) bei Auftreten von Abweichungen zwischen dem erwarteten Kontaktstrom (If) und dem Strommesssignal (Imess) das Vorhandensein eines Messfehlers (Δ) detektiert wird und c) bei Detektion des Messfehlers (Δ) aus dem Strommesssignal (Imess) mindestens ein charakteristischer Stromwert (Ichar) bestimmt wird und zur Bestimmung der Zustandsgrösse (Cwsum) verwendet wird. Method for determining contact wear in an electrical switch (3), in particular in electrical switchgear (1) for high or medium voltage, a contact current (I f ) flowing through the switch (3) during a switching operation with the aid of a current transformer (30) is recorded and evaluated with regard to contact wear, characterized in that a) to determine a state variable characterizing the contact wear (Cwsum), first a current measurement signal (I mess ) of the current transformer (30) is measured as a function of time (t), b) if deviations occur between the expected contact current (I f ) and the current measurement signal (I mess ), the presence of a measurement error (Δ) is detected and c) upon detection of the measurement error (Δ) from the current measurement signal (I mess ), at least one characteristic current value (I char ) is determined and used to determine the state variable (Cwsum). Das Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass a) als Messfehler (Δ) eine Sättigung des Strommesssignals (Imess) detektiert wird und b) als charakteristischer Stromwert (Ichar) ein maximales Strommesssignal (Imax) des Stromwandlers (30) verwendet wird, das vor Erreichen einer Viertelperiode eines am Schalter (30) anliegenden Wechselstroms auftritt. The method according to claim 1, characterized in that a) a saturation of the current measurement signal (I mess ) is detected as a measurement error (Δ) and b) a maximum current measurement signal (I max ) of the current transformer (30) is used as the characteristic current value (I char ), which occurs before reaching a quarter period of an alternating current present at the switch (30). Das Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass a) der Kontaktstrom (If) ein Überstrom oder Kurzschlussstrom (If) während einer Abschalthandlung ist und/oder b) die Zustandsgrösse (Cwsum) ein Mass für eine Lichtbogenleistung während der Schalthandlung, insbesondere ein Kontaktstrom-Zeitintegral, ist. The method according to any one of the preceding claims, characterized in that a) the contact current (I f ) is an overcurrent or short-circuit current (I f ) during a switch-off operation and / or b) the state variable (Cwsum) is a measure of an arc power during the switching operation, in particular a contact current-time integral. Das Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass a) das Strommesssignal (Imess) von einem ersten Zeitpunkt (t0) zu Beginn der Stromhalbwelle, in welcher die Schalthandlung auftritt, bis zu einem zweiten Zeitpunkt (tmax), zu dem ein maximales Strommesssignal (Imax) auftritt, erfasst wird, und ab dem zweiten Zeitpunkt (tmax) bis zu einem dritten Zeitpunkt (t0) am Ende der Stromhalbwelle durch das maximale Strommesssignal (Imax) approximiert wird und b) zur Bestimmung der Zustandsgrösse (Cwsum) ein Zeitintegral ∫f (Imess) dt über eine Funktion f (Imess) des erfassten und approximierten Strommesssignals (Imess) gebildet wird. The method according to any one of the preceding claims, characterized in that a) the current measurement signal (I mess ) is detected from a first point in time (t 0 ) at the beginning of the current half-wave in which the switching action occurs to a second point in time (t max ) at which a maximum current measurement signal (I max ) occurs , and from the second point in time (t max ) to a third point in time (t 0 ) at the end of the current half-wave is approximated by the maximum current measurement signal (I max ) and b) to determine the state variable (Cwsum) a time integral ∫f (I mess) dt is formed over a function f (I mess) of the recorded and approximated current measuring signal (I mess). Das Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass a) der erste Zeitpunkt (t0) als Anfangszeit eines Lichtbogens des Kontaktstroms (If) definiert wird und als Binärindikation im Störschrieb bekannt ist oder mit einer auf Erfahrungswerten basierenden Zeitverzögerung aus einem Öffnungsbefehl, einem Schutztriggerbefehl oder einer Kontaktbewegung des Schalters (3) bestimmt wird und b) insbesondere dass die Zeitverzögerung durch Vergleich tatsächlicher Werte mit erwarteten Werten der Kontaktabnutzung korrigiert wird. The method according to claim 4, characterized in that a) the first point in time (t 0 ) is defined as the start time of an arc of the contact current (I f ) and is known as a binary indication in the fault record or is determined with a time delay based on empirical values from an opening command, a protective trigger command or a contact movement of the switch (3) will and b) in particular that the time delay is corrected by comparing actual values with expected values of contact wear. Das Verfahren nach einem der Ansprüche 4-5, dadurch gekennzeichnet, dass als Funktion f(Imess) des Strommesssignals (Imess) eine Potenzfunktion f(Imess) =Imess a mit a=1, 2 ... 2,2, insbesondere a=1,6 ... 2,0, oder eine einen effektiven Abschaltstrom (Ieff) definierende Quadratwurzelfunktion f(Imess)=(Imess 2)1/2 verwendet wird.The method according to any one of claims 4-5, characterized in that a function f (I mess ) = I mess a with a = 1, 2 ... 2.2 as a function f (I mess ) of the current measurement signal (I mess ) , in particular a = 1.6 ... 2.0, or a square root function f (I mess ) = (I mess 2 ) 1/2 defining an effective cut-off current (I eff ) is used. Das Verfahren nach einem der Ansprüche 4-6, dadurch gekennzeichnet, dass a) die Zustandsgrösse (Cwsum) gleich dem Zeitintegral ∫f(Imess) dt mal einer Kontaktabbrandkonstanten c gewählt wird und b) die Kontaktabbrandkonstante c aus Herstellerangaben, insbesondere aus Kurven über Anzahl erlaubter Schalthandlungen in Funktion eines effektiven Abschaltstroms pro Schalthandlung (Ieff), und/oder aus Erfahrungswerten für einen Schaltertyp und Schaltereinsatzort bestimmt wird. The method according to any one of claims 4-6, characterized in that a) the state variable (Cwsum) is chosen equal to the time integral ∫f (I mess ) dt times a contact erosion constant c and b) the contact erosion constant c is determined from manufacturer's information, in particular from curves of the number of permitted switching operations as a function of an effective breaking current per switching operation (I eff ), and / or from empirical values for a switch type and switch location. Das Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass a) für jede Schalthandlung ein effektiver Ausschaltstrom (Ieff) bestimmt wird, b) aus einer Kurve (N(Ieff)) über Anzahl erlaubter Schalthandlungen (N) in Funktion des effektiven Ausschaltstroms (Ieff) eine Kontaktabnutzung als Prozentwert der ausgeführten relativ zur Gesamtzahl erlaubter Schalthandlungen bei diesem effektiven Ausschaltstrom (Ieff) bestimmt wird und c) die Prozentwerte für alle relevanten ausgeführten Schalthandlungen zu einer kumulierten Kontaktabnutzung aufsummiert werden. The method according to any one of the preceding claims, characterized in that a) an effective breaking current (I eff ) is determined for each switching action , b) from a curve (N (I eff )) over the number of permitted switching operations (N) as a function of the effective breaking current (I eff ) a contact wear is determined as a percentage of the executed switching operations relative to the total number of permitted switching operations at this effective breaking current (I eff ) and c) the percentages for all relevant executed switching operations are added up to a cumulative contact wear. Das Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass a) die Kontaktabnutzung on-line überwacht wird oder rückwirkend aus archivierten Daten, insbesondere mit einer angepassten Funktion f(Imess) des Strommesssignals (Imess), ausgewertet wird und/oder b) die Kontaktabnutzung aus Aufzeichnungen von Abschaltströmen (Imess) aus Störschreibern (4) oder Schutz- und Steuergeräten (4) mit Störschreibfunktion bestimmt wird, wobei alle Aufzeichnungen der Abschaltströme (Imess) einer Schaltanlage (1) in einer zentralen Datenerfassung (6) gesammelt werden, insbesondere per Datenträger (5) oder per Kommunikation (5) oder in einem Störschreiber-Sammelsystem (4-6). The method according to any one of the preceding claims, characterized in that a) the contact wear is monitored online or is evaluated retrospectively from archived data, in particular with an adapted function f (I mess ) of the current measurement signal (I mess ), and / or b) the contact wear is determined from records of switch-off currents (I mess ) from fault recorders (4) or protection and control devices (4) with a fault record function, all records of the switch-off currents (I mess ) of a switchgear (1) being recorded in a central data acquisition (6 ) are collected, in particular by data carrier (5) or by communication (5) or in a fault recorder collection system (4-6). Computerprogramm zur Bestimmung von Kontaktabnutzung in einem elektrischen Schalter (3), insbesondere in elektrischen Schaltanlagen (1) für Hoch- oder Mittelspannung, das auf einer Datenverarbeitungseinheit (6), insbesondere in einem Anlagenleitsystem der Schaltanlage (1), ladbar und ausführbar ist, dadurch gekennzeichnet, dass das Computerprogramm bei Ausführung die Schritte des Verfahrens nach einem der Ansprüche 1-9 ausführt.A computer program for determining contact wear in an electrical switch (3), especially in electric switchgear (1) for high or medium voltage, which is on a data processing unit (6), especially in a plant control system of the switchgear (1), loaded and executed, characterized characterized in that the computer program executes the steps of the method according to one of claims 1-9 when executed. Vorrichtung (2) zur Ausführung des Verfahrens nach einem der Ansprüche 1-9.Device (2) for performing the method according to a of claims 1-9. Vorrichtung (2) nach Anspruch 11, dadurch gekennzeichnet, dass a) der elektrische Schalter (3) ein Leistungsschalter (3) ist und/oder b) der Stromwandler (30) ein konventioneller Stromwandler (30) mit sättigbarem Kern ist. Device (2) according to claim 11, characterized in that a) the electrical switch (3) is a circuit breaker (3) and / or b) the current transformer (30) is a conventional current transformer (30) with a saturable core. Elektrische Schaltanlage (1), insbesondere Hoch- oder Mittelspannungsschaltanlage (1), gekennzeichnet durch eine Vorrichtung (2) nach einem der Ansprüche 11-12.Electrical switchgear (1), in particular high or medium voltage switchgear (1), characterized by a device (2) according to one of claims 11-12.
EP03405322A 2003-05-07 2003-05-07 Method and apparatus for controlling switching devices in electrical switchgear Expired - Lifetime EP1475813B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT03405322T ATE456853T1 (en) 2003-05-07 2003-05-07 METHOD AND DEVICE FOR MONITORING SWITCHING DEVICES IN ELECTRICAL SWITCHGEARS
EP03405322A EP1475813B1 (en) 2003-05-07 2003-05-07 Method and apparatus for controlling switching devices in electrical switchgear
ES03405322T ES2338543T3 (en) 2003-05-07 2003-05-07 PROCEDURE AND DEVICE FOR SUPERVISION OF SWITCHES IN ELECTRICAL SWITCHING FACILITIES.
DE50312381T DE50312381D1 (en) 2003-05-07 2003-05-07 Method and device for monitoring switching devices in electrical switchgear
US10/837,576 US7123461B2 (en) 2003-05-07 2004-05-04 Method and device for monitoring switchgear in electrical switchgear assemblies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03405322A EP1475813B1 (en) 2003-05-07 2003-05-07 Method and apparatus for controlling switching devices in electrical switchgear

Publications (2)

Publication Number Publication Date
EP1475813A1 true EP1475813A1 (en) 2004-11-10
EP1475813B1 EP1475813B1 (en) 2010-01-27

Family

ID=32982022

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03405322A Expired - Lifetime EP1475813B1 (en) 2003-05-07 2003-05-07 Method and apparatus for controlling switching devices in electrical switchgear

Country Status (5)

Country Link
US (1) US7123461B2 (en)
EP (1) EP1475813B1 (en)
AT (1) ATE456853T1 (en)
DE (1) DE50312381D1 (en)
ES (1) ES2338543T3 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104155A1 (en) * 2004-04-21 2005-11-03 Siemens Aktiengesellschaft Method for determining a value for residual contact play representing the wear of switch contacts in a power switch
DE102004062266A1 (en) * 2004-12-23 2006-07-13 Siemens Ag Method and device for safe operation of a switching device
EP2299459A1 (en) * 2009-09-15 2011-03-23 General Electric Company Device and method to monitor electrical contact status
EP2328159A1 (en) 2009-11-25 2011-06-01 ABB Research Ltd. Method and device for determining the wear on a contact element
EP2372741A1 (en) * 2005-11-28 2011-10-05 S & C Electric Company A Method to determine the end-of-live of a vacuum interrupter
WO2012072810A1 (en) 2010-12-02 2012-06-07 Abb Research Ltd Method and device for monitoring switching devices
DE102011080826A1 (en) * 2011-08-11 2013-02-14 Siemens Aktiengesellschaft Method for determining arc power of switch of electrical switchgears, involves determining arc voltage from contact gap distance and current flowing through contacts to determine arc power
WO2015043941A1 (en) * 2013-09-25 2015-04-02 Robert Bosch Gmbh Method and apparatus for determining the aging of an electronic interrupter element, in particular of a power contactor
EP3336560A1 (en) * 2016-12-16 2018-06-20 Schneider Electric Industries SAS Method and device for diagnosting wear of an electrical switching unit, and electrical unit comprising such a device
EP3575808A1 (en) * 2018-06-01 2019-12-04 Schneider Electric Industries SAS Method and device for diagnosing the wear of an electrical switchgear, and electrical switchgear comprising such a device
FR3112651A1 (en) * 2020-07-20 2022-01-21 Schneider Electric Industries Sas Methods for estimating a property of an electrical switching device, devices for carrying out these methods

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7596459B2 (en) * 2001-02-28 2009-09-29 Quadlogic Controls Corporation Apparatus and methods for multi-channel electric metering
EP1793235A1 (en) * 2005-11-30 2007-06-06 ABB Technology AG Monitoring System for High-Voltage Switch Gears
US8560255B2 (en) * 2008-12-12 2013-10-15 Schneider Electric USA, Inc. Power metering and merging unit capabilities in a single IED
FR2945661A1 (en) * 2009-05-18 2010-11-19 Schneider Electric Ind Sas EVALUATION OF THE WEAR OF CONTACTS ENFONCES BY THE VARIATION OF THE ROTATION OF THE TREE OF POLES
US20110133743A1 (en) * 2010-04-30 2011-06-09 Werner Barton Fault detection device and method for detecting an electrical fault
ES2878274T3 (en) * 2018-08-03 2021-11-18 Rittal Gmbh & Co Kg Device and procedure for checking a control cabinet content after planning-based assembly
CN111505496B (en) * 2020-05-08 2021-02-02 西安交通大学 Vacuum circuit breaker electric service life evaluation method based on arc energy
DE102020209645A1 (en) * 2020-07-30 2022-02-03 Siemens Aktiengesellschaft Method for determining the status of an electrical switchgear, monitoring unit for an electrical switchgear and electrical switchgear
US12087528B2 (en) * 2021-02-01 2024-09-10 Ge Infrastructure Technology Llc Enhanced switchgear monitoring and diagnostics in a protection relay
CN113552436A (en) * 2021-07-27 2021-10-26 中船九江精达科技股份有限公司 Method for detecting assembly quality of small and medium-sized precision mechanical system
CN114076868B (en) * 2021-11-18 2022-08-02 广东电网有限责任公司广州供电局 Switch defect identification method, device, equipment and readable storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0193732A1 (en) 1985-02-20 1986-09-10 Licentia Patent-Verwaltungs-GmbH Device for monitoring and controlling switching devices and combinations of switching devices
DE19928192A1 (en) 1999-06-19 2000-12-21 Abb Patent Gmbh Current reconstruction method involves deriving maximum and minimum orientation points from at least two measurement windows superimposed on current measurement signal
DE10204849A1 (en) * 2001-02-07 2002-08-22 Gen Electric Contact wear detection method for electronic trip circuit of circuit breakers, involves integrating sensed signals obtained based on current flow in contacts after contact separation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE439692B (en) * 1983-10-24 1985-06-24 Asea Ab DEVICE FOR MONITORING THE CONDITION OF AN ELECTRIC APPLIANCE WITH POWER SWITCHING CONNECTORS, IN PARTICULAR A HIGH VOLTAGE SWITCH
FR2602610B1 (en) * 1986-08-08 1994-05-20 Merlin Et Gerin STATIC TRIGGER OF AN ELECTRIC CIRCUIT BREAKER WITH CONTACT WEAR INDICATOR

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0193732A1 (en) 1985-02-20 1986-09-10 Licentia Patent-Verwaltungs-GmbH Device for monitoring and controlling switching devices and combinations of switching devices
DE19928192A1 (en) 1999-06-19 2000-12-21 Abb Patent Gmbh Current reconstruction method involves deriving maximum and minimum orientation points from at least two measurement windows superimposed on current measurement signal
DE10204849A1 (en) * 2001-02-07 2002-08-22 Gen Electric Contact wear detection method for electronic trip circuit of circuit breakers, involves integrating sensed signals obtained based on current flow in contacts after contact separation

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104155A1 (en) * 2004-04-21 2005-11-03 Siemens Aktiengesellschaft Method for determining a value for residual contact play representing the wear of switch contacts in a power switch
DE102004062266A1 (en) * 2004-12-23 2006-07-13 Siemens Ag Method and device for safe operation of a switching device
EP2372741A1 (en) * 2005-11-28 2011-10-05 S & C Electric Company A Method to determine the end-of-live of a vacuum interrupter
CN102820186B (en) * 2005-11-28 2016-12-07 施恩禧电气有限公司 Determine and predict adaptively the method for end-of-life of vacuum interrupter
EP2299459A1 (en) * 2009-09-15 2011-03-23 General Electric Company Device and method to monitor electrical contact status
US9406451B2 (en) 2009-11-25 2016-08-02 Abb Research Ltd Method and apparatus for determining the wear on a contact element
CN102714101A (en) * 2009-11-25 2012-10-03 Abb研究有限公司 Method and device for determining wear of a contact element
CN102714101B (en) * 2009-11-25 2015-04-08 Abb研究有限公司 Method and apparatus for determination of wear to a contact element
RU2551645C2 (en) * 2009-11-25 2015-05-27 Абб Рисерч Лтд Method and device for determination of wear of contact elements
WO2011064064A1 (en) 2009-11-25 2011-06-03 Abb Research Ltd Method and apparatus for determination of wear to a contact element
EP2328159A1 (en) 2009-11-25 2011-06-01 ABB Research Ltd. Method and device for determining the wear on a contact element
WO2012072810A1 (en) 2010-12-02 2012-06-07 Abb Research Ltd Method and device for monitoring switching devices
DE102011080826A1 (en) * 2011-08-11 2013-02-14 Siemens Aktiengesellschaft Method for determining arc power of switch of electrical switchgears, involves determining arc voltage from contact gap distance and current flowing through contacts to determine arc power
DE102011080826B4 (en) * 2011-08-11 2016-01-21 Siemens Aktiengesellschaft Method for determining the arc performance of a switch, method for triggering a switch based on the arc power and method for determining the load of the contacts of a switch based on the arc energy
US10101394B2 (en) 2013-09-25 2018-10-16 Robert Bosch Gmbh Method and apparatus for determining the aging of an electronic interrupter element, in particular of a power contactor
WO2015043941A1 (en) * 2013-09-25 2015-04-02 Robert Bosch Gmbh Method and apparatus for determining the aging of an electronic interrupter element, in particular of a power contactor
CN105580055A (en) * 2013-09-25 2016-05-11 罗伯特·博世有限公司 Method and apparatus for determining the aging of an electronic interrupter element, in particular of a power contactor
EP3336560A1 (en) * 2016-12-16 2018-06-20 Schneider Electric Industries SAS Method and device for diagnosting wear of an electrical switching unit, and electrical unit comprising such a device
FR3060758A1 (en) * 2016-12-16 2018-06-22 Schneider Electric Industries Sas METHOD AND DEVICE FOR DIAGNOSING WEAR OF AN ELECTRIC CUTTING APPARATUS, AND ELECTRIC APPARATUS COMPRISING SUCH A DEVICE
US11404223B2 (en) 2016-12-16 2022-08-02 Schneider Electric Industries Sas Method and device for diagnosing wear of an electrical switching unit, and electrical unit comprising such a device
EP3575808A1 (en) * 2018-06-01 2019-12-04 Schneider Electric Industries SAS Method and device for diagnosing the wear of an electrical switchgear, and electrical switchgear comprising such a device
FR3082005A1 (en) * 2018-06-01 2019-12-06 Schneider Electric Industries Sas METHOD AND DEVICE FOR DIAGNOSING WEAR OF AN ELECTRICAL CUT-OFF APPARATUS, AND ELECTRICAL APPARATUS COMPRISING SUCH A DEVICE
JP2020012813A (en) * 2018-06-01 2020-01-23 シュネーデル、エレクトリック、インダストリーズ、エスアーエスSchneider Electric Industries Sas Method and device for diagnosing wear of an electrical switching unit, and electrical unit comprising such a device
US11079435B2 (en) 2018-06-01 2021-08-03 Schneider Electric Industries Sas Method and device for diagnosing wear of an electrical switching unit, and electrical unit comprising such a device
JP7644565B2 (en) 2018-06-01 2025-03-12 シュネーデル、エレクトリック、インダストリーズ、エスアーエス Method and device for diagnosing wear in an electrical switching unit, and an electrical unit equipped with such a device - Patents.com
FR3112651A1 (en) * 2020-07-20 2022-01-21 Schneider Electric Industries Sas Methods for estimating a property of an electrical switching device, devices for carrying out these methods
EP3944274A1 (en) * 2020-07-20 2022-01-26 Schneider Electric Industries SAS Methods for estimating a property of an electrical switching apparatus, devices for implementing these methods
US11728101B2 (en) 2020-07-20 2023-08-15 Schneider Electric Industries Sas Methods for estimating a property of an electrical switching device, devices for implementing these methods

Also Published As

Publication number Publication date
ES2338543T3 (en) 2010-05-10
US20040223276A1 (en) 2004-11-11
DE50312381D1 (en) 2010-03-18
EP1475813B1 (en) 2010-01-27
ATE456853T1 (en) 2010-02-15
US7123461B2 (en) 2006-10-17

Similar Documents

Publication Publication Date Title
EP1475813B1 (en) Method and apparatus for controlling switching devices in electrical switchgear
EP2017867B1 (en) Measuring device for measuring a periodic analogue signal
EP0694937B1 (en) Method and apparatus for determining the residual life of contacts in switching devices
EP0193732B1 (en) Device for monitoring and controlling switching devices and combinations of switching devices
DE69601218T3 (en) ELECTRICAL DIFFERENTIAL PROTECTIVE DEVICE WITH TEST CIRCUIT
DE202007018709U1 (en) Determination and display of the contact abrasion on a high-power switch
DE102016107598B3 (en) DEVICE AND METHOD FOR MONITORING A HIGH-VOLTAGE PROTECTOR IN A VEHICLE
EP0877948B1 (en) Method of detecting a fault in a monitored section of an electric transmission line using distance protection techniques
DE2406197C3 (en) Method and device for the detection of short circuits
DE102014200946A1 (en) Overload monitoring device and method for overload monitoring
DE2727378A1 (en) Contact wear monitor with comparison system - compares reference wear value with instantaneous wear values determined from load current
EP4377984B1 (en) Circuit breaker device and method
DE102008012605A1 (en) Protective switching device for monitoring the electrical current flow to an electrical consumption or method for monitoring the electrical current flow to an electrical consumer by a protective switching device
WO2012072810A1 (en) Method and device for monitoring switching devices
DE102012215166B4 (en) Switching device for a single-phase motor and a three-phase motor
DE102004020045A1 (en) Method for determining a residual shift play value indicating wear of switch contacts of a circuit breaker
DE19901119B4 (en) Monitoring system for a gas-insulated high-voltage switchgear
DE102022201960A1 (en) Method and circuit breaker for determining information relating to a load
DE102007006564A1 (en) Circuit breaker or circuit breaker
EP3977496B1 (en) Method for predicting the failure of elementary relays
DE4111831A1 (en) Release method for overcurrent protection switch - using measured current values and corresponding current gradients obtained by differentiation to trigger switch
EP0239965B1 (en) Method and circuit for excitation of a multiphase distance protection
DE102021203218B4 (en) Method for monitoring the functionality of a high-voltage switch, high-voltage switch, computer program product and computer-readable medium
EP1986203A1 (en) Method to detect a contact isolation layer in a switching element having contacts and a switch having such a switching element
EP1994620B1 (en) Protective device and method for monitoring the appliance temperature of an appliance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050414

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070420

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 50312381

Country of ref document: DE

Date of ref document: 20100318

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2338543

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100527

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

BERE Be: lapsed

Owner name: ABB TECHNOLOGY A.G.

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100427

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20101028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160512

Year of fee payment: 14

Ref country code: GB

Payment date: 20160520

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160519

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50312381

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB TECHNOLOGY AG, ZUERICH, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50312381

Country of ref document: DE

Owner name: ABB SCHWEIZ AG, CH

Free format text: FORMER OWNER: ABB TECHNOLOGY AG, ZUERICH, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50312381

Country of ref document: DE

Owner name: ABB POWER GRIDS SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB TECHNOLOGY AG, ZUERICH, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 50312381

Country of ref document: DE

Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50312381

Country of ref document: DE

Representative=s name: ZIMMERMANN & PARTNER PATENTANWAELTE MBB, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170507

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170508

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ABB SCHWEIZ AG, CH

Effective date: 20180912

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50312381

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 50312381

Country of ref document: DE

Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50312381

Country of ref document: DE

Owner name: ABB POWER GRIDS SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50312381

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB POWER GRIDS SWITZERLAND AG, BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220523

Year of fee payment: 20

Ref country code: DE

Payment date: 20220519

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50312381

Country of ref document: DE