EP1472380A2 - Al-si-mg alloy sheet metal for motor car body outer panel - Google Patents

Al-si-mg alloy sheet metal for motor car body outer panel

Info

Publication number
EP1472380A2
EP1472380A2 EP03712292A EP03712292A EP1472380A2 EP 1472380 A2 EP1472380 A2 EP 1472380A2 EP 03712292 A EP03712292 A EP 03712292A EP 03712292 A EP03712292 A EP 03712292A EP 1472380 A2 EP1472380 A2 EP 1472380A2
Authority
EP
European Patent Office
Prior art keywords
sheet according
mpa
elastic limit
sheet
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03712292A
Other languages
German (de)
French (fr)
Other versions
EP1472380B1 (en
Inventor
Jean-Luc Hoffmann
Ravi Shahani
Olivier Rebuffet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Pechiney Rhenalu SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27619894&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1472380(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pechiney Rhenalu SAS filed Critical Pechiney Rhenalu SAS
Publication of EP1472380A2 publication Critical patent/EP1472380A2/en
Application granted granted Critical
Publication of EP1472380B1 publication Critical patent/EP1472380B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent

Definitions

  • the invention relates to the field of sheets of Al-Si-Mg alloy, more particularly of type 6016 alloy according to the designation of the Aluminum Association, intended for the manufacture by stamping of parts of car body skin, such as fenders, doors, tailgates, hoods or roofs.
  • Aluminum is increasingly used in automobile construction to reduce the weight of vehicles and thereby reduce fuel consumption and the emission of pollutants and greenhouse gases.
  • the sheets are used in particular for the manufacture of body skin parts, in particular the openings.
  • This type of application requires a set of properties, sometimes antagonistic such as: high formability for stamping and crimping operations, - a limit of elasticity controlled in the delivery state of the sheet to control elastic return , high mechanical resistance after curing the paints to obtain good resistance to indentation while minimizing the weight of the part, good resistance to corrosion, in particular filiform corrosion, of the painted part, good surface quality after shaping and painting,
  • alloys of the 6000 series that is to say the alloys of the 6000 series.
  • alloys 6016 and 6016A with thicknesses of the order of 1 to 1.2 mm, are the most used for this application, because they lead to a better compromise between the various properties required, in particular ensuring better formability, in particular for crimping, and better resistance to filiform corrosion than alloys with a content of higher copper such as 6111 widely used in the United States.
  • Alloys of type 6016 are described in particular in patents FR 2360684 of Alusuisse and EP 0259232 of the applicant, while alloys of type 6111 are described in US patent 4,614,552 of Alcan International Ltd.
  • alloys with a low iron content such as those described in US Patents 5,525,169 and US 5,919,323 of Alcoa, and an alloy of this type has been registered as 6022
  • Table 1 The compositions (% by weight of main elements) of alloys 6016, 6016 A, 6022 and 6111 registered with the Aluminum Association are indicated in table 1:
  • the object of the present invention is to provide 6016 type alloy sheets for automotive body skin having a composition suitable for recycling, sufficient formability for deep drawing and crimping under severe conditions, improved indentation resistance compared to sheets of the prior art type 6016, while controlling elastic return, good bonding ability, cutting without formation of flakes, and good resistance to filiform corrosion.
  • the subject of the invention is a sheet for a part of the skin of a car body, of thickness between 0.8 and 1.2 mm, of composition (% by weight): Fe: 0.25 - 0.40 and of preference: 0.25 - 0.35 If: 0.90 - 1.20 "" 0.95 - 1.10 Cu: 0.10 - 0.25 "" 0.15 - 0.20
  • Mn 0.05 - 0.20 "" 0.08 - 0.15 other elements ⁇ 0.05 each and ⁇ 0.15 in total, aluminum residue, presenting after dissolution, quenching, pre-annealing or reversion, and maturation at room temperature between 3 weeks and 6 months, an elastic limit in the sense LR 0j2 of less than 160 MPa, and preferably less than 150 MPa.
  • the elastic limit of the stamped part after a heat treatment corresponding to the curing of the paints is greater than 180 MPa, and preferably 200 MPa. Description of the invention
  • the invention is based on a narrow field of composition within the composition of 6016A registered with the Aluminum Association, making it possible to obtain all of the properties sought.
  • the silicon content is in the lower part of the 6016A content range, while the magnesium content remains in the center of the range. This lowering of the silicon content contributes to a more complete dissolution of the alloy, favorable to formability.
  • the iron content remains above 0.25%, which authorizes, unlike low iron grades like 6022, the use of recycled metal, and is rather favorable to the surface appearance after stamping.
  • the copper content is controlled within very narrow limits: a content of at least 0.1%, a little higher than that of the existing grades of 6016 or 6022, contributes to the mechanical resistance, but above 0, 25% of the alloy presents a risk of filiform corrosion.
  • the alloy must contain at least 0.05% manganese, chromium, vanadium or zirconium to control the size of the grain, and avoid the appearance of orange peel during severe deformations, such as the crimp used for the covers. Conversely, a total content of these elements greater than 0.20% is unfavorable to formability.
  • the method of manufacturing sheets according to the invention typically comprises the casting of a plate, possibly scalping of this plate, and its homogenization or a simple reheating at a temperature between 400 and 570 ° C with a duration between 6 and 24h.
  • Hot rolling is preferably done at an inlet temperature above 510 ° C, which contributes to improving the mechanical strength compared to a lower inlet temperature.
  • the winding temperature of the hot-rolled strip must be less than 350 ° C, and preferably less than 300 ° C, to guarantee the mechanical characteristics and to avoid line defect.
  • the hot-rolled strip is then cold-rolled to the final thickness, possibly with intermediate annealing at a temperature between 300 and 450 ° C if it is carried out in a batch oven, or between 350 and 570 ° C s 'it is performed continuously.
  • the last cold rolling pass can be carried out with a textured cylinder, for example by electron beam treatment (EBT), EDM or beam laser, which improves the formability and surface appearance of the part formed after painting.
  • EBT electron beam treatment
  • EDM electron beam laser
  • Dissolution takes place at a temperature above the alloy's solvent temperature, while avoiding burns.
  • the composition according to the invention makes it possible to carry out a very complete dissolution, resulting in an almost absence of silicon-type phases in the microstructure and in a very small peak area, of less than 1 J / g, in the range 565-580 ° C of a differential enthalpy analysis diagram, the test being carried out with a temperature rise rate of 20 ° C / min.
  • the sheet in solution is then quenched, generally with cold water or air.
  • the quenching can be immediately followed by a heat treatment of the pre-annealed type as described in the prior art mentioned above, intended to improve the performance of the hardening during the curing of the paints.
  • Pre-tempering is not necessarily isothermal and its duration depends on the temperature. To take this into account, we can define an equivalent time t eq by the formula:
  • T (in ° K) is the temperature and t the duration of the pre-tempering, T re f being a reference temperature of 373 ° K, or 100 ° C.
  • pre-tempering to be effective, must be carried out at a temperature above 50 ° C. with an equivalent time of between 0.3 and 20 h. If the equivalent time is insufficient, the hardening kinetics when the paints are cured decreases with the waiting time at room temperature. If, on the contrary, the equivalent time is too high, the mechanical characteristics increase too much during pre-tempering, and the formability of the sheet degrades.
  • an equivalent time 1 to 10 h, and preferably 3 to 6 h, is well suited.
  • the sheet is most often stored at this stage for a more or less long time, which leads to natural maturation which increases the elastic limit over time.
  • the sheets according to the invention After 3 weeks of maturation, the sheets according to the invention have, at a thickness of the order of 0.9 to 1 mm, an elastic limit L direction of the order of
  • the sheet can be, before shaping, coated with a lubricant, oil or dry lubricant, suitable for stamping, assembly and surface treatment of the part to be produced.
  • the sheets according to the invention have a formability, measured by the parameter
  • the LDH parameter is widely used for the evaluation of the deep drawing of thick sheets 0.5 to 2 mm. It has been the subject of numerous publications, notably that of R. Thompson, "The LDH test to evaluate sheet metal formabiblity - Final Report of the LDH Committee of the North American Deep Drawing Research Group", SAE conference, Detroit, 1993, SAE Papern ° 930815.
  • the LDH test is a blank stamping test blocked at the periphery by a rod. The pressure of the blank holder is controlled to avoid slipping in the rod. The blank, size 120 x 160 mm, is stressed in a mode close to plane deformation.
  • Lubrication between the punch and the sheet is ensured by a plastic film and grease (Shell HDM2 grease).
  • the lowering speed of the punch is 50 mm / min.
  • the LDH value is the displacement of the break punch, i.e. the limit depth of the stamping.
  • the average is established between three tests, giving a 95% confidence interval on the measurement of ⁇ 0.2 mm.
  • the sheets according to the invention have a better crimpability than that of sheets of alloy 6111 or 6022 and as good as sheets of alloy 6016 of high strength of the prior art. This crimpability is evaluated by a laboratory test comprising a 90 ° drop, a 45 ° pre-crimp and a final flat crimp.
  • the sheets according to the invention also have a very low deformation anisotropy, which can be measured by the difference between the LDH for a main deformation parallel to the direction of rolling, and a main deformation ⁇ perpendicular to the rolling direction. This difference is less than 1 mm, and preferably less than 0.6 mm.
  • the bodywork piece of skin is generally produced by cutting a blank in the sheet, stamping this blank and trimming with the press.
  • lineage ("roping” or “ridging” in English), which is detrimental to the appearance after painting, and can reduce formability, especially in case of strong deformation in the direction perpendicular to the rolling direction.
  • Different means have been proposed in this sense, for example controlling the outlet temperature of hot rolling between 270 and 340 ° C, as indicated in patent EP 0259232 of the applicant.
  • the design of the cutting tool is important in this regard, and recommendations were made in the article by D. Daniel et al. cited above.
  • the part is covered with one or more layers of paint, each with a baking step.
  • the critical step is the baking of the cataphoresis layer, which is generally done at a temperature between 150 and 200 ° C, for 15 to 30 minutes. In the absence of cataphoresis, the cooking temperature rarely exceeds 170 ° C.
  • the firing of the paintings plays the role of an income treatment of the room.
  • the elastic limit of the part produced with a sheet according to the invention, with baking for 20 min at 165 ° C., is greater than 180 MPa, and more often than 200 MPa. This gives a resistance to indentation with a part made from a 0.9 mm thick sheet dynamic comparable to that of a part produced from a sheet of steelwork of typical bodywork of elastic limit of the order of 250 to 300 MPa and thickness
  • the sheets according to the invention make it possible to carry out the various operations commonly used for the manufacture of car body skin parts, such as crimping, clinching, riveting, spot welding, laser welding and bonding.
  • crimped joints used in particular in the manufacture of covers, without first applying a chemical treatment to the surfaces such as chemical conversion or passivation, for example using compounds phosphochromic, or products based on titanium, zirconium or silanes.
  • the parts produced from sheets according to the invention also exhibit, after painting, good resistance to filiform corrosion, better than that of high copper alloys such as 6111.
  • high copper alloys such as 6111.
  • the major difficulty lies in the management of the differences in thermal expansion between the two materials during the curing of the paints, in particular during the curing of cataphoresis which generally takes place between 160 and 200 ° C. . Indeed, it is essential to limit the residual deformation after baking to an acceptable level for the appearance of the vehicle.
  • the sheets according to the invention make it possible to limit these deformations. Indeed, the Applicant has demonstrated that a high elastic limit at the firing temperature, for example greater than 140 MPa at a temperature of 160 ° C for the alloy according to the invention, had a favorable effect on the level of deformation, if the assembly is carried out after cooking, the temperature of which is preferable. Other factors can also limit deformations, for example the presence of ribs intended to stiffen the aluminum panel, or the spacing of the assembly points. You can also use an assembly with continuous connection like gluing, with at least partial polymerization of the glue before baking, or laser welding by transparency.
  • Composition A represents a classic 6016
  • B corresponds to that of the applicant's DR100 grade described in the articles mentioned above
  • C and D correspond to an alloy 6111
  • E corresponds to an alloy 6022
  • F, G, H and I have neighboring compositions, differing either by Cu (F) or by Mn (G and H) from composition I according to the invention.
  • the plates were scalped, homogenized for 10 h at 570 ° C, then hot-rolled directly on heat of homogenization, first on a reversible dammer, then on a tandem rolling mill.
  • the rolling start temperature was of the order of
  • the elastic limit R 0> 2 directions L was measured after 3 weeks and 6 months of maturation respectively at room temperature, then after a 30 min tempering treatment at 165 ° C or 185 ° C , simulating the baking treatment of paints.
  • the formability was also measured using the LDH parameter (in mm), the main deformation being respectively parallel and perpendicular to the direction of rolling. The results are shown in Table 2:
  • sample I according to the invention exhibits, after 3 weeks maturation, an elastic limit of the same order as that of the conventional 6016
  • the formability, measured by the LDH parameter, is practically as good as that of the best alloy, that is to say the DR100.
  • the crimping behavior in the direction parallel to rolling and in the perpendicular direction, the resistance to filiform corrosion after phosphating, cataphoresis and painting, as well as the appearance or no glitter or filaments during cutting or trimming after stamping.
  • the crimping test is carried out in 3 operations: dropping the edges at 90 ° C, pre-crimping at 45 ° and crimping flat on a sheet of liner 0.7 mm thick. The crimped edges are then classified by visual inspection, as indicated in the article by D. Daniel et al. to IBEC 99. The resistance to filiform corrosion is assessed according to standard EN 3665, with samples of dimension 150 x 60 x 1 mm painted and scratched. The test procedure includes activation of HCl vapor corrosion for 1 h, then exposure in a humid chamber at 40 ° C for 1000 h.
  • Aluminum alloy panels of the composition indicated in Table 4 were manufactured, with a manufacturing range similar to that of Example 1, with or without pre-tempering and heat treatment after shaping and before assembly, as also shown in table 4.
  • the size of the panels is 1.6 mx 0.9 m.
  • the alloy according to the invention makes it possible to reduce the residual deformations after baking.
  • the performance of the alloys is well correlated with the yield strength at the baking temperature.
  • a heat treatment before assembly and the addition of ribs are beneficial in reducing deformation.
  • the resistance to dynamic indentation of a sheet of thickness 1 mm developed with a manufacturing range of the type of that of Example 1, comprising a pre-tempering equivalent time 5 h, and a heat treatment was evaluated. of 20 min at different temperatures simulating a baking of the paints, an alloy according to the invention and a 6016 DR100 alloy, in comparison with that of a steel sheet of elastic limit 290 MPa after curing the paints, of thickness 0 , 7 mm.
  • This value of 290 MPa after baking for the elastic limit of a body steel sheet corresponds approximately to the average of the elastic limits of the steel sheets used for the skin skins of the most common recent European cars. .
  • a thickness of 1 mm for an aluminum sheet represents an elongation of about 50% compared to a steel sheet 0.7 mm thick.
  • the device used for the indentation test comprises an indentor with a diameter of 15 mm and a weight of 138 g, dropped from a height of 1 m, at a speed of about 16 km / h, on the sample of sheet metal clamped between two steel plates. The depth of permanent indentation is measured (in mm). The results are shown in Table 6.
  • the sheet of thickness 1 mm according to the invention has the same resistance to indentation as that of steel sheet 0.7 mm.
  • the DR100 alloy this is only true for a paint curing temperature of 205 ° C, higher than the temperatures usually used by car manufacturers.
  • a more resistant alloy such as 6111 would increase the resistance to indentation beyond the needs of the market, but at the expense of formability, especially during crimping.

Abstract

A metal sheet for a motor vehicle body outer panel, having a thickness ranging between 0.8 and 1.2 mm, containing, in wt. %, Fe 0.25-0.40 and preferably 0.25-0.35; Si 0.90-1.20 and preferably 0.95-1.10; Cu 0.10-0.25 and preferably 0.15-0.20; Mg 0.35-0.50 and preferably 0.40-0.50; Mn 0.05-0.20 and preferably 0.08-0.15; other elements<0.05 each and <0.15 in total, the rest being aluminum. The sheet has, after solution heat treatment, quenching, pre-tempering or reversion, and maturation at room temperature for 3 weeks to 6 months, an L R0.2 direction yield strength less than 160 MPa, and preferably less than 150 MPa. A yield strength>180 MPa can be obtained on the body stamping part after the paint has been cured. The sheet of the invention enables a reduction in the thickness of parts while satisfying all the other required properties.

Description

Tôle en alliage Al-Si-Mg pour peau de carrosserie automobile Al-Si-Mg alloy sheet for automotive body skin
Domaine de l'inventionField of the invention
L'invention concerne le domaine des tôles en alliage Al-Si-Mg, plus particulièrement en alliage de type 6016 selon la désignation de PAluminum Association, destinées à la fabrication par emboutissage de pièces de peau de carrosserie de voitures, telles que des ailes, des portes, des hayons, des capots ou des toits.The invention relates to the field of sheets of Al-Si-Mg alloy, more particularly of type 6016 alloy according to the designation of the Aluminum Association, intended for the manufacture by stamping of parts of car body skin, such as fenders, doors, tailgates, hoods or roofs.
Etat de la techniqueState of the art
L'aluminium est utilisé de manière croissante dans la construction automobile pour réduire le poids des véhicules et ainsi réduire la consommation de carburant et les rejets de polluants et de gaz à effets de serre. Les tôles sont utilisées notamment pour la fabrication de pièces de peau de carrosserie, notamment les ouvrants. Ce type d'application requiert un ensemble de propriétés, parfois antagonistes telles que : une formabilité élevée pour les opérations d'emboutissage et de sertissage, - une limite d'élasticité contrôlée à l'état de livraison de la tôle pour maîtriser le retour élastique, une résistance mécanique élevée après cuisson des peintures pour obtenir une bonne résistance à l'indentation tout en minimisant le poids de la pièce, une bonne résistance à la corrosion, notamment la corrosion filiforme, de la pièce peinte, une bonne qualité de surface après mise en forme et peinture,Aluminum is increasingly used in automobile construction to reduce the weight of vehicles and thereby reduce fuel consumption and the emission of pollutants and greenhouse gases. The sheets are used in particular for the manufacture of body skin parts, in particular the openings. This type of application requires a set of properties, sometimes antagonistic such as: high formability for stamping and crimping operations, - a limit of elasticity controlled in the delivery state of the sheet to control elastic return , high mechanical resistance after curing the paints to obtain good resistance to indentation while minimizing the weight of the part, good resistance to corrosion, in particular filiform corrosion, of the painted part, good surface quality after shaping and painting,
- un bon comportement dans les divers procédés d'assemblage utilisés en carrosserie automobile tels que le soudage par points, le soudage laser, le collage, le clinchage ou le rivetage, - une compatibilité avec les exigences du recyclage des déchets de fabrication ou des véhicules recyclés,- good behavior in the various assembly processes used in automobile bodywork such as spot welding, laser welding, gluing, clinching or riveting, - compatibility with the requirements of recycling of manufacturing waste or vehicles recycled
- un coût acceptable pour une production en grande série. Ces exigences ont conduit au choix des alliages Al-Mg-Si, c'est-à-dire les alliages de la série 6000. En Europe, les alliages 6016 et 6016A, à des épaisseurs de l'ordre de 1 à 1,2 mm, sont les plus utilisés pour cette application, car ils conduisent à un meilleur compromis entre les diverses propriétés requises, en assurant notamment une meilleure formabilité, en particulier pour le sertissage, et une meilleure résistance à la corrosion filiforme que les alliages à teneur en cuivre plus élevée tels que le 6111 largement utilisé aux Etats-Unis. Des alliages de type 6016 sont décrits notamment dans les brevets FR 2360684 d'Alusuisse et EP 0259232 de la demanderesse, tandis que des alliages du type 6111 sont décrits au brevet US 4,614,552 d'Alcan International Ltd. On connaît également des alliages à basse teneur en fer (< 0,2%) tels que ceux décrits aux brevets US 5,525,169 et US 5,919,323 d'Alcoa, et un alliage de ce type a été enregistré comme 6022 Les compositions (% en poids des éléments principaux) des alliages 6016, 6016 A, 6022 et 6111 enregistrées à l' Aluminum Association sont indiquées au tableau 1 :- an acceptable cost for mass production. These requirements led to the choice of Al-Mg-Si alloys, that is to say the alloys of the 6000 series. In Europe, the alloys 6016 and 6016A, with thicknesses of the order of 1 to 1.2 mm, are the most used for this application, because they lead to a better compromise between the various properties required, in particular ensuring better formability, in particular for crimping, and better resistance to filiform corrosion than alloys with a content of higher copper such as 6111 widely used in the United States. Alloys of type 6016 are described in particular in patents FR 2360684 of Alusuisse and EP 0259232 of the applicant, while alloys of type 6111 are described in US patent 4,614,552 of Alcan International Ltd. Also known are alloys with a low iron content (<0.2%) such as those described in US Patents 5,525,169 and US 5,919,323 of Alcoa, and an alloy of this type has been registered as 6022 The compositions (% by weight of main elements) of alloys 6016, 6016 A, 6022 and 6111 registered with the Aluminum Association are indicated in table 1:
Tableau 1Table 1
Cependant, la résistance mécanique du 6016 après cuisson des peintures, et donc la résistance à l'indentation, reste nettement inférieure à celle du 6111, et ce d'autant plus que la température de cuisson tend à décroître, de sorte que le durcissement au revenu est moins efficace. Pour cette raison, les constructeurs automobiles sont demandeurs d'une résistance mécanique plus élevée après peinture. Dans ce but, la demanderesse a développé de nouvelles variantes du 6016, en particulier une variante « DR 120 » conduisant à une limite d'élasticité à l'état T4 de l'ordre de 120 MPa. Ces développements ont fait l'objet de publications, notamment des articles de R. Shahani et al. « Optimised 6xxx aluminium alloy sheet for autobody outer panels » Automotive Alloys 1999, Proceedings of the TMS Annual Meeting Symposium, 2000, pp. 193-203, et de D. Daniel et al. « Development ofHowever, the mechanical resistance of 6016 after curing the paints, and therefore the resistance to indentation, remains clearly lower than that of 6111, and this all the more as the cooking temperature tends to decrease, so that the hardening at income is less effective. For this reason, car manufacturers are demanding higher mechanical strength after painting. To this end, the applicant has developed new variants of 6016, in particular a “DR 120” variant leading to a yield strength in the T4 state of the order of 120 MPa. These developments have been the subject of publications, in particular articles by R. Shahani et al. “Optimized 6xxx aluminum alloy sheet for autobody outer panels” Automotive Alloys 1999, Proceedings of the TMS Annual Meeting Symposium, 2000, pp. 193-203, and of D. Daniel et al. "Development of
6xxx Alloy Aluminum Sheet for Autobody Outer Panels : Bake Hardening,6xxx Alloy Aluminum Sheet for Autobody Outer Panels: Bake Hardening,
Formability and Trimming Performance » IBEC'99 - International BodyFormability and Trimming Performance »IBEC'99 - International Body
Engineering Conférence, Détroit, 1999, SAE Technical Paper N° 1999-01-3195. De son côté, Alcan a proposé une nouvelle variante du 6111, dénommée 6111-T4P, conduisant à une limite d'élasticité après cuisson de peinture améliorée (typiquementEngineering Conference, Detroit, 1999, SAE Technical Paper N ° 1999-01-3195. For its part, Alcan proposed a new variant of 6111, called 6111-T4P, leading to an elastic limit after curing improved paint (typically
270 à 280 MPa) sans réduction de la formabilité à l'état T4. Ce produit a été décrit notamment dans l'article de A.K. Gupta et al. « The Properties and Characteristics of270 to 280 MPa) without reduction of formability in the T4 state. This product has been described in particular in the article by A.K. Gupta et al. "The Properties and Characteristics of
Two New Aluminum Automotive Closure Panel Materials », SAE Technical Paper 960164, 1996. L'article mentionne également un nouvel alliage, dénommé provisoirement 61XX-T4P, dont la composition n'est pas divulguée, conduisant, par rapport au 6111-T4 conventionnel, à une limite d'élasticité plus faible à l'état T4 et une réponse à la cuisson des peintures similaire. Ces nouveaux développements incluent tous un traitement thermique optimisé de type prérevenu, effectué après la trempe pour améliorer le durcissement à la cuisson des peintures. En effet, en l'absence d'un tel traitement, la cinétique de durcissement à la cuisson diminue avec le temps d'attente à température ambiante entre la trempe et la cuisson, et une attente de plusieurs semaines est pratiquement inévitable en production industrielle. Ce phénomène est connu depuis longtemps, et a été décrit par exemple dans l'article de M. Renouard et R. Meillat : « Le prérevenu des alliages aluminium-magnésium-silicium » Mémoires Scientifiques de la Revue de Métallurgie, décembre 1960, pp. 930-942.Two New Aluminum Automotive Closure Panel Materials ”, SAE Technical Paper 960164, 1996. The article also mentions a new alloy, provisionally named 61XX-T4P, the composition of which is not disclosed, leading, compared to conventional 6111-T4, at a lower elastic limit in the T4 state and a similar response to curing of the paints. These new developments all include an optimized heat treatment of the pre-income type, carried out after quenching to improve the hardening during cooking of the paints. Indeed, in the absence of such a treatment, the kinetics of hardening during cooking decreases with the waiting time at room temperature between quenching and cooking, and waiting for several weeks is practically inevitable in industrial production. This phenomenon has been known for a long time, and has been described, for example, in the article by M. Renouard and R. Meillat: "The pre-income of aluminum-magnesium-silicon alloys" Scientific Memories of the Metallurgy Review, December 1960, pp. 930-942.
Pour éviter l'effet défavorable de l'attente, il est nécessaire, soit d'effectuer un prérevenu à l'aide d'une trempe étagée ou d'un traitement thermique juste après la trempe, soit de stocker le métal en congélateur, ce qui n'est guère commode pour la carrosserie automobile, soit de réaliser un traitement de réversion. La température et la durée du prérevenu pour les alliages 6000 sont décrits par exemple dans l'article de R. Develay « Traitements thermiques des alliages d'aluminium », Techniques de l'Ingénieur, section M 1290, 1986, dans l'article de D.W. Pashley et al. « Delayed ageing in aluminium-magnésium' silicon alloys : effect on structure and mechanical propperties », Journal of the Institute of Metals, n° 94, 1966, pp. 41-49, ou dans le brevet EP 0480402 (Sumitomo Light Métal). Le brevet FR 1243877 (Cegedur) décrit par ailleurs un four continu apte à effectuer un prérevenu.To avoid the unfavorable effect of waiting, it is necessary either to carry out a pre-income using a stepped quenching or a heat treatment just after quenching, or to store the metal in a freezer, which is not very convenient for the automobile body, that is to carry out a reversion treatment. The temperature and the duration of the pre-income for 6000 alloys are described for example in the article by R. Develay "Thermal treatments of aluminum alloys", Engineering Techniques, section M 1290, 1986, in the article by DW Pashley et al. "Delayed aging in aluminum-magnesium 'silicon alloys: effect on structure and mechanical propperties", Journal of the Institute of Metals, n ° 94, 1966, pp. 41-49, or in patent EP 0480402 (Sumitomo Light Metal). The patent FR 1243877 (Cegedur) also describes a continuous oven capable of performing a pre-income.
Compte tenu du développement de l'utilisation des tôles en alliage d'aluminium pour peau de carrosserie de voitures de grande série, il existe toujours une demande de nuances encore améliorées permettant de réduire les épaisseurs sans altérer les autres propriétés. La réduction des épaisseurs est le plus souvent limitée par l'insuffisance de rigidité de la pièce formée, cette limite se situant à l'épaisseur de la pièce équivalente en acier multipliée par 1,4. Les tôles doivent donc permettre d'obtenir sur la pièce formée après cuisson de peinture une résistance à l'indentation au moins égale à celle des pièces en acier avec un rapport d'épaisseur aluminium/acier de 1,4, tout en ayant une bonne aptitude à l'emboutissage et au sertissage.Given the development of the use of aluminum alloy sheets for bodywork of large series cars, there is always a demand for further improved grades enabling the thicknesses to be reduced without altering the other properties. The reduction in thicknesses is most often limited by the insufficient rigidity of the formed part, this limit being situated at the thickness of the equivalent steel part multiplied by 1.4. The sheets must therefore make it possible to obtain on the part formed after curing paint a resistance to indentation at least equal to that of steel parts with an aluminum / steel thickness ratio of 1.4, while having good aptitude for stamping and crimping.
Objet de l'inventionSubject of the invention
Le but de la présente invention est de fournir des tôles en alliage de type 6016 pour peau de carrosserie automobile présentant une composition adaptée au recyclage, une formabilité suffisante pour emboutissage profond et sertissage en conditions sévères, une résistance à l'indentation améliorée par rapport aux tôles de l'art antérieur de type 6016, tout en maîtrisant le retour élastique, une bonne aptitude au collage, une découpe sans formation de paillettes, et une bonne résistance à la corrosion filiforme. L'invention a pour objet une tôle pour pièce de peau de carrosserie de voiture, d'épaisseur comprise entre 0,8 et 1,2 mm, de composition (% en poids) : Fe : 0,25 - 0,40 et de préférence : 0,25 - 0,35 Si : 0,90 - l,20 « « 0,95 - 1,10 Cu : 0,10 - 0,25 « « 0,15 - 0,20The object of the present invention is to provide 6016 type alloy sheets for automotive body skin having a composition suitable for recycling, sufficient formability for deep drawing and crimping under severe conditions, improved indentation resistance compared to sheets of the prior art type 6016, while controlling elastic return, good bonding ability, cutting without formation of flakes, and good resistance to filiform corrosion. The subject of the invention is a sheet for a part of the skin of a car body, of thickness between 0.8 and 1.2 mm, of composition (% by weight): Fe: 0.25 - 0.40 and of preference: 0.25 - 0.35 If: 0.90 - 1.20 "" 0.95 - 1.10 Cu: 0.10 - 0.25 "" 0.15 - 0.20
Mg : 0,35 - 0,50 « « 0,40 - 0,50Mg: 0.35 - 0.50 "" 0.40 - 0.50
Mn : 0,05 - 0,20 « « 0,08 - 0,15 autres éléments < 0,05 chacun et < 0,15 au total, reste aluminium, présentant après mise en solution, trempe, pré-revenu ou réversion, et maturation à température ambiante comprise entre 3 semaines et 6 mois, une limite d'élasticité sens L R0j2 inférieure à 160 MPa, et de préférence à 150 MPa. La limite d'élasticité de la pièce emboutie après un traitement thermique correspondant à la cuisson des peintures est supérieure à 180 MPa, et de préférence à 200 MPa. Description de l'inventionMn: 0.05 - 0.20 "" 0.08 - 0.15 other elements <0.05 each and <0.15 in total, aluminum residue, presenting after dissolution, quenching, pre-annealing or reversion, and maturation at room temperature between 3 weeks and 6 months, an elastic limit in the sense LR 0j2 of less than 160 MPa, and preferably less than 150 MPa. The elastic limit of the stamped part after a heat treatment corresponding to the curing of the paints is greater than 180 MPa, and preferably 200 MPa. Description of the invention
L'invention repose sur un domaine de composition étroit à l'intérieur de la composition du 6016A enregistrée à l' Aluminum Association, permettant d'obtenir l'ensemble des propriétés recherchées.The invention is based on a narrow field of composition within the composition of 6016A registered with the Aluminum Association, making it possible to obtain all of the properties sought.
La teneur en silicium est dans la partie basse de la fourchette de teneur du 6016A, alors que la teneur en magnésium reste au centre de la fourchette. Cet abaissement de la teneur en silicium contribue à une mise en solution plus complète de l'alliage, favorable à la formabilité. La teneur en fer reste au dessus de 0,25%, ce qui autorise, contrairement aux nuances à bas fer comme le 6022, l'utilisation de métal de recyclage, et se révèle plutôt favorable à l'aspect de surface après emboutissage. La teneur en cuivre est contrôlée dans des limites très étroites : une teneur d'au moins 0,1%, un peu plus importante que celle des nuances existantes de 6016 ou de 6022, contribue à la résistance mécanique, mais au dessus de 0,25% l'alliage présente un risque de corrosion filiforme. L'alliage doit contenir au moins 0,05% de manganèse, de chrome, de vanadium ou de zirconium pour contrôler la grosseur du grain, et éviter l'apparition de peau d'orange lors de déformations sévères, comme par exemple le sertissage utilisé pour les capots. Inversement, une teneur totale de ces éléments supérieure à 0,20% est défavorable à la formabilité.The silicon content is in the lower part of the 6016A content range, while the magnesium content remains in the center of the range. This lowering of the silicon content contributes to a more complete dissolution of the alloy, favorable to formability. The iron content remains above 0.25%, which authorizes, unlike low iron grades like 6022, the use of recycled metal, and is rather favorable to the surface appearance after stamping. The copper content is controlled within very narrow limits: a content of at least 0.1%, a little higher than that of the existing grades of 6016 or 6022, contributes to the mechanical resistance, but above 0, 25% of the alloy presents a risk of filiform corrosion. The alloy must contain at least 0.05% manganese, chromium, vanadium or zirconium to control the size of the grain, and avoid the appearance of orange peel during severe deformations, such as the crimp used for the covers. Conversely, a total content of these elements greater than 0.20% is unfavorable to formability.
Le procédé de fabrication des tôles selon l'invention comporte typiquement la coulée d'une plaque, éventuellement le scalpage de cette plaque, et son homogénéisation ou un simple réchauffage à une température comprise entre 400 et 570°C d'une durée entre 6 et 24 h. Le laminage à chaud se fait de préférence à une température d'entrée supérieure à 510°C, ce qui contribue à améliorer la résistance mécanique par rapport à une température d'entrée plus faible. La température de bobinage de la bande laminée à chaud doit être inférieure à 350°C, et de préférence à 300°C, pour garantir les caractéristiques mécaniques et pour éviter le défaut de lignage. La bande laminée à chaud est ensuite laminée à froid jusqu'à l'épaisseur finale, avec éventuellement un recuit intermédiaire à une température comprise entre 300 et 450°C s'il est effectué en four batch, ou entre 350 et 570°C s'il est effectué en continu. La dernière passe de laminage à froid peut être effectuée avec un cylindre texture, par exemple par traitement par faisceau d'électrons (EBT), par électro-érosion (EDT) ou par faisceau laser, ce qui améliore la formabilité et l'aspect de surface de la pièce formée après peinture.The method of manufacturing sheets according to the invention typically comprises the casting of a plate, possibly scalping of this plate, and its homogenization or a simple reheating at a temperature between 400 and 570 ° C with a duration between 6 and 24h. Hot rolling is preferably done at an inlet temperature above 510 ° C, which contributes to improving the mechanical strength compared to a lower inlet temperature. The winding temperature of the hot-rolled strip must be less than 350 ° C, and preferably less than 300 ° C, to guarantee the mechanical characteristics and to avoid line defect. The hot-rolled strip is then cold-rolled to the final thickness, possibly with intermediate annealing at a temperature between 300 and 450 ° C if it is carried out in a batch oven, or between 350 and 570 ° C s 'it is performed continuously. The last cold rolling pass can be carried out with a textured cylinder, for example by electron beam treatment (EBT), EDM or beam laser, which improves the formability and surface appearance of the part formed after painting.
Il est également possible d'utiliser des bandes obtenues directement par coulée continue, soit entre deux cylindres, soit entre deux courroies, et d'effectuer le laminage à froid et les opérations ultérieures dans les mêmes conditions.It is also possible to use strips obtained directly by continuous casting, either between two rolls or between two belts, and to carry out cold rolling and the subsequent operations under the same conditions.
La mise en solution se fait à une température au-delà de la température de solvus de l'alliage, tout en évitant la brûlure. La composition selon l'invention permet d'effectuer une mise en solution très complète, se traduisant par une quasi absence de phases de type silicium dans la microstructure et par une très faible aire de pic, de moins de 1 J/g, dans le domaine 565-580°C d'un diagramme d'analyse enthalpique différentielle, l'essai étant effectué avec une vitesse de montée en température de 20°C/mn.Dissolution takes place at a temperature above the alloy's solvent temperature, while avoiding burns. The composition according to the invention makes it possible to carry out a very complete dissolution, resulting in an almost absence of silicon-type phases in the microstructure and in a very small peak area, of less than 1 J / g, in the range 565-580 ° C of a differential enthalpy analysis diagram, the test being carried out with a temperature rise rate of 20 ° C / min.
La tôle mise en solution est ensuite trempée, généralement à l'eau froide ou à l'air. La trempe peut être suivie immédiatement d'un traitement thermique de type pré- revenu tel que décrit dans l'art antérieur mentionné ci-dessus, destiné à améliorer les performances du durcissement lors de la cuisson des peintures. Le pré-revenu n'est pas nécessairement isotherme et sa durée dépend de la température. Pour en tenir compte, on peut définir un temps équivalent teq par la formule :The sheet in solution is then quenched, generally with cold water or air. The quenching can be immediately followed by a heat treatment of the pre-annealed type as described in the prior art mentioned above, intended to improve the performance of the hardening during the curing of the paints. Pre-tempering is not necessarily isothermal and its duration depends on the temperature. To take this into account, we can define an equivalent time t eq by the formula:
où T (en °K) est la température et t la durée du pré-revenu, Tref étant une température de référence de 373°K, soit 100°C. Il est connu que le pré-revenu, pour être efficace, doit s'effectuer à une température supérieure à 50°C avec un temps équivalent compris entre 0,3 et 20 h. Si le temps équivalent est insuffisant, la cinétique de durcissement à la cuisson des peintures diminue avec le temps d'attente à température ambiante. Si, au contraire, le temps équivalent est trop élevé, les caractéristiques mécaniques augmentent trop au pré-revenu, et la formabilité de la tôle se dégrade. Pour les alliages de type 6016, un temps équivalent de 1 à 10 h, et de préférence 3 à 6 h, est bien adapté. La tôle est le plus souvent stockée à ce stade pendant un temps plus ou moins long, ce qui conduit à une maturation naturelle qui fait augmenter la limite d'élasticité au fil du temps. Après 3 semaines de maturation, les tôles selon l'invention présentent, à une épaisseur de l'ordre de 0,9 à 1 mm, une limite d'élasticité sens L de l'ordre de where T (in ° K) is the temperature and t the duration of the pre-tempering, T re f being a reference temperature of 373 ° K, or 100 ° C. It is known that pre-tempering, to be effective, must be carried out at a temperature above 50 ° C. with an equivalent time of between 0.3 and 20 h. If the equivalent time is insufficient, the hardening kinetics when the paints are cured decreases with the waiting time at room temperature. If, on the contrary, the equivalent time is too high, the mechanical characteristics increase too much during pre-tempering, and the formability of the sheet degrades. For alloys of type 6016, an equivalent time of 1 to 10 h, and preferably 3 to 6 h, is well suited. The sheet is most often stored at this stage for a more or less long time, which leads to natural maturation which increases the elastic limit over time. After 3 weeks of maturation, the sheets according to the invention have, at a thickness of the order of 0.9 to 1 mm, an elastic limit L direction of the order of
130 MPa, plus élevée que toutes les variantes de 6016, y compris les nuances à haute résistance DR100 et DR120 décrites dans l'article de R. Shahani et al. mentionné plus haut, et à peine plus faible que celle du 6022. Après 6 mois de maturation, cette limite élastique reste en dessous de 160 MPa, voire 150 MPa, contrairement aux alliages 6022 ou 6111. Cette particularité permet de contrôler le retour élastique lors de la mise en forme, qui devient de plus en plus difficile à prévoir lorsqu'on diminue les épaisseurs et qu'on augmente la limite d'élasticité, ce qui oblige à un grand nombre d'itérations dans la mise au point des outillages d'emboutissage. La tôle peut être, avant mise en forme, revêtue d'un lubrifiant, huile ou lubrifiant sec, adapté à l'emboutissage, l'assemblage et le traitement de surface de la pièce à réaliser.130 MPa, higher than all variants of 6016, including the high-strength grades DR100 and DR120 described in the article by R. Shahani et al. mentioned above, and barely weaker than that of 6022. After 6 months of maturation, this elastic limit remains below 160 MPa, even 150 MPa, unlike alloys 6022 or 6111. This characteristic makes it possible to control the elastic return during shaping, which becomes more and more difficult to predict when the thicknesses are reduced and the elastic limit is increased, which requires a large number of iterations in the development of tooling d stamping. The sheet can be, before shaping, coated with a lubricant, oil or dry lubricant, suitable for stamping, assembly and surface treatment of the part to be produced.
Les tôles selon l'invention présentent une formabilité, mesurée par le paramètreThe sheets according to the invention have a formability, measured by the parameter
LDHo (« limiting dôme height » en déformation plane), meilleure que celle des alliages 6111 et 6022, et aussi bonne que les nuances 6016 à haute résistance Le paramètre LDH est largement utilisé pour l'évaluation de l'emboutissabilité des tôles d'épaisseur 0,5 à 2 mm. Il a fait l'objet de nombreuses publications, notamment celle de R. Thompson, "The LDH test to evaluate sheet métal formabiblity - Final Report of the LDH Committee of the North American Deep Drawing Research Group", SAE conférence, Détroit, 1993, SAE Papern° 930815. L'essai LDH est un essai d'emboutissage à flan bloqué en périphérie par un jonc. La pression de serre-flan est contrôlée pour éviter un glissement dans le jonc. Le flan, de taille 120 x 160 mm, est sollicité dans un mode proche de la déformation plane. La lubrification entre le poinçon et la tôle est assurée par un film plastique et de la graisse (graisse Shell HDM2). La vitesse de descente du poinçon est de 50 mm/mn. La valeur LDH est le déplacement du poinçon à rupture, soit la profondeur limite de l'emboutissage. On établit la moyenne entre trois essais, donnant un intervalle de confiance à 95% sur la mesure de ± 0,2 mm.LDHo (“limiting dome height” in plane deformation), better than that of alloys 6111 and 6022, and as good as the grades 6016 with high resistance The LDH parameter is widely used for the evaluation of the deep drawing of thick sheets 0.5 to 2 mm. It has been the subject of numerous publications, notably that of R. Thompson, "The LDH test to evaluate sheet metal formabiblity - Final Report of the LDH Committee of the North American Deep Drawing Research Group", SAE conference, Detroit, 1993, SAE Papern ° 930815. The LDH test is a blank stamping test blocked at the periphery by a rod. The pressure of the blank holder is controlled to avoid slipping in the rod. The blank, size 120 x 160 mm, is stressed in a mode close to plane deformation. Lubrication between the punch and the sheet is ensured by a plastic film and grease (Shell HDM2 grease). The lowering speed of the punch is 50 mm / min. The LDH value is the displacement of the break punch, i.e. the limit depth of the stamping. The average is established between three tests, giving a 95% confidence interval on the measurement of ± 0.2 mm.
Les tôles selon l'invention présentent une aptitude au sertissage meilleure que celle des tôles en alliage 6111 ou 6022 et aussi bonne que les tôles en alliage 6016 à haute résistance de l'art antérieur. Cette aptitude au sertissage est évaluée par un essai de laboratoire comportant un tombage à 90°, un pré-sertissage à 45° et un sertissage final à plat.The sheets according to the invention have a better crimpability than that of sheets of alloy 6111 or 6022 and as good as sheets of alloy 6016 of high strength of the prior art. This crimpability is evaluated by a laboratory test comprising a 90 ° drop, a 45 ° pre-crimp and a final flat crimp.
Les tôles selon l'invention présentent également une anisotropie de déformation très faible, qu'on peut mesurer par la différence entre le LDH pour une déformation principale parallèle au sens de laminage, et une déformation principale δ perpendiculaire au sens de laminage. Cette différence est inférieure à 1 mm, et de préférence à 0,6 mm.The sheets according to the invention also have a very low deformation anisotropy, which can be measured by the difference between the LDH for a main deformation parallel to the direction of rolling, and a main deformation δ perpendicular to the rolling direction. This difference is less than 1 mm, and preferably less than 0.6 mm.
La pièce de peau de carrosserie est généralement réalisée par découpe d'un flan dans la tôle, emboutissage de ce flan et détourage à la presse. Lors de l'emboutissage, il faut éviter l'apparition de lignage (« roping » ou « ridging » en anglais), qui est néfaste pour l'aspect après peinture, et peut diminuer la formabilité, notamment en cas de forte déformation dans le sens perpendiculaire au sens de laminage. Différents moyens ont été proposés dans ce sens, par exemple le contrôle de la température de sortie de laminage à chaud entre 270 et 340°C, comme indiqué dans le brevet EP 0259232 de la demanderesse. On doit également éviter l'apparition à l'emboutissage de « peau d'orange », qui contribue à un défaut d'aspect visible après peinture. Il faut pour cela maintenir une taille de grain de préférence en dessous de 50 μm, ce qui peut être obtenu par la présence dans l'alliage d'une quantité suffisante de manganèse, ou d'autres éléments jouant un rôle similaire tels que le chrome, le vanadium ou le zirconium, par un contrôle de la température et de la durée de la mise en solution et par une réduction suffisante, typiquement d'au moins 30%, par laminage à froid. Pour certaines pièces comme les capots, les bords du flan embouti sont tombés à 90° et on insère un embouti de doublure sur lequel on effectue un présertissage, puis un sertissage final à plat. II est également nécessaire d'éviter la formation de paillettes (« slivers ») lors des opérations de découpe des flans et de détourage après emboutissage, ces paillettes pouvant créer ensuite des défauts d'aspect nécessitant des retouches manuelles. La conception de l'outillage de découpe est importante à cet égard, et des recommandations ont été émises dans l'article de D. Daniel et al. cité plus haut. Après emboutissage et éventuellement sertissage, la pièce est recouverte d'une ou plusieurs couches de peinture, avec pour chacune une étape de cuisson. L'étape critique est la cuisson de la couche de cataphorèse, qui se fait généralement à une température comprise entre 150 et 200°C, pendant 15 à 30 mn. En l'absence de cataphorèse, la température de cuisson dépasse rarement 170°C. La cuisson des peintures joue le rôle d'un traitement de revenu de la pièce. La limite d'élasticité de la pièce réalisée avec une tôle selon l'invention, avec une cuisson de 20 mn à 165°C, est supérieure à 180 MPa, et le plus souvent à 200 MPa. On obtient ainsi, avec une pièce réalisée à partir d'une tôle d'épaisseur 0,9 mm, une résistance à l'indentation dynamique comparable à celle d'une pièce réalisée à partir d'une tôle d'acier de carrosserie typique de limite d'élasticité de l'ordre de 250 à 300 MPa et d'épaisseurThe bodywork piece of skin is generally produced by cutting a blank in the sheet, stamping this blank and trimming with the press. When drawing, avoid the appearance of lineage ("roping" or "ridging" in English), which is detrimental to the appearance after painting, and can reduce formability, especially in case of strong deformation in the direction perpendicular to the rolling direction. Different means have been proposed in this sense, for example controlling the outlet temperature of hot rolling between 270 and 340 ° C, as indicated in patent EP 0259232 of the applicant. We must also avoid the appearance on stamping of "orange peel", which contributes to a visible defect after painting. This requires maintaining a grain size preferably below 50 μm, which can be obtained by the presence in the alloy of a sufficient amount of manganese, or other elements playing a similar role such as chromium. , vanadium or zirconium, by controlling the temperature and the duration of the dissolution and by a sufficient reduction, typically of at least 30%, by cold rolling. For certain parts such as the covers, the edges of the stamped blank have fallen at 90 ° and a stamping of lining is inserted on which a pre-crimping is carried out, then a final crimping flat. It is also necessary to avoid the formation of flakes ("slivers") during the blank cutting operations and trimming after stamping, these flakes can then create appearance defects requiring manual retouching. The design of the cutting tool is important in this regard, and recommendations were made in the article by D. Daniel et al. cited above. After stamping and possibly crimping, the part is covered with one or more layers of paint, each with a baking step. The critical step is the baking of the cataphoresis layer, which is generally done at a temperature between 150 and 200 ° C, for 15 to 30 minutes. In the absence of cataphoresis, the cooking temperature rarely exceeds 170 ° C. The firing of the paintings plays the role of an income treatment of the room. The elastic limit of the part produced with a sheet according to the invention, with baking for 20 min at 165 ° C., is greater than 180 MPa, and more often than 200 MPa. This gives a resistance to indentation with a part made from a 0.9 mm thick sheet dynamic comparable to that of a part produced from a sheet of steelwork of typical bodywork of elastic limit of the order of 250 to 300 MPa and thickness
0,7 mm, ce qui n'est pas le cas pour les autres nuances de 6016.0.7 mm, which is not the case for the other grades of 6016.
Les tôles selon l'invention permettent de réaliser les différentes opérations couramment utilisées pour la fabrication des pièces de peau de carrosserie de voiture, telles que le sertissage, le clinchage, le rivetage, le soudage par point, le soudage laser et le collage. En particulier, il est possible de réaliser le collage de joints sertis, utilisé notamment dans la fabrication des capots, sans appliquer au préalable sur les surfaces un traitement chimique tel qu'une conversion chimique ou une passivation, par exemple à l'aide de composés phospho-chromiques, ou de produits à base de titane, de zirconium ou de silanes.The sheets according to the invention make it possible to carry out the various operations commonly used for the manufacture of car body skin parts, such as crimping, clinching, riveting, spot welding, laser welding and bonding. In particular, it is possible to bond crimped joints, used in particular in the manufacture of covers, without first applying a chemical treatment to the surfaces such as chemical conversion or passivation, for example using compounds phosphochromic, or products based on titanium, zirconium or silanes.
Les pièces réalisées à partir de tôles selon l'invention présentent également après peinture une bonne résistance à la corrosion filiforme, meilleure que celle des alliages à haut cuivre comme le 6111. Pour des raisons économiques, il peut être intéressant d'associer sur un même véhicule des structures en acier et des pièces de peau en aluminium, par exemple pour des ailes, des pavillons ou des ouvrants. Dans le cas d'un tel assemblage, la difficulté majeure réside dans la gestion des différences de dilatation thermique entre les deux matériaux lors de la cuisson des peintures, notamment lors de la cuisson de cataphorèse qui s'effectue généralement entre 160 et 200°C. En effet, il est indispensable de limiter les déformations résiduelles après cuisson à un niveau acceptable pour l'aspect du véhicule.The parts produced from sheets according to the invention also exhibit, after painting, good resistance to filiform corrosion, better than that of high copper alloys such as 6111. For economic reasons, it may be advantageous to combine on the same conveys steel structures and aluminum skin parts, for example for wings, pavilions or openings. In the case of such an assembly, the major difficulty lies in the management of the differences in thermal expansion between the two materials during the curing of the paints, in particular during the curing of cataphoresis which generally takes place between 160 and 200 ° C. . Indeed, it is essential to limit the residual deformation after baking to an acceptable level for the appearance of the vehicle.
Indépendamment de la géométrie des pièces et du mode d'assemblage choisi, les tôles selon l'invention permettent de limiter ces déformations. En effet, la demanderesse a mis en évidence qu'une limite d'élasticité élevée à la température de cuisson, par exemple supérieure à 140 MPa à une température de 160°C pour l'alliage selon l'invention, avait un effet favorable sur le niveau de déformation, si l'assemblage est réalisé après la cuisson, dont il est préférable de limiter la température. D'autres facteurs peuvent également limiter les déformations, par exemple la présence de nervures destinées à raidir le panneau en aluminium, ou l'espacement des points d'assemblage. On peut aussi utiliser un assemblage avec liaison continue comme le collage, avec une polymérisation au moins partielle de la colle avant la cuisson, ou un soudage laser par transparence.Regardless of the geometry of the parts and the method of assembly chosen, the sheets according to the invention make it possible to limit these deformations. Indeed, the Applicant has demonstrated that a high elastic limit at the firing temperature, for example greater than 140 MPa at a temperature of 160 ° C for the alloy according to the invention, had a favorable effect on the level of deformation, if the assembly is carried out after cooking, the temperature of which is preferable. Other factors can also limit deformations, for example the presence of ribs intended to stiffen the aluminum panel, or the spacing of the assembly points. You can also use an assembly with continuous connection like gluing, with at least partial polymerization of the glue before baking, or laser welding by transparency.
ExemplesExamples
Exemple 1Example 1
On a coulé en plaques d'épaisseur 500 mm les 8 alliages A à I dont la composition (% en poids) est indiquée au tableau 1 :The 8 alloys A to I, whose composition (% by weight) is indicated in Table 1, were poured into 500 mm thick plates:
Tableau 1Table 1
La composition A représente un 6016 classique, B correspond à celle de la nuance DR100 de la demanderesse décrite dans les articles mentionnés plus haut, C et D correspondent à un alliage 6111, E à un alliage 6022. F, G, H et I ont des compositions voisines, différant soit par Cu (F), soit par Mn (G et H) de la composition I selon l'invention.Composition A represents a classic 6016, B corresponds to that of the applicant's DR100 grade described in the articles mentioned above, C and D correspond to an alloy 6111, E to an alloy 6022. F, G, H and I have neighboring compositions, differing either by Cu (F) or by Mn (G and H) from composition I according to the invention.
Les plaques ont été scalpées, homogénéisées 10 h à 570°C, puis laminées à chaud directement sur chaleur d'homogénéisation, d'abord sur un lammoir réversible, puis sur un laminoir tandem. La température de début de laminage était de l'ordre deThe plates were scalped, homogenized for 10 h at 570 ° C, then hot-rolled directly on heat of homogenization, first on a reversible dammer, then on a tandem rolling mill. The rolling start temperature was of the order of
540°C, la température de bobinage de la bande à chaud de l'ordre de 310°C. La bande laminée à chaud jusqu'à 3 mm est ensuite laminée à froid jusqu'à l'épaisseur finale de 1 mm. On a effectué un recuit intermédiaire à l'épaisseur 2,5 mm, soit un recuit « batch » en bobine, avec une montée à 350°C en 10 h, une attente de 2 h et un refroidissement lent, soit un recuit « flash » en four continu, avec une montée à 400°C en une minute environ et refroidissement immédiat. Des échantillons prélevés dans les bandes sont mis en solution à une température de540 ° C, the winding temperature of the hot strip on the order of 310 ° C. The hot rolled strip up to 3 mm is then cold rolled to the final thickness of 1 mm. An intermediate annealing was carried out at a thickness of 2.5 mm, ie a “batch” annealing on a coil, with a rise to 350 ° C. in 10 h, a wait of 2 h and a slow cooling, or a “flash annealing” »In a continuous oven, rising to 400 ° C in about one minute and immediate cooling. Samples taken from the strips are dissolved in a temperature of
570°C pendant moins d'une minute, puis trempés à l'eau froide. Un traitement complémentaire de 2 h à 100°C en bain d'huile immédiatement après la trempe, pour simuler un pré-revenu industriel, est appliqué aux échantillons en alliage B, D, F, G,570 ° C for less than a minute, then soaked in cold water. A complementary treatment of 2 h at 100 ° C. in an oil bath immediately after quenching, to simulate an industrial pre-tempering, is applied to the samples of alloy B, D, F, G,
H et l.H and l.
On a mesuré la limite d'élasticité R0>2 sens L (en MPa) après respectivement 3 semaines et 6 mois de maturation à la température ambiante, puis après un traitement de revenu de 30 mn à 165°C ou à 185°C, simulant le traitement de cuisson des peintures. On a mesuré également la formabilité à l'aide du paramètre LDH (en mm), la déformation principale étant respectivement parallèle et perpendiculaire au sens de laminage. Les résultats sont indiqués au tableau 2 :The elastic limit R 0> 2 directions L (in MPa) was measured after 3 weeks and 6 months of maturation respectively at room temperature, then after a 30 min tempering treatment at 165 ° C or 185 ° C , simulating the baking treatment of paints. The formability was also measured using the LDH parameter (in mm), the main deformation being respectively parallel and perpendicular to the direction of rolling. The results are shown in Table 2:
Tableau 2Table 2
On constate que l'échantillon I selon l'invention présente, après maturation de 3 semaines, une limite d'élasticité du même ordre que celle du 6016 classique It is found that the sample I according to the invention exhibits, after 3 weeks maturation, an elastic limit of the same order as that of the conventional 6016
(échantillon A), et nettement inférieure à celle des alliages 6111 (C et D) et 6022 (E).(sample A), and significantly lower than that of alloys 6111 (C and D) and 6022 (E).
Après 6 mois de maturation, le positionnement de la limite élastique de l'échantillon I par rapport aux échantillons des autres alliages n'a pas changé.After 6 months of maturation, the positioning of the elastic limit of sample I in relation to samples of other alloys has not changed.
La formabilité, mesurée par le paramètre LDH, est pratiquement aussi bonne que celle du meilleur alliage, c'est-à-dire le DR100. De plus, les valeurs mesurées duThe formability, measured by the LDH parameter, is practically as good as that of the best alloy, that is to say the DR100. In addition, the measured values of the
LDH dans le sens du laminage et dans le sens perpendiculaire au laminage sont pratiquement identiques, ce qui n'est pas toujours le cas pour les autres échantillons, ce qui permet d'assurer une bonne isotropie au formage.LDH in the rolling direction and in the direction perpendicular to the rolling are practically identical, which is not always the case for the other samples, which ensures good isotropy during forming.
Inversement, la limite d'élasticité de l'échantillon I après cuisson des peintures lorsqu'on a pratiqué un pré-revenu est élevée, nettement supérieure à celle des alliages 6016 et DR 100, du même ordre que celle de l'alliage F plus chargé en cuivre, et se situant entre celles des deux nuances de 6111, ce qui assure une résistance élevée à l'indentation de la pièce finie.Conversely, the elastic limit of sample I after curing the paints when pre-tempering was carried out is high, clearly higher than that of alloys 6016 and DR 100, of the same order as that of alloy F plus loaded with copper, and lying between those of the two shades of 6111, which ensures high resistance to indentation of the finished part.
On a évalué également, sur des tôles d'épaisseur 1 mm, le comportement au sertissage, dans le sens parallèle au laminage et dans le sens perpendiculaire, la résistance à la corrosion filiforme après phosphatation, cataphorèse et peinture, ainsi que l'apparition ou non de paillettes ou de filaments lors de la découpe ou du détourage après emboutissage.The crimping behavior, in the direction parallel to rolling and in the perpendicular direction, the resistance to filiform corrosion after phosphating, cataphoresis and painting, as well as the appearance or no glitter or filaments during cutting or trimming after stamping.
L'essai de sertissage se fait en 3 opérations : tombage des bords à 90°C, présertissage à 45° et sertissage à plat sur une tôle de doublure d'épaisseur 0,7 mm. Les bords sertis sont ensuite classés par inspection visuelle, comme indiqué dans l'article de D. Daniel et al. à IBEC 99. La résistance à la corrosion filiforme est appréciée selon la norme EN 3665, avec des échantillons de dimension 150 x 60 x 1 mm peints et rayés. La procédure d'essai comprend une activation de la corrosion par vapeur d'HCl pendant 1 h, puis une exposition en chambre humide à 40°C pendant 1000 h. On mesure la longueur maximale des filaments de corrosion, avec une moyenne de 3 éprouvettes par cas, avec le classement suivant : < 2 mm : bon 2-5 mm : moyen > 5 mm : mauvais. L'essai de découpe est décrit dans l'article de D. Daniel et al. à IBEC 99 mentionné ci-dessus. Le jeu était de 10% de l'épaisseur et l'angle de découpe de 0°. Les résultats sont regroupés au tableau 3 : Tableau 3The crimping test is carried out in 3 operations: dropping the edges at 90 ° C, pre-crimping at 45 ° and crimping flat on a sheet of liner 0.7 mm thick. The crimped edges are then classified by visual inspection, as indicated in the article by D. Daniel et al. to IBEC 99. The resistance to filiform corrosion is assessed according to standard EN 3665, with samples of dimension 150 x 60 x 1 mm painted and scratched. The test procedure includes activation of HCl vapor corrosion for 1 h, then exposure in a humid chamber at 40 ° C for 1000 h. The maximum length of the corrosion filaments is measured, with an average of 3 test pieces per case, with the following classification: <2 mm: good 2-5 mm: average> 5 mm: bad. The cutting test is described in the article by D. Daniel et al. to IBEC 99 mentioned above. The clearance was 10% of the thickness and the cutting angle of 0 °. The results are collated in Table 3: Table 3
On constate que l'échantillon I présente un comportement satisfaisant en ce qui concerne ces différents critères, ce qui permet de réaliser des pièces de carrosserie présentant un aspect irréprochable.It can be seen that the sample I exhibits satisfactory behavior with regard to these various criteria, which makes it possible to produce body parts having an irreproachable appearance.
Exemple 2Example 2
On a fabriqué des panneaux en alliage d'aluminium de composition indiquée au tableau 4, avec une gamme de fabrication analogue à celle de l'exemple 1, comportant ou non un pré-revenu et un traitement thermique après mise en forme et avant assemblage, comme indiqué également au tableau 4. La dimension des panneaux est de 1 ,6 m x 0,9 m.Aluminum alloy panels of the composition indicated in Table 4 were manufactured, with a manufacturing range similar to that of Example 1, with or without pre-tempering and heat treatment after shaping and before assembly, as also shown in table 4. The size of the panels is 1.6 mx 0.9 m.
Tableau 4 Tableau 4Table 4 Table 4
Pour chaque alliage, on a testé trois panneaux avec des géométries différentes comportant chacun des nervures obtenues par pliage et parallèles au petit côté du rectangle.For each alloy, we tested three panels with different geometries each comprising ribs obtained by folding and parallel to the short side of the rectangle.
Ces panneaux ont été rivetés sur des cadres rectangulaires en acier pour simuler le cas de tôles de peau en alliage d'aluminium sur une structure en acier d'un véhicule. L'assemblage est effectué par rivetage avec un pas de 50 mm sur les côtés longs des rectangles. Après un traitement thermique de 20 mn à 160°C simulant la cuisson de la cataphorèse, on a observé les déformations résiduelles des panneaux. On a mesuré également les caractéristiques mécaniques (résistance à la rupture Rm et limite d'élasticité Ro,2 (en MPa) des panneaux à la température ambiante et à la température de cuisson de 160°C, avec une vitesse de montée en température d'environ 20°C/mn. Les résultats sont indiqués au tableau 5. These panels were riveted to rectangular steel frames to simulate the case of aluminum alloy skin sheets on a steel structure of a vehicle. The assembly is carried out by riveting with a pitch of 50 mm on the long sides of the rectangles. After a heat treatment of 20 min at 160 ° C simulating the cooking of the cataphoresis, the residual deformations of the panels were observed. The mechanical characteristics were also measured (resistance to rupture R m and elastic limit Ro , 2 (in MPa) of the panels at room temperature and at the baking temperature of 160 ° C., with a rate of temperature rise. about 20 ° C / min. The results are shown in Table 5.
Tableau 5Table 5
On constate que l'alliage selon l'invention permet de diminuer les déformations résiduelles après cuisson. La performance des alliages est bien corrélée avec la limite d'élasticité à la température de cuisson. Enfin, un traitement thermique avant assemblage et l'ajout de nervures sont bénéfiques pour réduire les déformations.It is found that the alloy according to the invention makes it possible to reduce the residual deformations after baking. The performance of the alloys is well correlated with the yield strength at the baking temperature. Finally, a heat treatment before assembly and the addition of ribs are beneficial in reducing deformation.
Exemple 3Example 3
On a évalué la résistance à l'indentation dynamique d'une tôle d'épaisseur 1 mm élaborée avec une gamme de fabrication du type de celle de l'exemple 1, comportant un pré-revenu de temps équivalent 5 h, et un traitement thermique de 20 mn à différentes températures simulant une cuisson des peintures, en alliage selon l'invention et en alliage 6016 DR100, en comparaison avec celle d'une tôle en acier de limite d'élasticité 290 MPa après cuisson des peintures, d'épaisseur 0,7 mm. Cette valeur de 290 MPa après cuisson pour la limite d'élasticité d'une tôle d'acier de carrosserie correspond approximativement à la moyenne des limites d'élasticité des tôles d'acier utilisées pour les peaux de carrosserie des voitures européennes récentes les plus courantes. Une épaisseur de 1 mm pour une tôle d'aluminium représente un allongement d'environ 50% par rapport à une tôle en acier d'épaisseur 0,7 mm. Le dispositif utilisé pour l'essai d'indentation comporte un indenteur de diamètre 15 mm et de poids 138 g, lâché d'une hauteur de 1 m, à une vitesse de 16 km/h environ, sur l'échantillon de tôle bridé entre deux plaques d'acier. On mesure la profondeur d'indentation permanente (en mm). Les résultats sont indiqués au tableau 6.The resistance to dynamic indentation of a sheet of thickness 1 mm developed with a manufacturing range of the type of that of Example 1, comprising a pre-tempering equivalent time 5 h, and a heat treatment was evaluated. of 20 min at different temperatures simulating a baking of the paints, an alloy according to the invention and a 6016 DR100 alloy, in comparison with that of a steel sheet of elastic limit 290 MPa after curing the paints, of thickness 0 , 7 mm. This value of 290 MPa after baking for the elastic limit of a body steel sheet corresponds approximately to the average of the elastic limits of the steel sheets used for the skin skins of the most common recent European cars. . A thickness of 1 mm for an aluminum sheet represents an elongation of about 50% compared to a steel sheet 0.7 mm thick. The device used for the indentation test comprises an indentor with a diameter of 15 mm and a weight of 138 g, dropped from a height of 1 m, at a speed of about 16 km / h, on the sample of sheet metal clamped between two steel plates. The depth of permanent indentation is measured (in mm). The results are shown in Table 6.
Tableau 6Table 6
On constate que, pour une température de cuisson des peintures de 185°C, la tôle d'épaisseur 1 mm selon l'invention présente la même résistance à l'indentation qu'e la tôle d'acier 0,7 mm. Pour l'alliage DR100, ceci n'est vrai que pour une température de cuisson des peintures de 205 °C, plus élevée que les températures utilisées habituellement par les constructeurs automobiles. Un alliage plus résistant tel que le 6111 augmenterait la résistance à l'indentation au-delà des besoins du marché, mais au détriment de la formabilité, notamment lors du sertissage. It can be seen that, for a paint baking temperature of 185 ° C., the sheet of thickness 1 mm according to the invention has the same resistance to indentation as that of steel sheet 0.7 mm. For the DR100 alloy, this is only true for a paint curing temperature of 205 ° C, higher than the temperatures usually used by car manufacturers. A more resistant alloy such as 6111 would increase the resistance to indentation beyond the needs of the market, but at the expense of formability, especially during crimping.

Claims

Revendications claims
1. Tôle pour pièce de peau de carrosserie de voiture, d'épaisseur comprise entre 0,8 et 1,2 mm, de composition (% en poids) :1. Sheet for a piece of car body skin, of a thickness between 0.8 and 1.2 mm, of composition (% by weight):
Fe : 0,25 - 0,40 et de préférence : 0,25 - 0,35 Si : 0,90 - 1,20 « « 0,95 - 1,10Fe: 0.25 - 0.40 and preferably: 0.25 - 0.35 Si: 0.90 - 1.20 "" 0.95 - 1.10
Cu : 0,10 - 0,25 « « 0,15 - 0,20Cu: 0.10 - 0.25 "" 0.15 - 0.20
Mg : 0,35 - 0,50 « « 0,40 - 0,50 Mn : 0,05 - 0,20 « « 0,08 - 0,15 autres éléments < 0,05 chacun et < 0,15 au total, reste aluminium, présentant après mise en solution, trempe, pré-revenu ou réversion, et maturation à température ambiante comprise entre 3 semaines et 6 mois, une limite d'élasticité R0;2 sens L inférieure à 160 MPa.Mg: 0.35 - 0.50 "" 0.40 - 0.50 Mn: 0.05 - 0.20 "" 0.08 - 0.15 other elements <0.05 each and <0.15 in total , aluminum residue, having after dissolution, quenching, pre-tempering or reversion, and maturation at room temperature between 3 weeks and 6 months, an elastic limit R 0; 2 directions L less than 160 MPa.
2. Tôle selon la revendication 1, présentant après mise en solution, trempe, prérevenu ou réversion, et maturation à température ambiante comprise entre 3 semaines et 6 mois, une limite d'élasticité R0; sens L inférieure à 150 MPa.2. Sheet according to claim 1, having after dissolution, quenching, pre-income or reversion, and maturation at room temperature between 3 weeks and 6 months, an elastic limit R 0; L direction less than 150 MPa.
3. Tôle selon l'une des revendications 1 ou 2, caractérisée en ce que la mise en solution est faite de sorte que l'aire de pic, dans le domaine 565-580°C d'un diagramme d'analyse enthalpique différentielle, l'essai étant effectué avec une vitesse de montée en température de 20°C/mn, est de moins de 1 J/g.3. Sheet according to one of claims 1 or 2, characterized in that the dissolution is done so that the peak area, in the range 565-580 ° C of a differential enthalpy analysis diagram, the test being carried out with a temperature rise rate of 20 ° C / min, is less than 1 J / g.
4. Tôle selon l'une des revendications 1 à 3, caractérisée en ce que le pré-revenu se fait à une température et une durée telles que le temps équivalent teq défini par la4. Sheet according to one of claims 1 to 3, characterized in that the pre-tempering takes place at a temperature and a duration such that the equivalent time t eq defined by the
relation : t(eq) dans laquelle T et t sont la température en °K et la durée du pré-revenu, et Tref = 373°K, est compris entre 1 et 10 h.relation: t (eq) in which T and t are the temperature in ° K and the duration of the pre-tempering, and T re f = 373 ° K, is between 1 and 10 h.
5. Tôle selon la revendication 4, caractérisée en ce que teq est compris entre 3 h et 6 h. 5. Sheet according to claim 4, characterized in that t eq is between 3 h and 6 h.
6. Tôle selon l'une des revendications 1 à 5 présentant une anisotropie de formabilité LDH0 entre le sens de laminage et le sens perpendiculaire inférieure à 1 mm.6. Sheet according to one of claims 1 to 5 having an anisotropy of LDH 0 formability between the direction of rolling and the perpendicular direction less than 1 mm.
7. Tôle selon la revendication 6, présentant une anisotropie de formabilité LDH0 entre le sens de laminage et le sens perpendiculaire inférieure à 0,6 mm.7. Sheet according to claim 6, having an anisotropy of LDH formability 0 between the direction of rolling and the perpendicular direction less than 0.6 mm.
8. Tôle selon l'une des revendications 1 à 7, caractérisée en ce qu'elle présente une limite d'élasticité mesurée à 160°C supérieure à 140 MPa.8. Sheet according to one of claims 1 to 7, characterized in that it has an elastic limit measured at 160 ° C greater than 140 MPa.
9. Tôle selon l'une des revendications 1 à 8, présentant une taille de grain < 50 μm.9. Sheet according to one of claims 1 to 8, having a grain size <50 microns.
10. Tôle selon l'une des revendications 1 à 9, présentant une surface texturée.10. Sheet according to one of claims 1 to 9, having a textured surface.
11. Tôle selon l'une des revendications 1 à 10 recouverte d'un lubrifiant sec.11. Sheet according to one of claims 1 to 10 covered with a dry lubricant.
12. Pièce de peau de carrosserie réalisée à partir d'une tôle selon l'une des revendications 1 à 11, présentant à l'état mis en solution, trempé, mûri, embouti et revenu par cuisson de peinture une limite d'élasticité Ro,2 (sens L ou TL) >12. Body skin piece made from a sheet according to one of claims 1 to 11, having in the dissolved state, quenched, matured, stamped and tempered by curing with paint an elastic limit Ro , 2 (direction L or TL)>
180 MPa.180 MPa.
13. Pièce de peau de carrosserie selon la revendication 12, présentant à l'état mis en solution, trempé, mûri et revenu par cuisson de peinture une limite d'élasticité R0j2 (sens L ou TL) > 200 MPa.13. Bodywork part according to claim 12, having in the dissolved state, quenched, matured and tempered by curing with paint an elastic limit R 0j2 (direction L or TL)> 200 MPa.
14. Pièce de peau de carrosserie réalisée à partir d'une tôle selon l'une des revendications 1 à 11, caractérisée en ce qu'elle est assemblée sur une structure en acier avant traitement de cuisson des peintures. 14. Body skin piece made from a sheet according to one of claims 1 to 11, characterized in that it is assembled on a steel structure before baking treatment of paints.
EP03712292A 2002-02-05 2003-02-03 Al-si-mg alloy sheet metal for motor car body outer panel Revoked EP1472380B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0201346A FR2835533B1 (en) 2002-02-05 2002-02-05 AL-Si-Mg ALLOY SHEET FOR AUTOMOTIVE BODY SKIN
FR0201346 2002-02-05
PCT/FR2003/000318 WO2003066919A2 (en) 2002-02-05 2003-02-03 Al-si-mg alloy sheet metal for motor car body outer panel

Publications (2)

Publication Number Publication Date
EP1472380A2 true EP1472380A2 (en) 2004-11-03
EP1472380B1 EP1472380B1 (en) 2008-11-05

Family

ID=27619894

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03712292A Revoked EP1472380B1 (en) 2002-02-05 2003-02-03 Al-si-mg alloy sheet metal for motor car body outer panel

Country Status (11)

Country Link
US (1) US20050028894A1 (en)
EP (1) EP1472380B1 (en)
JP (2) JP2005525462A (en)
KR (1) KR100964855B1 (en)
AT (1) ATE413476T1 (en)
AU (1) AU2003216971A1 (en)
CA (1) CA2471501C (en)
DE (2) DE60324526D1 (en)
ES (1) ES2316738T3 (en)
FR (1) FR2835533B1 (en)
WO (1) WO2003066919A2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10324452B4 (en) * 2002-07-01 2010-05-06 Aleris Aluminum Duffel Bvba AI-Mg-Si alloy sheet
EP1533394A1 (en) 2003-11-20 2005-05-25 Alcan Technology &amp; Management Ltd. Car body component
US8109535B2 (en) * 2004-12-13 2012-02-07 Ford Global Technologies Sport utility vehicle (SUV) frame architecture for improved vehicle-to-vehicle compatibility
EP2156945A1 (en) 2008-08-13 2010-02-24 Novelis Inc. Clad automotive sheet product
CN103180471B (en) * 2010-11-05 2016-01-13 阿莱利斯铝业迪弗尔私人有限公司 The method of structural partsof automobiles is manufactured by the Al-Zn alloy of rolling
US9938612B2 (en) 2013-03-07 2018-04-10 Aleris Aluminum Duffel Bvba Method of manufacturing an Al—Mg—Si alloy rolled sheet product with excellent formability
US10150354B2 (en) * 2014-02-21 2018-12-11 Ford Global Technologies, Llc Automotive door structure for sail mounted mirrors
CA2962629C (en) 2014-10-28 2021-03-02 Novelis Inc. Aluminum alloy products and a method of preparation
AU2016206897B2 (en) 2015-01-12 2019-01-17 Novelis Inc. Highly formable automotive aluminum sheet with reduced or no surface roping and a method of preparation
AU2016261193B2 (en) 2015-05-08 2018-11-22 Novelis Inc. Shock heat treatment of aluminum alloy articles
FR3038242B1 (en) 2015-07-02 2017-06-23 Constellium Neuf-Brisach ALUMINUM ALLOY FOR WIRELESS LASER WELDING
JP6792618B2 (en) 2015-12-18 2020-11-25 ノベリス・インコーポレイテッドNovelis Inc. High-strength 6XXX aluminum alloy and its manufacturing method
EP3526352B1 (en) 2016-10-17 2021-09-01 Novelis Inc. Metal sheet with tailored properties
ES2951553T3 (en) 2016-10-27 2023-10-23 Novelis Inc High-strength 6XXX series aluminum alloys and methods of manufacturing the same
CN109890536B (en) 2016-10-27 2022-09-23 诺维尔里斯公司 High strength7XXX series aluminum alloys and methods of making the same
AU2017350512B2 (en) 2016-10-27 2020-02-20 Novelis Inc. Metal casting and rolling line
US10428412B2 (en) * 2016-11-04 2019-10-01 Ford Motor Company Artificial aging of strained sheet metal for strength uniformity
BR112019011314A2 (en) 2016-12-16 2019-10-15 Novelis Inc method for producing an aluminum alloy metal product, and aluminum alloy metal product.
JP6921957B2 (en) 2016-12-16 2021-08-18 ノベリス・インコーポレイテッドNovelis Inc. Aluminum alloy and its manufacturing method
FR3060606B1 (en) * 2016-12-19 2018-12-07 Constellium Neuf-Brisach ALUMINUM ALLOY FOR WIRELESS LASER WELDING
FR3065013B1 (en) * 2017-04-06 2020-08-07 Constellium Neuf-Brisach IMPROVED PROCESS FOR MANUFACTURING AN AUTOMOTIVE BODY STRUCTURE COMPONENT
ES2924683T3 (en) 2017-05-26 2022-10-10 Novelis Inc High-strength, corrosion-resistant 6xxx series aluminum alloys and methods for making the same
JP7096911B2 (en) 2018-05-15 2022-07-06 ノベリス・インコーポレイテッド High-strength 6XXX and 7XXX aluminum alloys and their manufacturing methods
WO2020023367A1 (en) 2018-07-23 2020-01-30 Novelis Inc. Methods of making highly-formable aluminum alloys and aluminum alloy products thereof
CN111334728B (en) * 2018-12-19 2022-04-05 有研工程技术研究院有限公司 Method for improving flanging performance of aluminum alloy plate
US11203801B2 (en) 2019-03-13 2021-12-21 Novelis Inc. Age-hardenable and highly formable aluminum alloys and methods of making the same
EP3839085B1 (en) * 2019-12-17 2023-04-26 Constellium Neuf-Brisach Improved method for manufacturing a structure component for a motor vehicle body
CN115485469A (en) 2020-02-14 2022-12-16 康明斯有限公司 Apparatus, method, system, and technique for misfire detection using an engine speed sensor

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082578A (en) * 1976-08-05 1978-04-04 Aluminum Company Of America Aluminum structural members for vehicles
JPS6289852A (en) * 1985-09-24 1987-04-24 Kobe Steel Ltd Manufacture of aluminum alloy plate having superior burning hardenability
FR2601040B1 (en) * 1986-07-07 1988-09-02 Cegedur SOLDERABLE AND WELDABLE ALUMINUM ALLOY AND MANUFACTURING METHOD THEREOF
JPH0745042B2 (en) * 1990-06-11 1995-05-17 住友軽金属工業株式会社 Aluminum alloy plate having excellent image clarity after painting and method for producing the same
DE4317217A1 (en) * 1993-05-24 1994-12-01 Henkel Kgaa Chrome-free conversion treatment of aluminum
JP3157068B2 (en) * 1993-07-05 2001-04-16 古河電気工業株式会社 Manufacturing method of aluminum alloy sheet for forming
US5919323A (en) * 1994-05-11 1999-07-06 Aluminum Company Of America Corrosion resistant aluminum alloy rolled sheet
JPH0931616A (en) * 1995-07-21 1997-02-04 Nippon Steel Corp Aluminum-magnesium-silicon alloy sheet excellent in formability and its production
NL1002861C2 (en) * 1996-04-15 1997-10-17 Hoogovens Aluminium Nv Method for manufacturing a highly deformable aluminum sheet.
CH690916A5 (en) * 1996-06-04 2001-02-28 Alusuisse Tech & Man Ag Thermaformed and weldable aluminum alloy of the AlMgSi type.
JP3226259B2 (en) * 1996-08-14 2001-11-05 株式会社神戸製鋼所 Aluminum alloy plate excellent in formability, bake hardenability and corrosion resistance and method for producing the same
WO1998014626A1 (en) * 1996-09-30 1998-04-09 Alcan International Limited Aluminium alloy for rolled product process
JPH11269595A (en) * 1998-01-22 1999-10-05 Nippon Steel Corp Automotive magnesium-containing aluminum alloy treated sheet excellent in zinc phosphate treatability and its production
JP3749627B2 (en) * 1998-11-30 2006-03-01 株式会社神戸製鋼所 Al alloy plate with excellent press formability
CA2362978A1 (en) * 1999-03-01 2000-09-08 Alcan International Limited Aa6000 aluminium sheet method
JP4386393B2 (en) * 1999-06-23 2009-12-16 株式会社神戸製鋼所 Aluminum alloy sheet for transport aircraft with excellent corrosion resistance
FR2805282B1 (en) * 2000-02-23 2002-04-12 Gerzat Metallurg A1ZNMGCU ALLOY PRESSURE HOLLOW BODY PROCESS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03066919A2 *

Also Published As

Publication number Publication date
WO2003066919A2 (en) 2003-08-14
AU2003216971A1 (en) 2003-09-02
JP2005525462A (en) 2005-08-25
CA2471501C (en) 2010-05-11
EP1472380B1 (en) 2008-11-05
AU2003216971A8 (en) 2003-09-02
DE60324526D1 (en) 2008-12-18
CA2471501A1 (en) 2003-08-14
DE03712292T1 (en) 2005-03-31
KR100964855B1 (en) 2010-06-24
FR2835533A1 (en) 2003-08-08
US20050028894A1 (en) 2005-02-10
WO2003066919A3 (en) 2004-04-08
JP2009133006A (en) 2009-06-18
ATE413476T1 (en) 2008-11-15
KR20040075980A (en) 2004-08-30
ES2316738T3 (en) 2009-04-16
FR2835533B1 (en) 2004-10-08

Similar Documents

Publication Publication Date Title
EP1472380B1 (en) Al-si-mg alloy sheet metal for motor car body outer panel
FR2926564A1 (en) CLOTHING TOOL
EP2750882B1 (en) Composite aluminium sheet for automotive body shop
EP3303646B1 (en) Metal sheet for a motor vehicle body having high mechanical strength
FR2900663A1 (en) ALUMINUM COMPOSITE
FR2922222A1 (en) Sheet composite material made of aluminum alloy for components of automobile bodywork, comprises a sheet of plating applied on two sides of a core by roll bonding
EP3362282B1 (en) Structural component of a motor vehicle shell offering an excellent compromise between mechanical strength and crash resistance
EP1633900B1 (en) Roof top of a car body made of an al-si-mg sheet metal alloy fixed to a steel frame
WO2020016506A1 (en) Process for manufacturing thin sheets made of 7xxx aluminum alloy suitable for shaping and assembly
FR2816534A1 (en) Manufacture of clad strip used for manufacturing brazed heat exchanger, involves homogenizing plate made of core alloy before rolling
CA3006346A1 (en) Highly rigid thin sheet metal for car body
EP3019637B1 (en) Sheet made of aluminum alloy for the structure of a motor vehicle body
CA3057728A1 (en) Improved method for producing a motor vehicle body structure component
FR2878255A1 (en) Aluminium alloy sheet for the construction of motor vehicles, providing improved safety for pedestrians and other vulnerable road uses in the case of collision
EP4355923A1 (en) Strip made of 6xxx alloy and manufacturing process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040528

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

R17P Request for examination filed (corrected)

Effective date: 20040527

DET De: translation of patent claims
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCAN RHENALU

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60324526

Country of ref document: DE

Date of ref document: 20081218

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WILLIAM BLANC & CIE CONSEILS EN PROPRIETE INDUSTRI

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2316738

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090205

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090406

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090205

26 Opposition filed

Opponent name: ALERIS ALUMINUM DUFFEL BVBA

Effective date: 20090805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090205

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090205

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: ALCAN RHENALU

Free format text: ALCAN RHENALU#17 PLACE DES REFLETS LA DEFENSE 2#92400 COURBEVOIE (FR) -TRANSFER TO- ALCAN RHENALU#17 PLACE DES REFLETS LA DEFENSE 2#92400 COURBEVOIE (FR)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090506

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NOVAGRAAF SWITZERLAND SA;CHEMIN DE L'ECHO 3;1213 ONEX (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CONSTELLIUM FRANCE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 60324526

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 60324526

Country of ref document: DE

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: CONSTELLIUM FRANCE, FR

Effective date: 20111123

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: NOVAGRAAF INTERNATIONAL SA

Ref country code: CH

Ref legal event code: PUE

Owner name: CONSTELLIUM FRANCE SAS

Free format text: ALCAN RHENALU#17 PLACE DES REFLETS LA DEFENSE 2#92400 COURBEVOIE (FR) -TRANSFER TO- CONSTELLIUM FRANCE SAS#40-44, RUE WASHINGTON#75008 PARIS (FR)

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20111103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20081105

Ref country code: CH

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20081105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20120224

Year of fee payment: 10

Ref country code: FR

Payment date: 20120306

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120228

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 60324526

Country of ref document: DE

Effective date: 20120614

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60324526

Country of ref document: DE

Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120223

Year of fee payment: 10

Ref country code: BE

Payment date: 20120227

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60324526

Country of ref document: DE

Owner name: CONSTELLIUM FRANCE, FR

Free format text: FORMER OWNER: ALCAN RHENALU, COURBEVOIE, FR

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 60324526

Country of ref document: DE

Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 60324526

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 60324526

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENTANWAELTE, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 60324526

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE

Effective date: 20120622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120227

Year of fee payment: 10