EP1472345A2 - Metalloproteines - Google Patents

Metalloproteines

Info

Publication number
EP1472345A2
EP1472345A2 EP03713260A EP03713260A EP1472345A2 EP 1472345 A2 EP1472345 A2 EP 1472345A2 EP 03713260 A EP03713260 A EP 03713260A EP 03713260 A EP03713260 A EP 03713260A EP 1472345 A2 EP1472345 A2 EP 1472345A2
Authority
EP
European Patent Office
Prior art keywords
polynucleotide
polypeptide
seq
mepr
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03713260A
Other languages
German (de)
English (en)
Inventor
Amy E. Kable
Jennifer A. Griffin
Ann E. Gorvad
Shanya D. Becha
Thomas W. Richardson
Brooke M. Emerling
David Chien
Pei Jin
Narinder K. Chawla
Henry Yue
Reena Khare
Joseph P. Marquis
Y. Tom Tang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Incyte Corp
Original Assignee
Incyte Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Incyte Corp filed Critical Incyte Corp
Publication of EP1472345A2 publication Critical patent/EP1472345A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/825Metallothioneins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the invention relates to novel nucleic acids, metalloproteins encoded by these nucleic acids, and to the use of these nucleic acids and proteins in the diagnosis, treatment, and prevention of blood disorders, heavy metal toxicity, cancer, and cardiovascular, autoimmune/inflammatory, neurological, metabolic, immune system, lipid and vesicle trafficking disorders.
  • the invention also relates to the assessment of the effects of exogenous compounds on the expression of nucleic acids and metalloproteins.
  • Metalloproteins including metallothioneins, ferritins, globins, and selenium-binding proteins, function in many aspects of metabolism, ranging from detoxification to storage. Mutation of the genes encoding metal-binding proteins can lead to life-threatening disorders, and, where examined, expression of these genes is often tightly regulated in the cell (Aisen, P. et al. (2001) Int. J. Bioch. Cell Bio. 33:940-959).
  • Metallothioneins are a group of small (61 amino acids), cysteine rich proteins that bind heavy metals such as cadmium, zinc, mercury, lead, and copper and are thought to play a role in metal detoxification or the metabolism and homeostasis of metals. They are present in a wide variety of eukaryotes including invertebrates, vertebrates, plants, and fungi. The primary structure of the vertebrate MTs is strongly conserved between species, particularly the positions of the cysteine residues which serve to chelate heavy metal ions via thiolate complexes.
  • MT-I and MT-II are closely related but chromatographically distinct isoforms of MT, MT-I and MT-II. All isoforms of MT sequenced thus far share 20 cysteine residues found in the same positions and lack aromatic amino acids or leucine (Schmidt, C.J. and D.H. Hamer (1983) Gene 24:137-146; Schmidt, C.J. et al. (1985) J. Biol Chem. 260:7731-7737).
  • MT-II isoforms differ from MT-I only in the presence of an aspartate residue at position 10 or 11 while MT-I contains either glycine or valine at these positions.
  • MT-0 a third class of MT, MT-0, has been discovered in human liver that is characterized by a negatively charged amino acid at position 8 (glutamate) and a lysine substitution at the highly conserved Glu 23 (Soumillion, A. et al. (1992) Eur. J. Biochem. 209:999-1004)
  • MT-0 and MT-II are highly conserved amino acids at position 8
  • MT-II a single sequence of MT-0 and MT-II have been found, while at least six isoforms of MT-I have been identified .
  • These various isoforms of MT-I differ only by a few residues distributed throughout the molecule.
  • the localization and identification of 12 functional MT genes on human chromosome 16 indicates that several additional MT isoforms exist.
  • MTs may play a role in the prevention or alleviation of these conditions.
  • MTs are transcriptionally regulated by glucocorticoids which suggests that MTs have a direct role in the effects of glucocorticoids to treat inflammatory disease, immune disorders, and cancer.
  • Metal ions such as iron, zinc, copper, cobalt, manganese, molybdenum, selenium, nickel, and chromium are important as cofactors for a number of enzymes.
  • copper is involved in hemoglobin synthesis, connective tissue metabolism, and bone development, by acting as a cof actor in oxidoreductases such as superoxide dismutase, ferroxidase (ceruloplasmin), and lysyl oxidase.
  • Copper and other metal ions must be provided in the diet, and are absorbed by transporters in the gastrointestinal tract. Plasma proteins transport the metal ions to the liver and other target organs, where specific transporters move the ions into cells and cellular organelles as needed. Imbalances in metal ion metabolism have been associated with a number of disease states (Danks, D.M. (1986) J. Med. Genet. 23:99-106).
  • Iron-overloading is also the cause of hereditary hemochromatosis, a disorder that leads to death if left untreated. Iron metabolism requires functioning iron-transporter proteins, such as transferrins, as well as iron storage proteins, such as ferritin. Transferrins are eukaryotic iron-binding glycoproteins that control the level of free iron in biological fluids (Crichton, R.R. and M. Charloteaux-Wauters (1987) Eur. J. Biochem. 164:485-506).
  • Transferrin family members are proteins of 650 to 700 residues which have evolved from the duplication of a domain of around 340 residues. Each of the duplicated domains binds one atom of iron. Each iron atom is bound by four conserved residues: an aspartic acid, two tyrosines, and a histidine (Anderson, B.F. et al. (1989) J. Mol. Biol. 209:711-734).
  • the importance of the function of the transferrins in maintaining homeostasis of the mechanisms regulating iron absorption and transport is appropriately illustrated in conditions which result from iron overload. Briefly described, iron overload occurs when transferrin fails to bind all of the nonheme iron in the circulation.
  • Atransferrinemia (also called hypotransferrinemia) is a condition caused by a genetic mutation that causes severe deficiency in plasma transferrin, resulting in massive deposition of iron in non-hematopoietic tissues. The consequence of this condition is severe iron deficiency anemia leading to death from liver failure (for a review of genetics of iron storage, see Beutler, E.
  • Ferritin is a ubiquitous iron-binding protein that is involved in iron storage and detoxification in microbes, plants, and animals.
  • Mammalian ferritin consists of 24 subunits of two types, H (for heart, or heavy) and L (for light or liver). These subunits assemble into a spherical structure which can accommodate up to 4,000 iron atoms as ferrihydrite, FeOOH (Aisen, P. et al. (1999) Curr. Opin. Chem. Biol. 3:200-206).
  • Ferritin expression is regulated at the post-transcriptional level in response to intracellular iron levels.
  • iron regulatory proteins bind to iron responsive elements of ferritin mRNA, preventing translation of the protein.
  • IRPs iron regulatory proteins
  • Globins are heme-binding proteins found in all living systems, from bacteria to plants to animals.
  • Hemoglobin and myoglobin, globins that transport and store oxygen respectively are composed of a protein moiety, the globin part, and a heme group, a complex of iron with a porphyrin ring. It is the iron ion, in the 2+ oxidation state, that allows for the reversible binding of oxygen to the heme.
  • Mutation of globin genes gives rise to serious, and often lethal, disorders such as sickle-cell anemia, which is characterized by chronic hemolytic anemia, severe pain and tissue damage that can lead to stroke, kidney failure, heart disease, infection and other complications (Bunn, H. F. and Forget, B. G. (1986) Hemoglobin: Molecular, Genetic and Clinical Aspects (Saunders, Philadelphia)). Mutations that affect gene expression levels are equally serious, and give rise to thalassemias.
  • Hemoglobin a 17.8 KDa monomeric protein, is found in red muscle and is used to store oxygen.
  • Hemoglobin the carrier protein that delivers oxygen from the lungs to respiring tissues, is a heterotetramer composed of pairs of globin subunits. The four subunits work together leading to cooperative binding of oxygen, conferring on hemoglobin its transport capacity. Hemoglobin is highly expressed in red blood cells, yielding a concentration of 15 g per 100 ml of normal blood (Hardison, R. C. (1996) 93:5675-5679).
  • the individual globin polypeptides, or globin chains, in hemoglobin are developmentally regulated, ⁇ - and ⁇ -globin make up adult human hemoglobin, are about 50% identical and arose through duplication and mutation of an ancestral globin gene.
  • the ⁇ -globin gene subsequently underwent further duplication events to give rise to ⁇ -globin, ⁇ -globin and ⁇ -globin genes.
  • Embryonic hemoglobin is composed of a and ⁇ -globin
  • fetal hemoglobin is composed of ⁇ - and ⁇ -globin
  • ⁇ - globin is expressed starting shortly before birth and combines with ⁇ -globin to form the adult form of hemoglobin
  • ⁇ - and ⁇ -globin are adapted to the needs of the fetus: they have higher affinities for oxygen, facilitating the transfer of oxygen from the mother to the fetus
  • Hemoglobin production is also tightly coordinated to ensure proper oxygen transport and delivery.
  • Globin gene expression is carefully regulated to avoid producing excess unmatched globin chains, which can affect the material properties of red blood cell membranes and the state of red blood cell hydration, inducing thalassemia (Schrier, S. L. (1994) Annu. Rev. Med. 45:211-218).
  • the ⁇ - and ⁇ -like globins on chromosome 11 are coordinately regulated along with the ⁇ - globin genes located on chromosome 16. This regulation involves sequential activation and silencing of globin genes in erythroid cells, and is carried out by multiple cis- and trans-acting factors (Kollia, P. et al. (1996) Proc. Natl. Acad. Sci. USA 93:5693-5698).
  • Selenium is a micronutrient that has been implicated in cancer prevention by reducing the number of DNA adducts by carcinogens (Harrison, P.R. et al. (1997) Biomed. Environ. Sci. 10:235- 245).
  • selenium-containing proteins can be divided into three classes: proteins that incorporate selenium in a non-specific manner, selenocysteine-containing selenoproteins, and specific selenium-binding proteins, such as glutathione peroxidase (Behne, D. and A. Kyriakopoulos (2001) Annu. Rev. Nutr. 21:453-473).
  • UGA serves as either a signal for termination or as a codon for selenocysteine (Sec).
  • Sec differs from other amino acids in much of the biosynthetic machinery governing its incorporation into protein.
  • Sec-containing proteins have diverse functions. The more recently evolved selenoproteins appear to take advantage of unique redox properties of Sec that are superior to those of Cys for specific biological functions (Gladyshev N.N. and Kryukov G.N. (2001) Biofactors 14:87-92).
  • Selenium-binding proteins are thought to mediate the inhibitory effects of selenium on growth in mammalian cells and tumorigenesis in rodents.
  • selenium-binding proteins have been identified in mouse, rat and human, and are expressed in tissues involved in detoxification, such as the liver (Bansal, M.P. et al. (1989) Carcinogenesis 10:541-546; Bansal, M.P. et al. (1989) J. Biol. Chem. 264:13780-13784).
  • selenium-binding proteins were also found in blood, duodenum, kidney, pancreas testis, ovary and in mammary tumors (Morrison, D.G. et al. (1989) In Nivo 3:167-172).
  • a 56 kDa selenium-binding protein is expressed in liver, kidney and lung tissue.
  • Microarrays are analytical tools used in bioanalysis.
  • a microarray has a plurality of molecules spatially distributed over, and stably associated with, the surface of a solid support.
  • Microarrays of polypeptides, polynucleotides, and/or antibodies have been developed and find use in a variety of applications, such as gene sequencing, monitoring gene expression, gene mapping, bacterial identification, drug discovery, and combinatorial chemistry.
  • array technology can provide a simple way to explore the expression of a single polymorphic gene or the expression profile of a large number of related or unrelated genes.
  • arrays are employed to detect the expression of a specific gene or its variants.
  • arrays provide a platform for identifying genes that are tissue specific, are affected by a substance being tested in a toxicology assay, are part of a signaling cascade, carry out housekeeping functions, or are specifically related to a particular genetic predisposition, condition, disease, or disorder.
  • both the levels and sequences expressed in tissues from subjects with obesity or type II diabetes may be compared with the levels and sequences expressed in normal tissue.
  • the primary function of adipose tissue is the ability to store and release fat during periods of feeding and fasting.
  • White adipose tissue is the major energy reserve in periods of fasting, and its reserve is mobilized during energy deprivation.
  • Adipose tissue is one of the primary target tissues for insulin, and adipogenesis and insulin resistance are linked in type II diabetes, non-insulin dependent diabetes meUitus (NIDDM). Cytologically the conversion of a preadipocytes into mature adipocytes is characterized by deposition of fat droplets around the nuclei.
  • adipose tissue The most important function of adipose tissue is its ability to store and release fat during periods of feeding and fasting. White adipose tissue is the major energy reserve in periods of excess energy use. Its primary purpose is mobilization during energy deprivation. Understanding how various molecules regulate adiposity and energy balance in physiological and pathophysiological situations may lead to the development of novel therapeutics for human obesity.
  • Adipose tissue is also one of the important target tissues for insulin. Adipogenesis and insulin resistance in type II diabetes are linked and present interesting relations. Most patients with type II diabetes are obese and obesity in turn causes insulin resistance. The majority of research in adipocyte biology to date has been done using transformed mouse preadipocyte cell lines. The culture condition which stimulates mouse preadipocyte differentiation is different from that for inducing human primary preadipocyte differentiation. In addition, primary cells are diploid and may therefore reflect the in vivo context better than aneuploid cell lines. Understanding the gene expression profile during adipogenesis in humans will lead to understanding the fundamental mechanism of adiposity regulation. Furthermore, through comparing the gene expression profiles of adipogenesis between donor with normal weight and donor with obesity, identification of crucial genes, potential drug targets for obesity and type II diabetes, will be possible.
  • NIDDM neurodegenerative disease 2019
  • Steps in this process are highly correlated with long-term lifestyle and environment and include: 1) high glucose stimulation of insulin and cytokine production, 2) influence of various cytokines on tissue remodeling during adipocyte differentiation and their affect on signaling pathways, and 3) occurrence of tissue damage when cytokines continue to be produced, extracellular matrix components (ECM) are not recycled, and homeostasis is not timely restored.
  • ECM extracellular matrix components
  • the potential application of gene expression profiling is also relevant to improving diagnosis, prognosis, and treatment of cancer, such as breast, colon, ovarian and lung cancer.
  • Breast cancer is the most frequently diagnosed type of cancer in American women and the second most frequent cause of cancer death.
  • the lifetime risk of an American woman developing breast cancer is 1 in 8, and one-third of women diagnosed with breast cancer die of the disease.
  • a number of risk factors have been identified, including hormonal and genetic factors.
  • One genetic defect associated with breast cancer results in a loss of heterozygosity (LOH) at multiple loci such as p53, Rb, BRCA1, and BRCA2.
  • Another genetic defect is gene amplification involving genes such as c-myc and c-erbB2 (Her2-neu gene).
  • Breast cancer evolves through a multi-step process whereby premalignant mammary epithelial cells undergo a relatively defined sequence of events leading to tumor formation.
  • An early event in tumor development is ductal hyperplasia.
  • Cells undergoing rapid neoplastic growth gradually progress to invasive carcinoma and become metastatic to the lung, bone, and potentially other organs.
  • Variables that may influence the process of tumor progression and malignant transformation include genetic factors, environmental factors, growth factors, and hormones.
  • Colorectal cancer is the fourth most common cancer and the second most common cause of cancer death in the United States with approximately 130,000 new cases and 55,000 deaths per year. Colon and rectal cancers share many environmental risk factors and both are found in individuals with specific genetic syndromes. (See Potter (1999) J Natl Cancer Institute 91:916-932 for a review of colorectal cancer.) Colon cancer is the only cancer that occurs with approximately equal frequency in men and women, and the five-year survival rate following diagnosis of colon cancer is around 55% in the United States (Ries et al. (1990) National Institutes of Health, DHHS Publ No. (NIH)90-2789). Colon cancer is causally related to both genes and the environment.
  • Ovarian cancer is the leading cause of death from a gynecologic cancer.
  • the majority of ovarian cancers are derived from epithelial cells, and 70% of patients with epithelial ovarian cancers present with late-stage disease. As a result, the long-term survival rates for this disease is very low.
  • ovarian cancer Identification of early-stage markers for ovarian cancer would significantly increase the survival rate. Genetic variations involved in ovarian cancer development include mutation of p53 and microsateUite instability. Gene expression patterns likely vary when normal ovary is compared to ovarian tumors. Lung cancer is the leading cause of cancer death in the United States, affecting more than 100,000 men and 50,000 women each year. Nearly 90% of the patients diagnosed with lung cancer are cigarette smokers. Tobacco smoke contains thousands of noxious substances that induce carcinogen metabolizing enzymes and covalent DNA adduct formation in the exposed bronchial epithelium. In nearly 80% of patients diagnosed with lung cancer, metastasis has already occurred. Most commonly lung cancers metastasize to pleura, brain, bone, pericardium, and liver.
  • Non Small Cell Lung Carcinoma Squamous cell carcinomas
  • Adenocarcinomas typically arise in the peripheral airways and often form mucin secreting glands.
  • Squamous cell carcinomas typically arise in proximal airways.
  • the histogenesis of squamous cell carcinomas may be related to chronic inflammation and injury to the bronchial epithelium, leading to squamous metaplasia.
  • SCLC Small Cell Lung Carcinoma
  • Osteosarcoma is the most common malignant bone tumor in children. Approximately 80% of patients present with non-metastatic disease. After the diagnosis is made by an initial biopsy, treatment involves the use of 3-4 courses of neoadjuvant chemotherapy before definitive surgery, followed by post-operative chemotherapy. With currently available treatment regimens, approximately 30-40% of patients with non-metastatic disease relapse after therapy. Currently, there is no prognostic factor that can be used at the time of initial diagnosis to predict which patients will have a high risk of relapse. The only significant prognostic factor predicting the outcome in a patient with non-metastatic osteosarcoma is the histopathologic response of the primary tumor resected at the time of definitive surgery.
  • the degree of necrosis in the primary tumor is a reflection of the tumor response to neoadjuvant chemotherapy.
  • a higher degree of necrosis (good or favorable response) is associated with a lower risk of relapse and a better outcome.
  • Patients with a lower degree of necrosis (poor or unfavorable response) have a much higher risk of relapse and poor outcome even after complete resection of the primary tumor.
  • poor outcome cannot be altered despite modification of post-operative chemotherapy to account for the resistance of the primary tumor to neoadjuvant chemotherapy.
  • prognostic factors that can be used at the time of diagnosis to recognize the subtypes of osteosarcomas that have various risks of relapse, so that more appropriate chemotherapy can be used at the outset to improve the outcome.
  • Prostate cancer develops through a multistage progression ultimately resulting in an aggressive tumor phenotype.
  • the initial step in tumor progression involves the hyperproliferation of normal luminal and/or basal epithelial cells. Androgen responsive cells become hyperplastic and evolve into early-stage tumors. Although early-stage tumors are often androgen sensitive and respond to androgen ablation, a population of androgen independent cells evolve from the hyperplastic population. These cells represent a more advanced form of prostate tumor that may become invasive and potentially become metastatic to the bone, brain, or lung.
  • a variety of genes may be differentially expressed during tumor progression. For example, loss of heterozygosity (LOH) is frequently observed on chromosome 8p in prostate cancer.
  • LHO loss of heterozygosity
  • Fluorescence in situ hybridization revealed a deletion for at least 1 locus on 8p in 29 (69%) tumors, with a significantly higher frequency of the deletion on 8p21.2-p21.1 in advanced prostate cancer than in localized prostate cancer, implying that deletions on 8p22-p21.3 play an important role in tumor differentiation, while 8p21.2-p21.1 deletion plays a role in progression of prostate cancer (Oba, K. et al. (2001) Cancer Genet. Cytogenet. 124: 20-26).
  • Tangier disease is a genetic disorder characterized by near absence of circulating high density lipoprotein (HDL) and the accumulation of cholesterol esters in many tissues, including tonsils, lymph nodes, liver, spleen, thymus, and intestine.
  • Low levels of HDL represent a clear predictor of premature coronary artery disease and homozygous TD correlates with a four- to six-fold increase in cardiovascular disease compared to controls.
  • HDL plays a cardio-protective role in reverse cholesterol transport, the flux of cholesterol from peripheral cells such as tissue macrophages through plasma lipoproteins to the liver.
  • the HDL protein, apolipoprotein A-I plays a major role in this process, interacting with the cell surface to remove excess cholesterol and phospholipids. This pathway is severely impaired in TD and the defect lies in a specific gene, the ABCl transporter. This gene is a member of the family of ATP-binding cassette transporters, which utilize ATP hydrolysis to transport a variety of substrates across membranes.
  • Human umbilical vein endothelial cells are a primary cell line derived from the endothelium of the human umbilical vein. Activation of vascular endothelium is a central event in a wide range of physiological and disease processes such as vascular tone regulation, coagulation and thrombosis, atherosclerosis, inflammation and some infectious diseases. Blood vessel walls are composed of two tissue layers: an endothelial cell (EC) layer which comprises the lumenal surface of the vessel, and an underlying vascular smooth muscle cell (VSMC) layer.
  • EC endothelial cell
  • VSMC vascular smooth muscle cell
  • the vascular endothelium and smooth muscle tissues maintain vascular tone, control selective permeability of the vascular wall, direct vessel remodeling and angiogenesis, and modulate inflammatory and immune responses.
  • the inflammatory response is a complex vascular reaction mediated by numerous cytokines, chemokines, growth factors, and other signaling molecules expressed by activated ECs, VSMCs and leukocytes. Inflammation protects the organism during trauma and infection, but can also lead to pathological conditions such as atherosclerosis.
  • PBMCs Human peripheral blood mononuclear cells
  • PBMCs contain about 12% B lymphocytes, 25% CD4+ and 15% CD8+ lymphocytes, 20% NK cells, 25% monocytes, and 3% various cells that include dendritic cells and progenitor cells.
  • the proportions, as well as the biology of these cellular components tend to vary slightly between healthy individuals, depending on factors such as age, gender, past medical history, and genetic background.
  • the human C3A cell line is a clonal derivative of HepG2/C3 (hepatoma cell line, isolated from a 15-year-old male with liver tumor), which was selected for strong contact inhibition of growth.
  • the use of a clonal population enhances the reproducibility of the cells.
  • C3 A cells have many characteristics of primary human hepatocytes in culture: i) expression of insulin receptor and insulinlike growth factor II receptor; ii) secretion of a high ratio of serum albumin compared with ⁇ - fetoprotein iii) conversion of ammonia to urea and glutamine; iv) metabolism of aromatic amino acids; and v) proliferation in glucose-free and insulin-free medium.
  • the C3A cell line is now well established as an in vitro model of the mature human liver (Mickelson et al. (1995) Hepatology 22:866- 875; Nagendra et al. (1997) Am J Physiol 272:G408-G416).
  • Primary prostate epithelial cells is a line derived from primary prostate epithelial cells isolated from a normal donor Drug treatment
  • TNF- ⁇ also called cachectin, is produced by neutrophils, activated lymphocytes, macrophages, NK cells, LAK cells, astrocytes, endothelial cells, smooth muscle cells, and some transformed cells.
  • TNF- ⁇ occurs as a secreted, soluble form and as a membrane-anchored form, both of which are biologically active.
  • Two types of receptors for TNF- ⁇ have been described and virtually all cell types studied show the presence of one or both of these receptor types.
  • TNF- ⁇ and TNF- ⁇ are extremely pleiotropic fac-tors due to the ubiquity of their receptors, to their ability to activate multiple signal transduction path-ways and to their ability to induce or suppress the expression of a wide number of genes.
  • TNF- ⁇ and TNF- ⁇ play a critical role in mediation of the inflammatory response and in mediation of resistance to infections and tumor growth. It is likely that the serum TNF- ⁇ concentration can serve as a biomarker for staging the invasiveness of breast cancer.
  • TNF- ⁇ treatment in combination with Interferon-gamma (IFN- ⁇ ) may provide a successful approach to overcome the cellular heterogeneity of advanced breast tumors.
  • IFN- ⁇ Interferon-gamma
  • TNF- ⁇ has been demonstrated to be antitumorigenic in MCF-7 cells by inducing apoptosis and inhibiting proliferation.
  • EGF Epidermal Growth Factor
  • FGF Fibroblast Growth Factor
  • TGF ⁇ Tumor Growth Factor alpha
  • Dexamethasone is a synthetic glucocorticoid used in anti-inflammatory or immunosuppressive compositions. It is also used in inhalants to prevent symptoms of asthma. Due to its greater ability to reach the central nervous system, dexamethasone is usually the treatment of choice to control cerebral edema. Dexamethasone is approximately 20-30 times more potent than hydrocortisone and 5-7 times more potent than prednisone.
  • Gemfibrozil is a fibric acid antilipemic agent that lowers serum triglycerides and produces favorable changes in lipoproteins.
  • Gemfibrozil is effective in reducing the risk of coronary heart disease in men (Frick, M.H., et al. (1987) New Engl. J. Med; 317:1237-1245).
  • the compound can inhibit peripheral lipolysis and decrease hepatic extraction of free fatty acids, which, decreases hepatic triglyceride production.
  • Gemfibrozil also inhibits the synthesis and increases the clearance of apolipoprotein B, a carrier molecule for VLDL.
  • Gemfibrozil has variable effects on LDL cholesterol.
  • the HMG- CoA reductase inhibitors are more effective than gemfibrozil in reducing LDL cholesterol.
  • gemfibozil may function as a peroxisome proliferator-activated receptor (PPAR) agonist.
  • PPAR peroxisome proliferator-activated receptor
  • Gemfibrozil is rapidly and completely absorbed from the GI tract and undergoes enterohepatic recirculation.
  • Gemfibrozil is metabolized by the liver and excreted by the kidneys, mainly as metabolites, one of which possesses pharmacologic activity.
  • Gemfibozil causes peroxisome proliferation and hepatocarcinogenesis in rats, which is a cause for concern generally for fibric acid derivative drugs.
  • fibric acid derivatives are known to increase the risk of gall bladder disease although gemfibrozil is better tolerated than other fibrates.
  • the relative safety of gemfibrozil in humans compared to rodent species including rats may be attributed to differences in metabolism and clearance of the compound in different species (Dix, K.J., et al., (1999) Drug Metab. Distrib. 27 (1) 138-146; Thomas, B.F., et al., (1999) Drug Metab. Distrib. 27 (1) 147-157).
  • compositions including nucleic acids and proteins, for the diagnosis, prevention, and treatment of blood disorders, heavy metal toxicity, cancer, and cardiovascular, autoimmune/inflammatory, neurological, metabolic, immune system, lipid and vesicle trafficking disorders.
  • Various embodiments of the invention provide purified polypeptides, metalloproteins, referred to collectively as 'MEPR' and individually as 'MEPR-1,' 'MEPR-2,' 'MEPR-3,' 'MEPR-4,' 'MEPR- 5,' 'MEPR-6,' 'MEPR-7,' and 'MEPR-8 ' and methods for using these proteins and their encoding polynucleotides for the detection, diagnosis, and treatment of diseases and medical conditions.
  • Embodiments also provide methods for utilizing the purified metalloproteins and/or their encoding polynucleotides for facilitating the drug discovery process, including determination of efficacy, dosage, toxicity, and pharmacology.
  • Related embodiments provide methods for utilizing the purified metalloproteins and/or their encoding polynucleotides for investigating the pathogenesis of diseases and medical conditions.
  • An embodiment provides an isolated polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-8, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-8, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-8, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-8.
  • Another embodiment provides an isolated polypeptide comprising an amino acid sequence of SEQ ID NO:l-8.
  • Still another embodiment provides an isolated polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:l-8, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l-8, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-8, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-8.
  • the polynucleotide encodes a polypeptide selected from the group consisting of SEQ ID NO:l-8.
  • the polynucleotide is selected from the group consisting of SEQ ID NO:9-16.
  • Still another embodiment provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-8, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l-8, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-8, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-8.
  • Another embodiment provides a cell transformed with the recombinant polynucleotide.
  • Yet another embodiment provides a transgenic organism comprising the recombinant polynucleotide.
  • Another embodiment provides a method for producing a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-8, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-8, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-8, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-8.
  • the method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.
  • Yet another embodiment provides an isolated antibody which specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:l-8, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-8, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-8, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-8.
  • Still yet another embodiment provides an isolated polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:9-16, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:9-16, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d).
  • the polynucleotide can comprise at least about 20, 30, 40, 60, 80, or 100 contiguous nucleotides.
  • Yet another embodiment provides a method for detecting a target polynucleotide in a sample, said target polynucleotide being selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:9-16, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:9-16, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d).
  • a target polynucleotide being selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence
  • the method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex.
  • the method can include detecting the amount of the hybridization complex.
  • the probe can comprise at least about 20, 30, 40, 60, 80, or 100 contiguous nucleotides.
  • Still yet another embodiment provides a method for detecting a target polynucleotide in a sample, said target polynucleotide being selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:9-16, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:9-16, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d).
  • a target polynucleotide being selected from the group consisting of a) a polynucleotide comprising a polynucleotide
  • the method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof.
  • the method can include detecting the amount of the amplified target polynucleotide or fragment thereof.
  • compositions comprising an effective amount of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:l-8, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l-8, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-8, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-8, and a pharmaceutically acceptable excipient.
  • the composition can comprise an amino acid sequence selected from the group consisting of SEQ ID NO:l-8.
  • Other embodiments provide a method of treating a disease or condition associated with decreased or abnormal expression of functional MEPR, comprising administering to a patient in need of such treatment the composition.
  • Yet another embodiment provides a method for screening a compound for effectiveness as an agonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:l-8, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l-8, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-8, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-8.
  • the method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample.
  • Another embodiment provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient.
  • Yet another embodiment provides a method of treating a disease or condition associated with decreased expression of functional MEPR, comprising administering to a patient in need of such treatment the composition.
  • Still yet another embodiment provides a method for screening a compound for effectiveness as an antagonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-8, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-8, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-8, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-8.
  • the method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample.
  • Another embodiment provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient.
  • Yet another embodiment provides a method of treating a disease or condition associated with overexpression of functional MEPR, comprising administering to a patient in need of such treatment the composition.
  • Another embodiment provides a method of screening for a compound that specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:l-8, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-8, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-8, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-8.
  • the method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.
  • Yet another embodiment provides a method of screening for a compound that modulates the activity of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:l-8, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l-8, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-8, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-8.
  • the method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.
  • Still yet another embodiment provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a polynucleotide sequence selected from the group consisting of SEQ ID NO:9-16, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, b) detecting altered expression of the target polynucleotide, and c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.
  • Another embodiment provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:9-16, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:9-16, iii) a polynucleotide having a sequence complementary to i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)
  • Hybridization occurs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:9-16, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:9-16, iii) a polynucleotide complementary to the polynucleotide of i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv).
  • the target polynucleotide can comprise a fragment of a polynucleotide selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.
  • Table 2 shows the GenBank identification number and annotation of the nearest GenBank homolog, and the PROTEOME database identification numbers and annotations of PROTEOME database homologs, for polypeptide embodiments of the invention. The probability scores for the matches between each polypeptide and its homolog(s) are also shown.
  • Table 3 shows structural features of polypeptide embodiments, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of the polypeptides.
  • Table 4 lists the cDNA and/or genomic DNA fragments which were used to assemble polynucleotide embodiments, along with selected fragments of the polynucleotides.
  • Table 5 shows representative cDNA libraries for polynucleotide embodiments.
  • Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA libraries shown in Table 5.
  • Table 7 shows the tools, programs, and algorithms used to analyze polynucleotides and polypeptides, along with applicable descriptions, references, and threshold parameters.
  • Table 8 shows single nucleotide polymorphisms found in polynucleotide sequences of the invention, along with allele frequencies in different human populations. DESCRIPTION OF THE INVENTION
  • a host ceU includes a plurality of such host ceUs
  • an antibody is a reference to one or more antibodies and equivalents thereof known to those skiUed in the art, and so forth.
  • MEPR refers to the amino acid sequences of substantiaUy purified MEPR obtained from any species, particularly a mammaUan species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.
  • agonist refers to a molecule which intensifies or mimics the biological activity of MEPR.
  • Agonists may include proteins, nucleic acids, carbohydrates, smaU molecules, or any other compound or composition which modulates the activity of MEPR either by directly interacting with MEPR or by acting on components of the biological pathway in which MEPR participates.
  • AUeUc variant is an alternative form of the gene encoding MEPR.
  • AUeUc variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered.
  • a gene may have none, one, or many aUeUc variants of its naturaUy occurring form.
  • Common mutational changes which give rise to aUeUc variants are generaUy ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.
  • altered nucleic acid sequences encoding MEPR include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as MEPR or a polypeptide with at least one functional characteristic of MEPR. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oUgonucleotide probe of the polynucleotide encoding MEPR, and improper or unexpected hybridization to aUeUc variants, with a locus other than the normal chromosomal locus for the polynucleotide encoding MEPR.
  • the encoded protein may also be "altered,” and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionaUy equivalent MEPR.
  • DeUberate amino acid substitutions may be made on the basis of one or more similarities in polarity, charge, solubiUty, hydrophobicity, hydrophiUcity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of MEPR is retained.
  • negatively charged amino acids may include aspartic acid and glutamic acid
  • positively charged amino acids may include lysine and arginine.
  • Amino acids with uncharged polar side chains having similar hydrophiUcity values may include: asparagine and glutamine; and serine and threonine. Amino acids with uncharged side chains having similar hydrophiUcity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.
  • amino acid and amino acid sequence can refer to an oUgopeptide, a peptide, a polypeptide, or a protein sequence, or a fragment of any of these, and to naturaUy occurring or synthetic molecules.
  • amino acid sequence is recited to refer to a sequence of a naturally occurring protein molecule, “amino acid sequence” and Uke terms are not meant to Umit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.
  • AmpUfication relates to the production of additional copies of a nucleic acid. AmpUfication may be carried out using polymerase chain reaction (PCR) technologies or other nucleic acid ampUfication technologies weU known in the art.
  • PCR polymerase chain reaction
  • antagonists refers to a molecule which inhibits or attenuates the biological activity of MEPR. Antagonists may include proteins such as antibodies, anticalins, nucleic acids, carbohydrates, smaU molecules, or any other compound or composition which modulates the activity of MEPR either by directly interacting with MEPR or by acting on components of the biological pathway in which MEPR participates.
  • antibody refers to intact immunoglobulin molecules as weU as to fragments thereof, such as Fab, F(ab') 2 , and Fv fragments, which are capable of binding an epitopic determinant.
  • Antibodies that bind MEPR polypeptides can be prepared using intact polypeptides or using fragments containing smaU peptides of interest as the immunizing antigen.
  • the polypeptide or oUgopeptide used to immunize an animal e.g., a mouse, a rat, or a rabbit
  • an animal e.g., a mouse, a rat, or a rabbit
  • an animal e.g., a mouse, a rat, or a rabbit
  • Commonly used carriers that are chemicaUy coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH).
  • the coupled peptide is then used to immunize the animal.
  • the term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody.
  • an antigenic determinant may compete with the intact antigen (i.e., the immunogen used to eUcit the immune response) for binding to an antibody.
  • aptamer refers to a nucleic acid or oUgonucleotide molecule that binds to a specific molecular target.
  • Aptamers are derived from an in vitro evolutionary process (e.g., SELEX (Systematic Evolution of Ligands by Exponential Enrichment), described in U.S. Patent No. 5,270,163), which selects for target-specific aptamer sequences from large combinatorial Ubraries.
  • Aptamer compositions may be double-stranded or single-stranded, and may include deoxyribonucleotides, ribonucleotides, nucleotide derivatives, or other nucleotide-Uke molecules.
  • the nucleotide components of an aptamer may have modified sugar groups (e.g., the 2'-OH group of a ribonucleotide may be replaced by 2'-F or 2'-NH 2 ), which may improve a desired property, e.g., resistance to nucleases or longer Ufetime in blood.
  • Aptamers may be conjugated to other molecules, e.g., a high molecular weight carrier to slow clearance of the aptamer from the circulatory system. Aptamers maybe specificaUy cross-linked to their cognate Ugands, e.g., by photo-activation of a cross-linker (Brody, E.N. and L. Gold (2000) J. Biotechnol. 74:5-13).
  • introduction refers to an aptamer which is expressed in vivo.
  • a vaccinia virus-based RNA expression system has been used to express specific RNA aptamers at high levels in the cytoplasm of leukocytes (BUnd, M. et al. (1999) Proc. Natl. Acad. Sci. USA 96:3606-3610).
  • spiegelmer refers to an aptamer which includes L-DNA, L-RNA, or other left- handed nucleotide derivatives or nucleotide-Uke molecules. Aptamers containing left-handed nucleotides are resistant to degradation by naturaUy occurring enzymes, which normaUy act on substrates containing right-handed nucleotides.
  • antisense refers to any composition capable of base-pairing with the "sense" (coding) strand of a polynucleotide having a specific nucleic acid sequence.
  • Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oUgonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oUgonucleotides having modified sugar groups such as 2 -methoxyethyl sugars or 2 -methoxyethoxy sugars; or oUgonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2 - deoxyguanosine.
  • Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a ceU, the complementary antisense molecule base-pairs with a naturaUy occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation.
  • the designation "negative” or “minus” can refer to the antisense strand, and the designation “positive” or “plus” can refer to the sense strand of a reference DNA molecule.
  • biologicalcaUy active refers to a protein having structural, regulatory, or biochemical functions of a naturaUy occurring molecule.
  • immunologicalaUy active or “immunogenic” refers to the capabiUty of the natural, recombinant, or synthetic MEPR, or of any oUgopeptide thereof, to induce a specific immune response in appropriate animals or ceUs and to bind with specific antibodies.
  • Complementary describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5 -AGT-3' pairs with its complement, 3'-TCA-5'.
  • composition comprising a given polynucleotide and a “composition comprising a given polypeptide” can refer to any composition containing the given polynucleotide or polypeptide.
  • the composition may comprise a dry formulation or an aqueous solution.
  • Compositions comprising polynucleotides encoding MEPR or fragments of MEPR may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabiUzing agent such as a carbohydrate.
  • the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).
  • salts e.g., NaCl
  • detergents e.g., sodium dodecyl sulfate; SDS
  • other components e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.
  • Consensus sequence refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncaUed bases, extended using the XL-PCR kit (AppUed Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (Accelrys, Burlington MA) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence.
  • Constant amino acid substitutions are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especiaUy the function of the protein is conserved and not significantly changed by such substitutions.
  • the table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.
  • Conservative amino acid substitutions generaUy maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha heUcal conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.
  • a “deletion” refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.
  • derivative refers to a chemicaUy modified polynucleotide or polypeptide.
  • Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group.
  • a derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule.
  • a derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.
  • a “detectable label” refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.
  • “Differential expression” refers to increased or upregulated; or decreased, downregulated, or absent gene or protein expression, determined by comparing at least two different samples. Such comparisons may be carried out between, for example, a treated and an untreated sample, or a diseased and a normal sample.
  • Exon shuffling refers to the recombination of different coding regions (exons). Since an exon may represent a structural or functional domain of the encoded protein, new proteins may be assembled through the novel reassortment of stable substructures, thus aUowing acceleration of the evolution of new protein functions.
  • a “fragment” is a unique portion of MEPR or a polynucleotide encoding MEPR which can be identical in sequence to, but shorter in length than, the parent sequence.
  • a fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue.
  • a fragment may comprise from about 5 to about 1000 contiguous nucleotides or amino acid residues.
  • a fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentiaUy selected from certain regions of a molecule.
  • a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain defined sequence.
  • a fragment of SEQ ID NO:9-16 can comprise a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:9-16, for example, as distinct from any other sequence in the genome from which the fragment was obtained.
  • a fragment of SEQ ID NO:9-16 can be employed in one or more embodiments of methods of the invention, for example, in hybridization and ampUfication technologies and in analogous methods that distinguish SEQ ID NO:9-16 from related polynucleotides.
  • the precise length of a fragment of SEQ ID NO:9-16 and the region of SEQ ID NO:9-16 to which the fragment corresponds are routinely determinable by one of ordinary skiU in the art based on the intended purpose for the fragment.
  • a fragment of SEQ ID NO:l-8 is encoded by a fragment of SEQ ID NO:9-16.
  • a fragment of SEQ ID NO: 1-8 can comprise a region of unique amino acid sequence that specificaUy identifies SEQ ID NO:l-8.
  • a fragment of SEQ ID NO:l-8 can be used as an immunogenic peptide for the development of antibodies that specificaUy recognize SEQ ID NO: 1-8.
  • the precise length of a fragment of SEQ ID NO:l-8 and the region of SEQ ID NO.1-8 to which the fragment corresponds can be determined based on the intended purpose for the fragment using one or more analytical methods described herein or otherwise known in the art.
  • a “fuU length” polynucleotide is one containing at least a translation initiation codon (e.g., methionine) foUowed by an open reading frame and a translation termination codon.
  • a “fuU length” polynucleotide sequence encodes a "fuU length” polypeptide sequence.
  • Homology refers to sequence similarity or, alternatively, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.
  • percent identity and % identity refer to the percentage of identical nucleotide matches between at least two polynucleotide sequences aUgned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize aUgnment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.
  • Percent identity between polynucleotide sequences may be determined using one or more computer algorithms or programs known in the art or described herein. For example, percent identity can be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence aUgnment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and P.M. Sharp (1989; CABIOS 5:151- 153) and in Higgins, D.G. et al. (1992; CABIOS 8:189-191).
  • BLAST 215:403-410 which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at http://www.ncbi.nlm.nih.gov BLAST/.
  • the BLAST software suite includes various sequence analysis programs including "blastn,” that is used to aUgn a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool caUed "BLAST 2 Sequences” that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 Sequences" can be accessed and used interactively at http://www.ncbi.nlm.nih.gov/gorf/bl2.html.
  • BLAST 2 Sequences can be used for both blastn and blastp (discussed below).
  • BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences” tool Version 2.0.12 (April-21-2000) set at default parameters.
  • Such default parameters may be, for example:
  • Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides.
  • Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
  • Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that aU encode substantiaUy the same protein.
  • percent identity and % identity refer to the percentage of identical residue matches between at least two polypeptide sequences aUgned using a standardized algorithm.
  • Methods of polypeptide sequence aUgnment are weU-known. Some aUgnment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generaUy preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.
  • percent similarity and % similarity refer to the percentage of residue matches, including identical residue matches and conservative substitutions, between at least two polypeptide sequences aUgned using a standardized algorithm. In contrast, conservative substitutions are not included in the calculation of percent identity between polypeptide sequences. Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence aUgnment program (described and referenced above).
  • NCBI BLAST software suite may be used.
  • BLAST 2 Sequences Version 2.0.12 (April-21-2000) with blastp set at default parameters.
  • Such default parameters maybe, for example:
  • Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues.
  • Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, maybe used to describe a length over which percentage identity may be measured.
  • HACs Human artificial chromosomes
  • HACs are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size and which contain aU of the elements required for chromosome repUcation, segregation and maintenance.
  • humanized antibody refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and stiU retains its original binding abiUty.
  • Hybridization refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s).
  • the washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions aUowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched.
  • Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skiU in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity.
  • Permissive anneaUng conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 ⁇ g/ml sheared, denatured salmon sperm DNA.
  • wash temperatures are typicaUy selected to be about 5°C to 20°C lower than the thermal melting point (T, for the specific sequence at a defined ionic strength and pH.
  • T m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe.
  • High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%.
  • blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 ⁇ g/ml.
  • Organic solvent such as formamide at a concentration of about 35-50% v/v
  • Organic solvent such as formamide at a concentration of about 35-50% v/v
  • Useful variations on these wash conditions wiU be readily apparent to those of ordinary skiU in the art.
  • Hybridization particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.
  • hybridization complex refers to a complex formed between two nucleic acids by virtue of the formation of hydrogen bonds between complementary bases.
  • a hybridization complex may be formed in solution (e.g., C 0 t or R ⁇ analysis) or formed between one nucleic acid present in solution and another nucleic acid immobiUzed on a soUd support (e.g., paper, membranes, filters, chips, pins or glass sUdes, or any other appropriate substrate to which ceUs or their nucleic acids have been fixed).
  • insertion and “addition” refer to changes in an amino acid or polynucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.
  • Immuno response can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect ceUular and systemic defense systems.
  • an "immunogenic fragment” is a polypeptide or oUgopeptide fragment of MEPR which is capable of eUciting an immune response when introduced into a Uving organism, for example, a mammal.
  • the term “immunogenic fragment” also includes any polypeptide or oUgopeptide fragment of MEPR which is useful in any of the antibody production methods disclosed herein or known in the art.
  • microa ⁇ ay refers to an arrangement of a pluraUty of polynucleotides, polypeptides, antibodies, or other chemical compounds on a substrate.
  • array element refers to a polynucleotide, polypeptide, antibody, or other chemical compound having a unique and defined position on a microarray.
  • modulate refers to a change in the activity of MEPR. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of MEPR.
  • nucleic acid and nucleic acid sequence refer to a nucleotide, oUgonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.
  • “Operably linked” refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence.
  • PNA protein nucleic acid
  • PNA refers to an antisense molecule or anti-gene agent which comprises an oUgonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubiUty to the composition.
  • PNAs preferentiaUy bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their Ufespan in the cell.
  • Post-translational modification of an MEPR may involve Upidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur syntheticaUy or biochemicaUy. Biochemical modifications will vary by ceU type depending on the enzymatic miUeu of MEPR.
  • Probe refers to nucleic acids encoding MEPR, their complements, or fragments thereof, which are used to detect identical, aUeUc or related nucleic acids.
  • Probes are isolated oUgonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, Ugands, chemiluminescent agents, and enzymes.
  • Primmers are short nucleic acids, usuaUy DNA oUgonucleotides, which maybe annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme.
  • Primer pairs can be used for ampUfication (and identification) of a nucleic acid, e.g., by the polymerase chain reaction (PCR).
  • Probes and primers as used in the present invention typicaUy comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.
  • PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, WTiitehead Institute for Biomedical Research, Cambridge MA).
  • OUgonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oUgonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabiUties. For example, the PrimOU primer selection program (available to the pubUc from the Genome Center at University of Texas South West Medical Center, DaUas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope.
  • Primer3 primer selection program (available to the pubUc from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) aUows the user to input a "mispriming Ubrary," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oUgonucleotides for microa ⁇ ays.
  • the source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.
  • the PrimeGen program (available to the pubUc from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence aUgnments, thereby aUowing selection of primers that hybridize to either the most conserved or least conserved regions of aUgned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oUgonucleotides and polynucleotide fragments.
  • oUgonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microa ⁇ ay elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oUgonucleotide selection are not limited to those described above.
  • a "recombinant nucleic acid” is a nucleic acid that is not naturaUy occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomphshed by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook and RusseU (supra).
  • the term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid.
  • a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a ceU.
  • such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.
  • a "regulatory element” refers to a nucleic acid sequence usuaUy derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stabiUty.
  • Reporter molecules are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionucUdes; enzymes; fluorescent, chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.
  • RNA equivalent in reference to a DNA molecule, is composed of the same linear sequence of nucleotides as the reference DNA molecule with the exception that aU occu ⁇ ences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
  • sample is used in its broadest sense.
  • a sample suspected of containing MEPR, nucleic acids encoding MEPR, or fragments thereof may comprise a bodily fluid; an extract from a ceU, chromosome, organeUe, or membrane isolated from a ceU; a ceU; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.
  • binding and “specifically binding” refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a smaU molecule, or any natural or synthetic binding composition.
  • the interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A,” the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.
  • substantiallyUy purified refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably at least about 75% free, and most preferably at least about 90% free from other components with which they are naturaUy associated.
  • substitution refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.
  • Substrate refers to any suitable rigid or semi-rigid support including membranes, filters, chips, sUdes, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries.
  • the substrate can have a variety of surface forms, such as weUs, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.
  • a “transcript image” or “expression profile” refers to the coUective pattern of gene expression by a particular ceU type or tissue under given conditions at a given time.
  • Transformation describes a process by which exogenous DNA is introduced into a recipient ceU. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host ceU. The method for transformation is selected based on the type of host ceU being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, Upofection, and particle bombardment.
  • transformed ceUs includes stably transformed ceUs in which the inserted DNA is capable of repUcation either as an autonomously repUcating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.
  • a "transgenic organism,” as used herein, is any organism, including but not limited to animals and plants, in which one or more of the ceUs of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art.
  • the nucleic acid is introduced into the ceU, directly or indirectly by introduction into a precursor of the ceU, by way of deUberate genetic manipulation, such as by microinjection or by infection with a recombinant virus.
  • the nucleic acid can be introduced by infection with a recombinant viral vector, such as a lentiviral vector (Lois, C. et al. (2002) Science 295:868-872).
  • the term genetic manipulation does not include classical cross-breeding, or in vitro fertiUzation, but rather is directed to the introduction of a recombinant DNA molecule.
  • the transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals.
  • the isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook and RusseU (supra).
  • a "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07- 1999) set at default parameters.
  • Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length.
  • a variant may be described as, for example, an
  • a spUce variant may have significant identity to a reference molecule, but wiU generally have a greater or lesser number of polynucleotides due to alternate spUcing during mRNA processing.
  • the co ⁇ esponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule.
  • Species variants are polynucleotides that vary from one species to another. The resulting polypeptides wiU generaUy have significant amino acid identity relative to each other.
  • a polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species.
  • Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base.
  • SNPs single nucleotide polymorphisms
  • the presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.
  • a "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity or sequence similarity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters.
  • Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity or sequence similarity over a certain defined length of one of the polypeptides.
  • Various embodiments of the invention include new human metalloproteins (MEPR), the polynucleotides encoding MEPR, and the use of these compositions for the diagnosis, treatment, or prevention of blood disorders, heavy metal toxicity, cancer, and cardiovascular, autoimmune/inflammatory, neurological, metaboUc, immune system, Upid and vesicle trafficking disorders.
  • MEPR human metalloproteins
  • Table 1 summarizes the nomenclature for the fuU length polynucleotide and polypeptide embodiments of the invention. Each polynucleotide and its corresponding polypeptide are correlated to a single Incyte project identification number (Incyte Project ID). Each polypeptide sequence is denoted by both a polypeptide sequence identification number (Polypeptide SEQ ID NO:) and an Incyte polypeptide sequence number (Incyte Polypeptide ID) as shown.
  • Each polynucleotide sequence is denoted by both a polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and an Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) as shown.
  • Column 6 shows the Incyte ID numbers of physical, fuU length clones co ⁇ esponding to the polypeptide and polynucleotide sequences of the invention.
  • the fuU length clones encode polypeptides which have at least 95% sequence identity to the polypeptide sequences shown in column 3.
  • Table 2 shows sequences with homology to polypeptide embodiments ofthe invention as identified by BLAST analysis against the GenBank protein (genpept) database and the PROTEOME database.
  • Columns 1 and 2 show the polypeptide sequence identification number (Polypeptide SEQ ID NO:) and the co ⁇ esponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for polypeptides of the invention.
  • Column 3 shows the GenBank identification number (GenBank ID NO:) of the nearest GenBank homolog and the PROTEOME database identification numbers (PROTEOME ID NO:) of the nearest PROTEOME database homologs.
  • Column 4 shows the probabiUty scores for the matches between each polypeptide and its homolog(s).
  • Column 5 shows the annotation of the GenBank and PROTEOME database homolog(s) along with relevant citations where appUcable, aU of which are expressly incorporated by reference herein.
  • Table 3 shows various structural features of the polypeptides of the invention.
  • Columns 1 and 2 show the polypeptide sequence identification number (SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for each polypeptide of the invention.
  • Column 3 shows the number of amino acid residues in each polypeptide.
  • Column 4 shows potential phosphorylation sites and potential glycosylation sites, as determined by the MOTIF ' S program of the GCG sequence analysis software package (Accelrys, Burlington MA), in addition to amino acid residues comprising signature sequences, domains, and motifs.
  • Column 5 shows analytical methods for protem structure/function analysis and in some cases, searchable databases to which the analytical methods were appUed.
  • SEQ ID NO:l is 91% identical, from residue S6 to residue A39, to human metaUothionein-Ie (GenBank ID g386865) as determined by the Basic Local AUgnment Search Tool (BLAST). (See Table 2.) The BLAST probabiUty score is 3.0e-15, which indicates the probabiUty of obtaining the observed polypeptide sequence aUgnment by chance.
  • SEQ ID NO:l also has homology to proteins that are locaUzed to the cytoplasm, have small-molecule binding properties, and are members of a family of cysteine-rich heavy metal binding proteins, as determined by BLAST analysis using the PROTEOME database.
  • SEQ ID NO:l also contains a metaUothionein domain as determined by searching for statisticaUy significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS and BLAST analyses provide further corroborative evidence that SEQ ID NO:l is a metaUothionein.
  • SEQ ID NO:4 is 90% identical, from residue A54 to residue H130, to Otolemur crassicaudatus delta-globin (GenBank ID gl418276) as determined by the Basic Local AUgnment Search Tool (BLAST). (See Table 2.) The BLAST probabiUty score is 1.0e-58, which indicates the probabiUty of obtaining the observed polypeptide sequence aUgnment by chance. SEQ ID NO:4 also has homology to proteins that are hemoglobins, as determined by BLAST analysis using the
  • SEQ ID NO:4 also contains a globin domain as determined by searching for statisticaUy significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS and additional BLAST analyses provide further corroborative evidence that SEQ ID NO:4 is a globin.
  • SEQ ID NO:6 is 100% identical, from residue Ml to residue H138 and from residue L262 to residue P698, ,to human transferrin (GenBank ID g248648) as determined by the Basic Local AUgnment Search Tool (BLAST).
  • the BLAST probabiUty score is 0.0, which indicates the probabiUty of obtaining the observed polypeptide sequence aUgnment by chance.
  • SEQ ED NO:6 also has homology to proteins that are found in the endosome/endosomal vesicles, the cytoplasm and extraceUular spaces (excluding the ceU waU), have iron binding activity, are involved in iron transport and ceU proUferation, and may have roles in the immune response and phagocytosis, as determined by BLAST analysis using the PROTEOME database.
  • SEQ ED NO:6 also contains a transferrin domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM and SMART databases of conserved protein famiUes/domains. (See Table 3.) Data from BLIMPS, MOTIFS, and PROFTLESCAN analyses provide further corroborative evidence that SEQ ID NO:6 is a transferrin protein.
  • HMM hidden Markov model
  • SEQ ID NO:8 is 100% identical, from residue M7 to residue G93, to human selenoprotein W (GenBank ID g2326175) as determined by the Basic Local AUgnment Search Tool (BLAST). (See Table 2.) The BLAST probabiUty score is 4.6E-39, which indicates the probabiUty of obtaining the observed polypeptide sequence aUgnment by chance. SEQ ID NO:8 also has homology to selenoprotein W, as determined by BLAST analysis using the PROTEOME database. Data from BLAST analyses against the DOMO database provide further corroborative evidence that SEQ ID NO:8 is a selenoprotein.
  • BLAST Basic Local AUgnment Search Tool
  • SEQ ID NO:2-3, SEQ ED NO:5, and SEQ ID NO:7 were analyzed and annotated in a similar manner.
  • the algorithms and parameters for the analysis of SEQ ED NO: 1-8 are described in Table 7.
  • Table 4 the fuU length polynucleotide embodiments were assembled using cDNA sequences or coding (exon) sequences derived from genomic DNA, or any combination of these two types of sequences.
  • Column 2 shows the nucleotide start (5') and stop (3') positions of the cDNA and/or genomic sequences used to assemble the full length polynucleotide embodiments, and of fragments of the polynucleotides which are useful, for example, in hybridization or ampUfication technologies that identify SEQ ED NO:9-16 or that distinguish between SEQ ID NO:9-16 and related polynucleotides.
  • the polynucleotide fragments described in Column 2 of Table 4 may refer specificaUy, for example, to Incyte cDNAs derived from tissue-specific cDNA Ubraries or from pooled cDNA Ubraries.
  • the polynucleotide fragments described in column 2 may refer to GenBank cDNAs or ESTs which contributed to the assembly of the fuU length polynucleotides.
  • the polynucleotide fragments described in column 2 may identify sequences derived from the ENSEMBL (The Sanger Centre, Cambridge, UK) database (i.e., those sequences including the designation "ENST").
  • the polynucleotide fragments described in column 2 may be derived from the NCBI RefSeq Nucleotide Sequence Records Database (i.e. , those sequences including the designation "NM” or “NT”) or the NCBI RefSeq Protein Sequence Records (i.e., those sequences including the designation "NP”).
  • the polynucleotide fragments described in column 2 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon stitching" algorithm.
  • a polynucleotide sequence identified as FL_XX2KXXX_N j _N 2 _YYYY_N 3 _N 4 represents a "stitched" sequence in which XXXXX is the identification number of the cluster of sequences to which the algorithm was appUed, and YYYYY is the number of the prediction generated by the algorithm, and N 1 ⁇ 3 , if present, represent specific exons that may have been manuaUy edited during analysis (See Example V).
  • the polynucleotide fragments in column 2 may refer to assemblages of exons brought together by an "exon-stretching" algorithm.
  • FLXXXXXXX_gAAAAA_gBBBBB_l_N is a "stretched" sequence, with XXXXX- being the Incyte project identification number, gAAAAA being the GenBank identification number of the human genomic sequence to which the "exon-stretching" algorithm was appUed, gBBBBB being the GenBank identification number or NCBI RefSeq identification number of the nearest GenBank protein homolog, and N referring to specific exons (See Example V).
  • a RefSeq identifier (denoted by " ⁇ M,” “ ⁇ P,” or “NT') maybe used in place of the GenBank identifier (i.e., gBBBBB).
  • a prefix identifies component sequences that were hand-edited, predicted from genomic DNA sequences, or derived from a combination of sequence analysis methods.
  • the foUowing Table Usts examples of component sequence prefixes and corresponding sequence analysis methods associated with the prefixes see Example EV and Example V).
  • Incyte cDNA coverage redundant with the sequence coverage shown in Table 4 was obtained to confirm the final consensus polynucleotide sequence, but the relevant Incyte cDNA identification numbers are not shown.
  • Table 5 shows the representative cDNA Ubraries for those fuU length polynucleotides which were assembled using Incyte cDNA sequences.
  • the representative cDNA Ubrary is the Incyte cDNA Ubrary which is most frequently represented by the Incyte cDNA sequences which were used to assemble and confirm the above polynucleotides.
  • the tissues and vectors which were used to construct the cDNA Ubraries shown in Table 5 are described in Table 6.
  • Table 8 shows single nucleotide polymorphisms (SNPs) found in polynucleotide sequences of the invention, along with aUele frequencies in different human populations.
  • Columns 1 and 2 show the polynucleotide sequence identification number (SEQ ID NO:) and the co ⁇ esponding Incyte project identification number (PED) for polynucleotides of the invention.
  • Column 3 shows the Incyte identification number for the EST in which the SNP was detected (EST ID), and column 4 shows the identification number for the SNP (SNP ED).
  • Column 5 shows the position within the EST sequence at which the SNP is located (EST SNP), and column 6 shows the position of the SNP within the fuU- length polynucleotide sequence (CB1 SNP).
  • Column 7 shows the aUele found in the EST sequence.
  • Columns 8 and 9 show the two aUeles found at the SNP site.
  • Column 10 shows the amino acid encoded by the codon including the SNP site, based upon the aUele found in the EST.
  • Columns 11-14 show the frequency of aUele 1 in four different human populations. An entry of n/d (not detected) indicates that the frequency of aUele 1 in the population was too low to be detected, while n/a (not available) indicates that the aUele frequency was not determined for the population.
  • the invention also encompasses MEPR variants.
  • Various embodiments of MEPR variants can have at least about 80%, at least about 90%, or at least about 95% amino acid sequence identity to the MEPR amino acid sequence, and can contain at least one functional or structural characteristic of MEPR.
  • polynucleotides which encode MEPR encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:9-16, which encodes MEPR.
  • the invention also encompasses variants of a polynucleotide encoding MEPR.
  • a variant polynucleotide wiU have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a polynucleotide encoding MEPR.
  • a particular aspect of the invention encompasses a variant of a polynucleotide comprising a sequence selected from the group consisting of SEQ ID NO:9-16 which has at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:9-16.
  • Any one of the polynucleotide variants described above can encode a polypeptide which contains at least one functional or structural characteristic of MEPR.
  • a polynucleotide variant of the invention is a spUce variant of a polynucleotide encoding MEPR.
  • a spUce variant may have portions which have significant sequence identity to a polynucleotide encoding MEPR, but wiU generaUy have a greater or lesser number of polynucleotides due to additions or deletions of blocks of sequence arising from alternate spUcing during mRNA processing.
  • a spUce variant may have less than about 70%, or alternatively less than about 60%, or alternatively less than about 50% polynucleotide sequence identity to a polynucleotide encoding MEPR over its entire length; however, portions of the spUce variant wiU have at least about 70%, or alternatively at least about 85%, or alternatively at least about 95%, or alternatively 100% polynucleotide sequence identity to portions of the polynucleotide encoding MEPR.
  • a polynucleotide comprising a sequence of SEQ ID NO: 13 is a spUce variant of a polynucleotide comprising a sequence of SEQ ID NO: 14. Any one of the spUce variants described above can encode a polypeptide which contains at least one functional or structural characteristic of MEPR.
  • polynucleotides which encode MEPR and its variants are generaUy capable of hybridizing to polynucleotides encoding naturaUy occurring MEPR under appropriately selected conditions of stringency, it may be advantageous to produce polynucleotides encoding MEPR or its derivatives possessing a substantiaUy different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host.
  • RNA transcripts having more desirable properties such as a greater half-life, than transcripts produced from the naturally occurring sequence.
  • the invention also encompasses production of polynucleotides which encode MEPR and MEPR derivatives, or fragments thereof, entirely by synthetic chemistry.
  • the synthetic polynucleotide may be inserted into any of the many available expression vectors and ceU systems using reagents weU known in the art.
  • synthetic chemistry may be used to introduce mutations into a polynucleotide encoding MEPR or any fragment thereof.
  • Embodiments of the invention can also include polynucleotides that are capable of hybridizing to the claimed polynucleotides, and, in particular, to those having the sequences shown in SEQ ID NO:9-16 and fragments thereof, under various conditions of stringency (Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511). Hybridization conditions, including annealing and wash conditions, are described in "Definitions.” Methods for DNA sequencing are weU known in the art and maybe used to practice any of the embodiments of the invention.
  • the methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (AppUed Biosystems), thermostable T7 polymerase (Amersham Biosciences, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE ampUfication system (Invitrogen, Carlsbad CA).
  • sequence preparation is automated with machines such as the MICROLAB 2200 Uquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (AppUed Biosystems).
  • Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (AppUed Biosystems), the MEGABACE 1000 DNA sequencing system (Amersham Biosciences), or other systems known in the art.
  • the resulting sequences are analyzed using a variety of algorithms which are weU known in the art (Ausubel et al., supra, ch. 7; Meyers, R.A. (1995) Molecular Biology and Biotechnology. Wiley VCH, New York NY, pp. 856-853).
  • the nucleic acids encoding MEPR may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements.
  • PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements.
  • one method which may be employed restriction-site PCR, uses universal and nested primers to ampUfy unknown sequence from genomic DNA within a cloning vector (Sarkar, G. (1993) PCR Methods AppUc. 2:318-322).
  • Another method, inverse PCR uses primers that extend in divergent directions to ampUfy unknown sequence from a circularized template.
  • the template is derived from restriction fragments comprising a known genomic locus and surrounding sequences (TrigUa, T. et al.
  • a third method involves PCR ampUfication of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA (Lagerstrom, M. et al. (1991) PCR Methods AppUc. 1:111-119).
  • multiple restriction enzyme digestions and Ugations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR.
  • Other methods which may be used to retrieve unknown sequences are known in the art (Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060).
  • primers may be designed using commerciaUy available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.
  • Ubraries When screening for fuU length cDNAs, it is preferable to use Ubraries that have been size-selected to include larger cDNAs. In addition, random-primed Ubraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oUgo d(T) Ubrary does not yield a fuU-length cDNA. Genomic Ubraries may be useful for extension of sequence into 5 'non-transcribed regulatory regions. CapiUary electrophoresis systems which are commerciaUy available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products.
  • capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths.
  • Output Ught intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, AppUed Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controUed.
  • Capillary electrophoresis is especiaUy preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.
  • polynucleotides or fragments thereof which encode MEPR may be cloned in recombinant DNA molecules that direct expression of MEPR, or fragments or functional equivalents thereof, in appropriate host ceUs. Due to the inherent degeneracy of the genetic code, other polynucleotides which encode substantially the same or a functionally equivalent polypeptides may be produced and used to express MEPR.
  • the polynucleotides of the invention can be engineered using methods generaUy known in the art in order to alter MEPR-encoding sequences for a variety of purposes including, but not Umited to, modification of the cloning, processing, and/or expression of the gene product.
  • DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oUgonucleotides may be used to engineer the nucleotide sequences.
  • oUgonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce spUce variants, and so forth.
  • the nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent No. 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of MEPR, such as its biological or enzymatic activity or its abiUty to bind to other molecules or compounds.
  • MOLECULARBREEDING Maxygen Inc., Santa Clara CA; described in U.S. Patent No. 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.
  • DNA shuffling is a process by which a Ubrary of gene variants is produced using PCR-mediated recombination of gene fragments. The Ubrary is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening.
  • genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized.
  • fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturaUy occurring genes in a directed and controUable manner.
  • polynucleotides encoding MEPR may be synthesized, in whole or in part, using one or more chemical methods weU known in the art (Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232).
  • MEPR itself or a fragment thereof may be synthesized using chemical methods known in the art.
  • peptide synthesis can be performed using various solution-phase or soUd-phase techniques (Creighton, T. (1984) Proteins. Structures and Molecular Properties. WH Freeman, New York NY, pp.
  • AdditionaUy the amino acid sequence of MEPR, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide or a polypeptide having a sequence of a naturaUy occurring polypeptide.
  • the peptide may be substantiaUy purified by preparative high performance Uquid chromatography (Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421).
  • the composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing (Creighton, supra, pp. 28-53).
  • the polynucleotides encoding MEPR or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host.
  • these elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotides encoding MEPR. Such elements may vary in their strength and specificity.
  • Specific initiation signals may also be used to achieve more efficient translation of polynucleotides encoding MEPR. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence.
  • Methods which are well known to those skiUed in the art may be used to construct expression vectors containing polynucleotides encoding MEPR and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination (Sambrook and RusseU, supra, ch. 1-4, and 8; Ausubel et al., supra, ch. 1, 3, and 15).
  • a variety of expression vector/host systems may be utilized to contain and express polynucleotides encoding MEPR. These include, but are not Umited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant ceU systems transformed with viral expression vectors (e.g., cauUflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal ceU systems (Sambrook and RusseU, supra; Ausubel et al., supra; Van Heeke, G.
  • microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors
  • yeast transformed with yeast expression vectors e.g., bac
  • Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids may be used for deUvery of polynucleotides to the targeted organ, tissue, or ceU population (Di Nicola, M. et al. (1998) Cancer Gen. Ther. 5:350-356; Yu, M. et al. (1993) Proc. Natl. Acad. Sci. USA 90:6340-6344; Buller, R.M. et al. (1985) Nature 317:813-815; McGregor, D.P. et al. (1994) Mol. Immunol. 31:219-226; Verma, I.M. and N. Somia (1997) Nature 389:239-242).
  • the invention is not Umited by the host ceU employed.
  • a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotides encoding MEPR.
  • routine cloning, subcloning, and propagation of polynucleotides encoding MEPR can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La JoUa CA) or PSPORT1 plasmid (Invitrogen).
  • PBLUESCRIPT Stratagene, La JoUa CA
  • PSPORT1 plasmid Invitrogen.
  • these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence (Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509).
  • vectors which direct high level expression of MEPR may be used.
  • vectors containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.
  • Yeast expression systems may be used for production of MEPR.
  • a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris.
  • such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign polynucleotide sequences into the host genome for stable propagation (Ausubel et al., supra; Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; Scorer, CA. et al. (1994) Bio/Technology 12:181-184).
  • Plant systems may also be used for expression of MEPR. Transcription of polynucleotides encoding MEPR may be driven by viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 3:1631). Alternatively, plant promoters such as the smaU subunit of RUBISCO or heat shock promoters maybe used (Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; BrogUe, R. et al. (1984) Science 224:838-843; Winter, J. et al. (1991) Results Probl. CeU Differ. 17:85-105). These constructs can be introduced into plant ceUs by direct DNA transformation or pathogen-mediated transfection (The McGraw HiU Yearbook of Science and Technology (1992) McGraw HiU, New York NY, pp. 191-196).
  • a number of viral-based expression systems may be utiUzed.
  • polynucleotides encoding MEPR may be Ugated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential El or E3 region of the viral genome may be used to obtain infective virus which expresses MEPR in host ceUs (Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659).
  • transcription enhancers such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammaUan host ceUs.
  • SV40 or EBV-based vectors may also be used for high-level protein expression.
  • HACs Human artificial chromosomes
  • HACs may also be employed to deUver larger fragments of DNA than can be contained in and expressed from a plasmid.
  • HACs of about 6 kb to 10 Mb are constructed and deUvered via conventional deUvery methods (Uposomes, polycationic amino polymers, or vesicles) for therapeutic purposes (Harrington, JJ. et al. (1997) Nat. Genet. 15:345-355).
  • polynucleotides encoding MEPR can be transformed into ceU lines using expression vectors which may contain viral origins of repUcation and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector.
  • ceUs may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media.
  • the purpose of the selectable marker is to confer resistance to a selective agent, and its presence aUows growth and recovery of ceUs which successfuUy express the introduced sequences.
  • Resistant clones of stably transformed ceUs may be propagated using tissue culture techniques appropriate to the ceU type.
  • any number of selection systems may be used to recover transformed ceU lines. These include, but are not Umited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk and apr ceUs, respectively (Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823). Also, antimetaboUte, antibiotic, or herbicide resistance can be used as the basis for selection.
  • dhfr confers resistance to methotrexate
  • neo confers resistance to the aminoglycosides neomycin and G-418
  • als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively
  • trpB and hisD which alter ceUular requirements for metaboUtes
  • Visible markers e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), ⁇ - glucuronidase and its substrate ⁇ -glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes, CA. (1995) Methods Mol. Biol. 55:121-131).
  • marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed.
  • sequence encoding MEPR is inserted within a marker gene sequence
  • transformed ceUs containing polynucleotides encoding MEPR can be identified by the absence of marker gene function.
  • a marker gene can be placed in tandem with a sequence encoding MEPR under the control of a single promoter. Expression of the marker gene in response to induction or selection usuaUy indicates expression of the tandem gene as weU.
  • host ceUs that contain the polynucleotide encoding MEPR and that express MEPR may be identified by a variety of procedures known to those of skiU in the art. These procedures include, but are not Umited to, DNA-DNA or DNA-RNA hybridizations, PCR ampUfication, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.
  • Immunological methods for detecting and measuring the expression of MEPR using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS).
  • ELISAs enzyme-linked immunosorbent assays
  • RIAs radioimmunoassays
  • FACS fluorescence activated cell sorting
  • Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding MEPR include oUgolabeUng, nick translation, end-labeling, or PCR ampUfication using a labeled nucleotide.
  • polynucleotides encoding MEPR, or any fragments thereof may be cloned into a vector for the production of an mRNA probe.
  • RNA polymerase such as T7, T3, or SP6 and labeled nucleotides.
  • T7, T3, or SP6 RNA polymerase
  • reporter molecules or labels which may be used for ease of detection include radionucUdes, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as weU as substrates, cofactors, inhibitors, magnetic particles, and the like.
  • Host ceUs transformed with polynucleotides encoding MEPR may be cultured under conditions suitable for the expression and recovery of the protein from ceU culture.
  • the protein produced by a transformed ceU may be secreted or retained intraceUularly depending on the sequence and/or the vector used.
  • expression vectors containing polynucleotides which encode MEPR may be designed to contain signal sequences which direct secretion of MEPR through a prokaryotic or eukaryotic ceU membrane.
  • a host ceU strain may be chosen for its abiUty to modulate expression of the inserted polynucleotides or to process the expressed protein in the desired fashion.
  • modifications of the polypeptide include, but are not Umited to, acetylation, carboxylation, glycosylation, phosphorylation, Upidation, and acylation.
  • Post-translational processing which cleaves a "prepro” or "pro” form of the protein may also be used to specify protein targeting, folding, and/or activity.
  • Different host cells which have specific ceUular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.
  • ATCC American Type Culture Collection
  • natural, modified, or recombinant polynucleotides encoding MEPR may be Ugated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems.
  • a chimeric MEPR protein containing a heterologous moiety that can be recognized by a commerciaUy available antibody may faciUtate the screening of peptide Ubraries for inhibitors of MEPR activity.
  • Heterologous protein and peptide moieties may also faciUtate purification of fusion proteins using commerciaUy available affinity matrices.
  • Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MEPR), thioredoxin (Trx), calmoduUn binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA).
  • GST, MEPR, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobiUzed glutathione, maltose, phenylarsine oxide, calmoduUn, and metal-chelate resins, respectively.
  • FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commerciaUy available monoclonal and polyclonal antibodies that specificaUy recognize these epitope tags.
  • a fusion protein may also be engineered to contain a proteolytic cleavage site located between the MEPR encoding sequence and the heterologous protein sequence, so that MEPR may be cleaved away from the heterologous moiety foUowing purification. Methods for fusion protein expression and purification are discussed in Ausubel et al. (supra, ch. 10 and 16).
  • a variety of commerciaUy available kits may also be used to faciUtate expression and purification of fusion proteins.
  • synthesis of radiolabeled MEPR may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, 35 S-methionine.
  • MEPR fragments of MEPR, or variants of MEPR maybe used to screen for compounds that specificaUy bind to MEPR.
  • One or more test compounds may be screened for specific binding to MEPR.
  • 1, 2, 3, 4, 5, 10, 20, 50, 100, or 200 test compounds can be screened for specific binding to MEPR.
  • Examples of test compounds can include antibodies, anticalins, oUgonucleotides, proteins (e.g., Ugands or receptors), or smaU molecules.
  • variants of MEPR can be used to screen for binding of test compounds, such as antibodies, to MEPR, a variant of MEPR, or a combination of MEPR and/or one or more variants MEPR.
  • a variant of MEPR can be used to screen for compounds that bind to a variant of MEPR, but not to MEPR having the exact sequence of a sequence of SEQ ID NO:l-8.
  • MEPR variants used to perform such screening can have a range of about 50% to about 99% sequence identity to MEPR, with various embodiments having 60%, 70%, 75%, 80%, 85%, 90%, and 95% sequence identity.
  • a compound identified in a screen for specific binding to MEPR can be closely related to the natural Ugand of MEPR, e.g., a Ugand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner (CoUgan, J.E. et al. (1991) Cu ⁇ ent Protocols in Immunology l(2):Chapter 5).
  • the compound thus identified can be a natural Ugand of a receptor MEPR (Howard, A.D. et al. (2001) Trends Pharmacol. Sci.22:132- 140; Wise, A. et al. (2002) Drug Discovery Today 7:235-246).
  • a compound identified in a screen for specific binding to MEPR can be closely related to the natural receptor to which MEPR binds, at least a fragment of the receptor, or a fragment of the receptor including aU or a portion of the Ugand binding site or binding pocket.
  • the compound may be a receptor for MEPR which is capable of propagating a signal, or a decoy receptor for MEPR which is not capable of propagating a signal (Ashkenazi, A. and V.M. Divit (1999) Cu ⁇ . Opin. CeU Biol. 11:255-260; Mantovani, A. et al. (2001) Trends Immunol. 22:328-336).
  • the compound can be rationaUy designed using known techniques.
  • Etanercept is an engineered p75 tumor necrosis factor (TNF) receptor dimer linked to the Fc portion of human IgG j (Taylor, P.C et al. (2001) Cu ⁇ . Opin. Immunol. 13:611-616).
  • TNF tumor necrosis factor
  • two or more antibodies having similar or, alternatively, different specificities can be screened for specific binding to MEPR, fragments of MEPR, or variants of MEPR.
  • the binding specificity of the antibodies thus screened can thereby be selected to identify particular fragments or variants of MEPR.
  • an antibody can be selected such that its binding specificity aUows for preferential identification of specific fragments or variants of MEPR.
  • an antibody can be selected such that its binding specificity aUows for preferential diagnosis of a specific disease or condition having increased, decreased, or otherwise abnormal production of MEPR.
  • anticalins can be screened for specific binding to MEPR, fragments of MEPR, or variants of MEPR.
  • Anticalins are Ugand-binding proteins that have been constructed based on a UpocaUn scaffold (Weiss, G.A. and H.B. Lowman (2000) Chem. Biol. 7:R177-R184; Ske ⁇ a, A. (2001) J. Biotechnol. 74:257-275).
  • the protein architecture of Upocalins can include a beta-ba ⁇ el having eight antiparaUel beta-strands, which supports four loops at its open end.
  • These loops form the natural Ugand-binding site of the Upocalins, a site which can be re-engineered in vitro by amino acid substitutions to impart novel binding specificities.
  • the amino acid substitutions can be made using methods known in the art or described herein, and can include conservative substitutions (e.g., substitutions that do not alter binding specificity) or substitutions that modestly, moderately, or significantly alter binding specificity.
  • screening for compounds which specificaUy bind to, stimulate, or inhibit MEPR involves producing appropriate ceUs which express MEPR, either as a secreted protein or on the ceU membrane.
  • Preferred ceUs can include ceUs from mammals, yeast, Drosophila, or E. coli. CeUs expressing MEPR or ceU membrane fractions which contain MEPR are then contacted with a test compound and binding, stimulation, or inhibition of activity of either MEPR or the compound is analyzed.
  • An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label.
  • the assay may comprise the steps of combining at least one test compound with MEPR, either in solution or affixed to a soUd support, and detecting the binding of MEPR to the compound.
  • the assay may detect or measure binding of a test compound in the presence of a labeled competitor. AdditionaUy, the assay may be carried out using ceU-free preparations, chemical Ubraries, or natural product mixtures, and the test compound(s) may be free in solution or affixed to a soUd support.
  • An assay can be used to assess the abiUty of a compound to bind to its natural Ugand and/or to inhibit the binding of its natural Ugand to its natural receptors.
  • examples of such assays include radio- labeling assays such as those described in U.S. Patent No. 5,914,236 and U.S. Patent No. 6,372,724.
  • one or more amino acid substitutions can be introduced into a polypeptide compound (such as a receptor) to improve or alter its abiUty to bind to its natural Ugands (Matthews, D.J. and J.A. WeUs. (1994) Chem. Biol. 1:25-30).
  • one or more amino acid substitutions can be introduced into a polypeptide compound (such as a Ugand) to improve or alter its abiUty to bind to its natural receptors (Cunningham, B.C. and J.A. Wells (1991) Proc. Natl. Acad. Sci. USA 88:3407-3411; Lowman, H.B. et al. (1991) J. Biol. Chem. 266:10982-10988).
  • a polypeptide compound such as a Ugand
  • MEPR, fragments of MEPR, or variants of MEPR may be used to screen for compounds that modulate the activity of MEPR.
  • Such compounds may include agonists, antagonists, or partial or inverse agonists.
  • an assay is performed under conditions permissive for MEPR activity, wherein MEPR is combined with at least one test compound, and the activity of MEPR in the presence of a test compound is compared with the activity of MEPR in the absence of the test compound. A change in the activity of MEPR in the presence of the test compound is indicative of a compound that modulates the activity of MEPR.
  • a test compound is combined with an in vitro or ceU-free system comprising MEPR under conditions suitable for MEPR activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of MEPR may do so indirectly and need not come in direct contact with the test compound. At least one and up to a pluraUty of test compounds may be screened.
  • polynucleotides encoding MEPR or their mammaUan homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells.
  • ES embryonic stem
  • Such techniques are weU known in the art and are useful for the generation of animal models of human disease (see, e.g., U.S. Patent No. 5,175,383 and U.S. Patent No. 5,767,337).
  • mouse ES ceUs such as the mouse 129/SvJ ceU line, are derived from the early mouse embryo and grown in culture.
  • the ES ceUs are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292).
  • the vector integrates into the corresponding region of the host genome by homologous recombination.
  • homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) CUn. Invest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330).
  • Transformed ES ceUs are identified and microinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain.
  • the blastocysts are surgicaUy transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains.
  • Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.
  • Polynucleotides encoding MEPR may also be manipulated in vitro in ES cells derived from human blastocysts.
  • Human ES cells have the potential to differentiate into at least eight separate ceU lineages including endoderm, mesoderm, and ectodermal ceU types. These ceU lineages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) Science 282:1145-1147).
  • Polynucleotides encoding MEPR can also be used to create "knockin" humanized animals (pigs) or transgenic animals (mice or rats) to model human disease.
  • knockin technology a region of a polynucleotide encoding MEPR is injected into animal ES ceUs, and the injected sequence integrates into the animal cell genome.
  • Transformed ceUs are injected into blastulae, and the blastulae are implanted as described above.
  • Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease.
  • a mammal inbred to overexpress MEPR may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74).
  • THERAPEUTICS Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of MEPR and metalloproteins.
  • tissues expressing MEPR are tumorous tissues, preadipocytes, and cancerous lung tissue, and further examples can be found in Table 6 and in Example XI.
  • MEPR appears to play a role in blood disorders, heavy metal toxicity, cancer, and cardiovascular, autoimmune/inflammatory, neurological, metaboUc, immune system, Upid and vesicle trafficking disorders.
  • MEPR or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of MEPR.
  • disorders include, but are not limited to, heavy metal toxicity, such as is caused by lead, arsenic, mercury, cadmium and copper; a blood disorder such as anemia including ⁇ -thalassemia, hemorrhage, thrombosis, emboUsm, lymphadenopathy, splenomegaly, phagocytic disorders, hematopoietic disorders, hemoglobin disorders including sickle ceU anemia, bone marrow disorders, leukemia including chronic myelogenous leukemia and other myeloproUferative disorders, lymphoma including non-Hodgkin's lymphoma, Hodgkin's disease, compUcations related to blood transfusion, compUcations related to bone marrow transplantation, and clotting disorders including von WiUebrand's disease and hemophiUa; a blood disorder such as anemia
  • a vector capable of expressing MEPR or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of MEPR including, but not limited to, those described above.
  • a composition comprising a substantiaUy purified MEPR in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of MEPR including, but not limited to, those provided above.
  • an agonist which modulates the activity of MEPR may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of MEPR including, but not Umited to, those Usted above.
  • an antagonist of MEPR may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of MEPR.
  • disorders include, but are not limited to, those blood disorders, heavy metal toxicity, cancer, and cardiovascular, autoimmune/inflammatory, neurological, metaboUc, immune system, Upid and vesicle trafficking disorders described above.
  • an antibody which specificaUy binds MEPR may be used directly as an antagonist or indirectly as a targeting or deUvery mechanism for bringing a pharmaceutical agent to ceUs or tissues which express MEPR.
  • a vector expressing the complement of the polynucleotide encoding MEPR may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of MEPR including, but not limited to, those described above.
  • any protein, agonist, antagonist, antibody, complementary sequence, or vector embodiments may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles.
  • the combination of therapeutic agents may act synergisticaUy to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
  • An antagonist of MEPR may be produced using methods which are generaUy known in the art.
  • purified MEPR may be used to produce antibodies or to screen Ubraries of pharmaceutical agents to identify those which specificaUy bind MEPR.
  • Antibodies to MEPR may also be generated using methods that are weU known in the art.
  • Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression Ubrary.
  • neutraUzing antibodies i.e., those which inhibit dimer formation
  • Single chain antibodies may be potent enzyme inhibitors and may have appUcation in the design of peptide mimetics, and in the development of immuno-adsorbents and biosensors (Muyldermans, S. (2001) J. Biotechnol. 74:277-302).
  • various hosts including goats, rabbits, rats, mice, camels, dromedaries, llamas, humans, and others may be immunized by injection with MEPR or with any fragment or oUgopeptide thereof which has immunogenic properties.
  • various adjuvants may be used to increase immunological response.
  • adjuvants include, but are not Umited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol.
  • BCG Bacilli Calmette-Guerin
  • Corynebacterium parvum are especiaUy preferable. It is preferred that the oUgopeptides, peptides, or fragments used to induce antibodies to
  • MEPR have an amino acid sequence consisting of at least about 5 amino acids, and generaUy wiU consist of at least about 10 amino acids. It is also preferable that these oUgopeptides, peptides, or fragments are substantiaUy identical to a portion of the amino acid sequence of the natural protein. Short stretches of MEPR amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.
  • Monoclonal antibodies to MEPR may be prepared using any technique which provides for the production of antibody molecules by continuous ceU lines in culture. These include, but are not Umited to, the hybridoma technique, the human B-ceU hybridoma technique, and the EBV-hybridoma technique (Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; Cole, S.P. et al. (1984) Mol. CeU Biol. 62:109-120).
  • chimeric antibodies such as the spUcing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used (Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; Takeda, S. et al. (1985) Nature 314:452-454).
  • techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce MEPR-specific single chain antibodies.
  • Antibodies with related specificity, but of distinct idiotypic composition may be generated by chain shuffling from random combinatorial immunoglobulin Ubraries (Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137).
  • Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin Ubraries or panels of highly specific binding reagents as disclosed in the Uterature (Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299).
  • Antibody fragments which contain specific binding sites for MEPR may also be generated.
  • fragments include, but are not limited to, F(ab fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab ⁇ 2 fragments.
  • Fab expression Ubraries maybe constructed to aUow rapid and easy identification of monoclonal Fab fragments with the desired specificity (Huse, W.D. et al. (1989) Science 246:1275-1281).
  • immunoassays may be used for screening to identify antibodies having the desired specificity.
  • Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with estabUshed specificities are well known in the art.
  • Such immunoassays typicaUy involve the measurement of complex formation between MEPR and its specific antibody.
  • a two-site, monoclonal-based immunoassay utiUzing monoclonal antibodies reactive to two non-interfering MEPR epitopes is generaUy used, but a competitive binding assay may also be employed (Pound, supra).
  • K a is defined as the molar concentration of MEPR-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions.
  • K a association constant
  • the K a determined for a preparation of monoclonal antibodies, which are monospecific for a particular MEPR epitope, represents a true measure of affinity.
  • High-affinity antibody preparations with K a ranging from about 10 9 to 10 12 L/mole are prefe ⁇ ed for use in immunoassays in which the MEPR- antibody complex must withstand rigorous manipulations.
  • Low-affinity antibody preparations with K a ranging from about 10 6 to 10 7 L/mole are prefe ⁇ ed for use in immunopurification and similar procedures which ultimately require dissociation of MEPR, preferably in active form, from the antibody (Catty, D. (1988) Antibodies. Volume I: A Practical Approach, IRL Press, Washington DC; LiddeU, J.E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).
  • polyclonal antibody preparations may be further evaluated to determine the quaUty and suitabiUty of such preparations for certain downstream appUcations.
  • a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml is generaUy employed in procedures requiring precipitation of MEPR-antibody complexes.
  • Procedures for evaluating antibody specificity, titer, and avidity, and guideUnes for antibody quaUty and usage in various appUcations are generaUy available (Catty, supra; CoUgan et al., supra).
  • polynucleotides encoding MEPR may be used for therapeutic purposes.
  • modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oUgonucleotides) to the coding or regulatory regions of the gene encoding MEPR.
  • complementary sequences or antisense molecules DNA, RNA, PNA, or modified oUgonucleotides
  • antisense oUgonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding MEPR (Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press, Totawa NJ).
  • Antisense sequences can be deUvered intraceUularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the ceUular sequence encoding the target protein (Slater, J.E. et al. (1998) J. AUergy Clin. Immunol. 102:469-475; Scanlon, K.J. et al. (1995) 9:1288-1296).
  • Antisense sequences can also be introduced intraceUularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors (MiUer, A.D.
  • polynucleotides encoding MEPR may be used for somatic or germline gene therapy.
  • Gene therapy may be performed to (i) co ⁇ ect a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCID)-Xl disease characterized by X- linked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) Science 270:475-480; Bordignon, C et al.
  • SCID severe combined immunodeficiency
  • ADA adenosine deaminase
  • conditionaUy lethal gene product e.g., in the case of cancers which result from unregulated cell proUferation
  • a protein which affords protection against intraceUular parasites e.g., against human retroviruses, such as human immunodeficiency virus (HTV) (Baltimore, D. (1988) Nature 335:395-396; Poeschla, E. et al. (1996) Proc. Natl. Acad. Sci.
  • hepatitis B or C virus HBN, HCN
  • fungal parasites such as Candida albicans and Paracoccidioides brasiliensis
  • protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi
  • diseases or disorders caused by deficiencies in MEPR are treated by constructing mammaUan expression vectors encoding MEPR and introducing these vectors by mechanical means into MEPR-deficient cells.
  • Mechanical transfer technologies for use with cells in vivo or ex vitro include (i) direct D ⁇ A microinjection into individual ceUs, (n) balUstic gold particle deUvery, (in) Uposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of D ⁇ A transposons (Morgan, R.A. and W.F. Anderson (1993) Annu. Rev. Biochem. 62:191-217; Ivies, Z. (1997) CeU 91:501-510; Boulay, J.-L and H. Recipon (1998) Curr. Opin. Biotechnol. 9:445-450).
  • Expression vectors that may be effective for the expression of MEPR include, but are not Umited to, the PCD ⁇ A 3.1, EP EAG, PRCCMV2, PREP, PVAX, PCR2-TOPOTA vectors
  • MEPR may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or ⁇ -actin genes), (n) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H.
  • a constitutively active promoter e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or ⁇ -actin genes
  • an inducible promoter e.g., the tetracycline-regulated promoter (Gossen, M. and H.
  • TRANSFECTION KIT available from Invitrogen
  • aUow one with ordinary skiU in the art to deUver polynucleotides to target ceUs in culture and require _r_inimal effort to optimize experimental parameters.
  • transformation is performed using the calcium phosphate method (Graham, F.L. and A.J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al. (1982) EMBO J. 1:841-845).
  • the introduction of DNA to primary cells requires modification of these standardized mammaUan transfection protocols.
  • diseases or disorders caused by genetic defects with respect to MEPR expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding MEPR under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (u) appropriate RNA packaging signals, and (in) a Rev-responsive element (RRE) along with additional retrovirus cis -acting RNA sequences and coding sequences required for efficient vector propagation.
  • Retrovirus vectors e.g., PFB and PFBNEO
  • Retrovirus vectors are commerciaUy available (Stratagene) and are based on pubUshed data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci.
  • the vector is propagated in an appropriate vector producing ceU line (VPCL) that expresses an envelope gene with a tropism for receptors on the target ceUs or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and A.D. Mffler (1988) J. Virol. 62:3802-3806; DuU, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R. et al.
  • VSVg vector producing ceU line
  • U.S. Patent No. 5,910,434 to Rigg discloses a method for obtaining retrovirus packaging ceU lines and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of ceUs (e.g., CD4 + T-ceUs), and the return of transduced ceUs to a patient are procedures weU known to persons skiUed in the art of gene therapy and have been weU documented (Ranga, U. et al. (1997) J. Virol. 71:7020-7029; Bauer, G. et al.
  • an adenovirus-based gene therapy deUvery system is used to deUver polynucleotides encoding MEPR to ceUs which have one or more genetic abnormaUties with respect to the expression of MEPR.
  • the construction and packaging of adenovirus-based vectors are weU known to those with ordinary skill in the art.
  • RepUcation defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). PotentiaUy useful adenoviral vectors are described in U.S. Patent No.
  • Adadenovirus vectors for gene therapy hereby incorporated by reference.
  • adenoviral vectors see also Antinozzi, P.A. et al. (1999; Annu. Rev. Nutr. 19:511-544) and Verma, EM. and N. Somia (1997; Nature 18:389:239-242).
  • a herpes-based, gene therapy deUvery system is used to deUver polynucleotides encoding MEPR to target cells which have one or more genetic abnormaUties with respect to the expression of MEPR.
  • the use of herpes simplex virus (HS V)-based vectors may be especiaUy valuable for introducing MEPR to cells of the central nervous system, for which HSV has a tropism.
  • the construction and packaging of herpes-based vectors are weU known to those with ordinary skiU in the art.
  • a repUcation-competent herpes simplex virus (HSV) type 1 -based vector has been used to deUver a reporter gene to the eyes of primates (Liu, X.
  • HSV-1 virus vector has also been disclosed in detail in U.S. Patent No. 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference.
  • U.S. Patent No. 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transfe ⁇ ed to a ceU under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22.
  • HSV vectors see also Goins, W.F. et al. (1999; J. Virol. 73:519-532) and Xu, H. et al. (1994; Dev. Biol. 163:152-161).
  • the manipulation of cloned herpesvirus sequences, the generation of recombinant virus foUowing the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of ceUs with herpesvirus are techniques weU known to those of ordinary skiU in the art.
  • an alphavirus (positive, single-stranded RNA virus) vector is used to deUver polynucleotides encoding MEPR to target ceUs.
  • SFV Semliki Forest Virus
  • This subgenomic RNA repUcates to higher levels than the fuU length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase).
  • enzymatic activity e.g., protease and polymerase.
  • inserting the coding sequence for MEPR into the ' alphavirus genome in place of the capsid-coding region results in the production of a large number of MEPR-coding RNAs and the synthesis of high levels of MEPR in vector transduced cells.
  • alphavirus infection is typicaUy associated with ceU lysis within a few days
  • the abiUty to estabUsh a persistent infection in hamster normal kidney ceUs (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic repUcation of alphaviruses can be altered to suit the needs of the gene therapy appUcation (Dryga, S.A. et al. (1997) Virology 228:74-83).
  • the wide host range of alphaviruses will allow the introduction of MEPR into a variety of ceU types.
  • the specific transduction of a subset of ceUs in a population may require the sorting of ceUs prior to transduction.
  • the methods of manipulating infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA transfections, and performing alphavirus infections, are weU known to those with ordinary skiU in the art.
  • OUgonucleotides derived from the transcription initiation site may also be employed to inhibit gene expression.
  • inhibition can be achieved using triple heUx base-pairing methodology.
  • Triple heUx pairing is useful because it causes inhibition of the abiUty of the double heUx to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules.
  • Recent therapeutic advances using triplex DNA have been described in the Uterature (Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura PubUshing, Mt. Kisco NY, pp. 163-177).
  • a complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.
  • Ribozymes enzymatic RNA molecules
  • Ribozymes may also be used to catalyze the specific cleavage of RNA.
  • the mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, foUowed by endonucleolytic cleavage.
  • engineered hammerhead motif ribozyme molecules may specificaUy and efficiently catalyze endonucleolytic cleavage of RNA molecules encoding MEPR.
  • RNA sequences within any potential RNA target are initiaUy identified by scanning the target molecule for ribozyme cleavage sites, including the foUowing sequences: GUA, GUU, and GUC
  • short RNA sequences of between 15 and 20 ribonucleotides, co ⁇ esponding to the region of the target gene containing the cleavage site may be evaluated for secondary structural features which may render the oUgonucleotide inoperable.
  • the suitabiUty of candidate targets may also be evaluated by testing accessibiUty to hybridization with complementary oUgonucleotides using ribonuclease protection assays.
  • RNA molecules may be generated by in vitro and in vivo transcription of DNA molecules encoding MEPR. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into ceU lines, ceUs, or tissues.
  • RNA molecules may be modified to increase intraceUular stabiUty and half-Ufe. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule.
  • RNAi RNA interference
  • PTGS post-transcriptional gene silencing
  • RNAi is a post- transcriptional mode of gene silencing in which double-stranded RNA (dsRNA) introduced into a targeted ceU specificaUy suppresses the expression of the homologous gene (i.e., the gene bearing the sequence complementary to the dsRNA). This effectively knocks out or substantiaUy reduces the expression of the targeted gene.
  • dsRNA double-stranded RNA
  • PTGS can also be accomphshed by use of DNA or DNA fragments as weU.
  • RNAi methods are described by Fire, A.
  • PTGS can also be initiated by introduction of a complementary segment of DNA into the selected tissue using gene deUvery and/or viral vector deUvery methods described herein or known in the art.
  • RNAi can be induced in mammaUan ceUs by the use of smaU interfering RNA also known as siRNA.
  • siRNA are shorter segments of dsRNA (typically about 21 to 23 nucleotides in length) that result in vivo from cleavage of introduced dsRNA by the action of an endogenous ribonuclease.
  • SiRNA appear to be the mediators of the RNAi effect in mammals. The most effective siRNAs appear to be 21 nucleotide dsRNAs with 2 nucleotide 3' overhangs.
  • the use of siRNA for inducing RNAi in mammaUan cells is described by Elbashir, S.M. et al. (2001; Nature 411:494-498).
  • SiRNA can either be generated indirectly by introduction of dsRNA into the targeted ceU, or directly by mammaUan transfection methods and agents described herein or known in the art (such as Uposome-mediated transfection, viral vector methods, or other polynucleotide deUvery/introductory methods).
  • Suitable SiRNAs can be selected by examining a transcript of the target polynucleotide (e.g., mRNA) for nucleotide sequences downstream from the AUG start codon and recording the occurrence of each nucleotide and the 3' adjacent 19 to 23 nucleotides as potential siRNA target sites, with sequences having a 21 nucleotide length being prefe ⁇ ed.
  • Regions to be avoided for target siRNA sites include the 5' and 3 ' untranslated regions (UTRs) and regions near the start codon (within 75 bases), as these may be richer in regulatory protein binding sites. UTR-binding proteins and/or translation initiation complexes may interfere with binding of the siRNP endonuclease complex.
  • the selected target sites for siRNA can then be compared to the appropriate genome database (e.g., human, etc.) using BLAST or other sequence comparison algorithms known in the art. Target sequences with significant homology to other coding sequences can be eliminated from consideration.
  • the selected SiRNAs can be produced by chemical synthesis methods known in the art or by in vitro transcription using commerciaUy available methods and kits such as the SILENCER siRNA construction kit (Ambion, Austin TX).
  • long-term gene silencing and/or RNAi effects can be induced in selected tissue using expression vectors that continuously express siRNA.
  • This can be accompUshed using expression vectors that are engineered to express hairpin RNAs (shRNAs) using methods known in the art (see, e.g., Brummelkamp, T.R. et al. (2002) Science 296:550-553; and Paddison, P.J. et al. (2002) Genes Dev. 16:948-958).
  • shRNAs can be deUvered to target ceUs using expression vectors known in the art.
  • siRNA-Uke molecules capable of carrying out gene-specific silencing.
  • the expression levels of genes targeted by RNAi or PTGS methods can be determined by assays for mRNA and/or protein analysis.
  • Expression levels of the mRNA of a targeted gene can be determined by northern analysis methods using, for example, the NORTHERNMAX-GLY kit (Ambion); by microa ⁇ ay methods; by PCR methods; by real time PCR methods; and by other RNA/polynucleotide assays known in the art or described herein.
  • Expression levels of the protein encoded by the targeted gene can be determined by Western analysis using standard techniques known in the art.
  • An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding MEPR.
  • Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not Umited to, oUgonucleotides, antisense oUgonucleotides, triple heUx-forming oUgonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression.
  • a compound which specifically inhibits expression of the polynucleotide encoding MEPR may be therapeuticaUy useful, and in the treatment of disorders associated with decreased MEPR expression or activity, a compound which specificaUy promotes expression of the polynucleotide encoding MEPR may be therapeuticaUy useful.
  • test compounds may be screened for effectiveness in altering expression of a specific polynucleotide.
  • a test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commerciaUy-available or proprietary Ubrary of naturaUy-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide; and selection from a Ubrary of chemical compounds created combinatoriaUy or randomly.
  • a sample comprising a polynucleotide encoding MEPR is exposed to at least one test compound thus obtained.
  • the sample may comprise, for example, an intact or permeabiUzed cell, or an in vitro ceU-free or reconstituted biochemical system.
  • Alterations in the expression of a polynucleotide encoding MEPR are assayed by any method commonly known in the art.
  • TypicaUy the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding MEPR.
  • the amount of hybridization maybe quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds.
  • a screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human ceU line such as HeLa ceU (Clarke, M.L. et al. (2000) Biochem. Biophys. Res.
  • a particular embodiment of the present invention involves screening a combinatorial Ubrary of oUgonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oUgonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691).
  • oUgonucleotides such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oUgonucleotides
  • vectors may be introduced into stem ceUs taken from the patient and clonaUy propagated for autologous transplant back into that same patient. DeUvery by transfection, by Uposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art (Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462- 466).
  • any of the therapeutic methods described above may be appUed to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.
  • An additional embodiment of the invention relates to the administration of a composition which generaUy comprises an active ingredient formulated with a pharmaceutically acceptable excipient.
  • Excipients may include, for example, sugars, starches, ceUuloses, gums, and proteins.
  • Various formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack I*ubUshing, Easton PA).
  • Such compositions may consist of MEPR, antibodies to MEPR, and mimetics, agonists, antagonists, or inhibitors of MEPR.
  • compositions described herein may be administered by any number of routes including, but not Umited to, oral, intravenous, intramuscular, intra-arterial, intrameduUary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.
  • routes including, but not Umited to, oral, intravenous, intramuscular, intra-arterial, intrameduUary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.
  • Compositions for pulmonary administration may be prepared in Uquid or dry powder form. These compositions are generaUy aerosoUzed immediately prior to inhalation by the patient. In the case of smaU molecules (e.g. traditional low molecular weight organic drugs), aerosol deUvery of fast- acting formulations is weU-known in the art.
  • compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose.
  • the determination of an effective dose is weU within the capabiUty of those skiUed in the art.
  • SpeciaUzed forms of compositions may be prepared for direct intraceUular deUvery of macromolecules comprising MEPR or fragments thereof.
  • Uposome preparations containing a ceU-impermeable macromolecule may promote ceU fusion and intraceUular deUvery of the macromolecule.
  • MEPR or a fragment thereof may be joined to a short cationic N- terminal portion from the HFV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the ceUs of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572).
  • the therapeuticaUy effective dose can be estimated initiaUy either in cell culture assays, e.g., of neoplastic ceUs, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
  • a therapeuticaUy effective dose refers to that amount of active ingredient, for example MEPR or fragments thereof, antibodies of MEPR, and agonists, antagonists or inhibitors of MEPR, which ameUorates the symptoms or condition.
  • Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in ceU cultures or with experimental animals, such as by calculating the ED 50 (the dose therapeuticaUy effective in 50% of the population) or LD 50 (the dose lethal to 50% of the population) statistics.
  • the dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD 50 ED 50 ratio.
  • Compositions which exhibit large therapeutic indices are prefe ⁇ ed.
  • the data obtained from ceU culture assays and animal studies are used to formulate a range of dosage for human use.
  • the dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED 50 with Uttle or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and
  • the exact dosage wiU be determined by the practitioner, in Ught of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting compositions maybe administered every 3 to 4 days, every week, or biweekly depending on the half-Ufe and clearance rate of the particular formulation.
  • Normal dosage amounts may vary from about 0.1 ⁇ g to 100,000 ⁇ g, up to a total dose of about 1 gram, depending upon the route of administration.
  • Guidance as to particular dosages and methods of deUvery is provided in the Uterature and generaUy available to practitioners in the art. Those skiUed in the art wiU employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, deUvery of polynucleotides or polypeptides will be specific to particular ceUs, conditions, locations, etc. DIAGNOSTICS
  • antibodies which specificaUy bind MEPR may be used for the diagnosis of disorders characterized by expression of MEPR, or in assays to monitor patients being treated with MEPR or agonists, antagonists, or inhibitors of MEPR.
  • Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for MEPR include methods which utiUze the antibody and a label to detect MEPR in human body fluids or in extracts of ceUs or tissues.
  • the antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule.
  • a wide variety of reporter molecules, several of which are described above, are known in the art and may be used.
  • a variety of protocols for measuring MEPR including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of MEPR expression.
  • Normal or standard values for MEPR expression are estabUshed by combining body fluids or ceU extracts taken from normal mammaUan subjects, for example, human subjects, with antibodies to MEPR under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of MEPR expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values estabUshes the parameters for diagnosing disease.
  • polynucleotides encoding MEPR maybe used for diagnostic purposes.
  • the polynucleotides which may be used include oUgonucleotides, complementary RNA and DNA molecules, and PNAs.
  • the polynucleotides maybe used to detect and quantify gene expression in biopsied tissues in which expression of MEPR may be co ⁇ elated with disease.
  • the diagnostic assay may be used to determine absence, presence, and excess expression of MEPR, and to monitor regulation of MEPR levels during therapeutic intervention.
  • hybridization with PCR probes which are capable of detecting polynucleotides, including genomic sequences, encoding MEPR or closely related molecules may be used to identify nucleic acid sequences which encode MEPR.
  • the specificity of the probe determine whether it is made from a highly specific region, e.g., the 5 'regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or ampUfication wiU determine whether the probe identifies only naturaUy occurring sequences encoding MEPR, aUeUc variants, or related sequences. Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the MEPR encoding sequences.
  • the hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ED NO:9-16 or from genomic sequences including promoters, enhancers, and introns of the MEPR gene.
  • Means for producing specific hybridization probes for polynucleotides encoding MEPR include the cloning of polynucleotides encoding MEPR or MEPR derivatives into vectors for the production of mRNA probes.
  • Such vectors are known in the art, are commerciaUy available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides.
  • Hybridization probes may be labeled by a variety of reporter groups, for example, by radionucUdes such as 32 P or 35 S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the Uke.
  • Polynucleotides encoding MEPR may be used for the diagnosis of disorders associated with expression of MEPR.
  • disorders include, but are not Umited to, heavy metal toxicity, such as is caused by lead, arsenic, mercury, cadmium and copper; a blood disorder such as anemia including ⁇ -thalassemia, hemorrhage, thrombosis, emboUsm, lymphadenopathy, splenomegaly, phagocytic disorders, hematopoietic disorders, hemoglobin disorders including sickle ceU anemia, bone marrow disorders, leukemia including chronic myelogenous leukemia and other myeloproUferative disorders, lymphoma including non-Hodgkin's lymphoma, Hodgkin's disease, compUcations related to blood transfusion, compUcations related to bone marrow transplantation, and clotting disorders including von WiUebrand's disease and hemophiUa; a cancer such as adenocarcinom
  • Gerstmann-Straussler-Scheinker syndrome fatal famiUal insomnia, nutritional and metaboUc diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down syndrome, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metaboUc, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, hemiplegic migraine, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neural
  • Polynucleotides encoding MEPR may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microa ⁇ ays utiUzing fluids or tissues from patients to detect altered MEPR expression. Such quaUtative or quantitative methods are weU known in the art.
  • polynucleotides encoding MEPR may be used in assays that detect the presence of associated disorders, particularly those mentioned above.
  • Polynucleotides complementary to sequences encoding MEPR maybe labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of polynucleotides encoding MEPR in the sample indicates the presence of the associated disorder.
  • Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.
  • a normal or standard profile for expression is estabUshed. This may be accompUshed by combining body fluids or ceU extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding MEPR, under conditions suitable for hybridization or ampUfication.
  • Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to estabUsh the presence of a disorder.
  • hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject.
  • the results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.
  • the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms.
  • a more definitive diagnosis of this type may aUow health professionals to employ preventative measures or aggressive treatment earUer, thereby preventing the development or further progression of the cancer.
  • oUgonucleotides designed from the sequences encoding MEPR may involve the use of PCR. These oUgomers may be chemicaUy synthesized, generated enzymaticaUy, or produced in vitro.
  • OUgomers wiU preferably contain a fragment of a polynucleotide encoding MEPR, or a fragment of a polynucleotide complementary to the polynucleotide encoding MEPR, and wiU be employed under optimized conditions for identification of a specific gene or condition. OUgomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.
  • oUgonucleotide primers derived from polynucleotides encoding MEPR may be used to detect single nucleotide polymorphisms (SNPs). SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans. Methods of SNP detection include, but are not limited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods.
  • SSCP single-stranded conformation polymorphism
  • fSSCP fluorescent SSCP
  • oUgonucleotide primers derived from polynucleotides encoding MEPR are used to ampUfy DNA using the polymerase chain reaction (PCR).
  • the DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like.
  • SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels.
  • the oUgonucleotide primers are fluorescently labeled, which aUows detection of the amplimers in high-throughput equipment such as DNA sequencing machines.
  • sequence database analysis methods termed in siUco SNP (isSNP) are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence.
  • SNPs maybe detected and characterized by mass spectrometry using, for example, the high throughput MASS ARRAY system (Sequenom, Inc., San Diego CA).
  • SNPs may be used to study the genetic basis of human disease. For example, at least 16 common SNPs have been associated with non-insulin-dependent diabetes melUtus. SNPs are also useful for examining differences in disease outcomes in monogenic disorders, such as cystic fibrosis, sickle ceU anemia, or chronic granulomatous disease. For example, variants in the mannose-binding lectin, MBL2, have been shown to be correlated with deleterious pulmonary outcomes in cystic fibrosis. SNPs also have utiUty in pharmacogenomics, the identification of genetic variants that influence a patient's response to a drug, such as Ufe-threatening toxicity.
  • N-acetyl transferase is associated with a high incidence of peripheral neuropathy in response to the anti-tuberculosis drug isoniazid, while a variation in the core promoter of the ALOX5 gene results in diminished clinical response to treatment with an anti-asthma drug that targets the 5-Upoxygenase pathway.
  • Analysis of the distribution of SNPs in different populations is useful for investigating genetic drift, mutation, recombination, and selection, as weU as for tracing the origins of populations and their migrations (Taylor, J.G. et al. (2001) Trends Mol. Med. 7:507-512; Kwok, P.-Y. and Z. Gu (1999) Mol. Med.
  • Methods which may also be used to quantify the expression of MEPR include radiolabeling or biotinylating nucleotides, coampUfication of a control nucleic acid, and interpolating results from standard curves (Melby, P.C et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236).
  • the speed of quantitation of multiple samples maybe accelerated by running the assay in a high-throughput format where the oUgomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.
  • oUgonucleotides or longer fragments derived from any of the polynucleotides described herein may be used as elements on a microarray.
  • the microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below.
  • the microa ⁇ ay may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease.
  • this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient.
  • therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.
  • MEPR, fragments of MEPR, or antibodies specific for MEPR may be used as elements on a microarray.
  • the microarray may be used to monitor or measure protein- protein interactions, drug-target interactions, and gene expression profiles, as described above.
  • a particular embodiment relates to the use of the polynucleotides of the present invention to generate a transcript image of a tissue or ceU type.
  • a transcript image represents the global pattern of gene expression by a particular tissue or ceU type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time (Seilhamer et al., "Comparative Gene Transcript Analysis," U.S. Patent No. 5,840,484; hereby expressly incorporated by reference herein).
  • a transcript image may be generated by hybridizing the polynucleotides of the present invention or their complements to the totaUty of transcripts or reverse transcripts of a particular tissue or ceU type.
  • the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a pluraUty of elements on a microarray.
  • the resultant transcript image would provide a profile of gene activity.
  • Transcript images may be generated using transcripts isolated from tissues, ceU lines, biopsies, or other biological samples.
  • the transcript image may thus reflect gene expression in vivo, as in the case of a tissue or biopsy sample, or in vitro, as in the case of a ceU line.
  • Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with in vitro model systems and preclinical evaluation of pharmaceuticals, as well as toxicological testing of industrial and naturally-occurring environmental compounds.
  • AU compounds induce characteristic gene expression patterns, frequently termed molecular fingerprints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S. and N.L. Anderson (2000) Toxicol. I ⁇ ett. 112-113 :467-471). If a test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties.
  • the toxicity of a test compound can be assessed by treating a biological sample containing nucleic acids with the test compound. Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels co ⁇ esponding to the polynucleotides of the present invention may be quantified. The transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.
  • proteome refers to the global pattern of protein expression in a particular tissue or ceU type.
  • proteome expression patterns, or profiles are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time.
  • a profile of a ceU's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or ceU type.
  • the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, supra).
  • the proteins are visuaUzed in the gel as discrete and uniquely positioned spots, typicaUy by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains.
  • the optical density of each protein spot is generally proportional to the level of the protein in the sample.
  • the optical densities of equivalently positioned protein spots from different samples are compared to identify any changes in protein spot density related to the treatment.
  • the proteins in the spots are partiaUy sequenced using, for example, standard methods employing chemical or enzymatic cleavage foUowed by mass spectrometry.
  • the identity of the protein in a spot maybe determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of interest. In some cases, further sequence data may be obtained for definitive protein identification.
  • a proteomic profile may also be generated using antibodies specific for MEPR to quantify the levels of MEPR expression.
  • the antibodies are used as elements on a microarray, and protein expression levels are quantified by exposing the microa ⁇ ay to the sample and detecting the levels of protein bound to each a ⁇ ay element (Lueking, A. et al. (1999) Anal. Biochem. 270:103- lll; Mendoze, L.G. et al. (1999) Biotechniques 27:778-788). Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol- or amino-reactive fluorescent compound and detecting the amount of fluorescence bound at each array element.
  • Toxicant signatures at the proteome level are also useful for toxicological screening, and should be analyzed in paraUel with toxicant signatures at the transcript level.
  • There is a poor correlation between transcript and protein abundances for some proteins in some tissues (Anderson, N.L. and J. Seilhamer (1997) Electrophoresis 18:533-537), so proteome toxicant signatures maybe useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile.
  • the analysis of transcripts in body fluids is difficult, due to rapid degradation of mRNA, so proteomic profiling may be more reUable and informative in such cases.
  • the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound.
  • Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified.
  • the amount of each protein is compared to the amount of the co ⁇ esponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.
  • Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.
  • the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.
  • Microarrays may be prepared, used, and analyzed using methods known in the art (Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT appUcation WO95/251116; Shalon, D. et al. (1995) PCT appUcation WO95/35505; HeUer, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155; HeUer, M.J. et al.
  • nucleic acid sequences encoding MEPR may be used to generate hybridization probes useful in mapping the naturaUy occurring genomic sequence.
  • Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping.
  • sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial PI constructions, or single chromosome cDNA Ubraries (Harrington, JJ. et al. (1997) Nat. Genet. 15:345- 355; Price, CM. (1993) Blood Rev. 7:127-134; Trask, BJ. (1991) Trends Genet. 7:149-154).
  • HACs human artificial chromosomes
  • YACs yeast artificial chromosomes
  • BACs bacterial artificial chromosomes
  • PI constructions or single chromosome cDNA Ubraries
  • nucleic acid sequences may be used to develop genetic linkage maps, for example, which correlate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP) (Lander, E.S. and D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83:7353-7357).
  • RFLP restriction fragment length polymorphism
  • Fluorescent in situ hybridization may be co ⁇ elated with other physical and genetic map data (Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968). Examples of genetic map data can be found in various scientific journals or at the Online MendeUan Inheritance in Man (OMIM) World Wide Web site. Co ⁇ elation between the location of the gene encoding MEPR on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.
  • FISH Fluorescent in situ hybridization
  • In situ hybridization of chromosomal preparations and physical mapping techniques may be used for extending genetic maps.
  • placement of a gene on the chromosome of another mammaUan species, such as mouse may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques.
  • any sequences mapping to that area may represent associated or regulatory genes for further investigation (Gatti, R.A. et al. (1988) Nature 336:577-580).
  • the nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.
  • MEPR its catalytic or immunogenic fragments, or oUgopeptides thereof can be used for screening Ubraries of compounds in any of a variety of drug screening techniques.
  • the fragment employed in such screening may be free in solution, affixed to a soUd support, borne on a ceU surface, or located intraceUularly. The formation of binding complexes between MEPR and the agent being tested may be measured.
  • WO84/03564 large numbers of different smaU test compounds are synthesized on a soUd substrate. The test compounds are reacted with MEPR, or fragments thereof, and washed. Bound MEPR is then detected by methods weU known in the art. Purified MEPR can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutraUzing antibodies can be used to capture the peptide and immobiUze it on a soUd support. In another embodiment, one may use competitive drug screening assays in which neutraUzing antibodies capable of binding MEPR specificaUy compete with a test compound for binding MEPR. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with MEPR.
  • nucleotide sequences which encode MEPR may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not Umited to, such properties as the triplet genetic code and specific base pair interactions.
  • Incyte cDNAs were derived from cDNA Ubraries described in the LEFESEQ GOLD database (Incyte Genomics, Palo Alto CA). Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Invitrogen), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.
  • TRIZOL Invitrogen
  • poly(A)+ RNA was isolated using oUgo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN).
  • Stratagene was provided with RNA and constructed the co ⁇ esponding cDNA
  • cDNA was synthesized and cDNA Ubraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Invitrogen), using the recommended procedures or similar methods known in the art (Ausubel et al., supra, ch. 5). Reverse transcription was initiated using oUgo d(T) or random primers. Synthetic oUgonucleotide adapters were Ugated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes.
  • the cDNA was size-selected (300-1000 bp) using SEPHACRYL S 1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Biosciences) or preparative agarose gel electrophoresis.
  • cDNAs were Ugated into compatible restriction enzyme sites of the polyUnker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Invitrogen, Carlsbad CA), PCDNA2.1 plasmid (Invitrogen), PBK- CMV plasmid (Stratagene), PCR2-TOPOTA plasmid (Invitrogen), PCMV-ICIS plasmid (Stratagene), pIGEN (Incyte Genomics, Palo Alto CA), pRARE (Incyte Genomics), or pINCY (Incyte Genomics), or derivatives thereof.
  • Recombinant plasmids were transformed into competent E. coli ceUs including XLl-Blue, XLl-BlueMRF, or SOLR from Stratagene or DH5 ⁇ , DH10B, or ElectroMAX DH10B from Invitrogen.
  • Plasmids obtained as described in Example I were recovered from host ceUs by in vivo excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. FoUowing precipitation, plasmids were resuspended in 0.1 ml of distiUed water and stored, with or without lyophiUzation, at 4°C
  • plasmid DNA was ampUfied from host ceU lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host ceU lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-weU plates, and the concentration of ampUfied plasmid DNA was quantified fluorometricaUy using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).
  • Incyte cDNA recovered in plasmids as described in Example II were sequenced as foUows. Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (AppUed Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) Uquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Biosciences or suppUed in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (AppUed Biosystems).
  • Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Amersham Biosciences); the ABI PRISM 373 or 377 sequencing system (AppUed Biosystems) in conjunction with standard ABI protocols and base catting software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (Ausubel et al., supra, ch. 7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VIII.
  • the polynucleotide sequences derived from Incyte cDNAs were vaUdated by removing vector, linker, and poly(A) sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis.
  • the Incyte cDNA sequences or translations thereof were then queried against a selection of pubUc databases such as the GenBank primate, rodent, mammaUan, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM; PROTEOME databases with sequences from Homo sapiens, Rattus norvegicus, Mus musculus, Caenorhabditis elegans, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Candida albicans (Incyte Genomics, Palo Alto CA); hidden Markov model (HMM)-based protein family databases such as PFAM, INCY, and TIGRFAM (Haft, D.H.
  • HMM hidden Markov model
  • HMM-based protein domain databases such as SMART (Schultz, J. et al. (1998) Proc. Natl. Acad. Sci. USA 95:5857-5864; Letunic, I. et al. (2002) Nucleic Acids Res. 30:242-244).
  • HMM is a probabiUstic approach which analyzes consensus primary structures of gene famines; see, for example, Eddy, S.R. (1996) Cu ⁇ . Opin. Struct. Biol. 6:361-365.
  • the queries were performed using programs based on BLAST, FASTA, BLIMPS, and HMMER.
  • the Incyte cDNA sequences were assembled to produce fuU length polynucleotide sequences.
  • GenBank cDNAs, GenBank ESTs, stitched sequences, stretched sequences, or Genscan-predicted coding sequences were used to extend Incyte cDNA assemblages to fuU length. Assembly was performed using programs based on Phred, Phrap, and Consed, and cDNA assemblages were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the co ⁇ esponding full length polypeptide sequences.
  • a polypeptide may begin at any of the methionine residues of the fuU length translated polypeptide.
  • Full length polypeptide sequences were subsequently analyzed by querying against databases such as the GenBank protein databases (genpept), SwissProt, the PROTEOME databases, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, hidden Markov model (HMM)-based protein family databases such as PFAM, INCY, and TIGRFAM; and HMM-based protein domain databases such as SMART.
  • GenBank protein databases Genpept
  • PROTEOME databases
  • BLOCKS BLOCKS
  • PRINTS DOMO
  • PRODOM Prosite
  • Prosite Prosite
  • HMM-based protein family databases such as PFAM, INCY, and TIGRFAM
  • HMM-based protein domain databases such as SMART.
  • FuU length polynucleotide sequences are also analyzed using MACDNASIS PRO software (MiraiBio, Alameda CA) and LASERGENE
  • Polynucleotide and polypeptide sequence aUgnments are generated using default parameters specified by the CLUSTAL algorithm as incorporated into the MEGALIGN multisequence aUgnment program (DNASTAR), which also calculates the percent identity between aUgned sequences.
  • Table 7 summarizes the tools, programs, and algorithms used for the analysis and assembly of
  • Incyte cDNA and fuU length sequences and provides appUcable descriptions, references, and threshold parameters.
  • the first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, aU of which are incorporated by reference herein in their entirety, and the fourth column presents, where appUcable, the scores, probabiUty values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probabiUty value, the greater the identity between two sequences).
  • Genscan is a general- purpose gene identification program which analyzes genomic DNA sequences from a variety of organisms (Burge, C and S. Karlin (1997) J. Mol. Biol. 268:78-94; Burge, C and S. Karlin (1998) Curr. Opin. Struct. Biol. 8:346-354).
  • the program concatenates predicted exons to form an assembled cDNA sequence extending from a methionine to a stop codon.
  • the output of Genscan is a FASTA database of polynucleotide and polypeptide sequences.
  • Genscan The maximum range of sequence for Genscan to analyze at once was set to 30 kb. To determine which of these Genscan predicted cDNA sequences encode metaUoproteins, the encoded polypeptides were analyzed by querying against PFAM models for metaUoproteins. Potential metaUoproteins were also identified by homology to Incyte cDNA sequences that had been annotated as metaUoproteins. These selected Genscan- predicted sequences were then compared by BLAST analysis to the genpept and gbpri pubUc databases. Where necessary, the Genscan-predicted sequences were then edited by comparison to the top BLAST hit from genpept to correct errors in the sequence predicted by Genscan, such as extra or omitted exons.
  • Partial cDNA sequences were extended with exons predicted by the Genscan gene identification program described in Example IV. Partial cDNAs assembled as described in Example HI were mapped to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster was analyzed using an algorithm based on graph theory and dynamic programming to integrate cDNA and genomic information, generating possible spUce variants that were subsequently confirmed, edited, or extended to create a full length sequence. Sequence intervals in which the entire length of the interval was present on more than one sequence in the cluster were identified, and intervals thus identified were considered to be equivalent by transitivity.
  • Partial DNA sequences were extended to fuU length with an algorithm based on BLAST analysis.
  • the nearest GenBank protein homolog was then compared by BLAST analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in Example EV.
  • a chimeric protein was generated by using the resultant high-scoring segment pairs (HSPs) to map the translated sequences onto the GenBank protein homolog. Insertions or deletions may occur in the chimeric protein with respect to the original GenBank protein homolog.
  • HSPs high-scoring segment pairs
  • GenBank protein homolog The GenBank protein homolog, the chimeric protein, or both were used as probes to search for homologous genomic sequences from the pubUc human genome databases. Partial DNA sequences were therefore "stretched” or extended by the addition of homologous genomic sequences. The resultant stretched sequences were examined to determine whether it contained a complete gene. VI. Chromosomal Mapping of MEPR Encoding Polynucleotides The sequences which were used to assemble SEQ ID NO:9-16 were compared with sequences from the Incyte LIFESEQ database and pubUc domain databases using BLAST and other implementations of the Smith- Waterman algorithm.
  • pubUc resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Genethon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.
  • Map locations are represented by ranges, or intervals, of human chromosomes.
  • the map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p- arm.
  • centiMorgan cM
  • centiMorgan is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.
  • the cM distances are based on genetic markers mapped by Genethon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters.
  • Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound (Sambrook and RusseU, supra, ch. 7; Ausubel et al., supra, ch. 4).
  • the product score takes into account both the degree of similarity between two sequences and the length of the sequence match.
  • the product score is a normaUzed value between 0 and 100, and is calculated as follows: the BLAST score is multipUed by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences).
  • the BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score.
  • the product score represents a balance between fractional overlap and quaUty in a BLAST aUgnment. For example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.
  • polynucleotides encoding MEPR are analyzed with respect to the tissue sources from which they were derived. For example, some futt length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example HI). Each cDNA sequence is derived from a cDNA Ubrary constructed from a human tissue.
  • Each human tissue is classified into one of the foUowing organ/tissue categories: cardiovascular system; connective tissue; digestive system; embryonic structures; endocrine system; exocrine glands; genitaUa, female; genitaUa, male; germ ceUs; hemic and immune system; Uver; musculoskeletal system; nervous system; pancreas; respiratory system; sense organs; skin; stomatognathic system; unclassified/mixed; or urinary tract.
  • the number of Ubraries in each category is counted and divided by the total number of Ubraries across aU categories.
  • each human tissue is classified into one of the foUowing disease/condition categories: cancer, ceU line, developmental, inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of Ubraries in each category is counted and divided by the total number of Ubraries across aU categories.
  • the resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding MEPR.
  • cDNA sequences and cDNA Ubrary/tissue information are found in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA). VIII. Extension of MEPR Encoding Polynucleotides
  • FuU length polynucleotides are produced by extension of an appropriate fragment of the full length molecule using oUgonucleotide primers designed from this fragment.
  • One primer was synthesized to initiate 5 ' extension of the known fragment, and the other primer was synthesized to initiate 3 ' extension of the known fragment.
  • the initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68 °C to about 72 °C Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.
  • Selected human cDNA Ubraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.
  • the concentration of DNA in each well was determined by dispensing 100 ⁇ l PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in IX TE and 0.5 ⁇ l of undiluted PCR product into each weU of an opaque fluorimeter plate (Corning Costar, Acton MA), aUowing the DNA to bind to the reagent.
  • the plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA.
  • a 5 ⁇ l to 10 ⁇ l aUquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose gel to determine which reactions were successful in extending the sequence.
  • the extended nucleotides were desalted and concentrated, transfe ⁇ ed to 384-weU plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to reUgation into pUC 18 vector (Amersham Biosciences).
  • CviJI cholera virus endonuclease Molecular Biology Research, Madison WI
  • sonicated or sheared prior to reUgation into pUC 18 vector
  • the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega).
  • Extended clones were reUgated using T4 Ugase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Biosciences), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coli ceUs. Transformed ceUs were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37 °C in 384-weU plates in LB/2x carb Uquid media.
  • the ceUs were lysed, and DNA was ampUfied by PCR using Taq DNA polymerase (Amersham Biosciences) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72 °C, 5 min; Step 7: storage at 4°C DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reampUfied using the same conditions as described above.
  • fuU length polynucleotides are verified using the above procedure or are used to obtain 5' regulatory sequences using the above procedure along with oUgonucleotides designed for such extension, and an appropriate genomic Ubrary.
  • SNPs single nucleotide polymorphisms
  • LIFESEQ database Incyte Genomics
  • PreUminary filters removed the majority of basecaU errors by requiring a minimum Fhred quaUty score of 15, and removed sequence aUgnment errors and errors resulting from improper trimming of vector sequences, chimeras, and spUce variants.
  • An automated procedure of advanced chromosome analysis analysed the original chromatogram files in the vicinity of the putative SNP.
  • Clone e ⁇ or filters used statisticaUy generated algorithms to identify e ⁇ ors introduced during laboratory processing, such as those caused by reverse transcriptase, polymerase, or somatic mutation.
  • Clustering e ⁇ or filters used statisticaUy generated algorithms to identify errors resulting from clustering of close homologs or pseudogenes, or due to contamination by non-human sequences.
  • a final set of filters removed dupUcates and SNPs found in immunoglobulins or T-ceU receptors.
  • Certain SNPs were selected for further characterization by mass spectrometry using the high throughput MASSARRAY system (Sequenom, Inc.) to analyze aUele frequencies at the SNP sites in four different human populations.
  • the Caucasian population comprised 92 individuals (46 male, 46 female), including 83 from Utah, four French, three deciualan, and two Amish individuals.
  • the African population comprised 194 individuals (97 male, 97 female), aU African Americans.
  • the Hispanic population comprised 324 individuals (162 male, 162 female), all Mexican Hispanic.
  • the Asian population comprised 126 individuals (64 male, 62 female) with a reported parental breakdown of 43% Chinese, 31% Japanese, 13% Korean, 5% Vietnamese, and 8% other Asian. AUele frequencies were first analyzed in the Caucasian population; in some cases those SNPs which showed no aUeUc variance in this population were not further tested in the other three populations. X. Labeling and Use of Individual Hybridization Probes
  • Hybridization probes derived from SEQ ID NO:9-16 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oUgonucleotides, consisting of about 20 base pairs, is specificaUy described, essentiaUy the same procedure is used with larger nucleotide fragments. OUgonucleotides are designed using state-of-the-art software such as OE GO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oUgomer, 250 ⁇ Ci of
  • [ ⁇ - 32 P] adenosine triphosphate (Amersham Biosciences), and T4 polynucleotide kinase (DuPont NEN, Boston MA).
  • the labeled oUgonucleotides are substantiaUy purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Biosciences). An aUquot containing 10 7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the foUowing endonucleases: Ase I, Bgl ⁇ , Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).
  • the DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40 °C To remove nonspecific signals, blots are sequentiaUy washed at room temperature under conditions of up to, for example, 0.1 x saUne sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visuaUzed using autoradiography or an alternative imaging means and compared.
  • the linkage or synthesis of array elements upon a microa ⁇ ay can be achieved utiUzing photoUthography, piezoelectric printing (ink-jet printing; see, e.g., Baldeschweiler et al., supra), mechanical microspotting technologies, and derivatives thereof.
  • the substrate in each of the aforementioned technologies should be uniform and soUd with a non-porous surface (Schena, M., ed. (1999) DNA Microarrays: A Practical Approach, Oxford University Press, London). Suggested substrates include siUcon, siUca, glass sUdes, glass chips, and siUcon wafers.
  • a procedure analogous to a dot or slot blot may also be used to arrange and Unk elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures.
  • a typical array may be produced using available methods and machines weU known to those of ordinary skill in the art and may contain any appropriate number of elements (Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; MarshaU, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31).
  • FuU length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oUgomers thereof may comprise the elements of the microa ⁇ ay. Fragments or oUgomers suitable for hybridization can be selected using software weU known in the art such as LASERGENE software (DNASTAR).
  • the a ⁇ ay elements are hybridized with polynucleotides in a biological sample.
  • the polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection. After hybridization, nonhybridized nucleotides from the biological sample are removed, and a fluorescence scanner is used to detect hybridization at each a ⁇ ay element.
  • laser desorbtion and mass spectrometry may be used for detection of hybridization.
  • the degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microarray may be assessed.
  • microa ⁇ ay preparation and usage is described in detail below.
  • Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A) + RNA is purified using the oUgo-(dT) ceUulose method.
  • Each poly(A) + RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/ ⁇ l oUgo-(dT) primer (21mer), IX first strand buffer, 0.03 units/ ⁇ l RNase inhibitor, 500 ⁇ M dATP, 500 ⁇ M dGTP, 500 ⁇ M dTTP, 40 ⁇ M dCTP, 40 ⁇ M dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Biosciences).
  • the reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A) + RNA with GEMBRIGHT kits (Incyte Genomics).
  • Specific control poly(A) + RNAs are synthesized by in vitro transcription from non-coding yeast genomic DNA. After incubation at 37° C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeUng). is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85° C to the stop the reaction and degrade the RNA.
  • Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (Clontech, Palo Alto CA) and after combining, both reaction samples are ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol. The sample is then dried to completion using a SpeedVAC (Savant Instruments Inc., Holbrook NY) and resuspended in 14 ⁇ l 5X SSC/0.2% SDS.
  • SpeedVAC SpeedVAC
  • Sequences of the present invention are used to generate array elements.
  • Each array element is ampUfied from bacterial ceUs containing vectors with cloned cDNA inserts.
  • PCR ampUfication uses primers complementary to the vector sequences flanking the cDNA insert.
  • Array elements are ampUfied in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 ⁇ g. AmpUfied array elements are then purified using SEPHACRYL-400 (Amersham Biosciences).
  • Purified a ⁇ ay elements are immobiUzed on polymer-coated glass sUdes.
  • Glass microscope sUdes (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distiUed water washes between and after treatments.
  • Glass sUdes are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (NWR), West Chester PA), washed extensively in distiUed water, and coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol.
  • Coated sUdes are cured in a 110°C oven.
  • Array elements are appUed to the coated glass substrate using a procedure described in U.S.
  • Patent No. 5,807,522 incorporated herein by reference.
  • 1 ⁇ l of the a ⁇ ay element DNA, at an average concentration of 100 ng/ ⁇ l, is loaded into the open capiUary printing element by a high-speed robotic apparatus.
  • the apparatus then deposits about 5 nl of a ⁇ ay element sample per sUde.
  • Microarrays are UN-crosslinked using a STRATAIJ ⁇ KER UV-crosslinker (Stratagene). Microa ⁇ ays are washed at room temperature once in 0.2% SDS and three times in distiUed water. Non-specific binding sites are blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60° C foUowed by washes in 0.2% SDS and distilled water as before.
  • PBS phosphate buffered saline
  • Hybridization reactions contain 9 ⁇ l of sample mixture consisting of 0.2 ⁇ g each of Cy3 and Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer.
  • the sample mixture is heated to 65° C for 5 minutes and is aUquoted onto the microa ⁇ ay surface and covered with an 1.8 cm 2 coversUp.
  • the arrays are transfe ⁇ ed to a waterproof chamber having a cavity just sUghtly larger than a microscope shde.
  • the chamber is kept at 100% humidity internally by the addition of 140 ⁇ l of 5X SSC in a corner of the chamber.
  • the chamber containing the a ⁇ ays is incubated for about 6.5 hours at 60° C.
  • the arrays are washed for 10 min at 45° C in a first wash buffer (IX SSC, 0.1% SDS), three times for 10 minutes each at 45° C in a second wash buffer (0. IX SSC), and dried. Detection
  • Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5.
  • the excitation laser Ught is focused on the array using a 20X microscope objective (Nikon, Inc., MelviUe NY).
  • the sUde containing the array is placed on a computer-controUed X-Y stage on the microscope and raster- scanned past the objective.
  • the 1.8 cm x 1.8 cm a ⁇ ay used in the present example is scanned with a resolution of 20 micrometers.
  • a mixed gas multiline laser excites the two fluorophores sequentially. Emitted Ught is spUt, based on wavelength, into two photomultipUer tube detectors (PMT R1477,
  • Hamamatsu Photonics Systems, Bridgewater NJ corresponding to the two fluorophores.
  • Appropriate filters positioned between the a ⁇ ay and the photomultipUer tubes are used to filter the signals.
  • the emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5.
  • Each a ⁇ ay is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.
  • the sensitivity of the scans is typicaUy caUbrated using the signal intensity generated by a cDNA control species added to the sample mixture at a known concentration.
  • a specific location on the array contains a complementary DNA sequence, aUowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000.
  • the caUbration is done by labeling samples of the caUbrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.
  • the output of the photomultipUer tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) instaUed in an IBM-compatible PC computer.
  • the digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal).
  • the data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore 's emission spectrum.
  • a grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid.
  • the fluorescence signal within each element is then integrated to obtain a numerical value co ⁇ esponding to the average intensity of the signal.
  • the software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte Genomics). Array elements that exhibit at least about a two-fold change in expression, a signal-to-background ratio of at least about 2.5, and an element spot size of at least about 40%, are considered to be differentiaUy expressed.
  • SEQ ID NO: 11 shows differential expression associated with tumor tissues, as determined by microarray analysis. Pair comparisons of matched tumorous and microscopicaUy normal tissue from five donors with colon cancer, six donors with lung cancer, and one donor each with breast cancer and ovarian cancer were carried out. The expression of SEQ ID NO: 11 was decreased by at least two-fold in colon, lung and breast cancer tissues, and upregulated by at least two-fold in the ovarian cancer tissue. Therefore, SEQ ID NO: 11 is useful in diagnostic assays for cancer and as a potential biological marker and therapeutic agent in the treatment of cancer, particularly cancers of the colon, lung and breast.
  • SEQ ED NO:9 shows differential expression associated with colon cancer, as determined by microarray analysis.
  • SEQ ID NO:9 Gene expression in normal colon tissue (mRNA pooled from 3 different donors) was compared to colon polyps from 2 different donors and colon tumors from 3 different donors.
  • the expression of SEQ ID NO:9 was decreased by at least two-fold in aU five diseased tissue samples, as compared to the normal colon tissue. Therefore, SEQ ID NO:9 is useful in diagnostic assays for colon cancer and as a potential biological marker and therapeutic agent in the treatment of colon cancer.
  • SEQ ID NO:9 shows differential expression associated with Tangier disease, as determined by microarray analysis. The expression of SEQ ID NO:9 was increased at least two-fold in Tangier disease-derived fibroblasts compared to normal fibroblasts.
  • both types of ceUs were cultured in the presence of cholesterol and compared with the same ceU type cultured in the absence of cholesterol.
  • Human fibroblasts were obtained from skin explants from both normal subjects and two patients with homozygous Tangier disease. Cell Unes were immortaUzed by transfection with human papiUomavirus 16 genes E6 and E7 and a neomycin resistance selectable marker.
  • TD-derived ceUs are deficient in an assay of apoA-I mediated tritiated cholesterol efflux. Therefore, SEQ ID NO:9 is useful in diagnostic assays for Tangier disease.
  • SEQ ID NO: 11 shows differential expression associated with obesity, as determined by microa ⁇ ay analysis.
  • Human primary subcutaneous preadipocytes were isolated from adipose tissue of a 28-year-old healthy female with body mass index (BMI) of 23.59 and a 40-year-old healthy female with a body mass index (BMI) of 32.47.
  • the preadipocytes were cultured and induced to differentiate into adipocytes treated with human insuUn and PPAR- ⁇ agonist for 3 days and subsequently to medium containing insuUn alone for 1, 2, 4 days, 1.1 or 2.1 weeks.
  • Differentiated adipocytes were compared to untreated preadipocytes maintained in culture in the absence of inducing agents.
  • the expression of SEQ ID NO:l 1 was increased by at least two-fold the tissues treated for at least one week. Therefore, SEQ ID NO: 11 is useful as a potential biological marker and therapeutic agent in the treatment of obesity.
  • SEQ ID NO: 12 shows differential expression associated with lung cancer, as determined by microarray analysis. Pair comparison of normal and cancerous lung tissue from individual donors was carried. Expression of SEQ ID NO: 12 was decreased by at least 5.5 fold in 5 lung squamous ceU carcinomas and one lung adenocarcinoma, as compared to normal lung tissue. Therefore, SEQ ID NO: 12 is useful in diagnostic and disease staging assays for lung cancer and as a potential biological marker and therapeutic agent in the treatment of lung cancer. For example, SEQ ID NO: 14 showed decreased expression in breast ductal carcinoma ceUs versus a nonmaUgnant mammary epitheUal ceU line.
  • CeU Unes compared included: a) BT-20, a breast carcinoma ceU line derived in vitro from the cells emigrating out of thin sUces of tumor mass isolated from a 74-year- old female, b) BT-474, a breast ductal carcinoma cell line that was isolated from a soUd, invasive ductal carcinoma of the breast obtained from a 60-year-old woman, c) BT-483, a breast ductal carcinoma ceU line that was isolated from a papiUary invasive ductal tumor obtained from a 23-year- old normal, menstruating, parous female with a family history of breast cancer, d) Hs 578T, a breast ductal carcinoma cell line isolated from a 74-year-old female with breast carcinoma, e) MCF7, a nonma
  • SEQ ID NO: 14 is useful in monitoring treatment of, and diagnostic assays for, breast carcinoma and other ceU proUferative disorders.
  • SEQ ID NO: 16 showed differential expression in tumorous or diseased tissue versus non-tumorous or healthy tissues, as determined by microarray analysis. A ⁇ ay elements that exhibited about at least a two-fold change in expression and a signal intensity over 250 units, a signal- to-background ratio of a least 2.5, and an element spot size of at least 40% were identified as differentially expressed using the GEMTOOLS program (Incyte Genomics).
  • SEQ ID NO: 16 showed decreased expression in human umbiUcal vascular endotheUal ceU line (HUVEC) ceUs treated with tumor necrosis factor alpha (TNF- ⁇ ) versus untreated HUVEC ceUs, as determined by microa ⁇ ay analysis. Expression of SEQ ID NO: 16 decreased by at least twofold in HUVEC ceUs treated with O.lng/ml TNF- ⁇ . Therefore, SEQ ID NO: 16 is useful in monitoring treatment of, and diagnostic assays for, cardiovascular and inflammatory disorders. As another example, SEQ ID NO:16 showed decreased expression in preadipocyte ceUs treated with differentiation medium versus untreated preadipocyte ceUs, as determined by microarray analysis.
  • the preadipocytes were cultured and induced to differentiate into adipocytes by culturing them in the differentiation medium containing active components PPAR- ⁇ agonist and human insulin (Zen-Bio). ThiazoUdinediones or PPAR- ⁇ agonists can bind and activate an orphan nuclear receptor, PPAR- ⁇ , and some of them have been proven to be able to induce human adipocyte differentiation.
  • Human preadipocytes were treated with human insulin and PPAR- ⁇ agonist for 3 days and subsequently were switched to medium containing insuUn for a variety of durations before the ceUs were coUected for analysis. Differentiated adipocytes were compared to untreated preadipocytes maintained in culture in the absence of inducing agents. Between 80% and 90% of the preadipocytes finatty differentiated to adipocytes observed under phase contrast microscope. Therefore, SEQ ID NO: 16 is useful in monitoring treatment of, and diagnostic assays for, metaboUc disorders such as obesity and diabetes.
  • SEQ ED NO: 16 showed decreased expression in breast cancer ceUs treated with mammary epitheUum growth medium (MEGM) versus untreated breast cancer ceUs, as determined by microarray analysis. SEQ ID NO: 16 also showed decreased expression in breast cancer ceUs treated with epidermal growth factor (EGF) versus untreated breast cancer ceUs.
  • BT-20 is a breast carcinoma ceU line derived in vitro from the cells emigrating out of thin sUces of the tumor mass isolated from a 74-year-old female.
  • Individual breast tumor cell lines grown under optimal conditions (MEGM) were compared to the same ceUs maintained in culture under suboptimal conditions.
  • EGF-treated cells were compared to control ceUs maintained in culture for the same duration in the absence of EGF.
  • Expression of SEQ ID NO: 16 decreased by at least twofold in treated BT-20 ceUs. Therefore, SEQ ID NO:16 is useful in monitoring treatment of, and diagnostic assays for, breast cancer.
  • SEQ ID NO: 16 showed decreased expression in tissue associated with osteosarcoma versus normal osteoblasts, as determined by microa ⁇ ay analysis.
  • Messenger RNA from normal human osteoblasts was compared with mRNA from biopsy specimens, osteosarcoma tissues, or primary cultures or metastasized tissues.
  • Expression of SEQ ID NO: 16 decreased by at least twofold in tissue associated with osteosarcoma. Therefore, SEQ ID NO:16 is useful in monitoring treatment of, and diagnostic assays for, osteosarcoma.
  • SEQ ID NO: 16 showed decreased expression in peripheral blood mononuclear ceUs (PBMCs) treated with dexamethasone versus untreated PBMCs, as determined by microa ⁇ ay analysis.
  • PBMCs peripheral blood mononuclear ceUs
  • PBMCs peripheral blood mononuclear ceUs
  • SEQ ID NO: 16 decreased by at least twofold in peripheral blood mononuclear ceUs (PBMCs) treated with dexamethasone. Therefore, SEQ ID NO: 16 is useful in monitoring treatment of, and diagnostic assays for, autoimmune/inflammatory disorders.
  • PBMCs peripheral blood mononuclear ceUs
  • SEQ ID NO: 16 showed decreased expression in tissue associated with colon cancer versus normal colon tissue, as determined by microarray analysis. Matched normal and colon-cancer associated tissues from a single donor were compared. Expression of SEQ ID NO:16 decreased by at least twofold in tissue associated with colon cancer. Therefore, SEQ ID NO: 16 is useful in monitoring treatment of, and diagnostic assays for, colon cancer.
  • SEQ ID NO: 16 showed decreased expression in prostate carcinoma ceU Unes versus nontumorigenic primary prostate epitheUal (PrEC) ceUs, as determined by microarray analysis.
  • Gene expression profiles of the prostate carcinoma Unes CA-HPV-10, LNCaP, PC-3, and DU 145, MDAPCa2b were compared to the gene expression profile of nontumorigenic primary prostate epitheUal PrEC ceUs.
  • RNA was harvested when the cells grown in the defined serum-free TCH medium reached 70-80% confluence.
  • Expression of SEQ ID NO:16 decreased by at least twofold in ceU Unes associated with prostate cancer. Therefore, SEQ ID NO: 16 is useful in monitoring treatment of, and diagnostic assays for, prostate cancer.
  • SEQ ID NO: 16 showed decreased expression in brain tissue associated with Alzheimer's Disease (AD) versus normal brain tissue, as determined by microarray analysis. Specific dissected brain regions from a normal 61 -year-old female were compared to dissected regions from the brain of a female with severe AD and two normal male brains. The diagnosis of normal or severe AD was estabUshed by a certified neuropathologist based on microscopic examination of multiple sections throughout the brain. Expression of SEQ ID NO: 16 decreased by at least twofold in tissue associated with AD. Therefore, SEQ ID NO: 16 is useful in monitoring treatment of, and diagnostic assays for, Alzheimer's disease.
  • AD Alzheimer's Disease
  • SEQ ID NO: 16 showed decreased expression in C3A (hepatocyte) cetts treated with gemfibrozil versus untreated C3A ceUs, as determined by microa ⁇ ay analysis.
  • C3A ceUs hepatocyte
  • Gemfibrozil 120, 600, 800, and 1200 ⁇ g/ml
  • ParaUel samples of C3A ceUs were treated with 1% CMC only, as a control.
  • Expression of SEQ ID NO: 16 decreased by at least twofold in ceUs treated with gemfibrozil. Therefore, SEQ ID NO: 16 is useful in monitoring treatment of, and diagnostic assays for, metaboUc, cardiovascular, and Uver disorders.
  • Sequences complementary to the MEPR-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturaUy occurring MEPR.
  • oUgonucleotides comprising from about 15 to 30 base pairs is described, essentiaUy the same procedure is used with smaUer or with larger sequence fragments.
  • Appropriate oUgonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of MEPR.
  • a complementary oUgonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence.
  • a complementary oUgonucleotide is designed to prevent ribosomal binding to the MEPR-encoding transcript.
  • MEPR is achieved using bacterial or virus-based expression systems.
  • cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription.
  • promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element.
  • Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3).
  • Antibiotic resistant bacteria express MEPR upon induction with isopropyl beta-D- thiogalactopyranoside (EPTG).
  • MEPR in eukaryotic cells
  • baculovirus recombinant Autographica californica nuclear polyhedrosis virus
  • AcMNPV Autographica californica nuclear polyhedrosis virus
  • the nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding MEPR by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription.
  • Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect ceUs in most cases, or human hepatocytes, in some cases.
  • MEPR is synthesized as a fusion protein with, e.g., glutathione S- transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates.
  • GST glutathione S- transferase
  • FLAG peptide epitope tag
  • GST a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobiUzed glutathione under conditions that maintain protein activity and antigenicity (Amersham Biosciences). FoUowing purification, the GST moiety can be proteolyticaUy cleaved from MEPR at specifically engineered sites.
  • FLAG an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel et al. (supra, ch. 10 and 16). Purified MEPR obtained by these methods can be used directly in the assays shown in Examples XVII and XVDI, where appUcable. XIV. Functional Assays
  • MEPR function is assessed by expressing the sequences encoding MEPR at physiologicaUy elevated levels in mammaUan ceU culture systems.
  • cDNA is subcloned into a mammaUan expression vector containing a strong promoter that drives high levels of cDNA expression.
  • Vectors of choice include PCMV SPORT plasmid (Invitrogen, Carlsbad CA) and PCR3.1 plasmid (Invitrogen), both of which contain the cytomegalovirus promoter. 5-10 ⁇ g of recombinant vector are transiently transfected into a human ceU line, for example, an endotheUal or hematopoietic ceU Une, using either Uposome formulations or electroporation.
  • 1-2 ⁇ g of an additional plasmid containing sequences encoding a marker protein are co-transfected.
  • Expression of a marker protein provides a means to distinguish transfected ceUs from nontransfected ceUs and is a reUable predictor of cDNA expression from the recombinant vector.
  • Marker proteins of choice include, e.g., Green Fluorescent Protein
  • FCM Flow cytometry
  • the influence of MEPR on gene expression can be assessed using highly purified populations of ceUs transfected with sequences encoding MEPR and either CD64 or CD64-GFP.
  • CD64 and CD64-GFP are expressed on the surface of transfected ceUs and bind to conserved regions of human immunoglobuUn G (IgG).
  • Transfected ceUs are efficiently separated from nontransfected ceUs using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY).
  • mRNA can be purified from the ceUs using methods weU known by those of skill in the art. Expression of mRNA encoding MEPR and other genes of interest can be analyzed by northern analysis or microarray techniques.
  • MEPR substantiaUy purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize animals (e.g., rabbits, mice, etc.) and to produce antibodies using standard protocols.
  • PAGE polyacrylamide gel electrophoresis
  • the MEPR amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a co ⁇ esponding oUgopeptide is synthesized and used to raise antibodies by means known to those of skitt in the art.
  • LASERGENE software DNASTAR
  • Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophiUc regions are weU described in the art (Ausubel et al, supra, ch. 11).
  • oUgopeptides of about 15 residues in length are synthesized using an ABI 431A peptide synthesizer (AppUed Biosystems) using FMOC chemistry and coupled to KLH (Sigma- Aldrich, St. Louis MO) by reaction with N-malei ⁇ dobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity (Ausubel et al., supra). Rabbits are immunized with the oUgopeptide-KLH complex in complete Freund 's adjuvant.
  • ABI 431A peptidesizer AppUed Biosystems
  • KLH Sigma- Aldrich, St. Louis MO
  • MBS N-malei ⁇ dobenzoyl-N-hydroxysuccinimide ester
  • Resulting antisera are tested for antipeptide and anti-MEPR activity by, for example, binding the peptide or MEPR to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.
  • the column is eluted under conditions that disrupt antibody/MEPR binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and MEPR is collected.
  • a chaotrope such as urea or thiocyanate ion
  • MEPR or biologically active fragments thereof, are labeled with 125 I Bolton-Hunter reagent (Bolton, A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539).
  • Candidate molecules previously a ⁇ ayed in the weUs of a multi-well plate are incubated with the labeled MEPR, washed, and any weUs with labeled MEPR complex are assayed. Data obtained using different concentrations of MEPR are used to calculate values for the number, affinity, and association of MEPR with the candidate molecules.
  • molecules interacting with MEPR are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989; Nature 340:245-246), or using commerciaUy available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).
  • MEPR may also be used in the PATHCALLING process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine aU interactions between the proteins encoded by two large Ubraries of genes (Nandabalan, K. et al. (2000) U.S.
  • MEPR activity can be measured using a modified double antibody radioimmunoassay for metaUothionein (Hogstrand, C. and C Haux (1990) Toxicol. Appl. Pharmacol. 103:56-65, with modifications as described in Hogstrand, C. et al. ((1994) J. Exp. Biol. 186:55-73).
  • a radioimmunoassay for ferritin can be carried out (Spectria, Orion Diagnostics; Punnonen, K. et al.
  • MEPR activity can also be assayed for binding of radioactive metal isotopes, such as 75Se (Bansal, M.P. et al. (1989) Carcinogenesis 10:541-546; Bansal, M.P. et al.
  • MEPR activity can be measured using a ceU-free intra-Golgi transport assay (Porat, A. et al.
  • MEPR activity can also be measured by its inclusion in coated vesicles.
  • MEPR can be expressed by transforming a mammaUan ceU line such as COS7,
  • HeLa, or CHO with an eukaryotic expression vector encoding MEPR Eukaryotic expression vectors are commercially available, and the techniques to introduce them into ceUs are weU known to those skiUed in the art.
  • a smaU amount of a second plasmid, which expresses any one of a number of marker genes, such as ⁇ -galactosidase, is co-transformed into the cells in order to aUow rapid identification of those ceUs which have taken up and expressed the foreign DNA.
  • the ceUs are incubated for 48-72 hours after transformation under conditions appropriate for the cell line to aUow expression and accumulation of MEPR and ⁇ -galactosidase.
  • Transformed ceUs are coUected and ceU lysates are assayed for vesicle formation.
  • a non- hydrolyzable form of GTP, GTP ⁇ S, and an ATP regenerating system are added to the lysate and the mixture is incubated at 37° C for 10 minutes. Under these conditions, over 90% of the vesicles remain coated (Orci, L. et al (1989) Cell 56:357-368).
  • Transport vesicles are salt-released from the Golgi membranes, loaded under a sucrose gradient, centrifuged, and fractions are collected and analyzed by SDS-PAGE.
  • Co-locaUzation of MEPR with clathrin or COP coatamer is indicative of MEPR activity in vesicle formation.
  • the contribution of MEPR to vesicle formation can be confirmed by incubating lysates with antibodies specific for MEPR prior to GTP ⁇ S addition.
  • the antibody wiU bind to MEPR and interfere with its activity, thus preventing vesicle formation.
  • MEPR activity is measured by its abiUty to alter vesicle trafficking pathways. Vesicle trafficking in ceUs transformed with MEPR is examined using fluorescence microscopy.
  • Antibodies specific for vesicle coat proteins or typical vesicle trafficking substrates such as transferrin or the mannose-6-phosphate receptor are commerciaUy available.
  • Various ceUular components such as ER, Golgi bodies, peroxisomes, endosomes, lysosomes, and the plasmalemma are examined. Alterations in the numbers and locations of vesicles in ceUs transformed with MEPR as compared to control ceUs are characteristic of MEPR activity.
  • the oxygen-binding abiUty of MEPR can be determined on a modified Hem-O-Scan (Aminco) at 37°C (Li, X. et al. (2002) J. Biol. Chem. 277:13479-13487).
  • Oxygen-dependent activity of MEPR can be determined using a ring bioassay (Stamler, J. S. et al. (1992) Proc. Natl. Acad. Sci. USA 89 :444-448).
  • oxygen-dependent effects of MEPR on blood flow can be determined (Stamler, J. S. et al. (1997) Science 276:2034-2037).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Dans divers modes de réalisation, la présente invention concerne des métalloprotéines humaines (MEPR) et des polynucléotides identifiant et codant lesdites MEPR. D'autres modes de réalisation concernent également des vecteurs d'expression, des cellules hôtes, des anticorps, des agonistes et des antagonistes. D'autres modes de réalisation encore concernent des méthodes permettant de diagnostiquer, de traiter ou de prévenir des troubles associés à une expression aberrante de MEPR.
EP03713260A 2002-01-14 2003-01-14 Metalloproteines Withdrawn EP1472345A2 (fr)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US34876902P 2002-01-14 2002-01-14
US348769P 2002-01-14
US35070102P 2002-01-18 2002-01-18
US350701P 2002-01-18
US36605902P 2002-03-19 2002-03-19
US366059P 2002-03-19
US37990702P 2002-05-10 2002-05-10
US379907P 2002-05-10
PCT/US2003/001485 WO2003060089A2 (fr) 2002-01-14 2003-01-14 Metalloproteines

Publications (1)

Publication Number Publication Date
EP1472345A2 true EP1472345A2 (fr) 2004-11-03

Family

ID=27502778

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03713260A Withdrawn EP1472345A2 (fr) 2002-01-14 2003-01-14 Metalloproteines

Country Status (3)

Country Link
EP (1) EP1472345A2 (fr)
AU (1) AU2003217223A1 (fr)
WO (1) WO2003060089A2 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006073119A1 (ja) * 2005-01-06 2008-06-12 公立大学法人県立広島大学 ポリペプチドおよびその用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814480A (en) * 1997-01-17 1998-09-29 Incyte Pharmacueticals, Inc. DNA encoding human metallothioein

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03060089A3 *

Also Published As

Publication number Publication date
AU2003217223A1 (en) 2003-07-30
AU2003217223A8 (en) 2003-07-30
WO2003060089A2 (fr) 2003-07-24
WO2003060089A3 (fr) 2004-07-29

Similar Documents

Publication Publication Date Title
EP1383892A2 (fr) Proteines de matricielles extracellulaires et d'adhesions cellulaires humaines
EP1434796A2 (fr) Proteines secretees
WO2004048550A2 (fr) Proteines associees a une reponse immune
WO2003068943A2 (fr) Proteines secretees
EP1383798A2 (fr) Transporteurs et canaux ioniques
WO2004100774A2 (fr) Recepteurs et proteines associees a une membrane
EP1444255A2 (fr) Proteines associees aux vesicules
WO2003016493A2 (fr) Transporteurs et canaux ioniques
WO2004048529A2 (fr) Proteines de matrice extracellulaire et d'adhesion cellulaire
WO2003002610A1 (fr) Messagers extracellulaires
US20070276126A1 (en) Cell adhesion and extracellular matrix proteins
WO2003031595A2 (fr) Molecules destinees a la detection et au traitement de maladies
EP1472345A2 (fr) Metalloproteines
WO2004094589A2 (fr) Proteines secretees
WO2004094623A2 (fr) Proteines d'adhesion cellulaire et de matrice extracellulaire
WO2004020593A2 (fr) Proteines associees a la reponse immunitaire
WO2003074726A2 (fr) Proteines associees a une reponse immunitaire
EP1487989A2 (fr) Molecules permettant de detecter et de traiter des maladies
WO2002079448A2 (fr) Récepteurs couplés à la protéine g
WO2003093427A2 (fr) Molecules utilisees dans la detection et le traitement de maladies
WO2004011604A2 (fr) Proteines associees a des acides nucleiques
WO2004037987A2 (fr) Proteines secretees
WO2003008625A2 (fr) Proteines structurelles et cytosquelettiques
WO2003027230A2 (fr) Proteines de matrice extracellulaire et d'adhesion cellulaire
WO2004013292A2 (fr) Messagers extracellulaires

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040810

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20050214