EP1472026A2 - Method for the production of moulded metal pieces - Google Patents

Method for the production of moulded metal pieces

Info

Publication number
EP1472026A2
EP1472026A2 EP02742936A EP02742936A EP1472026A2 EP 1472026 A2 EP1472026 A2 EP 1472026A2 EP 02742936 A EP02742936 A EP 02742936A EP 02742936 A EP02742936 A EP 02742936A EP 1472026 A2 EP1472026 A2 EP 1472026A2
Authority
EP
European Patent Office
Prior art keywords
metal
mold
casting
metal body
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02742936A
Other languages
German (de)
French (fr)
Other versions
EP1472026B1 (en
Inventor
Wilfried Dr. Knott
Benno Niedermann
Manfred Recksik
Andreas Dr. c/o Degussa MBT Asia Pacific WEIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Buehler Druckguss AG
Evonik Operations GmbH
Original Assignee
Buehler Druckguss AG
TH Goldschmidt AG
Goldschmidt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Buehler Druckguss AG, TH Goldschmidt AG, Goldschmidt GmbH filed Critical Buehler Druckguss AG
Priority to SI200230612T priority Critical patent/SI1472026T1/en
Publication of EP1472026A2 publication Critical patent/EP1472026A2/en
Application granted granted Critical
Publication of EP1472026B1 publication Critical patent/EP1472026B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/14Machines with evacuated die cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/24Accessories for locating and holding cores or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product

Definitions

  • the invention relates to a method for producing molded metal parts, in particular lightweight parts made of light metal, and to the molded parts produced by this method and their use in light metal structures.
  • foamed metallic materials are materials that secure an ever wider distribution area.
  • foamed metallic materials are characterized by light construction, rigidity, compressive strength, improved mechanical and acoustic damping and. a. out.
  • the production of components from foamed metallic materials is also known.
  • GB 892934 relates to the production of complex structures with a foamed metal core and a closed, non-porous surface.
  • DE 198 32 794 Cl describes a method for producing a hollow profile which is filled with metal foam. This method comprises the steps of pressing the hollow profile made of a shell material with an extrusion press, which has an extrusion tool with a die and a mandrel, feeding the metal foam made of a foam material through a feed channel to the hollow profile which is formed in the mandrel.
  • DE 297 23 749 UI discloses a wheel for a motor vehicle which comprises at least one metallic foam core which is arranged exposed to the inside of the wheel and has a cast wall towards the outside of the wheel. The foam core made of aluminum foam is placed in a mold for casting the wheel and positioned so that the outer cast skin is created between the mold and the foam core during casting.
  • DE 195 02 307 AI describes a deformation element in the housing of which a filling made of an aluminum foam is provided as an energy absorber.
  • the housing can be made of metal or plastic.
  • the packing is a mere insert without a material connection to the housing.
  • a core made of aluminum foam is introduced into a die, which remains after the aluminum has been pressed into the mold in the component made of die-cast aluminum (principle of the lost core).
  • the aluminum foam used arises from a mixture of aluminum powder with a blowing agent and is produced in a manner known per se in a multi-stage process (such a process is described, for example, in the article “Economical production techniques for the production of aluminum foams, aluminum , 76er year 2000, page 491 ff).
  • the aluminum foam bodies produced in this way are then inserted into a casting mold with closed porosity, the core made of foamed aluminum at the little-stressed points is supported or fastened to the inner wall of the casting tool so that with a uniform distance in the desired wall thickness remains between the core and the tool. Only by maintaining this distance between the core piece and the tool is the formation of a closed and sufficiently stable wall in the resulting molded part guaranteed.
  • the process used for attaching core supports to support cores in mold cavities has long been common practice in foundry processes (see Foundry Encyclopedia, 17th edition 1997, Stephan Hasse, page 658 and page 640 below).
  • the requirements for the cores to be used are not only that they must either be sufficiently pressure-stable for use in die casting processes or, when used in casting filling processes at low speed, must be correspondingly temperature-resistant to liquid or semi-liquid metal in order not to be in their position to change the shape or to release a part of the volume they used during the filling process, but also to meet the requirement for precise support within the mold cavity and is sometimes very complex. That is e.g. B. recognizable from the wide range of commercially manufactured core supports (see e.g. delivery range from Phoebus Kern span GmbH & Co. KG, Dortmund) and also from the use of core support gluing devices as aids for fixing the core bodies in a casting mold.
  • the invention accordingly relates to a method for producing molded metal parts, which is characterized in that metal bodies with a surface that is closed on all sides and a hollow structure on the inside are placed in a mold and the remaining mold cavity is then filled with a metal or a metal alloy.
  • the surface area of the metal body preferably has an average density higher by a factor of 1.5 to 20, preferably 3 to 15, particularly preferably 5 to 10, than the interior of the metal body.
  • the metal structure enveloping the metal body (core) has a higher density than the average density of the metal body used, the molded part produced therefrom is correspondingly reduced in weight. If it has essentially the same density, there is of course no reduction in weight, but a possibly more expensive material can be produced more cheaply by embedding a cheaper shaped body.
  • a metal foam core is particularly suitable as the metal body, which advantageously has an integral foam structure.
  • the metal body is usually cast with a molten metal, which can be done, for example, in a die casting machine.
  • Light metals in particular aluminum or aluminum alloys, are particularly suitable for the process according to the invention, it being possible for the metals or alloys used to produce the moldings to be different from those of the moldings.
  • a metal integral molded foam is preferably used as the metal body which, in contrast to the foam bodies usually described in the literature, does not have a uniform foam morphology along its cross section. (The production of such a metal body is described in DE 101 04 339.2.) Instead, it is a molded foam body that can be produced in the outer zones true to the contour and whose outer shell is close to the density of the metal or metal alloy used. This metallic integral foam thus represents a real gradient material. In the interior of the molded body, however, the density is reduced by the occurrence of gas bubbles, so that the average density of the entire molded body is below the theoretical density of the metal or metal alloy used (FIG.).
  • the average density per cubic millimeter of the outer millimeter layer of the molded body is higher by a factor of 1.5 to 20, preferably 3 to 15, particularly preferably 5 to 10 than the average density in the interior of the molded body.
  • Shaped bodies of this type can be produced, for example, by die casting directly from the melt with the addition of a blowing agent.
  • the thickness of the outer skin of the shaped body and thus the temperature and pressure stability can be adapted according to the respective use by suitable variation of the process parameters, while at the same time the contour accuracy of the resulting shaped body enables exact positioning during further processing. So z. B. the metal bodies to be used according to the invention can be used to reduce the weight of a complicated metal casting by using it as cores remaining in the end product.
  • such cores due to their industrial manufacturing process to reduce the cost of the end bodies, because they can be manufactured inexpensively firstly and secondly they can be made from a cheaper material than the metal sheath surrounding them later. Due to their special pressure and temperature stability, such cores are not only for very fast processes such as the die casting process, but of course also for slow ones and thus The temperature load on the core body can be used in very demanding processes. This results in a wide range of application areas, such as. B. squeeze casting, and even the use in casting processes that work with incompletely liquid metals or metal alloys, such as. B. Thixo-Casting (Semi Solid Metal Casting).
  • the practically closed outer skin of the integral molded foam body to be used according to the invention also enables it to be used in vacuum casting processes, since the quality of the surface that is created enables the casting mold to be evacuated in the process of final body production according to the invention, without continuous gas leaks from the interior of the core body and to a disruptive extent to observe a concomitant reduction in the vacuum.
  • the integral mold foam core can be introduced into the mold used either manually or according to other customary industrial processes, eg. B. by robots.
  • the subsequent casting and thus the formation of the weight-reduced target workpiece can also be carried out with metals or metal alloys with a higher melting point or at a higher processing temperature than the melting point of the core material due to the temperature and pressure stability of the outer core skin.
  • Such a procedure that uses higher melting enamelling materials even has the advantage that the outer surface of the core body is partially melted and thus an intimate metallic bond is formed between the core material and the enveloping shell material of the end workpiece in the subsequent solidification process of the end body.
  • the excellent pressure stability of the core body used means that post-treatment of the final workpiece is generally not necessary.
  • the invention is described in more detail below in an exemplary embodiment.
  • the single figure shows a section of an integral molded foam suitable as a core.
  • a vehicle part should be made from an aluminum material as an integrally foamed metal body.
  • a casting chamber of a die casting machine was filled with a corresponding amount of molten metal in a first step.
  • Magnesium hydride in powder form was added to the liquid metal as a foaming propellant in the closed casting chamber.
  • the mixture of blowing agent and molten metal began to be quickly inserted into the mold cavity.
  • the mold cavity was underfilled in a defined volume. The resulting turbulence ensures thorough mixing in the mold cavity and foaming of the cavity.
  • the “shot” took place before the foam was formed, the foaming process took place “in situ” in the mold cavity. It was quickly foamed into the cold form.
  • the component had a mass of only approx. 40% compared to conventional die-cast parts made of the same material.
  • the metal body produced according to the example was then used as the core in a larger mold is inserted and the mold is closed. Then a metal melt was pressed out of the casting chamber of the die casting machine into the mold cavity in accordance with the usual die casting process. In this filling process, the mold cavity was completely filled, and excess metal was removed from the connecting channel and the end of the casting chamber after the molded body had cooled.
  • the result of this process was a weight-reduced molded part, which had cavities in the area of the inserted core body, but corresponded to a full casting in the area of the structures not filled by the core.
  • the molded body produced according to the example had a lower density and better vibration absorption behavior than the corresponding solid material comparison body.

Abstract

The invention relates to a process for producing shaped metal parts, in particular reduced-weight shaped parts made from metallic materials. In this process, a metal body with a surface which is closed on all sides and a hollow structure in the interior is placed into a die as a core and is then surrounded with a metal melt by casting. The surface region of the metal body has a mean density which is higher than the interior of the metal body by a factor of 1.5 to 20.

Description

Verfahren zur Herstellung von MetallformteilenProcess for the production of molded metal parts
Die Erfindung betrifft ein Verfahren zur Herstellung von Metallformteilen, insbesondere von gewichtsreduzierten Formteilen aus Leichtmetall, sowie die nach diesem Verfahren hergestellten Formteile und deren Verwendung in Leichtmetallkonstruktionen.The invention relates to a method for producing molded metal parts, in particular lightweight parts made of light metal, and to the molded parts produced by this method and their use in light metal structures.
Im Zuge gestiegener ökologischer Anforderungen, aber auch für den Einsatz in Hochtechnologieanwendungen wie Flugzeugbau, Automobilbau oder in statisch anspruchsvollen Teilen ist eine Gewichtsreduzierung bei Metallformteilen von eminenter Bedeutung. In diesem Kontext sind besonders Leichtmetalle Werkstoffe, die ein immer weiteres Verbreitungsgebiet sichern. Eine weitere Möglichkeit zur Gewichtsreduktion ist der Einsatz von geschäumten metallischen Werkstoffen. Die dabei verwendeten Schäume zeichnen sich durch leichte Bauweise, Steifigkeit, Druckfestig- keit, verbesserte mechanische und akustische Dämpfung u. a. aus. Auch die Herstellung von Bauteilen aus geschäumten metallischen Werkstoffen ist bekannt.In the course of increasing ecological requirements, but also for use in high-technology applications such as aircraft construction, automobile construction or in statically demanding parts, weight reduction for molded metal parts is of paramount importance. In this context, light metals in particular are materials that secure an ever wider distribution area. Another way to reduce weight is to use foamed metallic materials. The foams used are characterized by light construction, rigidity, compressive strength, improved mechanical and acoustic damping and. a. out. The production of components from foamed metallic materials is also known.
GB 892934 betrifft die Herstellung von komplexen Strukturen mit geschäumtem Metallkern und geschlossener nicht poröser Oberfläche.GB 892934 relates to the production of complex structures with a foamed metal core and a closed, non-porous surface.
DE 198 32 794 Cl beschreibt ein Verfahren zur Herstellung eines Hohlprofils, das mit Metallschaum gefüllt ist. Dieses Verfahren umfasst die Schritte des Pressens des Hohlprofils aus einem Hüllwerkstoff mit einer Strangpresse, die ein Strangpresswerkzeug mit einer Matrize und einem Dorn aufweist, des Zuführens des Metallschaums aus einem Schaümwerkstoff durch einen Zufuhrkanal zu dem Hohlprofil, der in dem Dorn ausgebildet ist. DE 297 23 749 UI offenbart ein Rad für ein Kraftfahrzeug, welches mindestens einen metallischen Schaumkern umfasst, der zur Innenseite des Rades hin freiliegend angeordnet ist und zur Außenseite des Rades hin eine Gusswandung besitzt. Der Schaumkern aus Aluminiumschaum wird zum Gießen des Rades in eine Kokille eingelegt und so positioniert, dass zwischen der Kokille und dem Schaumkern beim Giessen die äußere Gusshaut entsteht.DE 198 32 794 Cl describes a method for producing a hollow profile which is filled with metal foam. This method comprises the steps of pressing the hollow profile made of a shell material with an extrusion press, which has an extrusion tool with a die and a mandrel, feeding the metal foam made of a foam material through a feed channel to the hollow profile which is formed in the mandrel. DE 297 23 749 UI discloses a wheel for a motor vehicle which comprises at least one metallic foam core which is arranged exposed to the inside of the wheel and has a cast wall towards the outside of the wheel. The foam core made of aluminum foam is placed in a mold for casting the wheel and positioned so that the outer cast skin is created between the mold and the foam core during casting.
DE 195 02 307 AI beschreibt ein Deformationselement, in dessen Gehäuse eine Füllung aus einem Aluminiumschaum als Energieabsorber vorgesehen ist. Das Gehäuse kann aus Metall oder Kunststoff bestehen. Der Füllkörper ist ein bloßes Einlegeteil ohne Stoffschluss zum Gehäuse.DE 195 02 307 AI describes a deformation element in the housing of which a filling made of an aluminum foam is provided as an energy absorber. The housing can be made of metal or plastic. The packing is a mere insert without a material connection to the housing.
Von besonderem Interesse ist jedoch die Verwendung von Gießkernen aus Metallschaum zur Herstellung von innen geschäumten metallischen Formteilen.Of particular interest, however, is the use of metal foam casting cores for the production of internally foamed metal molded parts.
So wird z . B. in der DE 195 01 508 Cl ein Bauteil für das Fahr- werk eines Kraftfahrzeuges und ein Verfahren zur Herstellung eines solchen Bauteiles beansprucht . Dazu wird in eine Druckgießform ein Kern aus Aluminiumschaum eingebracht, der nach dem Einpressen des Aluminiums in das Formwerkzeug in dem Bauteil aus Aluminiumdruckguss verbleibt (Prinzip des verlorenen Kerns) . Der verwendete Aluminiumschaum entsteht aus einer Mischung von Aluminiumpulver mit einem Treibmittel und wird in an sich bekannter Weise in einem mehrstufigen Verfahren hergestellt (ein derartiges Verfahren ist z-. B. beschrieben in dem Artikel „Wirtschaftliche Fertigungstechniken für die Herstel- lung von Aluminiumschäumen, Aluminium, 76er Jahrgang 2000, Seite 491 ff) . Entsprechend DE 195 01 508 Cl werden die auf diesem Wege hergestellten Aluminiumschaumkörper mit einer Dichte von 0,6 bis 0,7 g pro cm3 mit geschlossener Porosität dann in eine Gießform eingelegt, wobei der Kern aus aufge- schäumtem Aluminium an den wenig belasteten Stellen an der Innenwand des Gusswerkzeuges abgestützt bzw. befestigt wird, da- mit zwischen dem Kern und dem Werkzeug ein gleichmäßiger Abstand in gewünschter Wanddicke verbleibt . Nur durch die Beibehaltung dieses Abstandes zwischen Kernstück und Werkzeug ist die Ausbildung einer geschlossenen und genügend stabilen Wand im entstehenden Formteil gewährleistet. Das dafür angewendete Verfahren des Anbringens von Kernstützen als Abstützung von Kernen in Formhohlräumen ist schon seit langem gängige Praxis bei Gießereiverfahren (siehe Gießereilexikon, 17. Auflage 1997, Stephan Hasse, Seite 658 und Seite 640 folgende) . Insgesamt er- gibt sich als Anforderung an die zu verwendenden Kerne nicht nur, dass sie entweder für die Verwendung in Druckgussverfahren ausreichend druckstabil sein müssen oder bei Einsatz in Gießfüllprozessen mit geringer Geschwindigkeit gegenüber flüssigen oder halbflüssigen Metall entsprechend temperaturbeständig sein müssen, um nicht ihre Lage in der Form zu verändern oder einen Teil des von ihnen beanspruchten Volumens während des Füllprozesses wieder freizugeben, sondern auch die Anforderung an die passgenaue Abstützung innerhalb des Formhohlraumes ist zu erfüllen und gestaltet sich zum Teil sehr aufwendig. Das ist z. B. erkennbar an der breiten Palette kommerziell hergestellter Kernstützen (siehe z. B. Lieferpalette der Phoebus Kernstützen GmbH & Co. KG, Dortmund) und auch an der Verwendung von Kernstützenklebegeräten als Hilfsmittel zur Fixierung der Kernkörper in einer Gießform. Gerade der Einsatz von Kernstüt- zen zur exakten Positionierung eines Kernes in einer Gießform führt aber zu punktuell sehr hohen Drücken an der Außenhaut der entsprechenden Kernkδrper beim Formfüllprozess . Dieses ist besonders bei gewichtsreduzierten Schaumkörpern dann ein Problem, wenn derartige Schaumkörper nicht exakt passgenau hergestellt werden können und nicht gleichzeitig eine Außenhaut entsprechender Stabilität gebildet wird, die den beschriebenen Temperatur- und Druckbelastungen beim Füllprozess, egal ob mit oder ohne Verwendung von Kernstützen, standhalten kann. Es ist daher Aufgabe der Erfindung, das Problem des sicheren Umgießens eines gewichtsreduzierten Schaumkörpers zu lösen und ein Verfahren zur Verarbeitung derartiger Metallkörper zu gewichtsreduzierten Metallformteilen durch Weiterverarbeitung in einem Gießverfahren zu ermöglichen.So z. B. in DE 195 01 508 Cl claims a component for the chassis of a motor vehicle and a method for producing such a component. For this purpose, a core made of aluminum foam is introduced into a die, which remains after the aluminum has been pressed into the mold in the component made of die-cast aluminum (principle of the lost core). The aluminum foam used arises from a mixture of aluminum powder with a blowing agent and is produced in a manner known per se in a multi-stage process (such a process is described, for example, in the article “Economical production techniques for the production of aluminum foams, aluminum , 76er year 2000, page 491 ff). According to DE 195 01 508 Cl, the aluminum foam bodies produced in this way, with a density of 0.6 to 0.7 g per cm 3 , are then inserted into a casting mold with closed porosity, the core made of foamed aluminum at the little-stressed points is supported or fastened to the inner wall of the casting tool so that with a uniform distance in the desired wall thickness remains between the core and the tool. Only by maintaining this distance between the core piece and the tool is the formation of a closed and sufficiently stable wall in the resulting molded part guaranteed. The process used for attaching core supports to support cores in mold cavities has long been common practice in foundry processes (see Foundry Encyclopedia, 17th edition 1997, Stephan Hasse, page 658 and page 640 below). All in all, the requirements for the cores to be used are not only that they must either be sufficiently pressure-stable for use in die casting processes or, when used in casting filling processes at low speed, must be correspondingly temperature-resistant to liquid or semi-liquid metal in order not to be in their position to change the shape or to release a part of the volume they used during the filling process, but also to meet the requirement for precise support within the mold cavity and is sometimes very complex. That is e.g. B. recognizable from the wide range of commercially manufactured core supports (see e.g. delivery range from Phoebus Kernstützen GmbH & Co. KG, Dortmund) and also from the use of core support gluing devices as aids for fixing the core bodies in a casting mold. However, the use of core supports for the exact positioning of a core in a casting mold leads to very high pressures on the outer skin of the corresponding core body during the mold filling process. This is particularly a problem with reduced-weight foam bodies if such foam bodies cannot be produced with an exact fit and an outer skin of corresponding stability is not formed at the same time, which can withstand the temperature and pressure loads described during the filling process, regardless of whether with or without the use of core supports , It is therefore an object of the invention to solve the problem of reliably casting a reduced-weight foam body and to reduce the weight of a method for processing such metal bodies To enable metal moldings by further processing in a casting process.
Gegenstand der Erfindung ist demnach ein Verfahren zur Herstellung von Metallformteilen, welches dadurch gekennzeichnet ist, dass man Metallkörper mit allseitig geschlossener Oberfläche und einer Hohlstruktur im Innern in eine Form einlegt und der verbleibende Formhohlraum anschließend mit einem Metall oder einer Metalllegierung gefüllt wird.The invention accordingly relates to a method for producing molded metal parts, which is characterized in that metal bodies with a surface that is closed on all sides and a hollow structure on the inside are placed in a mold and the remaining mold cavity is then filled with a metal or a metal alloy.
Dabei hat der Oberflächenbereich des Metallkorpers vorzugsweise eine um den Faktor 1,5 bis 20, bevorzugt 3 bis 15, besonders bevorzugt 5 bis 10 höhere durchschnittliche Dichte als das Innere des Metallkörpers.The surface area of the metal body preferably has an average density higher by a factor of 1.5 to 20, preferably 3 to 15, particularly preferably 5 to 10, than the interior of the metal body.
Im Falle dass die den Metallkörper (Kern) umhüllende Metall- Struktur eine höhere Dichte hat als die mittlere Dichte des verwendeten Metallkorpers, wird das daraus hergestellte Formteil entsprechend gewichtsreduziert. Falls es eine im wesent- liehen gleiche Dichte hat, ist damit natürlich keine Gewichtsreduzierung verbunden, jedoch lässt sich ein gegebenenfalls teureres Material durch Einbettung eines billigeren Formkörpers preisgünstiger herstellen.In the event that the metal structure enveloping the metal body (core) has a higher density than the average density of the metal body used, the molded part produced therefrom is correspondingly reduced in weight. If it has essentially the same density, there is of course no reduction in weight, but a possibly more expensive material can be produced more cheaply by embedding a cheaper shaped body.
Als Metallkörper ist insbesondere ein Metallschaumkern geeignet, der vorteilhaft eine Integralschäumstruktur aufweist. Gewöhnlich wird der Metallkδrper mit einer flüssigen Metallschmelze umgössen, was beispielsweise in einer Druckgießmaschine erfolgen kann.A metal foam core is particularly suitable as the metal body, which advantageously has an integral foam structure. The metal body is usually cast with a molten metal, which can be done, for example, in a die casting machine.
Es ist auch möglich, den Metallkörper mit Metall in teilerstarrtem Zustand entsprechend dem Semi Solid Casting-Process zu umgießen.It is also possible to cast metal around the metal body in a partially solidified state in accordance with the semi-solid casting process.
Je nach Geometrie und gewünschter oder angestrebter mechanischer Eigenschaft der Metallformteile ist es natürlich auch möglich, mehrere gleichartige oder unterschiedliche Metallkörper zu umgießen.Depending on the geometry and the desired or desired mechanical properties of the molded metal parts, it is of course also possible to encapsulate several identical or different metal bodies.
Besonders geeignet für das erfindungsgemäße Verfahren sind Leichtmetalle, insbesondere Aluminium oder Aluminiumlegierungen, wobei die zur Herstellung der Formteile verwendeten Metalle oder Legierungen andere sein können als die der Formkörper.Light metals, in particular aluminum or aluminum alloys, are particularly suitable for the process according to the invention, it being possible for the metals or alloys used to produce the moldings to be different from those of the moldings.
Wie oben angeführt, wird bevorzugt als Metallkörper ein Metall- integralformschaum eingesetzt, der im Gegensatz zu den in der Literatur üblicherweise beschriebenen Schaumkörpern entlang seines Querschnittes keine gleichmäßige Schaummorphologie aufweist. (Die Herstellung eines solchen Metallkörpers wird in DE 101 04 339.2 beschrieben.) Stattdessen handelt es sich um einen Formschaumkörper, der in den Außenzonen konturtreu hergestellt werden kann und dessen Außenhülle nahe der Dichte des eingesetzten Metalls oder der eingesetzten Metalllegierung liegt. Dieser metallische Integralschäum repräsentiert somit einen echten Gradientenwerkstoff. Im Inneren des Formkörpers allerdings wird die Dichte durch das Auftreten von Gasblasen reduziert, so dass die mittlere Dichte des gesamten Formkörpers unterhalb der theoretischen Dichte des verwendeten Metalls bzw. der verwendeten Metalllegierung liegt ( Fig.). Dabei liegt die durchschnittliche Dichte pro Kübikmillimeter der äußeren Millimeterschicht des Formkörpers um den Faktor 1,5 bis 20, bevorzugt 3 bis 15, besonders bevorzugt 5 bis 10 höher als die mittlere Dichte im Innern des Formkδrpers . Derartige Formkörper sind z.B. durch ein Druckguss erfahren direkt aus der Schmelze unter Zugabe eines Treibmittels herstellbar. Durch geeignete Variation der Verfahrensparameter kann die Dicke der Außenhaut des Formkörpers und damit die Temperatur- und Druckstabilität entsprechend der jeweiligen Verwendung angepasst werden, wobei gleichzeitig die Konturentreue des entstehenden Formkörpers eine exakte Positionierung beim Weiterverarbeiten ermöglicht. So können z. B. die erfindungsgemäß zu verwendenden Metallkör- per dazu genutzt werden, ein kompliziertes Metallgussteil dadurch im Gewicht zu reduzieren, dass sie als im Endprodukt verbleibende Kerne eingesetzt werden. Weiterhin ist aber auch möglich, derartige Kerne aufgrund ihres industriellen Herstel- lungsprozesses zu einer Kostenreduktion der Endkörper einzusetzen, da sie erstens günstig herstellbar und zweitens durchaus aus einem billigeren Material gefertigt sein können als die sie dann später umgebende Metallhülle. Aufgrund ihrer besonderen Druck- und Temperaturstabilität sind derartige Kerne nicht nur für sehr schnelle Verfahren wie den Druckgussprozess, sondern natürlich auch für langsame und damit bzgl . der Temperaturbelastung auf den Kernkörper sehr anspruchsvolle Verfahren einsetzbar. Damit ergibt sich eine breite Palette von Anwendungsfeldern, wie z. B. Squeeze-Casting, und selbst die Verwendung in Gießverfahren, die mit nicht vollständig flüssigen Metallen oder Metalllegierungen arbeiten, wie z. B. das Thixo-Casting (Semi Solid Metal Casting) .As mentioned above, a metal integral molded foam is preferably used as the metal body which, in contrast to the foam bodies usually described in the literature, does not have a uniform foam morphology along its cross section. (The production of such a metal body is described in DE 101 04 339.2.) Instead, it is a molded foam body that can be produced in the outer zones true to the contour and whose outer shell is close to the density of the metal or metal alloy used. This metallic integral foam thus represents a real gradient material. In the interior of the molded body, however, the density is reduced by the occurrence of gas bubbles, so that the average density of the entire molded body is below the theoretical density of the metal or metal alloy used (FIG.). The average density per cubic millimeter of the outer millimeter layer of the molded body is higher by a factor of 1.5 to 20, preferably 3 to 15, particularly preferably 5 to 10 than the average density in the interior of the molded body. Shaped bodies of this type can be produced, for example, by die casting directly from the melt with the addition of a blowing agent. The thickness of the outer skin of the shaped body and thus the temperature and pressure stability can be adapted according to the respective use by suitable variation of the process parameters, while at the same time the contour accuracy of the resulting shaped body enables exact positioning during further processing. So z. B. the metal bodies to be used according to the invention can be used to reduce the weight of a complicated metal casting by using it as cores remaining in the end product. Furthermore, it is also possible to use such cores due to their industrial manufacturing process to reduce the cost of the end bodies, because they can be manufactured inexpensively firstly and secondly they can be made from a cheaper material than the metal sheath surrounding them later. Due to their special pressure and temperature stability, such cores are not only for very fast processes such as the die casting process, but of course also for slow ones and thus The temperature load on the core body can be used in very demanding processes. This results in a wide range of application areas, such as. B. squeeze casting, and even the use in casting processes that work with incompletely liquid metals or metal alloys, such as. B. Thixo-Casting (Semi Solid Metal Casting).
Die praktisch geschlossene Außenhaut der erfindungsgemäß zu verwendenden Integralformschaumkörper ermöglicht auch ihre Anwendung in Vakuumgießprozessen, da bei der Qualität der entstehenden Oberfläche ein Evakuieren der Gießform bei dem erfindungsgemäßen Verfahren der Endkδrperherstellung möglich ist, ohne kontinuierlich in störendem Maße Gasleckagen aus dem In- neren des Kernkörpers und eine damit einhergehende Verminderung des Vakuums zu beobachten.The practically closed outer skin of the integral molded foam body to be used according to the invention also enables it to be used in vacuum casting processes, since the quality of the surface that is created enables the casting mold to be evacuated in the process of final body production according to the invention, without continuous gas leaks from the interior of the core body and to a disruptive extent to observe a concomitant reduction in the vacuum.
Das Einbringen des Integralformschaumkernes in die verwendete Gießform kann entweder manuell oder nach sonst üblichen In- dustrieverfahren, z. B. durch Roboter, erfolgen. Das nachfolgende Umgießen und damit die Ausbildung des gewichtsreduzierten Zielwerkstückes kann aufgrund der Temperatur- und Druckstabilität der Kernkörperaußenhaut durchaus auch mit Metallen bzw. Metalllegierungen eines höheren Schmelzpunktes bzw. bei einer hö- heren Verarbeitungstemperatur als dem Schmelzpunkt des Kernma- teriales erfolgen. Ein solches Verfahren, das den Einsatz höher schmelzender Umhüllungsmaterialien vorsieht, hat sogar den Vorteil, dass die Außenfläche des Kernkörpers partiell angeschmolzen wird und somit sich beim nachfolgenden Erstarrungs- prozess des Endkörpers ein inniger metallischer Verbund zwi- sehen dem Kernmaterial und dem umhüllenden Schalenmaterial des Endwerkstückes bildet. Wie bei den industriellen Gießverfahren üblich, ist unter anderem durch die ausgezeichnete Druckstabilität der verwendeten Kernkörper eine Nachbehandlung des endgültigen Werkstückes in der Regel nicht nötig. Die Erfindung wird nachfolgend in einem Ausführungsbeispiel näher beschrieben. Die einzige Figur zeigt einen Ausschnitt eines als Kern geeigneten Integralformschaums.The integral mold foam core can be introduced into the mold used either manually or according to other customary industrial processes, eg. B. by robots. The subsequent casting and thus the formation of the weight-reduced target workpiece can also be carried out with metals or metal alloys with a higher melting point or at a higher processing temperature than the melting point of the core material due to the temperature and pressure stability of the outer core skin. Such a procedure that uses higher melting enamelling materials even has the advantage that the outer surface of the core body is partially melted and thus an intimate metallic bond is formed between the core material and the enveloping shell material of the end workpiece in the subsequent solidification process of the end body. As is usual with industrial casting processes, the excellent pressure stability of the core body used means that post-treatment of the final workpiece is generally not necessary. The invention is described in more detail below in an exemplary embodiment. The single figure shows a section of an integral molded foam suitable as a core.
In einer handelsüblichen Druckgießmaschine sollte ein Fahrzeug- teil aus einem Aluminiumwerkstoff als integral geschäumter Metallkörper hergestellt werden. Hierzu wurde in einem ersten Schritt eine Gießkammer einer Druckgießmaschine mit einer entsprechenden Menge an Metallschmelze gefüllt. In die geschlossene Gießkammer wurde als schaumerzeugendes Treibmittel Magne- siumhydrid in Pulverform dem flüssigen Metall zugegeben. Nahezu gleichzeitig begann ein schnelles Einschieben des Gemisches aus Treibmittel und Metallschmelze in den Formhohlraum. Der Formhohlraum wurde volumendefiniert unterfüllt. Durch die entstehenden Turbulenzen erfolgt eine gute Durchmischung in dem Form- hohlraum und das Ausschäumen des Hohlraumes. Durch die Sprühfüllung erstarrte das Metall an den Formwänden und bildete eine dichte und homogene Wandung des Metallkörpers aus, wobei sowohl die Wandstärken als auch die Porosität und deren Gradient durch Variation von Verfahrensparametern einstellbar waren.In a commercially available die casting machine, a vehicle part should be made from an aluminum material as an integrally foamed metal body. For this purpose, a casting chamber of a die casting machine was filled with a corresponding amount of molten metal in a first step. Magnesium hydride in powder form was added to the liquid metal as a foaming propellant in the closed casting chamber. Almost simultaneously, the mixture of blowing agent and molten metal began to be quickly inserted into the mold cavity. The mold cavity was underfilled in a defined volume. The resulting turbulence ensures thorough mixing in the mold cavity and foaming of the cavity. The spray solidified the metal on the mold walls and formed a dense and homogeneous wall of the metal body, both the wall thicknesses and the porosity and their gradient being adjustable by varying process parameters.
Der „Schuss,, erfolgte vor der Schaumbildung, der Schäu- mungsprozess lief „in situ,, in dem Formhohlraum ab. Es wurde schnell in die kalte Form geschäumt. Das Bauteil wies eine Masse von nur ca. 40 % gegenüber konventionellen Druckgießteilen aus gleichem Material auf. Der gemäß dem Beispiel hergestellte Metallkörper wurde dann als Kern in eine größere Gießform eingelegt und die Gießform geschlossen. Dann wurde entsprechend dem üblichen Druckgussverfahren eine Metallschmelze aus der Gießkammer der Druckgussmaschine in den Formhohlraum gepresst. Bei diesem Füllgang wurde der Formhohlraum vollständig gefüllt, überschüssiges Metall wurde nach dem Erkalten des Formkörpers aus dem Anschusskanal und dem Ende der Gießkammer entfernt . Das Ergebnis dieses Prozesses war ein gewichtsreduziertes Formteil, das im Bereich des eingelegten Kernkörpers Hohlräume aufwies, im Bereich der nicht vom Kern gefüllten Strukturen aber einem Vollgussteil entsprach.The “shot” took place before the foam was formed, the foaming process took place “in situ” in the mold cavity. It was quickly foamed into the cold form. The component had a mass of only approx. 40% compared to conventional die-cast parts made of the same material. The metal body produced according to the example was then used as the core in a larger mold is inserted and the mold is closed. Then a metal melt was pressed out of the casting chamber of the die casting machine into the mold cavity in accordance with the usual die casting process. In this filling process, the mold cavity was completely filled, and excess metal was removed from the connecting channel and the end of the casting chamber after the molded body had cooled. The result of this process was a weight-reduced molded part, which had cavities in the area of the inserted core body, but corresponded to a full casting in the area of the structures not filled by the core.
Am Schnitt des beispielhaften Metallkörpers (Fig.) ist die Konturentreue entsprechend der verwendeten Form deutlich erkenn- bar, ebenso die unterschiedliche' Morphologie am Rande und im Innern des Formkörpers sowie die Druckstabilität des Kernes an Hand der flachen Eindruckspur des Auswerfers.At the intersection of the exemplary metal body (Fig.) Is the contour fidelity according to the used form clearly recognizable, as well as the different 'morphology at the edge and in the interior of the shaped body as well as the compression strength of the core with reference to the flat impression track of the ejector.
Der gemäß dem Beispiel hergestellte Formkörper wies eine gerin- gere Dichte und ein besseres Schwingungsabsorbtionsverhalten als der entsprechende Vollmaterial-Vergleichskörper auf. The molded body produced according to the example had a lower density and better vibration absorption behavior than the corresponding solid material comparison body.

Claims

Patentansprüche : Claims:
1. Verfahren zur Herstellung von Metallformteilen, dadurch gekennzeichnet, dass man Metallkörper mit allseitig ge- schlossener Oberfläche und einer Hohlstruktur im Innern in eine Form einlegt und der verbleibende Formhohlraum anschließend mit einem Metall oder einer Metalllegierung gefüllt wird.1. A process for producing molded metal parts, characterized in that metal bodies with a surface that is closed on all sides and a hollow structure on the inside are placed in a mold and the remaining mold cavity is then filled with a metal or a metal alloy.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass der Oberflächenbereich des Metallkörpers eine um den Faktor 1,5 bis 20, bevorzugt 3 bis 15, besonders bevorzugt 5 bis 10 höhere durchschnittliche Dichte als das Innere des Metallkorpers hat .2. The method according to claim 1, characterized in that the surface area of the metal body has a factor of 1.5 to 20, preferably 3 to 15, particularly preferably 5 to 10 higher average density than the inside of the metal body.
3. Verfahren nach den Ansprüchen 1 und 2 , dadurch gekennzeichnet, dass die den Metallkörper (Kern) umhüllende Metall- Struktur eine höhere Dichte hat als die mittlere Dichte des verwendeten Metallkörpers.3. The method according to claims 1 and 2, characterized in that the metal structure (core) enveloping metal structure has a higher density than the average density of the metal body used.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass der Metallkörper in Form eines Metallschaumkernes mit einer flüssigen Metallschmelze umgössen wird.4. The method according to claims 1 to 3, characterized in that the metal body is cast in the form of a metal foam core with a liquid metal melt.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass das Umgießen des Metallkörpers in einer Druckgießmaschine erfolgt .5. The method according to claims 1 to 4, characterized in that the casting of the metal body is carried out in a die casting machine.
6. Verfahren nach den Ansprüchen 1 bis 3 und 5, dadurch ge- kennzeichnet, dass das Umgießen des Metallkörpers durch Metall in teilerstarrtem Zustand entsprechend dem Semi Solid Metal Casting-Prozess erfolgt.6. The method according to claims 1 to 3 and 5, character- ized in that the metal body is poured around by metal in a partially solidified state in accordance with the semi-solid metal casting process.
7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeich- net, dass nach dem Einlegen des Metallkörpers in die Gießform und vor Eintreffen des Metalls in die Gießform ein Va- kuum an der Form angelegt wird und erst danach die Formfüllung erfolgt.7. The method according to claims 1 to 6, characterized in that after inserting the metal body into the casting mold and before the metal arrives in the casting mold, a vacuum vacuum is applied to the mold and only then is the mold filled.
8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeich- net, dass mehrere gleichartige oder unterschiedliche Metallkörper in eine Form eingelegt werden und anschließend umgössen werden.8. The method according to claims 1 to 7, characterized in that a plurality of identical or different metal bodies are placed in a mold and then molded.
9. Verfahren nach einem der Ansprüche 1 bis 8 , dadurch gekenn- zeichnet, dass zum Ausfüllen der Form eine Metallschmelze aus Leichtmetall eingesetzt wird, insbesondere aus Aluminium oder einer Aluminiumlegierung.9. The method according to any one of claims 1 to 8, characterized in that a metal melt made of light metal is used to fill out the mold, in particular made of aluminum or an aluminum alloy.
10. Metallformteil, hergestellt nach einem Verfahren gemäß ei- nem der Ansprüche 1 bis 9.10. Metal molding, produced by a method according to one of claims 1 to 9.
11. Metallformteil nach Anspruch 10, dadurch gekennzeichnet, dass das Material des Metallkörpers eine andere Zusammensetzung hat als das den Metallkörper umhüllende Metall.11. Shaped metal part according to claim 10, characterized in that the material of the metal body has a different composition than the metal enveloping the metal body.
12. Verwendung der Metallformteile nach den Ansprüchen 10 und 11 zum Aufbau von Leichtmetallkonstruktionen. 12. Use of the metal moldings according to claims 10 and 11 for the construction of light metal structures.
EP02742936A 2001-05-16 2002-05-03 Method for the production of moulded metal pieces Expired - Lifetime EP1472026B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200230612T SI1472026T1 (en) 2001-05-16 2002-05-03 Method for the production of moulded metal pieces

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10123899A DE10123899A1 (en) 2001-05-16 2001-05-16 Production of metal molded parts comprises placing a metal body with closed surfaces on all sides and a hollow structure inside into a mold, and filling the remaining mold hollow space with a metal or metal alloy
DE10123899 2001-05-16
PCT/EP2002/004866 WO2002092261A2 (en) 2001-05-16 2002-05-03 Method for the production of moulded metal pieces

Publications (2)

Publication Number Publication Date
EP1472026A2 true EP1472026A2 (en) 2004-11-03
EP1472026B1 EP1472026B1 (en) 2007-07-11

Family

ID=7685043

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02742936A Expired - Lifetime EP1472026B1 (en) 2001-05-16 2002-05-03 Method for the production of moulded metal pieces

Country Status (9)

Country Link
US (1) US6854506B2 (en)
EP (1) EP1472026B1 (en)
JP (2) JP2005500162A (en)
AT (1) ATE366630T1 (en)
AU (1) AU2002342227A1 (en)
CA (1) CA2443828C (en)
DE (2) DE10123899A1 (en)
ES (1) ES2290316T3 (en)
WO (1) WO2002092261A2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT411970B (en) 2002-04-19 2004-08-26 Huette Klein Reichenbach Gmbh LIGHTWEIGHT COMPONENT, METHOD AND DEVICE FOR THE PRODUCTION THEREOF
JP4714731B2 (en) * 2004-02-27 2011-06-29 ツェーテーエス ファーツォイク ダッハジステーム ゲーエムベーハー Convertible top stack that has a common pivot point for the pivot link, center link, and rear rail, and is formed by injection molding magnesium.
DE102004046466B4 (en) * 2004-09-24 2013-02-21 Robotec Engineering Gmbh Plant and method for inserting core supports into a casting mold
FR2889137B1 (en) * 2005-07-28 2007-09-21 Valeo Systemes Thermiques ENERGY ABSORPTION DEVICE FOR MOTOR VEHICLE BUMPER BEAM AND METHOD FOR MANUFACTURING THE SAME
DE102005047129A1 (en) * 2005-09-30 2007-04-05 Bayerische Motoren Werke Ag Connection joint for constructing car body, has joint unit with stump, on which connection profile is attached with flange, where unit and profile are made by volume-oriented casting method as internal high pressure deformed profile
US8136864B2 (en) * 2007-10-15 2012-03-20 Magna Car Top Systems Gmbh Injection molded magnesium link and method of making an injection molded magnesium link
DE102014209408A1 (en) 2014-05-19 2015-11-19 Evonik Degussa Gmbh Ethoxylate preparation using highly active double metal cyanide catalysts
EP3020749B1 (en) 2014-11-12 2020-09-30 Evonik Operations GmbH Method for the production of compositions containing platinum
EP3168273B1 (en) 2015-11-11 2018-05-23 Evonik Degussa GmbH Curable polymers
KR101913318B1 (en) * 2016-04-05 2018-10-30 자동차부품연구원 Brake disk and manufacturing method of brake disk
EP3321304B1 (en) 2016-11-15 2019-06-19 Evonik Degussa GmbH Mixtures of cyclic branched d/t-type siloxanes and their ensuing products
EP3415547B1 (en) 2017-06-13 2020-03-25 Evonik Operations GmbH Method for producing sic-linked polyether siloxanes
EP3415548B1 (en) 2017-06-13 2020-03-25 Evonik Operations GmbH Method for producing sic-linked polyether siloxanes
EP3438158B1 (en) 2017-08-01 2020-11-25 Evonik Operations GmbH Production of sioc-linked siloxanes
EP3467006B1 (en) 2017-10-09 2022-11-30 Evonik Operations GmbH Mixtures of cyclic branched d/t-type siloxanes and their ensuing products
EP3492513B1 (en) 2017-11-29 2021-11-03 Evonik Operations GmbH Method of manufacturing sioc linked polyether branched in siloxane section
EP3611214A1 (en) 2018-08-15 2020-02-19 Evonik Operations GmbH Sioc-linked, linear polydimethylsiloxane polyoxyalkylene block copolymers
EP3611215A1 (en) 2018-08-15 2020-02-19 Evonik Operations GmbH Method for producing acetoxy groups carrying siloxanes
EP3744756A1 (en) 2019-05-28 2020-12-02 Evonik Operations GmbH Acetoxy systems
ES2913783T3 (en) 2019-05-28 2022-06-06 Evonik Operations Gmbh Procedure for the purification of acetoxysiloxanes
EP3744760A1 (en) 2019-05-28 2020-12-02 Evonik Operations GmbH Method of manufacturing sioc linked polyether branched in siloxane section
EP3744774B1 (en) 2019-05-28 2021-09-01 Evonik Operations GmbH Method for recycling of silicones
EP3744755A1 (en) 2019-05-28 2020-12-02 Evonik Operations GmbH Method for producing siloxanes bearing acetoxy groups
EP3744754A1 (en) 2019-05-28 2020-12-02 Evonik Operations GmbH Method for producing siloxanes bearing acetoxy groups
EP3744759A1 (en) 2019-05-28 2020-12-02 Evonik Operations GmbH Method of manufacturing sioc linked polyether branched in siloxane section
DE102022106525A1 (en) 2022-03-21 2023-09-21 Bayerische Motoren Werke Aktiengesellschaft Method for producing a foam element and component
DE102022106524A1 (en) 2022-03-21 2023-09-21 Bayerische Motoren Werke Aktiengesellschaft Method for producing a foam element, component and tool

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB892934A (en) 1959-01-05 1962-04-04 Lor Corp Casting complex structures with foamed metal core and solid skin
US3773098A (en) * 1972-02-04 1973-11-20 Bjorksten J Method of static mixing to produce metal foam
JPS5216841B2 (en) * 1974-06-18 1977-05-12
JPS5144084B1 (en) * 1975-12-27 1976-11-26
JPS61166934A (en) * 1985-01-17 1986-07-28 Toyota Motor Corp Short fiber compacted body for manufacturing composite material and its manufacture
DE3665739D1 (en) * 1985-07-19 1989-10-26 Agency Ind Science Techn Foamed metal and method of producing same
JP2881152B2 (en) * 1989-03-27 1999-04-12 イズミ工業株式会社 Method of manufacturing piston for internal combustion engine
JP2924163B2 (en) * 1990-10-31 1999-07-26 いすゞ自動車株式会社 Piston and method of manufacturing the same
US5259436A (en) * 1991-04-08 1993-11-09 Aluminum Company Of America Fabrication of metal matrix composites by vacuum die casting
JP2820884B2 (en) * 1993-03-26 1998-11-05 日立金属株式会社 Manufacturing method of aluminum alloy casting with excellent airtightness to be used as automotive intake system parts
DE9405874U1 (en) 1994-04-08 1995-08-03 Gerhardi & Cie Gmbh & Co Kg Energy absorbing deformation element to protect the vehicle body
DE19501508C1 (en) * 1995-01-19 1996-04-25 Lemfoerder Metallwaren Ag Section of a vehicle wheel support
US5992500A (en) * 1996-04-16 1999-11-30 Cmi International, Inc. Method of making a casting having a low density insert
AT406027B (en) * 1996-04-19 2000-01-25 Leichtmetallguss Kokillenbau W METHOD FOR PRODUCING MOLDED PARTS FROM METAL FOAM
DE19650613B4 (en) * 1996-12-06 2005-12-29 Daimlerchrysler Ag Component with a metal foam core
ATE235336T1 (en) * 1997-06-10 2003-04-15 Goldschmidt Ag Th FOAMABLE METAL BODY
DE29723749U1 (en) 1997-12-11 1999-01-14 Porsche Ag Wheel for a motor vehicle
DE19926573C2 (en) * 1997-12-11 2003-02-13 Porsche Ag Wheel for a motor vehicle
DE19754959C2 (en) * 1997-12-11 2001-05-17 Porsche Ag Wheel for a motor vehicle with hollow spokes
AT406134B (en) * 1998-02-04 2000-02-25 Austria Alu Guss Ges M B H WHEEL CASTING RIM
DE19811612C1 (en) * 1998-03-17 1999-02-25 Siemens Ag Portal elements for positioning and mounting systems
JP3758114B2 (en) * 1998-03-27 2006-03-22 スズキ株式会社 Aluminum alloy member and manufacturing method thereof
DE19826848C5 (en) * 1998-06-16 2006-02-23 Borbet Gmbh Alloy wheel for motor vehicles
DE19832794C1 (en) 1998-07-21 1999-10-07 Fraunhofer Ges Forschung Method and extrusion press for producing a hollow profile filled with metal foam
JP2000351056A (en) * 1999-06-08 2000-12-19 Honda Motor Co Ltd Production of vehicle body part and vehicle body part
DE19929761A1 (en) * 1999-06-29 2001-01-04 Fraunhofer Ges Forschung Core for components consists of a hollow molding with a single hollow body formed by applying a suspension of a powdered first base material and binder onto the surface of a support material to form a cladding layer, and sintering
DE10009008C1 (en) * 2000-02-25 2001-09-13 Bayern Freistaat Process for producing a composite structure with a metal foam core

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02092261A3 *

Also Published As

Publication number Publication date
DE10123899A1 (en) 2002-11-21
AU2002342227A1 (en) 2002-11-25
ES2290316T3 (en) 2008-02-16
US20020189779A1 (en) 2002-12-19
US6854506B2 (en) 2005-02-15
DE50210474D1 (en) 2007-08-23
JP2009166130A (en) 2009-07-30
ATE366630T1 (en) 2007-08-15
WO2002092261A3 (en) 2004-05-27
WO2002092261A2 (en) 2002-11-21
JP2005500162A (en) 2005-01-06
CA2443828A1 (en) 2002-11-21
EP1472026B1 (en) 2007-07-11
CA2443828C (en) 2009-06-23

Similar Documents

Publication Publication Date Title
EP1472026B1 (en) Method for the production of moulded metal pieces
EP1392875B1 (en) Method for producing metal/metal foam composite elements
EP1356131B1 (en) Method for the production of metallic foam and metal bodies produced according to said method
DE19650613B4 (en) Component with a metal foam core
AT503824B1 (en) METAL SHAPING BODY AND METHOD FOR THE PRODUCTION THEREOF
DE102005037305A1 (en) Process for the powder metallurgy production of metal foam and parts made of metal foam
EP3024608B1 (en) Salt cores and generative production methods for producing salt cores
EP1354651B1 (en) Light weight component comprising a metal foam and process and apparatus for manufacturing same
AT406649B (en) METHOD FOR PRODUCING POROUS MATRIX MATERIALS, IN PARTICULAR MOLDED BODIES, BASED ON METALS, AND SEMI-FINISHED PRODUCTS THEREFOR
DE102007006156B3 (en) Making composite with component bonded to foamed body, for e.g. reinforcement, introduces thermally-foamable pressing into cavity of component, deforms, bonds and heats
DE102006041627A1 (en) One-piece lost mold for metal castings and method of making same
DE10359784A1 (en) Body or body part for a vehicle
DE102005020036B3 (en) Device for producing foam bodies, especially metallic foam bodies, comprises a graphite mold with integrated support elements
DE102014007889B4 (en) Process for producing a salt body, in particular for die casting
EP1425208B1 (en) Method for the production of a structure element
EP1189717B1 (en) Piston and method of producing the same
DE102005023595B4 (en) Lightweight composite material, process for its production and use
DE19918908A1 (en) Core for casting a component having a closed hollow cavity comprises a hollow body formed by powder and binder suspension application onto a support and then sintering
DE19929761A1 (en) Core for components consists of a hollow molding with a single hollow body formed by applying a suspension of a powdered first base material and binder onto the surface of a support material to form a cladding layer, and sintering
WO2002060622A2 (en) Method for producing metallic foam and metal bodies produced according to said method
EP1482062B1 (en) Foam casting method and pressure-tight closable die for the production of cast articles
DE102018106725A1 (en) Process for producing a casting mold for filling melt and casting mold
DE102017111846A1 (en) Process for the production of locally modified molded parts
DE102018114700B3 (en) Use of a method for producing a tool for aluminum sheet forming
DE102022106524A1 (en) Method for producing a foam element, component and tool

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031030

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20041012

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GOLDSCHMIDT GMBH

Owner name: BUEHLER DRUCKGUSS AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: SI

RAX Requested extension states of the european patent have changed

Extension state: SI

Payment date: 20031030

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50210474

Country of ref document: DE

Date of ref document: 20070823

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070831

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: EVONIK GOLDSCHMIDT GMBH

Owner name: BUEHLER DRUCKGUSS AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071211

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: EVONIK GOLDSCHMIDT GMBH EN BUEHLER DRUCKGUSS AG

Effective date: 20071128

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2290316

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071012

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

26N No opposition filed

Effective date: 20080414

BERE Be: lapsed

Owner name: BUHLER DRUCKGUSS A.G.

Effective date: 20080531

Owner name: GOLDSCHMIDT G.M.B.H.

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

REG Reference to a national code

Ref country code: SI

Ref legal event code: SP73

Owner name: EVONIK GOLDSCHMIDT GMBH; CH

Effective date: 20090429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: BUEHLER DRUCKGUSS AG

Free format text: GOLDSCHMIDT GMBH#GOLDSCHMIDTSTRASSE 100#45127 ESSEN (DE) $ BUEHLER DRUCKGUSS AG# #9240 UZWIL (CH) -TRANSFER TO- BUEHLER DRUCKGUSS AG# #9240 UZWIL (CH) $ EVONIK GOLDSCHMIDT GMBH#GOLDSCHMIDTSTRASSE 100#45127 ESSEN (DE)

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: BUEHLER DRUCKGUSS AG

Owner name: EVONIK GOLDSCHMIDT GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20100525

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100514

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUEA

Owner name: BUEHLER DRUCKGUSS AG

Free format text: BUEHLER DRUCKGUSS AG# #9240 UZWIL (CH) $ EVONIK GOLDSCHMIDT GMBH#GOLDSCHMIDTSTRASSE 100#45127 ESSEN (DE) -TRANSFER TO- BUEHLER DRUCKGUSS AG#BAHNHOFSTRASSE#9240 UZWIL (CH)

Ref country code: CH

Ref legal event code: NV

Representative=s name: HEPP WENGER RYFFEL AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100519

Year of fee payment: 9

Ref country code: SE

Payment date: 20100517

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20111201

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111201

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20111207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20120522

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120608

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120522

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120521

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110504

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20131030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110504

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 366630

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150521

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50210474

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161201