EP1468446A1 - Method for production of dielectric layers using polyfunctional carbosilanes - Google Patents

Method for production of dielectric layers using polyfunctional carbosilanes

Info

Publication number
EP1468446A1
EP1468446A1 EP02804878A EP02804878A EP1468446A1 EP 1468446 A1 EP1468446 A1 EP 1468446A1 EP 02804878 A EP02804878 A EP 02804878A EP 02804878 A EP02804878 A EP 02804878A EP 1468446 A1 EP1468446 A1 EP 1468446A1
Authority
EP
European Patent Office
Prior art keywords
dielectric layers
aryl
alkyl
layers according
multifunctional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02804878A
Other languages
German (de)
French (fr)
Inventor
Stephan Kirchmeyer
Detlef Gaiser
Harald Kraus
Udo Merker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Starck GmbH
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP1468446A1 publication Critical patent/EP1468446A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3121Layers comprising organo-silicon compounds
    • H01L21/3122Layers comprising organo-silicon compounds layers comprising polysiloxane compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31695Deposition of porous oxides or porous glassy oxides or oxide based porous glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions

Definitions

  • the present invention relates to a ner driving for the production of dielectric
  • Highly integrated microelectronic circuits consist of a large number of semiconducting elements, which are produced by selective doping and structuring of monocrystalline silicon. These individual semiconductor elements are connected to form a functioning unit by means of a layer structure consisting of conductor tracks and the intermediate layers required for insulation, the so-called interconnect.
  • the progressive miniaturization places extreme demands on the materials used.
  • the properties of the interconnect determine the performance characteristics of these highly integrated microelectronic circuits. These requirements are determined by the ever higher clock frequencies and the shorter signal delays required for this.
  • a high conductivity of the conductor track material and a low dielectric constant of the insulator material are desired.
  • the miniaturization of the semiconductor elements and the interconnect negatively influences the component properties.
  • Conductor resistance increased.
  • the interactions between the conductor tracks depend to a large extent on the relative dielectric constant ⁇ (the k value) of the insulator material. Attempts are made to counteract these technical difficulties by using conductor materials with a higher specific conductivity and insulator materials with a lower dielectric constant.
  • the aluminum that was previously used as a conductor material is gradually being replaced by copper, which has a higher specific conductivity.
  • silicon dioxide has proven itself as an insulator material in the manufacture of highly integrated circuits in both its electrical and process properties.
  • the dielectric constant of silicon dioxide is approx.
  • the value of the relative dielectric constant (k value) depends strongly on the temperature at which this value is determined.
  • the values given here are understood to mean the values which result from a determination at 22 ° C. and a pressure of 1 bar.
  • the dielectric constant (the k value)
  • the dielectric material must be able to withstand high process temperatures up to 400 ° C, which are achieved in subsequent metallization and tempering steps.
  • the layer materials or their precursors are available in sufficient purity, since impurities, in particular metals, can have a negative effect on the electrical properties of the layer materials.
  • the dielectric material should be as easy to process as possible and be applied as a thin layer in an industry-standard process such as the spin coating process.
  • silsesquioxanes and carbon-doped silicon dioxide have been described as dielectrics with a dielectric constant below 3.0.
  • Organic polymers as dielectrics with a low dielectric constant have found their way into technical production.
  • the properties of these polymers lead to considerable problems in process integration.
  • Their limited chemical and mechanical stability at elevated temperatures limits the subsequent process steps.
  • Necessary polishing steps are optimized, for example, on layers that are similar to silicon dioxide, and often lead to less than optimal results on organic polymer layers.
  • Silsesquioxanes are organosilicon polymers that are applied as oligomer solutions in the spin coating process and then thermally crosslinked.
  • WO 98/47944 AI teaches the use of organosilsesquioxanes for the production of layers with k values less than 2.7. However, these compounds can only be obtained from trialkoxysilanes via complex synthetic routes.
  • US-A-5,906,859 teaches the application of oligomeric hydridosilsequioxanes which are thermally crosslinked to form polymers. Dielectric constants of 2.7-2.9 are achieved with the compounds described in US Pat. No. 5,906,859.
  • Carbon-doped silicon dioxide is applied from organosilanes in a PE-CVD (Plasma Enhanced Chemical Vapor Deposition) process with reactive oxygen plasma.
  • PE-CVD Pullasma Enhanced Chemical Vapor Deposition
  • carbon-doped silicon dioxide Because of its silicon dioxide matrix, carbon-doped silicon dioxide has similar process properties to silicon dioxide and is therefore significantly lighter to integrate into the production process. The dielectric constant of these layers is reduced compared to silicon dioxide by the carbon content. US-A-6,054,206 teaches the application of such layers of gaseous organosilanes. However, the high vacuum plasma CND process is complex and involves high costs. With carbon-doped silicon dioxide layers, too
  • WO 99/55526 A1 also describes the production of dielectric layers by means of a CND process, preferably a plasma CND process.
  • a CND process preferably a plasma CND process.
  • layers are obtained which have a backbone structure made of Si-O-Si bonds, organic side groups being bound to this structure.
  • the CVD process is preferably carried out in such a way that the backbone has annular structures.
  • Cyclic organosiloxanes are particularly suitable as precursors.
  • the layers produced according to the examples have dielectric constants between 2.6 and 3.3.
  • WO 00/75975 A2 teaches the use of polycarbosilanes which are applied from a solution and converted into polyorganosilicon layers with k values of less than 2.5 by thermal treatment in discrete steps.
  • the polycarbosilanes used are hydridopolycarbosilanes which contain at least one
  • Silicon-bonded hydrogen atom and preferably contain allyl substituents.
  • Si-H bonds are sensitive to moisture and must therefore be handled accordingly.
  • the platinum compounds used to cross-link Si-H compounds with unsaturated groups are undesirable as metallic impurities.
  • the temperature treatment In order to achieve layers with low k values, the temperature treatment must be carried out under precisely controlled conditions, whereby various specified temperature steps must be observed.
  • the air contained in the pores has a k-value of almost 1. Bring it into a dense one If the material contains air-filled pores, the average k-value of the material is made up of the k-value of the dense material and a proportion of the k-value of air. The effective k-value is thus reduced.
  • the k value of pure silicon dioxide can thus be reduced from 4.0 to below 2.0, but this requires porosities> 90% (L. Hrubesch, Mat. Res. Soc. Symp. Proc, 381,
  • the principle can generally be applied to dense dielectric layers.
  • k values below 2.0 can be achieved with much lower porosities, which in turn benefits the mechanical stability of the layers.
  • German patent DE 196 03 241 Cl describes the production of multifunctional organosiloxanes which are used as crosslinkers in inorganic paints based on silica sol. After drying, these materials form soft
  • Cl are known to have dielectric layers with low k values produced by thermal treatment.
  • carbosilanes which have no Si-H bonds can be used. This is particularly surprising given the background of the teaching in WO 00/75975 A2, in which the last paragraph on page 8 explains that the manufacture of appropriate dielectric layers finally, polycarbosilanes are suitable which contain at least one hydrogen atom bonded to silicon.
  • the dielectric layers according to the invention are similar in their composition to carbon-doped silicon dioxide, and combine low k values with the advantage of simple temperature treatment.
  • the invention therefore relates to a method for producing dielectric layers, characterized in that sol-gel products of multifunctional carbosilanes are thermally treated.
  • the invention further relates to the dielectric layers which can be produced by this method.
  • the invention finally relates to the use of the dielectric
  • sol-gel products which can be used in the process according to the invention can be:
  • Reaction of a multifunctional carbosilane can be obtained with water in the presence of a catalyst.
  • Suitable carbosilanes are multifunctional carbosilanes which contain at least 2, preferably at least 3, silicon atoms, each having 1 to 3 alkoxy or
  • the silicon atoms being bonded to at least one Si — C bond to a structural unit linking the silicon atoms.
  • linking units within the meaning of the invention are linear or branched - to CIO-alkylene chains, C 5 - to CIO-cycloalkylene radicals, aromatic radicals, for example phenyl, naphthyl or biphenyl, or combinations of aromatic and aliphatic radicals called.
  • aromatic radicals for example phenyl, naphthyl or biphenyl, or combinations of aromatic and aliphatic radicals called.
  • the aliphatic and aromatic radicals can also contain hetero atoms, such as Si, N, O or F.
  • Multifunctional carbosilanes which do not have any Si-H bonds are preferably used.
  • Examples of suitable multifunctional carbosilanes are compounds of the general formula (I)
  • R 3 alkyl, aryl, preferably C ⁇ -C ⁇ o-alkyl, C 6 -C ⁇ 0 -aryl, particularly preferably methyl.
  • R can also mean hydrogen.
  • R 4 alkyl, aryl, preferably Ci-Cio-alkyl, C 6 -C ⁇ o-aryl, particularly preferably methyl, ethyl, isopropyl;
  • R can also mean hydrogen
  • R 5 alkyl, aryl, preferably Ci-Cio-alkyl, C ⁇ -Cio-aryl, particularly preferred
  • R 6 -C 6 alkyl or C 6 -C 4 aryl, preferably methyl, ethyl, particularly preferred
  • polyfunctional carbosilanes are compounds of the general formula (III)
  • R can also be hydrogen
  • R 9 alkyl, aryl, preferably Ci-Cio-alkyl, C ö -Ciö-aryl, particularly preferred
  • Oligomers or mixed oligomers of the compounds of the formulas (I) - (III) can also be used as multifunctional carbosilanes.
  • Examples of particularly suitable compounds are 1,3,5,7-tetramethyl-1,3,5,7-tetra (2- (diethoxymethylsilyl) ethylene) cyclotetrasiloxane, 1,3,5,7-tetramethyl-1,3,5, 7- tetra (2- (hydroxy-dimethylsilyl) ethylene) cyclotetrasiloxane or their oligomers.
  • the multifunctional can be used to manufacture the sol-gel product
  • EP 743 313 A2 EP 787 734 AI and WO 98/52992 AI described.
  • Suitable organic solvents are, for example, ketones, alcohols, diols, ethers and mixtures thereof. The addition of the solvent serves to give the solution the desired viscosity.
  • Preferred solvents are n-butanol, ethanol and i-propanol. Possible dilutions are 10-90% by weight, preferably 20-50% by weight, of multifunctional carbosilane in the solvent.
  • Catalysts i.e. Compounds which accelerate the reaction between the functional groups are added.
  • suitable catalysts are organic and inorganic acids such as aliphatic monocarboxylic acids with 1 to 10 carbon atoms such as e.g. Formic acid or acetic acid, aromatic carboxylic acids with 7 to 14 carbon atoms, e.g. Benzoic acid, dicarboxylic acids such as e.g. Oxalic acid, aliphatic and aromatic sulfonic acids such as e.g. p-toluenesulfonic acid, inorganic volatile acids such as hydrochloric acid or nitric acid. The use of p-toluenesulfonic acid is particularly preferred.
  • the catalysts can be used as aqueous or alcoholic solutions in concentrations of 0.05-5 n, preferably 0.1-1 n.
  • concentrations of 0.05-5 n, preferably 0.1-1 n For example, 1-50% by weight, preferably 5-20% by weight, of the catalyst solution can be added to the carbosilane solution.
  • Formulations of the multifunctional carbosilanes which have the following composition are particularly preferably used:
  • the sol-gel product is generally applied to a substrate.
  • all customary methods are available for applying the layers. These are e.g. Spin coating, dip coating, knife coating and spraying.
  • the sol-gel product of the multifunctional carbosilane or its formulation is thermally treated after being applied to a substrate.
  • the thermal treatment takes place, for example, at temperatures between 100 and 800 ° C., preferably between 200 and 600 ° C., particularly preferably between 200 and 400 ° C.
  • This thermal treatment serves to complete the crosslinking of the multifunctional carbosilanes and to remove the solvent, and furthermore the temperature treatment serves to create pores.
  • the temperature treatment can be carried out in a very simple manner in one step at a fixed temperature. However, it is also possible to carry out the treatment in several steps according to a suitable temperature and time profile. Suitable temperature and time profiles depend on the multifunctional carbosilanes, the
  • Catalyst and the solvent content can be determined by preliminary tests.
  • the layers are preferably crosslinked at temperatures of 100-150 ° C. for a period of 5-120 minutes.
  • the pore is generated by temperature treatment above a temperature at which parts of the carbosilane decompose and escape as gaseous components. This happens from temperatures above approx. 220 ° C, depending on the multifunctional carbosilanes used. It is also possible to add pore-forming substances such as high-boiling solvents or foaming agents to the sol-gel product before application. These remain in the layer during crosslinking and are only evaporated and / or decomposed into gaseous products during the subsequent temperature treatment.
  • the temperature treatment can be carried out using conventional furnaces, RTP (Rapid Thermal Processing) furnaces, hotplates etc. However, it is also possible to supply the energy required for crosslinking and pore formation with the aid of microwaves, LR light, lasers or other high-energy electromagnetic radiation.
  • the temperature treatment in an oven or on a is preferred
  • the temperature treatment can be carried out in air or other gases.
  • the temperature treatment is preferably carried out in air or in nitrogen.
  • thermally labile components of the layer are pyrolytically broken down, so that gas-filled pores remain.
  • a further processing step which serves to hydrophobize the pore surface.
  • the k value of an organosilicon material can be further reduced by the chemical conversion of Si-OH groups into Si-O-SiR 3 groups.
  • the surface is treated with suitable compounds, such as trichloromethylsilane or hexamethylene disilazane. Further information on the procedure and further examples are described, for example, in WO 99/36953 AI.
  • the invention also relates to dielectric layers which can be obtained by the process according to the invention.
  • the layers according to the invention are characterized by k values of less than 2.8, preferably less than 2.5, particularly preferably less than 2.0, the k value in particular depending on the choice of multifunctional carbosilane and the conditions of the thermal treatment of the sol gel Product depends.
  • the layers preferably have a layer thickness of 0.01 to 100 ⁇ m.
  • the layers according to the invention can be used, for example, as dielectric insulation layers in the production of microelectronic circuits, in chip packaging, for the construction of multichip modules, and for the production of laminated printed circuit boards and displays.
  • the substrate to be used, to which a dielectric layer according to the invention is applied depends on the application. All substrates are possible that deal with the aforementioned techniques such as spin and dip coating, knife coating or
  • Allow spray coating and which can withstand the temperatures that occur during the temperature treatment e.g. structured and unstructured silicon wafers, structured and unstructured wafers of other semiconductors such as gallium arsenide or silicon germanide, with structured layers provided, structured or unstructured glass plates or suitable structured and unstructured thermostable plastic substrates.
  • the layer thicknesses of the applied films were measured with a surface profiler (Alpha-Step 500, KLA-Tencor).
  • the dielectric constant k was determined by measuring the capacitance C of a model plate capacitor. The following applies:
  • Capacitor made.
  • the mating contact on the layer was made by means of a sputtered gold electrode (diameter approx. 5 mm).
  • the capacitance was measured with an impedance spectrometer (EG&G 398).
  • the impedance Z of the model plate capacitor was determined in the range from 10-100000 Hz without bias voltage.
  • the capacitance C of the model capacitor results from the impedance Z according to:
  • the film was then 0.61 ⁇ m, the k value 2.7.

Abstract

A method for production of dielectric layers with low dielectric constants, by means of thermal treatment of a sol/gel product of a polyfunctional carbosilane is disclosed, along with corresponding layers and use thereof for the production of electronic components.

Description

Verfahren zur Herstellung von dielektrischen Schichten unter Verwendung multifunktioneller Carbosilane Process for the production of dielectric layers using multifunctional carbosilanes
Die vorliegende Erfindung betrifft ein Nerfahren zur Herstellung von dielektrischenThe present invention relates to a ner driving for the production of dielectric
Schichten unter Verwendung multifunktioneller Carbosilane, die dielektrischen Schichten und ihre Verwendung.Layers using multifunctional carbosilanes, the dielectric layers and their use.
Hochintegrierte rnikroelektronische Schaltkreise bestehen aus einer Vielzahl von halbleitenden Elementen, die durch gezieltes Dotieren und Strukturieren von monokristallinem Silicium hergestellt werden. Diese einzelnen Halbleiterelemente werden durch einen Schichtaufbau, der aus Leiterbahnen und den zur Isolation nötigen Zwischenschichten besteht, dem sog. Interconnect, zu einer funktionierenden Einheit verbunden.Highly integrated microelectronic circuits consist of a large number of semiconducting elements, which are produced by selective doping and structuring of monocrystalline silicon. These individual semiconductor elements are connected to form a functioning unit by means of a layer structure consisting of conductor tracks and the intermediate layers required for insulation, the so-called interconnect.
Die fortschreitende Miniaturisierung stellt an die verwendeten Materialien extreme Anforderungen. Neben den halbleitenden Transistoren bestimmen die Eigenschaften des Interconnects die Leistungsmerkmale dieser hochintegrierten mikroelektronischen Schaltkreise. Diese Anforderungen werden durch die immer höheren Takt- frequenzen und hierfür notwendigen kürzeren Signallaufzeiten bestimmt.The progressive miniaturization places extreme demands on the materials used. In addition to the semiconducting transistors, the properties of the interconnect determine the performance characteristics of these highly integrated microelectronic circuits. These requirements are determined by the ever higher clock frequencies and the shorter signal delays required for this.
Hierbei ist eine hohe Leitfähigkeit des Leiterbahnmaterials und eine niedrige Dielektrizitätskonstante des Isolatormaterials erwünscht. Durch die Miniaturisierung der Halbleiterelemente und des Interconnects werden die Bauteileigenschaften negativ beeinflusst. Durch die Verkleinerung der Leiterbahnquerschnitte wird derA high conductivity of the conductor track material and a low dielectric constant of the insulator material are desired. The miniaturization of the semiconductor elements and the interconnect negatively influences the component properties. By reducing the conductor cross-sections, the
Widerstand der Leiterbahnen erhöht. Der geringere Abstand zwischen den Leiterbahnen, angefüllt mit Isolatormaterial, führt zu einer elektrischen Wechselwirkung zwischen den verschiedenen Leiterbahnen und damit zu unerwünschten Signalverzögerungen. Die Wechselwirkungen zwischen den Leiterbahnen hängen in hohem Maße von der relativen Dielektrizitätskonstante ε (dem k-Wert) des Isolatormaterials ab. Diesen technischen Schwierigkeiten versucht man durch Verwendung von Leitermaterialien mit höherer spezifischer Leitfähigkeit und Isolatormaterialien mit niedrigerer Dielektrizitätskonstante entgegenzuwirken. So wird das bisher als Leiter- bahnmaterial verwendete Aluminium sukzessiv durch Kupfer, welches eine höhere spezifische Leitfähigkeit aufweist, ersetzt.Conductor resistance increased. The smaller distance between the conductor tracks, filled with insulator material, leads to an electrical interaction between the different conductor tracks and thus to undesired signal delays. The interactions between the conductor tracks depend to a large extent on the relative dielectric constant ε (the k value) of the insulator material. Attempts are made to counteract these technical difficulties by using conductor materials with a higher specific conductivity and insulator materials with a lower dielectric constant. The aluminum that was previously used as a conductor material is gradually being replaced by copper, which has a higher specific conductivity.
Bislang hat sich Siliciumdioxid als Isolatormaterial in der Herstellung von hochintegrierten Schaltkreisen sowohl in seinen elektrischen, als auch in seinen Prozess- Eigenschaften bewährt. Die Dielektrizitätskonstante von Siliciumdioxid beträgt ca.So far, silicon dioxide has proven itself as an insulator material in the manufacture of highly integrated circuits in both its electrical and process properties. The dielectric constant of silicon dioxide is approx.
4,0. Für die aktuellen Anforderungen ist dieser Wert allerdings zu hoch. Für neue Chip-Generationen werden dielektrische Materialien mit k-Werten deutlich unter 3,0, bevorzugt unter 2,5, benötigt.4.0. However, this value is too high for the current requirements. Dielectric materials with k values well below 3.0, preferably below 2.5, are required for new chip generations.
Der Wert der relativen Dielektrizitätskonstante (k-Wert) hängt stark von der Temperatur ab, bei der dieser Wert bestimmt wird. Unter den hier angegebenen Werten werden die Werte verstanden, die sich bei einer Bestimmung bei 22°C und einem Druck von 1 bar ergeben.The value of the relative dielectric constant (k value) depends strongly on the temperature at which this value is determined. The values given here are understood to mean the values which result from a determination at 22 ° C. and a pressure of 1 bar.
Neben der Dielektrizitätskonstante (dem k-Wert) sind beim Ersatz des Silicium- dioxids noch eine Reihe weiterer Eigenschaften für die Integration eines neuen Materials in einen Halbleiter-Prozess zu beachten. Zum Beispiel muss das dielektrische Material hohen Prozesstemperaturen bis zu 400°C, die bei nachfolgenden Metallisierungs- und Temper-Schritten erreicht werden, widerstehen können. Darüber hinaus ist es notwendig, dass die Schichtmaterialien bzw. deren Vorstufen in ausreichender Reinheit zur Verfügung stehen, da Verunreinigungen, insbesondere Metalle, die elektrischen Eigenschaften der Schichtmaterialien negativ beeinflussen können. Das dielektrische Material sollte sich möglichst einfach verarbeiten lassen und in einem industrieüblichen Verfahren, wie z.B. dem Spincoating- Verfahren, als dünne Schicht aufbringen lassen.In addition to the dielectric constant (the k value), a number of other properties for the integration of a new material into a semiconductor process have to be taken into account when replacing the silicon dioxide. For example, the dielectric material must be able to withstand high process temperatures up to 400 ° C, which are achieved in subsequent metallization and tempering steps. In addition, it is necessary that the layer materials or their precursors are available in sufficient purity, since impurities, in particular metals, can have a negative effect on the electrical properties of the layer materials. The dielectric material should be as easy to process as possible and be applied as a thin layer in an industry-standard process such as the spin coating process.
Als Dielektrika mit einer Dielektrizitätskonstanten unter 3,0 wurden neben organischen Polymeren Silsesquioxane und kohlenstoffdotiertes Siliciumdioxid (SiOC) beschrieben.In addition to organic polymers, silsesquioxanes and carbon-doped silicon dioxide (SiOC) have been described as dielectrics with a dielectric constant below 3.0.
Organische Polymere als Dielektrika mit niedriger Dielektrizitätskonstante haben Eingang in die technische Fertigung gefunden. Die Eigenschaften dieser Polymere fuhren jedoch zu erheblichen Problemen bei der Prozessintegration. So limitiert deren begrenzte chemische und mechanische Stabilität bei erhöhten Temperaturen die nachfolgenden Prozeßschritte. Notwendige Polierschritte sind beispielsweise auf Schichten optimiert, die dem Siliciumdioxid ähneln, und fuhren auf organischen Polymerschichten häufig zu nicht optimalen Ergebnissen.Organic polymers as dielectrics with a low dielectric constant have found their way into technical production. However, the properties of these polymers lead to considerable problems in process integration. Their limited chemical and mechanical stability at elevated temperatures limits the subsequent process steps. Necessary polishing steps are optimized, for example, on layers that are similar to silicon dioxide, and often lead to less than optimal results on organic polymer layers.
Silsesquioxane sind siliciumorganische Polymere, die als Oligomerlösungen im Spincoating- Verfahren aufgebracht und anschließend thermisch vernetzt werden. WO 98/47944 AI lehrt die Verwendung von Organosilsesquioxanen zur Herstellung von Schichten mit k- Werten kleiner 2,7. Diese Verbindungen sind allerdings nur über aufwändige Synthesewege aus Trialkoxysilanen zugänglich. US-A-5,906,859 lehrt das Aufbringen von oligomeren Hydridosilsequioxanen, die thermisch zu Polymeren vernetzt werden. Mit den in US-A-5, 906,859 beschriebenen Verbindungen werden Dielektrizitätskonstanten von 2,7-2,9 erreicht.Silsesquioxanes are organosilicon polymers that are applied as oligomer solutions in the spin coating process and then thermally crosslinked. WO 98/47944 AI teaches the use of organosilsesquioxanes for the production of layers with k values less than 2.7. However, these compounds can only be obtained from trialkoxysilanes via complex synthetic routes. US-A-5,906,859 teaches the application of oligomeric hydridosilsequioxanes which are thermally crosslinked to form polymers. Dielectric constants of 2.7-2.9 are achieved with the compounds described in US Pat. No. 5,906,859.
Kohlenstoff dotiertes Siliciumdioxid wird aus Organosilanen in einem PE-CVD- Verfahren (Plasma Enhanced Chemical Vapor Deposition) mit reaktivem Sauer- stoffplasma aufgebracht.Carbon-doped silicon dioxide is applied from organosilanes in a PE-CVD (Plasma Enhanced Chemical Vapor Deposition) process with reactive oxygen plasma.
Kohlenstoffdotiertes Siliciumdioxid weist aufgrund seiner Siliciumdioxid-Matrix ähnliche Prozesseigenschaften wie Siliciumdioxid auf und ist daher deutlich leichter in den Produktionsprozeß zu integrieren. Die Dielektrizitätskonstante dieser Schichten ist gegenüber Siliciumdioxid durch den Kohlenstoffgehalt erniedrigt. US- A-6,054,206 lehrt das Aufbringen solcher Schichten aus gasförmigen Organosilanen. Der Hochvakuum-Plasma-CND-Prozess ist jedoch aufwändig und mit hohen Kosten behaftet. Mit kohlenstoffdotierten Siliciumdioxid-Schichten werden ebenfallsBecause of its silicon dioxide matrix, carbon-doped silicon dioxide has similar process properties to silicon dioxide and is therefore significantly lighter to integrate into the production process. The dielectric constant of these layers is reduced compared to silicon dioxide by the carbon content. US-A-6,054,206 teaches the application of such layers of gaseous organosilanes. However, the high vacuum plasma CND process is complex and involves high costs. With carbon-doped silicon dioxide layers, too
Dielektrizitätskonstanten von 2,7-2,9 erreicht.Dielectric constant of 2.7-2.9 reached.
Auch in WO 99/55526 AI ist die Herstellung dielektrischer Schichten mittels eines CND-Prozesses, vorzugsweise eines Plasma-CND-Prozesses beschrieben. Aus- gehend von Organosilizium-Precursoren werden Schichten erhalten, die eine Rückgrat-Struktur aus Si-O-Si Bindungen aufweist, wobei an diese Struktur organische Seitengruppen gebunden sind. Vorzugsweise wird der CVD-Prozess so geführt, dass das Rückgrat ringförmige Strukturen aufweist. Als Precursor eignen sich insbesondere cyclische Organosiloxane. Die gemäß der Beispiele hergestellten Schichten weisen Dielektrizitätskonstanten zwischen 2,6 und 3,3 auf.WO 99/55526 A1 also describes the production of dielectric layers by means of a CND process, preferably a plasma CND process. Starting from organosilicon precursors, layers are obtained which have a backbone structure made of Si-O-Si bonds, organic side groups being bound to this structure. The CVD process is preferably carried out in such a way that the backbone has annular structures. Cyclic organosiloxanes are particularly suitable as precursors. The layers produced according to the examples have dielectric constants between 2.6 and 3.3.
WO 00/75975 A2 lehrt die Verwendung von Polycarbosilanen, die aus einer Lösung aufgebracht und durch Temperaturbehandlung in diskreten Schritten zu Polyorgano- Silicium-Schichten mit k- Werten kleiner 2,5 umgesetzt werden. Bei den verwendeten Polycarbosilanen handelt es sich um Hydridopolycarbosilane, die mindestens ein anWO 00/75975 A2 teaches the use of polycarbosilanes which are applied from a solution and converted into polyorganosilicon layers with k values of less than 2.5 by thermal treatment in discrete steps. The polycarbosilanes used are hydridopolycarbosilanes which contain at least one
Silicium gebundenes Wasserstoffatom, sowie vorzugweise Allylsubstituenten enthalten. Si-H-Bindungen sind jedoch feuchtigkeitsempfindlich und müssen daher entsprechend gehandhabt werden. Die zur Vernetzung von Si-H-Verbindungen mit ungesättigten Gruppen verwendeten Platin-Verbindungen sind als metallische Ver- unreinigungen unerwünscht. Um zu Schichten mit niedrigen k- Werten zu gelangen, muss die Temperaturbehandlung unter genau kontrollierten Bedingungen erfolgen, wobei verschiedene festgelegte Temperaturschritte eingehalten werden müssen.Silicon-bonded hydrogen atom, and preferably contain allyl substituents. However, Si-H bonds are sensitive to moisture and must therefore be handled accordingly. The platinum compounds used to cross-link Si-H compounds with unsaturated groups are undesirable as metallic impurities. In order to achieve layers with low k values, the temperature treatment must be carried out under precisely controlled conditions, whereby various specified temperature steps must be observed.
Ein allgemeiner Ansatz, die Dielektrizitätskonstante, d.h. den k-Wert von dielektrischen Materialien weiter abzusenken ist das Einbringen von Poren. Die in den Poren enthaltene Luft hat einen k-Wert von nahezu 1. Bringt man in ein dichtes Material luftgefüllte Poren ein, so setzt sich der mittlere k-Wert des Materials aus dem k-Wert des dichten Materials und anteilig aus dem k-Wert von Luft zusammen. Man erreicht so eine Absenkung des effektiven k- Wertes. Der k-Wert von reinem Siliciumdioxid lässt sich so von 4,0 bis auf unter 2,0 absenken, allerdings werden dazu Porositäten > 90 % benötigt (L. Hrubesch, Mat. Res. Soc. Symp. Proc, 381,A general approach to further lowering the dielectric constant, ie the k-value of dielectric materials, is the introduction of pores. The air contained in the pores has a k-value of almost 1. Bring it into a dense one If the material contains air-filled pores, the average k-value of the material is made up of the k-value of the dense material and a proportion of the k-value of air. The effective k-value is thus reduced. The k value of pure silicon dioxide can thus be reduced from 4.0 to below 2.0, but this requires porosities> 90% (L. Hrubesch, Mat. Res. Soc. Symp. Proc, 381,
(1995), 267). Eine derartig hohe Porosität senkt die mechanische Stabilität und erschwert die Prozessierbarkeit dieser Schichten erheblich.(1995), 267). Such a high porosity lowers the mechanical stability and makes processing these layers considerably more difficult.
Das Prinzip lässt sich allgemein auf dichte dielektrische Schichten anwenden. Bei Schichten mit niedrigeren Anfangs-k- Werten können schon bei wesentlich geringeren Porositäten k- Werte unter 2,0 erreicht werden, was wiederum der mechanischen Stabilität der Schichten zugute kommt.The principle can generally be applied to dense dielectric layers. In the case of layers with lower initial k values, k values below 2.0 can be achieved with much lower porosities, which in turn benefits the mechanical stability of the layers.
Es fehlt jedoch weiterhin an geeigneten, einfach zugänglichen Ausgangsmaterialien, die zur Herstellung von dielektrischen Schichten in einem einfachen thermischenHowever, there is still a lack of suitable, easily accessible starting materials for the production of dielectric layers in a simple thermal
Verfahren geeignet sind.Procedures are suitable.
Die deutsche Patentschrift DE 196 03 241 Cl beschreibt die Herstellung von multifunktionellen Organosiloxanen, die als Vernetzer in anorganischen Lacken auf Kieselsol-Basis eingesetzt werden. Diese Materialien bilden nach Trocknung weicheThe German patent DE 196 03 241 Cl describes the production of multifunctional organosiloxanes which are used as crosslinkers in inorganic paints based on silica sol. After drying, these materials form soft
Filme, die als dielektrische Schichtmaterialien wenig geeignet sind und k- Werte deutlich über 3 aufweisen.Films that are not very suitable as dielectric layer materials and have k values well above 3.
Es wurde nun überraschenderweise gefunden, dass sich aus Sol-Gel-Produkten multifunktioneller Carbosilane, beispielsweise Verbindungen, die aus DE 196 03 241Surprisingly, it has now been found that multifunctional carbosilanes, for example compounds derived from DE 196 03 241, can be obtained from sol-gel products
Cl bekannt sind, durch thermische Behandlung dielektrische Schichten mit niedrigen k-Werten herstellen lassen. Dabei können insbesondere Carbosilane eingesetzt werden, die keine Si-H-Bindungen aufweisen. Dies überrascht insbesondere vor dem Hintergrund der Lehre aus WO 00/75975 A2, in der auf Seite 8, letzter Absatz aus- geführt wird, dass zur Herstellung entsprechender dielektrischer Schichten aus- schließlich Polycarbosilane geeignet sind, die mindestens ein an Silicium gebundenes Wasserstoffatom enthalten.Cl are known to have dielectric layers with low k values produced by thermal treatment. In particular, carbosilanes which have no Si-H bonds can be used. This is particularly surprising given the background of the teaching in WO 00/75975 A2, in which the last paragraph on page 8 explains that the manufacture of appropriate dielectric layers finally, polycarbosilanes are suitable which contain at least one hydrogen atom bonded to silicon.
Nach der thermischen Behandlung ähneln die erfindungsgemäßen dielektrischen Schichten in ihrer Zusammensetzung kohlenstoffdotiertem Siliciumdioxid, und verbinden niedrige k- Werte mit dem Vorteil einer einfachen Temperaturbehandlung.After the thermal treatment, the dielectric layers according to the invention are similar in their composition to carbon-doped silicon dioxide, and combine low k values with the advantage of simple temperature treatment.
Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung von dielektrischen Schichten, gekennzeichnet dadurch, dass Sol-Gel-Prodükte multifunktioneller Carbo- silane thermisch behandelt werden.The invention therefore relates to a method for producing dielectric layers, characterized in that sol-gel products of multifunctional carbosilanes are thermally treated.
Gegenstand der Erfindung sind weiterhin die nach diesem Verfahren herstellbaren dielektrischen Schichten.The invention further relates to the dielectric layers which can be produced by this method.
Gegenstand der Erfindung ist schließlich die Verwendung der dielektrischenThe invention finally relates to the use of the dielectric
Schichten als Isolationsschichten in der Herstellung von mikroelektronischen Schaltkreisen, beim Chip-Packaging, zum Aufbau von Multichip-Modulen, sowie zur Herstellung von laminierten Leiterplatten und Displays.Layers as insulation layers in the production of microelectronic circuits, in chip packaging, for the construction of multichip modules, as well as for the production of laminated circuit boards and displays.
Die im erfindungsgemäßen Verfahren einsetzbaren Sol-Gel-Produkte können durchThe sol-gel products which can be used in the process according to the invention can be:
Umsetzung eines multifunktionellen Carbosilans mit Wasser in Gegenwart eines Katalysators erhalten werden.Reaction of a multifunctional carbosilane can be obtained with water in the presence of a catalyst.
Als Carbosilane sind multifunktionelle Carbosilane geeignet, die mindestens 2, bevorzugt mindestens 3 Siliciumatome enthalten, die jeweils 1 bis 3 Alkoxy- oderSuitable carbosilanes are multifunctional carbosilanes which contain at least 2, preferably at least 3, silicon atoms, each having 1 to 3 alkoxy or
Hydroxygruppen tragen, wobei die Siliciumatome mit jeweils mindestens einer Si-C- Bindung an eine die Siliciumatome verknüpfende Baueinheit gebunden sind.Bearing hydroxyl groups, the silicon atoms being bonded to at least one Si — C bond to a structural unit linking the silicon atoms.
Als verknüpfende Baueinheiten im Sinne der Erfindung seien beispielhaft lineare oder verzweigte - bis Cio-Alkylenketten, C5- bis Cio-Cycloalkylenreste, aromatische Reste, z.B. Phenyl, Naphtyl oder Biphenyl, oder auch Kombinationen von aromatischen und aliphatischen Resten genannt. Die aliphatischen und aromatischen Reste können auch Hetero-atome, wie Si, N, O oder F enthalten.Examples of linking units within the meaning of the invention are linear or branched - to CIO-alkylene chains, C 5 - to CIO-cycloalkylene radicals, aromatic radicals, for example phenyl, naphthyl or biphenyl, or combinations of aromatic and aliphatic radicals called. The aliphatic and aromatic radicals can also contain hetero atoms, such as Si, N, O or F.
Vorzugsweise werden multifunktionelle Carbosilane eingesetzt, die keine Si-H- Bindungen aufweisen.Multifunctional carbosilanes which do not have any Si-H bonds are preferably used.
Beispiele für geeignete multifunktionelle Carbosilane sind Verbindungen der allgemeinen Formel (I)Examples of suitable multifunctional carbosilanes are compounds of the general formula (I)
R1 4-1Si[(CH2)nSi(OR2)aR3 3.a]i (I) mitR 1 4-1 Si [(CH 2 ) n Si (OR 2 ) a R 3 3 . a ] i (I) with
R1 = Alkyl, Aryl, bevorzugt Cι-C]0-Alkyl, C6-Cι0Αryl, i = 2 bis 4, bevorzugt i = 4, n = 1 bis 10, bevorzugt n = 2 bis 4, besonders bevorzugt n = 2,R 1 = alkyl, aryl, preferably Cι-C] 0 alkyl, C 6 -Cι Αryl 0, i = 2 to 4, preferably i = 4, n = 1 to 10, preferably n = 2 to 4, particularly preferably n = 2,
R2 = Alkyl, Aryl, bevorzugt d-Cio-Alkyl, C6-Cιc-Aryl, insbesondere bevorzugt Methyl, Ethyl, Isopropyl a = 1 bis 3R 2 = alkyl, aryl, preferably d-Cio-alkyl, C 6 -Cιc-aryl, particularly preferably methyl, ethyl, isopropyl a = 1 to 3rd
R3 = Alkyl, Aryl, bevorzugt Cι-Cιo-Alkyl, C6-Cι0-Aryl, insbesondere bevorzugt Methyl.R 3 = alkyl, aryl, preferably Cι-Cιo-alkyl, C 6 -Cι 0 -aryl, particularly preferably methyl.
Für den Fall, dass a = 1, kann R auch Wasserstoff bedeuten.In the event that a = 1, R can also mean hydrogen.
Weitere Beispiele sind cyclische Verbindungen der allgemeinen Formel (II) Further examples are cyclic compounds of the general formula (II)
mitWith
m = 3 bis 6, bevorzugt m = 3 oder 4 n = 2 bis 10, bevorzugt n = 2,m = 3 to 6, preferably m = 3 or 4 n = 2 to 10, preferably n = 2,
R4 = Alkyl, Aryl, bevorzugt Ci-Cio-Alkyl, C6-Cιo-Aryl, besonders bevorzugt Methyl, Ethyl, Isopropyl;R 4 = alkyl, aryl, preferably Ci-Cio-alkyl, C 6 -Cιo-aryl, particularly preferably methyl, ethyl, isopropyl;
für den Fall, dass b = 1, kann R auch Wasserstoff bedeuten,if b = 1, R can also mean hydrogen,
b = 1 bis 3,b = 1 to 3,
R5 = Alkyl, Aryl, bevorzugt Ci-Cio-Alkyl, Cδ-Cio-Aryl, besonders bevorzugtR 5 = alkyl, aryl, preferably Ci-Cio-alkyl, C δ -Cio-aryl, particularly preferred
Methyl, R6 = Cι-C6 Alkyl oder C6-Cι4 Aryl, bevorzugt Methyl, Ethyl, besonders bevorzugtMethyl, R 6 = -C 6 alkyl or C 6 -C 4 aryl, preferably methyl, ethyl, particularly preferred
Methyl.Methyl.
Weitere Beispiele für polyfunktionelle Carbosilane sind Verbindungen der allgemeinen Formel (III)Further examples of polyfunctional carbosilanes are compounds of the general formula (III)
Si[OSiR7 2(CH2)pSi(OR8)dR9 3.d]4 (IH) mit R7 = Alkyl, Aryl, bevorzugt C]-Cι0-AJkyl, C6-Cι0-Aryl, besonders bevorzugtSi [OSiR 7 2 (CH 2 ) p Si (OR 8 ) d R 9 3 . d ] 4 (IH) with R 7 = alkyl, aryl, preferably C] -Cι 0 -alkyl, C 6 -Cι 0 aryl, particularly preferred
Methyl, p = 1 bis 10, bevorzugt p = 2 bis 4, besonders bevorzugt p = 2, R = Alkyl, Aryl, bevorzugt Ci-Cio-Alkyl, Cö-Cio-Aryl, besonders bevorzugt Methyl, Ethyl, Isopropyl;Methyl, p = 1 to 10, preferably p = 2 to 4, particularly preferably p = 2, R = alkyl, aryl, preferably Ci-Cio-alkyl, C o -Cio-aryl, particularly preferably methyl, ethyl, isopropyl;
für den Fall, dass d = 1, kann R auch Wasserstoff sein,if d = 1, R can also be hydrogen,
d = 1 bis 3, R9 = Alkyl, Aryl, bevorzugt Ci-Cio-Alkyl, Cö-Ciö-Aryl, besonders bevorzugtd = 1 to 3, R 9 = alkyl, aryl, preferably Ci-Cio-alkyl, C ö -Ciö-aryl, particularly preferred
Methyl.Methyl.
Es können auch Oligomere oder gemischte Oligomere der Verbindungen der Formeln (I)-(III) als multifunktionelle Carbosilane eingesetzt werden.Oligomers or mixed oligomers of the compounds of the formulas (I) - (III) can also be used as multifunctional carbosilanes.
Beispiele besonders geeigneter Verbindungen sind 1,3,5,7-Tetramethyl-1,3,5,7- tetra(2-(diethoxymethylsilyl)ethylen)cyclotetrasiloxan, 1 ,3,5,7-Tetramethyl- 1 ,3,5,7- tetra(2-(hydroxy-dimethylsilyl)ethylen)cyclotetrasiloxan oder deren Oligomere.Examples of particularly suitable compounds are 1,3,5,7-tetramethyl-1,3,5,7-tetra (2- (diethoxymethylsilyl) ethylene) cyclotetrasiloxane, 1,3,5,7-tetramethyl-1,3,5, 7- tetra (2- (hydroxy-dimethylsilyl) ethylene) cyclotetrasiloxane or their oligomers.
Zur Herstellung des Sol-Gel-Produkts kann beispielsweise das multifunktionelleFor example, the multifunctional can be used to manufacture the sol-gel product
Carbosilane mit einem organischen Lösemittel versetzt und anschließend gegebenenfalls in Gegenwart eines Katalysators mit Wasser umgesetzt werden. Die Durchführung solcher Sol-Gel-Prozesse ist dem Fachmann grundsätzlich bekannt. So sind beispielsweise die Synthesen multifunktioneller Organosilane und Organosiloxane, sowie Verfahren zur Herstellung entsprechender Sol-Gel-Beschichtungslösungen inAn organic solvent is added to carbosilanes and then optionally reacted with water in the presence of a catalyst. The execution of such sol-gel processes is basically known to the person skilled in the art. For example, the syntheses of multifunctional organosilanes and organosiloxanes, as well as processes for the production of corresponding sol-gel coating solutions are in
EP 743 313 A2, EP 787 734 AI und WO 98/52992 AI beschrieben.EP 743 313 A2, EP 787 734 AI and WO 98/52992 AI described.
Geeignete organische Lösemittel sind beispielsweise Ketone, Alkohole, Diole, Ether, sowie deren Mischungen. Der Zusatz des Lösemittels dient dazu, der Lösung die gewünschte Viskosität zu verleihen. Bevorzugte Lösemittel sind n-Butanol, Ethanol und i-Propanol. Mögliche Verdünnungen sind 10-90 Gew.-%, bevorzugt 20-50 Gew.-% multi- funktionelles Carbosilan im Lösemittel.Suitable organic solvents are, for example, ketones, alcohols, diols, ethers and mixtures thereof. The addition of the solvent serves to give the solution the desired viscosity. Preferred solvents are n-butanol, ethanol and i-propanol. Possible dilutions are 10-90% by weight, preferably 20-50% by weight, of multifunctional carbosilane in the solvent.
Durch Zugabe von Wasser und gegebenenfalls eines Katalysators wird eineBy adding water and optionally a catalyst
Hydrolyse- und/oder Kondensationsreaktion eingeleitet.Hydrolysis and / or condensation reaction initiated.
Es können Katalysatoren, d.h. Verbindungen, welche die Reaktion zwischen den funktioneilen Gruppen beschleunigen, zugesetzt werden. Beispiele geeigneter Katalysatoren sind organische und anorganische Säuren wie aliphatische Mono- carbonsäuren mit 1 bis 10 Kohlenstoffatomen wie z.B. Ameisensäure oder Essigsäure, aromatische Carbonsäuren mit 7 bis 14 Kohlenstoffatomen wie z.B. Benzoe- säure, Dicarbonsäuren wie z.B. Oxalsäure, aliphatische und aromatische Sulfon- säuren wie z.B. p-Toluolsulfonsäure, anorganische flüchtige Säuren wie Salzsäure oder Salpetersäure. Besonders bevorzugt ist die Verwendung von p-Toluolsulfon- säure.Catalysts, i.e. Compounds which accelerate the reaction between the functional groups are added. Examples of suitable catalysts are organic and inorganic acids such as aliphatic monocarboxylic acids with 1 to 10 carbon atoms such as e.g. Formic acid or acetic acid, aromatic carboxylic acids with 7 to 14 carbon atoms, e.g. Benzoic acid, dicarboxylic acids such as e.g. Oxalic acid, aliphatic and aromatic sulfonic acids such as e.g. p-toluenesulfonic acid, inorganic volatile acids such as hydrochloric acid or nitric acid. The use of p-toluenesulfonic acid is particularly preferred.
Die Katalysatoren können als wässrige oder alkoholische Lösungen in Konzentrationen von 0,05-5 n, bevorzugt 0,1-1 n eingesetzt werden. Der Carbosilan-Lösung können beispielsweise 1-50 Gew.-%, bevorzugt 5-20 Gew.-% Kataysator-Lösung zugegeben werden.The catalysts can be used as aqueous or alcoholic solutions in concentrations of 0.05-5 n, preferably 0.1-1 n. For example, 1-50% by weight, preferably 5-20% by weight, of the catalyst solution can be added to the carbosilane solution.
Besonders bevorzugt werden Formulierungen der multifunktionellen Carbosilane eingesetzt, die folgende Zusammensetzung aufweisen:Formulations of the multifunctional carbosilanes which have the following composition are particularly preferably used:
20 bis 30 Gew.-% Carbosilan,20 to 30% by weight carbosilane,
0 bis 10 Gew.-% 1 n Kondensations-Katalysator-Lösung und 60 bis 80 Gew.-% Solvens. Die Formulierungen können 1-6 h bei Temperaturen zwischen Raumtemperatur und dem Siedepunkt des verwendeten Solvens gerührt werden. Diese Maßnahme dient dazu, den Kondensationsvorgang der multifunktionellen Carbosilane zu starten.0 to 10% by weight of 1N condensation catalyst solution and 60 to 80% by weight of solvent. The formulations can be stirred for 1-6 h at temperatures between room temperature and the boiling point of the solvent used. This measure serves to start the condensation process of the multifunctional carbosilanes.
Zur Herstellung einer dielektrischen Schicht wird das Sol-Gel-Produkt in der Regel auf ein Substrat aufgebracht. Für das Aufbringen der Schichten stehen prinzipiell alle üblichen Verfahren zur Verfugung. Dies sind z.B. Spincoating, Dipcoating, Aufrakeln und Sprühen .To produce a dielectric layer, the sol-gel product is generally applied to a substrate. In principle, all customary methods are available for applying the layers. These are e.g. Spin coating, dip coating, knife coating and spraying.
Das Sol-Gel-Produkt des multifunktionellen Carbosilans bzw. dessen Formulierung wird nach dem Aufbringen auf ein Substrat thermisch behandelt. Die thermische Behandlung erfolgt beispielsweise bei Temperaturen zwischen 100 und 800°C, bevorzugt zwischen 200 und 600°C, besonders bevorzugt zwischen 200 und 400°C. Diese thermische Behandlung dient dazu, die Vernetzung der multifunktionellen Carbosilane zu vervollständigen und das Lösemittel zu entfernen, des weiteren dient die Temperaturbehandlung zur Erzeugung von Poren. Die Temperaturbehandlung kann auf sehr einfache Weise in einem Schritt bei einer festgelegten Temperatur erfolgen. Es ist jedoch auch möglich, die Behandlung in mehreren Schritten nach einem geeigneten Temperatur- und Zeit-Profil durchzuführen. Geeignete Tempe- ratur- und Zeit-Profile sind abhängig von den multifunktionellen Carbosilanen, demThe sol-gel product of the multifunctional carbosilane or its formulation is thermally treated after being applied to a substrate. The thermal treatment takes place, for example, at temperatures between 100 and 800 ° C., preferably between 200 and 600 ° C., particularly preferably between 200 and 400 ° C. This thermal treatment serves to complete the crosslinking of the multifunctional carbosilanes and to remove the solvent, and furthermore the temperature treatment serves to create pores. The temperature treatment can be carried out in a very simple manner in one step at a fixed temperature. However, it is also possible to carry out the treatment in several steps according to a suitable temperature and time profile. Suitable temperature and time profiles depend on the multifunctional carbosilanes, the
Katalysator und dem Lösemittelanteil und können durch Vorversuche ermittelt werden.Catalyst and the solvent content and can be determined by preliminary tests.
Bevorzugt wird vor der thermischen Behandlung die Vernetzung der Schichten bei Temperaturen von 100- 150°C für eine Dauer von 5- 120 min durchgeführt.Before the thermal treatment, the layers are preferably crosslinked at temperatures of 100-150 ° C. for a period of 5-120 minutes.
Die Porenerzeugung geschieht durch Temperaturbehandlung oberhalb einer Temperatur, in der sich Teile des Carbosilans zersetzen und als gasförmige Bestandteile austreten. Dies geschieht ab Temperaturen oberhalb ca. 220°C, abhängig von den eingesetzten multifunktionellen Carbosilanen. Es ist auch möglich, dem Sol-Gel-Produkt vor dem Aufbringen porenbildende Stoffe wie hochsiedende Lösemittel oder Schäumer zuzusetzen. Diese verbleiben während der Vernetzung in der Schicht und werden erst bei der anschließenden Temperaturbehandlung verdampft und/oder zu gasförmigen Produkten zersetzt.The pore is generated by temperature treatment above a temperature at which parts of the carbosilane decompose and escape as gaseous components. This happens from temperatures above approx. 220 ° C, depending on the multifunctional carbosilanes used. It is also possible to add pore-forming substances such as high-boiling solvents or foaming agents to the sol-gel product before application. These remain in the layer during crosslinking and are only evaporated and / or decomposed into gaseous products during the subsequent temperature treatment.
Die Temperaturbehandlung kann mit Hilfe von üblichen Öfen, RTP (Rapid Thermal Processing)-Öfen, Hotplates etc. durchgeführt werden. Es ist aber auch möglich, die zur Vernetzung und Porenbildung notwendige Energie mit Hilfe von Mikrowellen, LR-Licht, Laser oder anderer energiereicher elektromagnetischer Strahlung zuzu- fuhren. Bevorzugt wird die Temperaturbehandlung in einem Ofen oder auf einerThe temperature treatment can be carried out using conventional furnaces, RTP (Rapid Thermal Processing) furnaces, hotplates etc. However, it is also possible to supply the energy required for crosslinking and pore formation with the aid of microwaves, LR light, lasers or other high-energy electromagnetic radiation. The temperature treatment in an oven or on a is preferred
Hotplate durchgeführt.Hotplate performed.
Die Temperaturbehandlung kann in Luft oder anderen Gasen durchgeführt werden. Vorzugsweise wird die Temperaturbehandlung in Luft oder in Stickstoff durch- geführt.The temperature treatment can be carried out in air or other gases. The temperature treatment is preferably carried out in air or in nitrogen.
Hierbei werden thermisch labile Bestandteile der Schicht pyrolytisch abgebaut, so dass gasgefüllte Poren zurückbleiben.In this process, thermally labile components of the layer are pyrolytically broken down, so that gas-filled pores remain.
In einer weiteren Ausfuhrungsform der Erfindung werden die Schichten nach demIn a further embodiment of the invention, the layers after the
Aufbringen und der Temperaturbehandlung einem weiteren Bearbeitungsschritt unterzogen, der dazu dient, die Porenoberfläche zu hydrophobieren. Der k-Wert eines siliciumorganischen Materials kann durch die chemische Umwandlung von Si-OH Gruppen in Si-O-SiR3-Gruppierungen weiter gesenkt werden. Hierzu wird die Ober- fläche mit geeigneten Verbindungen, wie z.B. Trichlormethylsilan oder Hexa- methylendisilazan, behandelt. Nähere Angaben zur Vorgehensweise und weitere Beispiele sind z.B. in WO 99/36953 AI beschrieben.Apply and subjected to the heat treatment a further processing step, which serves to hydrophobize the pore surface. The k value of an organosilicon material can be further reduced by the chemical conversion of Si-OH groups into Si-O-SiR 3 groups. For this purpose, the surface is treated with suitable compounds, such as trichloromethylsilane or hexamethylene disilazane. Further information on the procedure and further examples are described, for example, in WO 99/36953 AI.
Gegenstand der Erfindung sind auch dielektrische Schichten, die nach dem erfindungsgemäßen Verfahren erhalten werden können. Die erfindungsgemäßen Schichten zeichnen sich durch k- Werte kleiner 2,8, bevorzugt kleiner 2,5, besonders bevorzugt kleiner 2,0 aus, wobei der k-Wert insbesondere von der Wahl des multifunktionellen Carbosilans und den Bedingungen der thermischen Behandlung des Sol-Gel-Produkts abhängt.The invention also relates to dielectric layers which can be obtained by the process according to the invention. The layers according to the invention are characterized by k values of less than 2.8, preferably less than 2.5, particularly preferably less than 2.0, the k value in particular depending on the choice of multifunctional carbosilane and the conditions of the thermal treatment of the sol gel Product depends.
Bevorzugt weisen die Schichten eine Schichtdicke von 0,01 bis 100 μm auf.The layers preferably have a layer thickness of 0.01 to 100 μm.
Die erfindungsgemäßen Schichten können beispielsweise als dielektrische Isolationsschichten in der Herstellung von mikroelekuOnischen Schaltkreisen, beim Chip- Packaging, zum Aufbau von Multichip-Modulen, sowie zur Herstellung von laminierten Leiterplatten und Displays verwendet werden.The layers according to the invention can be used, for example, as dielectric insulation layers in the production of microelectronic circuits, in chip packaging, for the construction of multichip modules, and for the production of laminated printed circuit boards and displays.
Das zu verwendende Substrat, auf das eine erfindungsgemäße dielektrische Schicht aufgebracht wird, richtet sich nach der Anwendung. Möglich sind alle Substrate, die sich mit den zuvor genannten Techniken wie Spin- und Dipcoating, Rakeln oderThe substrate to be used, to which a dielectric layer according to the invention is applied, depends on the application. All substrates are possible that deal with the aforementioned techniques such as spin and dip coating, knife coating or
Sprühen beschichten lassen und die den bei der Temperaturbehandlung auftretenden Temperaturen widerstehen können, z.B. strukturierte und unstrukturierte Silicium- wafer, strukturierte und unstrukturierte Wafer anderer Halbleiter wie z.B. Gallium- arsenid oder Siliciumgermanid, mit leitfähigen Schichten versehene, strukturierte oder unstrukturierte Glasplatten oder geeignete strukturierte und unstrukturierte thermostabile Kunststoffsubstrate. Allow spray coating and which can withstand the temperatures that occur during the temperature treatment, e.g. structured and unstructured silicon wafers, structured and unstructured wafers of other semiconductors such as gallium arsenide or silicon germanide, with structured layers provided, structured or unstructured glass plates or suitable structured and unstructured thermostable plastic substrates.
BeispieleExamples
Die in den Beispielen aufgeführten Verbindungen können gemäss EP 743 313 A2, EP 787 734 AI oder WO 98/52992 AI hergestellt werden.The compounds listed in the examples can be prepared in accordance with EP 743 313 A2, EP 787 734 AI or WO 98/52992 AI.
Die Schichtdicken der aufgetragenen Filme wurden mit einem Surface Profiler (Alpha-Step 500, KLA-Tencor) gemessen.The layer thicknesses of the applied films were measured with a surface profiler (Alpha-Step 500, KLA-Tencor).
Die Dielektrizitätskonstante k wurde durch die Messung der Kapazität C eines Modell-Plattenkondensators bestimmt. Es gilt:The dielectric constant k was determined by measuring the capacitance C of a model plate capacitor. The following applies:
C = kε0 ^ (1) aC = kε 0 ^ (1) a
wobei A die Fläche der Kondensatorplatte, d der Plattenabstand und ε0 = 8.8542*10"12 As Nm die elektrische Feldkonstante ist. Für jede Probe wurde einwhere A is the area of the capacitor plate, d is the plate spacing and ε 0 = 8.8542 * 10 "12 As Nm is the electrical field constant
Kondensator angefertigt. Dazu wurde ein 0,5 - 1 μm dicker Film der in den Beispielen beschriebenen Zusammensetzungen im Spin-Coating Verfahren auf ein 25 mm x 25 mm großes elektrisch leitendes ITO-Glas-Plättchen (ITO = Indium- Zinn-Oxid) aufgebracht, wobei ein schmaler Streifen abgeklebt wird, damit eine spätere Kontaktierung möglich ist. Die Gegenkontaktierung auf der Schicht erfolgte durch eine aufgesputterte Goldelektrode (Durchmesser ca. 5 mm).Capacitor made. For this purpose, a 0.5-1 μm thick film of the compositions described in the examples was spin-coated onto a 25 mm × 25 mm large, electrically conductive ITO glass plate (ITO = indium tin oxide), a narrow strip is taped so that later contact is possible. The mating contact on the layer was made by means of a sputtered gold electrode (diameter approx. 5 mm).
Die Messung der Kapazität erfolgte mit einem Impedanzspektrometer (EG&G 398). Dazu wurde ohne Biasspannung in einem Bereich von 10-100000 Hz die Impedanz Z des Modell-Plattenkondensators bestimmt. Die Kapazität C des Modellkondensators ergibt sich aus der Impedanz Z nach:The capacitance was measured with an impedance spectrometer (EG&G 398). For this purpose, the impedance Z of the model plate capacitor was determined in the range from 10-100000 Hz without bias voltage. The capacitance C of the model capacitor results from the impedance Z according to:
Z = , R 2 (2), I + (ωRC)2 wobei ω die Kreisfrequenz der angelegten Wechselspannung ist und R einen hochohmigen Parallelwiderstand zur Kapazität C darstellt.Z =, R 2 (2), I + (ωRC) 2 where ω is the angular frequency of the applied AC voltage and R represents a high-resistance parallel resistance to the capacitance C.
Beispiel 1example 1
4,4 g l,3,5,7-Tetramethyl-l,3,5,7-tetra(2-(diethoxymethylsilyl)ethylen)cyclotetra- siloxan gelöst in 12,2 g i-Propanol wurden mit 1,0 g 0,1 n wässriger p-Toluolsulfon- säure-Lösung versetzt. Die Mischung wurde 1 h bei Raumtemperatur gerührt. 200 μl des Gemisches wurden mit Hilfe eines handelsüblichen Spincoaters auf ein Glas- Substrat bei 2000 Upm aufgesponnen und 2 h auf 130°C erhitzt. Die Schichtdicke des4.4 g, 3,5,7-tetramethyl-l, 3,5,7-tetra (2- (diethoxymethylsilyl) ethylene) cyclotetrasiloxane dissolved in 12.2 g i-propanol were mixed with 1.0 g 0, 1 N aqueous p-toluenesulfonic acid solution was added. The mixture was stirred at room temperature for 1 h. 200 μl of the mixture were spun onto a glass substrate at 2000 rpm using a commercial spin coater and heated to 130 ° C. for 2 hours. The layer thickness of the
Films betrug anschließend 0,61 μm, der k-Wert 2,7.The film was then 0.61 μm, the k value 2.7.
Beispiel 2Example 2
3,24 g l,3,5,7-Tetramethyl-l,3,5,7-tetra(2-(hydroxydimethylsilyl)ethylen)cyclotetra- siloxan gelöst in 8,7 g i-Propanol wurden mit 1,0 g 0,1 n wässriger p-Toluolsulfon- säure-Lösung versetzt. Die Mischung wurde 1 h bei Raumtemperatur gerührt. 200 μl des Gemisches wurden bei 2000 Upm auf ein Glassubstrat aufgesponnen, 1 h auf 130°C erhitzt und anschließend 1 h bei 200°C unter Stickstoff getempert Die Schichtdicke des getemperten Films betrug 1,44 μm, der k-Wert 1,8.3.24 gl, 3,5,7-tetramethyl-l, 3,5,7-tetra (2- (hydroxydimethylsilyl) ethylene) cyclotetra-siloxane dissolved in 8.7 g i-propanol were mixed with 1.0 g 0, 1 N aqueous p-toluenesulfonic acid solution was added. The mixture was stirred at room temperature for 1 h. 200 μl of the mixture were spun onto a glass substrate at 2000 rpm, heated to 130 ° C. for 1 hour and then annealed under nitrogen for 1 hour at 200 ° C. The layer thickness of the tempered film was 1.44 μm, the k value 1.8.
Beispiel 3Example 3
200 μl des Gemischs aus Beispiel 2 wurden bei 2000 Upm auf ein Glassubstrat aufgesponnen, 2 h auf 130°C erhitzt und anschließend 1 h bei 400°C unter Stickstoff getempert. Die Schichtdicke des getemperten Films betrug 0,57 μm, der k-Wert 2,5. 200 μl of the mixture from Example 2 were spun onto a glass substrate at 2000 rpm, heated to 130 ° C. for 2 hours and then annealed at 400 ° C. under nitrogen for 1 hour. The layer thickness of the annealed film was 0.57 μm, the k value 2.5.

Claims

Patentansprflche Patentansprflche
1. Verfahren zur Herstellung von dielektrischen Schichten dadurch gekennzeichnet, dass ein Sol-Gel-Produkt eines multifunktionellen Carbosilans thermisch behandelt wird.1. A method for producing dielectric layers, characterized in that a sol-gel product of a multifunctional carbosilane is thermally treated.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass das multifunktionelle Carbosilan keine Si-H-Bindungen aufweist.2. The method according to claim 1, characterized in that the multifunctional carbosilane has no Si-H bonds.
3. Verfahren zur Herstellung von dielektrischen Schichten gemäß Anspruch 1 dadurch gekennzeichnet, dass als multifunktionelles Carbosilan eine oder mehrere Verbindungen der allgemeinen Formel (I) oder deren Oligomere verwendet wird:3. Process for the production of dielectric layers according to claim 1, characterized in that one or more compounds of the general formula (I) or their oligomers are used as multifunctional carbosilane:
R, 4-1Si[(CH2)nSi(OR2)aR3 3-a]i (I) mitR , 4-1 Si [(CH 2 ) n Si (OR 2 ) a R 3 3-a ] i (I) with
Rl = Alkyl, Aryl, i = 2 bis 4, n = 1 bis 10,R l = alkyl, aryl, i = 2 to 4, n = 1 to 10,
R2 = Alkyl, Aryl, a = 1 bis 3 undR 2 = alkyl, aryl, a = 1 to 3 and
R3 = Alkyl, Aryl,R 3 = alkyl, aryl,
wobei für den Fall, dass a = 1 bedeutet, R auch Wasserstoff bedeuten kann.where if a = 1, R can also mean hydrogen.
4. Verfahren zur Herstellung von dielektrischen Schichten gemäß Anspruch 1 dadurch gekennzeichnet, dass als multifunktionelles Carbosilan eine oder mehrere Verbindungen der allgemeinen Formel (LT) oder deren Oligomere verwendet wird: 4. The method for producing dielectric layers according to claim 1, characterized in that one or more compounds of the general formula (LT) or their oligomers are used as multifunctional carbosilane:
mit m = 3 bis 6, n = 2 bis 10, R4 = Alkyl, Aryl,with m = 3 to 6, n = 2 to 10, R 4 = alkyl, aryl,
wobei für den Fall, dass b = 1, R4 auch Wasserstoff bedeuten kann,where b = 1, R 4 can also be hydrogen,
b = 1 bis 3,b = 1 to 3,
R5 = Alkyl, Aryl,R 5 = alkyl, aryl,
R6 = Ci-Ce-Alkyl oder C6-C14-Aryl.R 6 = Ci-Ce-alkyl or C 6 -C 14 aryl.
5. Verfahren zur Herstellung von dielektrischen Schichten gemäß Anspruch 1 dadurch gekennzeichnet, dass als multifunktionelles Carbosilan eine oder mehrere Verbindungen der allgemeinen Formel (IIT) oder deren Oligomere verwendet wird:5. The method for producing dielectric layers according to claim 1, characterized in that one or more compounds of the general formula (IIT) or their oligomers are used as multifunctional carbosilane:
Si[OSiR7 2(CH2)pSi(OR8)dR9 3-d]4 (in)Si [OSiR 7 2 (CH 2 ) p Si (OR 8 ) d R 9 3-d ] 4 (in)
mitWith
R7 = Alkyl, Aryl, p =1 bis 10,R 7 = alkyl, aryl, p = 1 to 10,
R8 = Alkyl, Aryl, wobei für den Fall, dass d = 1, R = auch Wasserstoff sein kann,R 8 = alkyl, aryl, in the event that d = 1, R = can also be hydrogen,
d = 1 bis 3, R9 = Alkyl, Aryl.d = 1 to 3, R 9 = alkyl, aryl.
6. Verfahren zur Herstellung von dielektrischen Schichten gemäß Anspruch 1 dadurch gekennzeichnet, dass die dielektrischen Schichten Dielektrizitätskonstanten unter 2,8, bevorzugt unter 2,5 aufweisen.6. The method for producing dielectric layers according to claim 1, characterized in that the dielectric layers have dielectric constants below 2.8, preferably below 2.5.
7. Verfahren zur Herstellung von dielektrischen Schichten gemäß Anspruch 1 dadurch gekennzeichnet, dass bei der Herstellung des Sol-Gel-Produkts den multifunktionellen Carbosilanen Alkohole, Diole, Ether oder deren Mischungen zugesetzt werden.7. The method for producing dielectric layers according to claim 1, characterized in that alcohols, diols, ethers or mixtures thereof are added to the multifunctional carbosilanes in the production of the sol-gel product.
8. Verfahren zur Herstellung von dielektrischen Schichten gemäß Anspruch 1 dadurch gekennzeichnet, dass bei der Herstellung des Sol-Gel-Produkts den multifunktionellen Carbosilanen als Katalysatoren flüchtige organische oder anorganische Säuren zugesetzt werden.8. The method for producing dielectric layers according to claim 1, characterized in that volatile organic or inorganic acids are added to the multifunctional carbosilanes as catalysts in the production of the sol-gel product.
9. Verfahren zur Herstellung von dielektrischen Schichten gemäß Anspruch 1 dadurch gekennzeichnet, dass das Sol-Gel-Produkt durch Aufrakeln, Spin- coaten, Dipcoaten oder Sprühen auf ein Substrat aufgetragen wird.9. The method for producing dielectric layers according to claim 1, characterized in that the sol-gel product is applied to a substrate by knife coating, spin coating, dip coating or spraying.
10. Verfahren zur Herstellung von dielektrischen Schichten gemäß Anspruch 1 dadurch gekennzeichnet, dass die thermische Behandlung in einem industrieüblichen Ofen, auf einer Hotplate oder durch Bestrahlung mit Mikrowellen, IR-Licht, Laser oder anderer energiereicher elektromagnetischer Strahlung durchgeführt wird. 10. The method for producing dielectric layers according to claim 1, characterized in that the thermal treatment is carried out in an industrial furnace, on a hotplate or by irradiation with microwaves, IR light, lasers or other high-energy electromagnetic radiation.
11. Verfahren zur Herstellung von dielektrischen Schichten gemäß Anspruch 1 dadurch gekennzeichnet, dass die thermische Behandlung bei 200 bis 60O°C an Luft oder Stickstoff durchgeführt wird.11. A method for producing dielectric layers according to claim 1, characterized in that the thermal treatment is carried out at 200 to 60O ° C in air or nitrogen.
12. Verfahren zur Herstellung von dielektrischen Schichten gemäß Anspruch 1 dadurch gekennzeichnet, dass die dielektrischen Schichten nach der thermischen Behandlung eine Porosität aufweisen.12. The method for producing dielectric layers according to claim 1, characterized in that the dielectric layers have a porosity after the thermal treatment.
13. Verfahren zur Herstellung von dielektrischen Schichten gemäß Anspruch 1 dadurch gekennzeichnet, dass zur Erzeugung der Porosität dem Sol-Gel- Produkt geeignete hochsiedende Lösemittel, Schäumer oder thermisch labile Bestandteile zugesetzt werden.13. The method for producing dielectric layers according to claim 1, characterized in that suitable high-boiling solvents, foams or thermally labile constituents are added to the sol-gel product to produce the porosity.
14. Verfahren zur Herstellung von dielektrischen Schichten gemäß Anspruch 1 dadurch gekennzeichnet, dass die dielektrischen Schichten nach der thermischen Behandlung einer weiteren Behandlung unterzogen werden, bei der die Anzahl der Hydroxyl-Gruppen an der Oberfläche abnimmt.14. The method for producing dielectric layers according to claim 1, characterized in that the dielectric layers are subjected to a further treatment after the thermal treatment, in which the number of hydroxyl groups on the surface decreases.
15. Dielektrische Schichten, herstellbar gemäß wenigstens eines der Ansprüche 1 bis 14.15. Dielectric layers that can be produced according to at least one of claims 1 to 14.
16. Dielektrische Schichten gemäß Anspruch 15, dadurch gekennzeichnet, dass die Schichten eme Schichtdicke von 0,01-100 μm aufweisen.16. Dielectric layers according to claim 15, characterized in that the layers have a layer thickness of 0.01-100 μm.
17. Verwendung der dielektrischen Schichten gemäß Anspruch 15 als Isolationsschichten in der Herstellung von hochintegrierten mikroelektronischen Schaltkreisen, beim Chip-Packaging, zum Aufbau von Multichip-Modulen, sowie zur Herstellung von laminierten Leiterplatten und Displays. 17. Use of the dielectric layers according to claim 15 as insulation layers in the manufacture of highly integrated microelectronic circuits, in chip packaging, for the construction of multichip modules, and for the manufacture of laminated printed circuit boards and displays.
EP02804878A 2001-12-19 2002-12-06 Method for production of dielectric layers using polyfunctional carbosilanes Withdrawn EP1468446A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10162443A DE10162443A1 (en) 2001-12-19 2001-12-19 Process for the production of dielectric layers using multifunctional carbosilanes
DE10162443 2001-12-19
PCT/EP2002/013834 WO2003052809A1 (en) 2001-12-19 2002-12-06 Method for production of dielectric layers using polyfunctional carbosilanes

Publications (1)

Publication Number Publication Date
EP1468446A1 true EP1468446A1 (en) 2004-10-20

Family

ID=7709842

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02804878A Withdrawn EP1468446A1 (en) 2001-12-19 2002-12-06 Method for production of dielectric layers using polyfunctional carbosilanes

Country Status (10)

Country Link
US (1) US7090896B2 (en)
EP (1) EP1468446A1 (en)
JP (1) JP2005513777A (en)
KR (1) KR20040068274A (en)
CN (1) CN100336183C (en)
AU (1) AU2002366351A1 (en)
DE (1) DE10162443A1 (en)
HK (1) HK1076918A1 (en)
TW (1) TWI265964B (en)
WO (1) WO2003052809A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040038048A1 (en) * 2000-02-02 2004-02-26 Lg Chemical Ltd. Semiconductor interlayer dielectric material and a semiconductor device using the same
DE102004027857A1 (en) * 2004-06-08 2006-01-05 Siemens Ag Preparation of ceramic material from organometallic polymer, useful in high-frequency devices, e.g. radar, where the polymer is crosslinked before heat treatment
US7575979B2 (en) * 2004-06-22 2009-08-18 Hewlett-Packard Development Company, L.P. Method to form a film
US7892648B2 (en) * 2005-01-21 2011-02-22 International Business Machines Corporation SiCOH dielectric material with improved toughness and improved Si-C bonding
JP5324734B2 (en) * 2005-01-21 2013-10-23 インターナショナル・ビジネス・マシーンズ・コーポレーション Dielectric material and manufacturing method thereof
JP4935111B2 (en) 2006-02-22 2012-05-23 富士通株式会社 Composition for forming insulating film, insulating film for semiconductor device, method for producing the same, and semiconductor device
US20080012074A1 (en) * 2006-07-14 2008-01-17 Air Products And Chemicals, Inc. Low Temperature Sol-Gel Silicates As Dielectrics or Planarization Layers For Thin Film Transistors
US20110076416A1 (en) * 2008-05-26 2011-03-31 Basf Se Method of making porous materials and porous materials prepared thereof
US10361137B2 (en) * 2017-07-31 2019-07-23 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677410A (en) * 1995-05-16 1997-10-14 Bayer Ag Carbosilane-dendrimers, carbosilane-hybrid materials, methods for manufacturing them and a method for manufacturing coatings from the carbosilane-dendrimers
JPH09143420A (en) * 1995-09-21 1997-06-03 Asahi Glass Co Ltd Resin composition having low dielectric constant
DE19603241C1 (en) * 1996-01-30 1997-07-10 Bayer Ag Multifunctional, cyclic organosiloxanes, process for their preparation and their use
US6005131A (en) * 1996-01-30 1999-12-21 Bayer Aktiengesellschaft Multi-functional, cyclic organosiloxanes, process for the production thereof and use thereof
US6043330A (en) * 1997-04-21 2000-03-28 Alliedsignal Inc. Synthesis of siloxane resins
US6143855A (en) * 1997-04-21 2000-11-07 Alliedsignal Inc. Organohydridosiloxane resins with high organic content
ATE226226T1 (en) * 1997-05-23 2002-11-15 Bayer Ag ORGANOSILANE OLIGOMERS
US6042994A (en) * 1998-01-20 2000-03-28 Alliedsignal Inc. Nanoporous silica dielectric films modified by electron beam exposure and having low dielectric constant and low water content
US6068884A (en) * 1998-04-28 2000-05-30 Silcon Valley Group Thermal Systems, Llc Method of making low κ dielectric inorganic/organic hybrid films
US6054206A (en) * 1998-06-22 2000-04-25 Novellus Systems, Inc. Chemical vapor deposition of low density silicon dioxide films
US5906859A (en) * 1998-07-10 1999-05-25 Dow Corning Corporation Method for producing low dielectric coatings from hydrogen silsequioxane resin
US6225238B1 (en) * 1999-06-07 2001-05-01 Allied Signal Inc Low dielectric constant polyorganosilicon coatings generated from polycarbosilanes
TWI291728B (en) * 2000-04-28 2007-12-21 Lg Chem Investment Ltd A process for preparing insulating material having low dielectric constant
US6514091B2 (en) * 2000-11-28 2003-02-04 Sumitomo Wiring Systems, Ltd. Electrical junction box for a vehicle
WO2003077032A1 (en) * 2002-03-04 2003-09-18 Supercritical Systems Inc. Method of passivating of low dielectric materials in wafer processing
JP4139710B2 (en) * 2003-03-10 2008-08-27 信越化学工業株式会社 Composition for forming porous film, method for producing porous film, porous film, interlayer insulating film, and semiconductor device
KR100507967B1 (en) * 2003-07-01 2005-08-10 삼성전자주식회사 Siloxane-based Resin and Semiconductive Interlayer Insulating Film Using the Same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03052809A1 *

Also Published As

Publication number Publication date
TWI265964B (en) 2006-11-11
CN1605118A (en) 2005-04-06
WO2003052809A1 (en) 2003-06-26
HK1076918A1 (en) 2006-01-27
US20030181537A1 (en) 2003-09-25
US7090896B2 (en) 2006-08-15
KR20040068274A (en) 2004-07-30
AU2002366351A1 (en) 2003-06-30
JP2005513777A (en) 2005-05-12
CN100336183C (en) 2007-09-05
DE10162443A1 (en) 2003-07-03
TW200305618A (en) 2003-11-01

Similar Documents

Publication Publication Date Title
EP0778612B1 (en) Method of curing hydrogen silsesquioxane resin by electron beam to convert it to a silica containing ceramic coating
DE60111926T2 (en) PLASMA TREATMENT OF A POROUS THIN LAYER OF SILICON DIOXIDE
DE69827259T2 (en) ALKOXYSILANE AND ORGANIC POLYMER COMPOSITIONS FOR THE PREPARATION OF THIN ISOLATING LAYERS AND THEIR USE
DE602004010461T2 (en) Multi-functional cyclic siloxane compound, siloxane polymer prepared therefrom, and methods of making a dielectric film using the polymer
KR100300801B1 (en) How to form an SI-O-containing film
DE60025872T2 (en) Soluble silicone resin compositions
DE60124128T2 (en) PROCESS FOR PREPARING ORGANIC SILICATE POLYMER
US5547703A (en) Method of forming si-o containing coatings
KR100433938B1 (en) Porous insulating compounds and method for making same
DE4005472C2 (en) Process for forming a ceramic or ceramic coating
DE60014694T2 (en) POROUS SILICATE FILM WITH LOW PERMEABILITY, SEMICONDUCTOR ELEMENT WITH SUCH FILM, AND COATING COMPOSITION CREATING THE FILM
DE10154771A1 (en) Silicon composition low dielectric film, semiconductor device and method for producing low dielectric films
DE4035218C2 (en) Process for the production of ceramic-like coatings on substrates and its application
DE602004000964T2 (en) Siloxane resin and intermediate insulation film made therefrom
EP1468446A1 (en) Method for production of dielectric layers using polyfunctional carbosilanes
DE602004001097T2 (en) Siloxane-containing resins and insulating film thereof for semiconductor interlayer
DE4212999A1 (en) Ceramic coatings
EP0971400A2 (en) Method for producing low dielectric coatings from hydrogen silsesquioxane resin
TWI327580B (en) Organic siloxane resins and insulating film using the same
DE112004001135B4 (en) Novel polymer and preparation of nanoporous, low-dielectric polymer composite film using the same
KR100373215B1 (en) Method for preparing low dielectric materials for semiconductor ic device
KR100383103B1 (en) Method for preparing dielectrics material with low dielectric constant
KR950000101B1 (en) Semiconductor device and manufacturing method using insulation layer producing procedure with organo-silica sol
JP3485425B2 (en) Method for forming low dielectric constant insulating film and semiconductor device using this film
JPH11111712A (en) Low-dielectric constant insulating film, manufacture thereof and semiconductor device using the film

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040719

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: H.C. STARCK GMBH

17Q First examination report despatched

Effective date: 20061208

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: H.C. STARCK GMBH & CO. KG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: H.C. STARCK GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20080728