EP1466336B1 - Method for determining wear of a switchgear contacts - Google Patents

Method for determining wear of a switchgear contacts Download PDF

Info

Publication number
EP1466336B1
EP1466336B1 EP02799097A EP02799097A EP1466336B1 EP 1466336 B1 EP1466336 B1 EP 1466336B1 EP 02799097 A EP02799097 A EP 02799097A EP 02799097 A EP02799097 A EP 02799097A EP 1466336 B1 EP1466336 B1 EP 1466336B1
Authority
EP
European Patent Office
Prior art keywords
contacts
wear
pole
electromagnet
switch appliance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02799097A
Other languages
German (de)
French (fr)
Other versions
EP1466336A1 (en
Inventor
Gilles Baurand
Jean-Christophe Cuny
Stéphane Delbaere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Industries SAS
Original Assignee
Schneider Electric Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8871110&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1466336(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Schneider Electric Industries SAS filed Critical Schneider Electric Industries SAS
Publication of EP1466336A1 publication Critical patent/EP1466336A1/en
Application granted granted Critical
Publication of EP1466336B1 publication Critical patent/EP1466336B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0015Means for testing or for inspecting contacts, e.g. wear indicator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/04Means for indicating condition of the switching device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/04Means for indicating condition of the switching device
    • H01H2071/044Monitoring, detection or measuring systems to establish the end of life of the switching device, can also contain other on-line monitoring systems, e.g. for detecting mechanical failures

Definitions

  • the present invention relates to a method for determining the wear of pole contacts in a power switch device having one or more power poles, in particular in a contactor, a choke or discontactor, or a contactor-circuit breaker .
  • the invention also relates to a switch device capable of implementing such a method.
  • a switch device has fixed contacts and movable contacts on each power pole for switching an electrical load to be controlled.
  • the pads mounted on these contacts wear out more or less during each switching, depending on the load current or voltage. After a large number of switching maneuvers, this wear can lead to a failure of the switch device whose consequences can be important in terms of safety and availability.
  • a usual solution is to systematically change either the contacts or the entire switch device, after a predetermined number of maneuvers (for example a million maneuvers), without examining the actual wear of the pellets of contacts. This can therefore lead to late interventions if the pellets are already too worn or premature if the pellets are not yet sufficiently worn.
  • the residual life of contacts is determined by calculating a change in the contact pressure during a contact opening operation.
  • the change of contact pressure is determined by a measurement of the time between the initial moment of movement of the armature of the control electromagnet and the final instant of contact opening.
  • the initial moment is detected by an auxiliary circuit which analyzes the voltage across the electromagnet coil during the opening phase.
  • the final instant corresponds to the beginning of the opening of the contacts of the most used switching pole and is detected by connecting all the phases to a detection circuit and measuring the switching voltage as voltage variation at an artificial neutral point of the downstream power lines.
  • the present invention aims to determine as simply as possible the wear of the pole contacts of a switch device avoiding these disadvantages.
  • the invention describes a method for determining the wear of pole contacts in a switch device which comprises one or more power poles provided with contacts actuated by a control electromagnet whose movement between an open position and a closed position. is controlled by an excitation coil, the wear of the contacts being determined from a travel time of the wear stroke of the contacts.
  • the travel time of the wear race of the contacts is developed, during a closing movement of the electromagnet, by measuring at least one electrical signal representative of the conducting state of at least one pole of power, by measuring an excitation current flowing in the solenoid coil and calculating the time difference between the contact closure time, determined from said electrical signal, and the end time of the momentum movement. closure of the electromagnet determined from said excitation current.
  • the instant of closure of the contacts is determined by the appearance of the electrical signal when the pole becomes conductive, and the end of the closing movement of the electromagnet determined by the detection of a minimum of the excitation current.
  • the instant of closure of the contacts of each power pole is determined by the appearance of a main current flowing in the corresponding power pole switch device. According to another characteristic, the instant of closure of the contacts of a power pole is determined by the appearance, downstream of the contacts, of a phase / neutral voltage between the corresponding power pole and a neutral point. According to another characteristic, the instant of closure of the contacts of the power poles is determined by the appearance, downstream of the contacts, of a phase / phase voltage between two power poles.
  • the measured travel time of the wear stroke is used to determine the wear of the contacts from the drift of this measured travel time with respect to an initial travel time of the race.
  • wear memory stored in storage means of the switch device.
  • the wear of the contacts can also be determined from the comparison of the measured travel time of the wear stroke with an acceptable minimum travel time of the wear stroke stored in storage means of the switch device.
  • the invention also describes a switch device capable of implementing this method.
  • a switch device comprises first measuring means delivering at least one primary signal representative of the conducting state of at least one power pole, second measuring means delivering a secondary signal representative of an excitation current flowing in the coil of the electromagnet and a processing unit receiving the primary signal (s) and the secondary signal for carrying out the method.
  • the first measuring means are placed in series on current lines of the switch device, in order to measure the main currents flowing in the power poles.
  • the first measuring means are placed between downstream current lines and a neutral point of the switch device, in order to measure the phase / neutral voltages of the power poles.
  • the switch device comprises means for memorizing an initial travel time of the wear path of the contacts.
  • the processing unit calculates a measured travel time of the wear stroke of the contacts, and compares said measured travel time with the stored initial travel time, in order to determine a residual life of the contacts and / or to give end-of-life information beyond which the performance of the product is no longer guaranteed.
  • An electrical switch device for example of the contactor, contactor-breaker or choke type, comprises one or more power poles.
  • the switch device comprises three power poles P1, P2, P3.
  • the switch apparatus comprises upstream current lines (source lines), which establish the electrical continuity between the power supply network and the poles P1, P2, P3, and downstream power lines L1, L2, L3 (lines charging) which establish the electrical continuity between the poles of the switch device and an electrical load, usually an electric motor M, that it is desired to control and / or protect with the switch device.
  • the upstream current lines are connected or disconnected from the downstream current lines by pole contacts C1, C2, C3.
  • the contacts C1, C2, C3 comprise movable contacts disposed on a movable bridge 28 and fixed contacts.
  • the movable bridge 28 is actuated by a control electromagnet 20 and a contact pressure spring 25.
  • the control electromagnet 20 comprises a fixed yoke, a movable armature 23, a return spring 26 and an excitation coil 21.
  • the moving armature 23 of the electromagnet 20 is generated by the passage of an excitation current Is in the excitation coil 21.
  • the excitation coil 21 is supplied with a DC excitation voltage.
  • a switch poles breaker device In the embodiment detailed in figure 2 there is shown a switch poles breaker device, but we could also consider that the device is poles contactors.
  • the operation of a poles breaker device is as follows: when no excitation current ls flows in the coil 21 of the electromagnet, the return spring 26 causes the separation between the movable armature 23 and the fixed yoke of the electromagnet.
  • the movable armature 23 cooperates mechanically with a mechanical link 22 not detailed here (such as a pusher) so as to act on the movable bridge 28, thus causing the opening of the contacts by separation of the movable contacts with the fixed contacts.
  • the return spring 26 must for this purpose have a force greater than that of the contact pressure spring 25.
  • a pole poles device has the particular advantage of reducing the risk of rebound at the end of the closing movement of the contacts since as the movable bridge 28 is disengaged from the mobile armature 23 of the electromagnet at that time, one thus decreases globally the inertia of the mobile bridge in motion.
  • a switch pole switch device it is possible to design by construction a sufficient thickness of the contact pads so that the end of life of the product is not the consequence of a too small thickness of the pellets, but a wear race remaining contacts too weak. Indeed, when this wear stroke becomes zero, this means that when the moving armature 23 has finished its closing movement, the pusher 22 still remains in contact with the movable bridge 28 which hinders the pressure force that must exert the spring 25 to press the movable contacts against the fixed contacts. The contact pressure is no longer sufficient, it is no longer possible under these conditions to ensure proper operation of the switch device. Thus, the wear of the contacts may depend not on the remaining thickness of the pads, but on the remaining wear stroke of the contacts.
  • the switch device comprises first measuring means 11, 12, 13, 11 'capable of delivering at least one primary signal measuring at least one electrical signal representative of the conducting state of at least one pole of power P1, P2, P3.
  • said first measuring means comprise current sensors 11, 12, 13 connected in series on each downstream current line L1, L2, L3 and each delivering a primary signal, respectively 31, 32, 33 depending on a main current. Ip flowing in each pole, respectively P1, P2, P3 of the switch device.
  • Such current sensors 11, 12, 13 are used for the purpose of providing, in particular, protection functions of the thermal defect, magnetic fault or short circuit fault type in a contactor-circuit breaker.
  • the current sensors 11, 12, 13 are, for example, Rogowski type current sensors.
  • the primary signal obtained is actually an image of the derivative of the current Ip, which makes it possible to have an important signal as soon as the current appears, thus facilitating the detection of the moment of appearance of the current Ip .
  • the first measuring means 11 ' are placed downstream of the contacts C1, C2, C3 between the downstream current lines L1, L2, L3 and a virtual neutral point N of a switch device, so as to deliver primary signals, respectively 31 ', 32', 33 ', depending on the phase / neutral voltage of the different power poles, respectively P1, P2, P3.
  • the measuring means 11 ' comprise in known manner, in derivation of each measured pole, a first strong resistance, to lower the intensity of the current, placed in series with a second resistor whose voltage is measured at the terminals.
  • the neutral point N joins the end of the second resistors.
  • the measuring means 11 'thus After possible analog processing, the measuring means 11 'thus generate primary signals 31', 32 ', 33', representative of the phase / neutral voltages of the different poles. In another alternative embodiment, one could also consider using first measuring means capable of measuring a phase / phase voltage between two power poles.
  • the primary signals 31, 32, 33 or 31 ', 32', 33 ' are sent to a processing unit 10 of the switch device.
  • This processing unit 10 is for example implanted in an integrated circuit of the ASIC type, mounted on a printed circuit inside the switch device. It can in particular be used to control the control electromagnet 20 as well as, in the case of a contactor-circuit breaker, to control a thermal and / or magnetic trip.
  • the switch device also comprises second measuring means 14 for measuring the excitation current Is flowing in the excitation coil 21 of the electromagnet 20.
  • the second measuring means 14 may be composed of a resistor connected in series on the control circuit of the coil 21, the terminal voltage of which is measured directly. After possible analog processing of this measurement, the measuring means 14 thus generate a secondary signal 34, representative of the excitation current Is, which is sent to the processing unit 10.
  • the excitation coil 21 has stored enough ampere-turns to cause the start of the closing movement of the moving armature 23. From this moment, the gap of the electromagnet 20 is gradually decrease, which will cause a change in the reluctance of the magnetic circuit composed of the fixed yoke and the movable armature 23 of the electromagnet 20. This variation in the reluctance causes the drop in excitation current Is. excitation current Is continues until a time C corresponding to the end of the travel of the movable armature 23, that is to say at the end of the closing movement of the electromagnet 20. beyond the instant C, the air gap and therefore the reluctance of the electromagnet no longer vary and the excitation current Is again increasing, as indicated on the curve 51.
  • the movement of the mobile armature gradually releases the movable bridge 28 and the latter is then driven by the contact pressure spring 25.
  • the movable bridge 28 then starts moving at a time B where the movable contacts of each power pole will be pressed against the corresponding fixed contacts, causing the conductive state of the pole. From this moment B, a main current Ip measured by the various current sensors 11, 12, 13 will appear, as schematized by the curve 52.
  • the moment B advantageously corresponds to the closing of the two pairs of fixed / mobile contacts, which makes it possible to detect the greater wear of the pellets of the two pairs of contacts of the same pole.
  • the instant B can be determined on each pole by the appearance, downstream of the contacts, of a phase / neutral voltage measured by the first measuring means 11 'between a pole and the virtual neutral N. Also, moment B could also be detected with a phase / phase voltage measurement between two of the poles of the device, downstream of the contacts.
  • the processing unit 10 is able to detect the end of the closing movement of the electromagnet, corresponding to the instant C, by detecting the appearance of a minimum of the excitation current ls, represented by a point of cusp on the curve ls of the figure 3 from the received secondary signal 34.
  • the processing unit 10 is also capable of detecting the instant of closure of the contacts, corresponding to the moment B, by detecting the appearance of electrical signals representative of the conducting state of the poles (that is to say, main current Ip, or phase / neutral voltage, or phase / phase voltage) from primary signal (s) 31, 32, 33 or 31 ', 32', 33 '.
  • the processing unit 10 is able to determine the travel time of the wear race of the contacts.
  • the time T1 between the instant A and the instant C corresponds to the duration of the closing movement of the movable armature 23 of the electromagnet.
  • the time T2 between the instant A and the instant B corresponds to the duration of the closing movement of the movable bridge 28.
  • the difference between T1 and T2, called Tu corresponds to the travel time required to perform the wear race of the contacts (also called contact crushing stroke), between the instant B and the instant C, shown diagrammatically in the diagram 53. It is obvious that the more the pellets of the fixed and / or mobile contacts are worn, the more the time T2 is important, and therefore the more time you are weak.
  • filtering or smoothing can easily be performed by the processing unit 10, especially by taking into account only average values calculated from a plurality measurements made on a given number of closing cycles of the electromagnet, for example of the order of a few tens of cycles.
  • the information relating to the wear of the contacts may include information on the residual life of the contacts, expressed as a percentage, in degrees of wear, etc., and / or an alert information indicating the end of life of the switch device contacts.
  • the processing unit 10 compares the measured travel time Tu of the contact wear race with an initial travel time Ti corresponding to an initial wear stroke of the contacts. contacts (still called crush stroke in new condition) and monitors the evolution in time of the gap between Tu and Ti.
  • This initial travel time Ti corresponds to a calibration value, determined for a given type of electromagnet.
  • the processing unit 10 compares the measured travel time Tu of the wear race of the contacts. contacts with a minimum travel time Tmini corresponding to a minimum contact wear travel acceptable below which it is no longer possible to guarantee the expected performance of the switch device. This minimum travel time Tmini is also determined for a given type of electromagnet.
  • the switch device then has internal storage means 15 connected to the processing unit 10 and capable of storing this initial value Ti and / or this minimum value Tmini.
  • the storage means 15 consist, for example, of a non-volatile memory of the EEPROM or Flash memory type.
  • the processing unit 10 and the storage means 15 are located in the same integrated circuit of the switch device.
  • the initial value Ti is stored in the storage means 15 either with a predetermined value during the manufacture of the switch device or with a first measurement of Tu performed during the first switching operations of the switch device.
  • Ti and Tmini have been determined for example from a nominal speed of the moving part 23 of the electromagnet, and this nominal speed is not necessarily identical to the actual speed used to determine Tu.
  • the moving speed of the moving armature 23 remains substantially constant for a given type of electromagnet of a given caliber.
  • the processing unit 10 is easily able to calculate the residual life of the contacts.
  • the processing unit 10 is easily able to give end-of-life information of the contacts, when you become less than Tmini, without requiring correction on the measurement of Tu.
  • the speed of displacement of the moving armature 23 depends not only on the type of electromagnet but also on the supply voltage of the excitation coil (or at least the voltage of the electromagnetic coil). average power seen by the coil in the case of a control by cutting). Indeed, the higher the supply voltage, the higher the real speed of displacement of the mobile armature 23 can be important during the movement of closing.
  • the switch device has means for measuring this supply voltage. These means are connected to the processing unit 10, allowing it to assign to the measured travel time Tu a correction coefficient taking into account the variations of the speed, before making a comparison with Ti and / or Tmini , in order to obtain a better precision in the elaboration of the information relating to the wear of the contacts.
  • the moving speed of the moving armature 23 also depends on other parameters, such as the operating temperature of the apparatus. However, it is important not to penalize the process with calculations that would become too complex. Therefore, in this case, to more precisely estimate the moving speed of the moving armature 23, the processing unit calculates a duration of the T3 take-off phase (see FIG. figure 3 ) which corresponds to the time elapsed between an instant O of appearance of a current Is in the coil and the instant determined by the maximum of the current ls, at the beginning of the start of the movement of the moving armature 23.
  • This duration T3 also being a function of the operating temperature of the apparatus and the supply voltage of the coil, one can then make a simple correlation between the variation of the duration T3 and the variation of the speed of the moving armature.
  • a correction coefficient can be assigned to the measured travel time Tu, taking into account the variations of the speed, in order to obtain a better precision in the development of the information. on contact wear.
  • the switch device further comprises communication means 18 which make it possible to connect it to a communication bus B, such as a serial link, a field bus, a local network, a global network (of the Intranet or Internet type). Or other.
  • a communication bus B such as a serial link, a field bus, a local network, a global network (of the Intranet or Internet type). Or other.
  • These communication means 18 are connected to the processing unit 10 so that information relating to the wear of the pole contacts calculated by the processing unit 10 can be transmitted on the communication bus B.
  • the switch device also includes signaling means 17 connected to the processing unit 10. These signaling means 17, such as a mini-screen or one or more lights on the front of the switch device, allow an operator located near the switch device to display information relating to the wear of the pole contacts calculated by the processing unit 10.
  • the processing unit 10 is responsible for controlling the control electromagnet 20 by means of a control command
  • the processing unit 10 is able to slave this command command to a piece of information. end of life of the pole contacts, so as to lock any possibility of closing control of the power poles of the switch device in case of excessive wear of the contacts, since it would no longer be possible to guarantee the advertised performance of the switch device. This provides an additional safety function very significant, since the switch device can self-lock in case of malfunction.
  • the switch device has a current sensor 11, 12, 13 for each of its power poles P1, P2, P3.
  • the processing unit 10 then receives as many primary signals 31, 32, 33 as poles and is therefore able to separately detect the wear of the contacts on each power pole. In this case, the wear of the contacts of the switch device will be calculated either pole by pole or by taking the power pole whose contacts are the most worn.
  • the switch device does not have a current sensor 11, 12, 13 in each power pole P1, P2, P3, but for example has a current sensor for only one pole.
  • the processing unit 10 then receives a single primary signal and is only able to actually detect the wear of the contacts of this power pole. In this case, the wear of all the contacts of the switch device will be determined from this single measurement for a pole, without taking into account any disparities between the wear of the different poles.

Landscapes

  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Keying Circuit Devices (AREA)
  • Relay Circuits (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Contacts (AREA)
  • Multiple-Way Valves (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

The pole contact (C1,C2,C3) wear determination method has an electromagnet (20) with movement controlled by a field coil (21). Wear is determined on the basis of the contact wear stroke produced during a movement closing the electromagnet. An electric signal is measured on the conducting status of a power pole, by measuring the excitation current flowing in the coil on a time basis. The measured wear time is then compared with the initial travel time.

Description

La présente invention se rapporte à un procédé de détermination de l'usure de contacts de pôles dans un appareil interrupteur de puissance doté d'un ou plusieurs pôles de puissance, en particulier dans un contacteur, un starter ou discontacteur, ou un contacteur-disjoncteur. L'invention concerne également un appareil interrupteur capable de mettre en oeuvre un tel procédé.The present invention relates to a method for determining the wear of pole contacts in a power switch device having one or more power poles, in particular in a contactor, a choke or discontactor, or a contactor-circuit breaker . The invention also relates to a switch device capable of implementing such a method.

Un appareil interrupteur possède, sur chaque pôle de puissance, des contacts fixes et des contacts mobiles, afin de commuter une charge électrique à commander. Les pastilles montées sur ces contacts s'usent plus ou moins lors de chaque commutation, suivant la charge en courant ou en tension. Au bout d'un nombre élevé de manoeuvres de commutation, cette usure peut conduire à une défaillance de l'appareil interrupteur dont les conséquences peuvent être importantes en terme de sécurité et de disponibilité. Pour prévenir de telles conséquences, une solution habituelle consiste à changer systématiquement soit les contacts, soit l'appareil interrupteur entier, au bout d'un nombre prédéterminé de manoeuvres (par exemple un million de manoeuvres), sans examiner l'usure réelle des pastilles de contacts. Ceci peut donc entraîner des interventions tardives si les pastilles sont déjà trop usées ou prématurées si les pastilles ne sont pas encore suffisamment usées. La capacité à pouvoir déterminer l'usure réelle des contacts afin d'en déduire une information donnant la durée de vie résiduelle ou une information donnant la fin de vie des contacts de pôles apporte donc un atout appréciable dans le cas d'un appareil interrupteur réalisant un nombre important de manoeuvres puisqu'il permet d'alerter l'utilisateur au moment voulu et ainsi de prévenir des pannes ou des défauts susceptibles de survenir dans une installation d'automatisme.A switch device has fixed contacts and movable contacts on each power pole for switching an electrical load to be controlled. The pads mounted on these contacts wear out more or less during each switching, depending on the load current or voltage. After a large number of switching maneuvers, this wear can lead to a failure of the switch device whose consequences can be important in terms of safety and availability. To prevent such consequences, a usual solution is to systematically change either the contacts or the entire switch device, after a predetermined number of maneuvers (for example a million maneuvers), without examining the actual wear of the pellets of contacts. This can therefore lead to late interventions if the pellets are already too worn or premature if the pellets are not yet sufficiently worn. The ability to be able to determine the actual wear of the contacts in order to deduce therein information giving the residual service life or information giving the end of life of the pole contacts thus brings an appreciable advantage in the case of a switch device producing a large number of maneuvers since it makes it possible to alert the user at the desired moment and thus to prevent failures or faults likely to occur in an automation installation.

Dans les documents EP0878015 et EP0878016 , la durée de vie résiduelle de contacts est déterminée en calculant une modification de la pression de contact pendant une opération d'ouverture des contacts. La modification de pression de contact est déterminée par une mesure du temps entre l'instant initial du mouvement de l'armature de l'électroaimant de commande et l'instant final d'ouverture de contact. L'instant initial est détecté grâce à un circuit auxiliaire qui analyse la tension aux bornes de la bobine de l'électroaimant pendant la phase d'ouverture. L'instant final correspond au début de l'ouverture des contacts du pôle de commutation le plus usé et est détecté en connectant toutes les phases à un circuit de détection et en mesurant la tension de commutation comme variation de tension en un point neutre artificiel des lignes de puissance aval.In documents EP0878015 and EP0878016 , the residual life of contacts is determined by calculating a change in the contact pressure during a contact opening operation. The change of contact pressure is determined by a measurement of the time between the initial moment of movement of the armature of the control electromagnet and the final instant of contact opening. The initial moment is detected by an auxiliary circuit which analyzes the voltage across the electromagnet coil during the opening phase. The final instant corresponds to the beginning of the opening of the contacts of the most used switching pole and is detected by connecting all the phases to a detection circuit and measuring the switching voltage as voltage variation at an artificial neutral point of the downstream power lines.

Néanmoins, le fait que ces dispositifs travaillent à l'ouverture entraîne la présence d'un arc électrique qui peut venir perturber les mesures de tensions dans les pôles. Ces dispositifs nécessitent également des précautions particulières pour mesurer la tension bobine, comme l'utilisation d'un interrupteur auxiliaire qui doit être rajouté pour isoler le circuit auxiliaire par rapport à l'alimentation de la bobine de façon à mesurer la tension de la bobine dans une résistance de décharge.However, the fact that these devices work at the opening causes the presence of an electric arc that can disrupt the voltage measurements in the poles. These devices also require special precautions to measure the coil voltage, such as the use of an auxiliary switch which must be added to isolate the auxiliary circuit from the power supply of the coil so as to measure the voltage of the coil in a discharge resistor.

Un autre procédé est décrit dans le document DE 197 39 224 C .Another method is described in the document DE 197 39 224 C .

La présente invention a pour but de déterminer le plus simplement possible l'usure des contacts de pôles d'un appareil interrupteur en évitant ces inconvénients. Pour cela, l'invention décrit un procédé pour déterminer l'usure de contacts de pôles dans un appareil interrupteur qui comporte un ou plusieurs pôles de puissance munis de contacts actionnés par un électroaimant de commande dont le mouvement entre une position ouverte et une position fermée est commandé par une bobine d'excitation, l'usure des contacts étant déterminée à partir d'un temps de parcours de la course d'usure des contacts. Selon l'invention, le temps de parcours de la course d'usure des contacts est élaboré, durant un mouvement de fermeture de l'électroaimant, en mesurant au moins un signal électrique représentatif de l'état conducteur d'au moins un pôle de puissance, en mesurant un courant d'excitation circulant dans la bobine de l'électroaimant et en calculant l'écart de temps entre l'instant de fermeture des contacts, déterminé à partir dudit signal électrique, et l'instant de fin du mouvement de fermeture de l'électroaimant, déterminé à partir dudit courant d'excitation.The present invention aims to determine as simply as possible the wear of the pole contacts of a switch device avoiding these disadvantages. For this, the invention describes a method for determining the wear of pole contacts in a switch device which comprises one or more power poles provided with contacts actuated by a control electromagnet whose movement between an open position and a closed position. is controlled by an excitation coil, the wear of the contacts being determined from a travel time of the wear stroke of the contacts. According to the invention, the travel time of the wear race of the contacts is developed, during a closing movement of the electromagnet, by measuring at least one electrical signal representative of the conducting state of at least one pole of power, by measuring an excitation current flowing in the solenoid coil and calculating the time difference between the contact closure time, determined from said electrical signal, and the end time of the momentum movement. closure of the electromagnet determined from said excitation current.

Selon une caractéristique, l'instant de fermeture des contacts est déterminé par l'apparition du signal électrique lorsque le pôle devient conducteur, et la fin du mouvement de fermeture de l'électroaimant déterminée par la détection d'un minimum du courant d'excitation.According to one characteristic, the instant of closure of the contacts is determined by the appearance of the electrical signal when the pole becomes conductive, and the end of the closing movement of the electromagnet determined by the detection of a minimum of the excitation current. .

Selon une autre caractéristique, l'instant de fermeture des contacts de chaque pôle de puissance est déterminé par l'apparition d'un courant principal circulant dans le pôle de puissance correspondant de appareil interrupteur. Selon une autre caractéristique, l'instant de fermeture des contacts d'un pôle de puissance est déterminé par l'apparition, en aval des contacts, d'une tension phase/neutre entre le pôle de puissance correspondant et un point neutre. Selon une autre caractéristique, l'instant de fermeture des contacts des pôles de puissance est déterminé par l'apparition, en aval des contacts, d'une tension phase/phase entre deux pôles de puissance.According to another characteristic, the instant of closure of the contacts of each power pole is determined by the appearance of a main current flowing in the corresponding power pole switch device. According to another characteristic, the instant of closure of the contacts of a power pole is determined by the appearance, downstream of the contacts, of a phase / neutral voltage between the corresponding power pole and a neutral point. According to another characteristic, the instant of closure of the contacts of the power poles is determined by the appearance, downstream of the contacts, of a phase / phase voltage between two power poles.

Le fait de travailler à la fermeture des contacts, c'est-à-dire lors de la commande de l'électroaimant, et non à l'ouverture des contacts présente des avantages. Tout d'abord, cela évite les perturbations survenant lors de l'ouverture, liées notamment à l'arc électrique des contacts et au flux magnétique résiduel de la bobine. Cela simplifie donc la mesure d'un courant ou d'une tension dans les pôles de l'appareil pour détecter l'instant de fermeture des contacts. De plus, dans un appareil interrupteur dont la bobine est commandée électroniquement, la mesure du courant d'excitation de la bobine est déjà réalisée au moment de la fermeture, durant la commande de l'électroaimant, alors qu'elle n'est pas forcément mesurée lors de l'ouverture. Cette mesure du courant d'excitation peut donc facilement être utilisée pour détecter en plus la fin du mouvement de fermeture de l'électroaimant.Working on closing the contacts, that is to say when ordering the electromagnet, and not opening the contacts has advantages. First, it avoids disruptions occurring during opening, particularly related to the electrical arc contacts and residual magnetic flux of the coil. This simplifies the measurement of a current or voltage in the poles of the device to detect the closing time of the contacts. In addition, in a switch device whose coil is controlled electronically, the measurement of the excitation current of the coil is already made at the time of closing, during the control of the electromagnet, while it is not necessarily measured during opening. This measurement of the excitation current can therefore easily be used to additionally detect the end of the closing movement of the electromagnet.

Le temps de parcours mesuré de la course d'usure, éventuellement corrigé d'un coefficient correcteur, sert à déterminer l'usure des contacts à partir de la dérive de ce temps de parcours mesuré par rapport à un temps de parcours initial de la course d'usure mémorisé dans des moyens de mémorisation de l'appareil interrupteur. L'usure des contacts peut aussi être déterminée à partir de la comparaison du temps de parcours mesuré de la course d'usure avec un temps de parcours minimal acceptable de la course d'usure mémorisé dans des moyens de mémorisation de l'appareil interrupteur.The measured travel time of the wear stroke, possibly corrected by a correction coefficient, is used to determine the wear of the contacts from the drift of this measured travel time with respect to an initial travel time of the race. wear memory stored in storage means of the switch device. The wear of the contacts can also be determined from the comparison of the measured travel time of the wear stroke with an acceptable minimum travel time of the wear stroke stored in storage means of the switch device.

L'invention décrit également un appareil interrupteur capable de mettre en oeuvre ce procédé. Un tel appareil interrupteur comporte des premiers moyens de mesure délivrant au moins un signal primaire représentatif de l'état conducteur d'au moins un pôle de puissance, des seconds moyens de mesure délivrant un signal secondaire représentatif d'un courant d'excitation circulant dans la bobine de l'électroaimant et une unité de traitement recevant le ou les signaux primaires et le signal secondaire pour mettre en oeuvre le procédé. Les premiers moyens de mesure sont placés en série sur des lignes de courant de l'appareil interrupteur, dans le but de mesurer les courants principaux circulant dans les pôles de puissance. Alternativement, les premiers moyens de mesure sont placés entre des lignes de courant aval et un point neutre de l'appareil interrupteur, dans le but de mesurer les tensions phase/neutre des pôles de puissance.The invention also describes a switch device capable of implementing this method. Such a switch device comprises first measuring means delivering at least one primary signal representative of the conducting state of at least one power pole, second measuring means delivering a secondary signal representative of an excitation current flowing in the coil of the electromagnet and a processing unit receiving the primary signal (s) and the secondary signal for carrying out the method. The first measuring means are placed in series on current lines of the switch device, in order to measure the main currents flowing in the power poles. Alternatively, the first measuring means are placed between downstream current lines and a neutral point of the switch device, in order to measure the phase / neutral voltages of the power poles.

Selon une autre caractéristique, l'appareil interrupteur comporte des moyens de mémorisation d'un temps de parcours initial de la course d'usure des contacts. L'unité de traitement calcule un temps de parcours mesuré de la course d'usure des contacts, et compare ledit temps de parcours mesuré avec le temps de parcours initial mémorisé, afin de déterminer une durée de vie résiduelle des contacts et/ou de donner une information de fin de vie au-delà de laquelle les performances du produit ne sont plus garanties.According to another characteristic, the switch device comprises means for memorizing an initial travel time of the wear path of the contacts. The processing unit calculates a measured travel time of the wear stroke of the contacts, and compares said measured travel time with the stored initial travel time, in order to determine a residual life of the contacts and / or to give end-of-life information beyond which the performance of the product is no longer guaranteed.

D'autres caractéristiques et avantages vont apparaître dans la description détaillée qui suit en se référant à un mode de réalisation donné à titre d'exemple et représenté par les dessins annexés sur lesquels :

  • la figure 1 montre un schéma fonctionnel d'un appareil interrupteur selon l'invention comprenant des premiers moyens de mesure de courant,
  • la figure 2 détaille de façon simplifiée le fonctionnement d'un pôle de contacts dans un appareil interrupteur de la figure 1,
  • la figure 3 représente une série de diagrammes montrant l'évolution des courants principaux et du courant d'excitation durant un mouvement de fermeture d'un appareil interrupteur de la figure 1.
  • La figure 4 détaille une alternative de la figure 1 avec des premiers moyens de mesure de tension.
Other features and advantages will appear in the detailed description which follows with reference to an embodiment given by way of example and represented by the appended drawings in which:
  • the figure 1 shows a block diagram of a switch device according to the invention comprising first current measuring means,
  • the figure 2 details in a simplified way the operation of a pole of contacts in a switch device of the figure 1 ,
  • the figure 3 represents a series of diagrams showing the evolution of the main currents and the excitation current during a closing movement of a switch device of the figure 1 .
  • The figure 4 details an alternative of the figure 1 with first voltage measuring means.

Un appareil électrique interrupteur, par exemple du type contacteur, contacteur-disjoncteur ou starter (discontacteur), comporte un ou plusieurs pôles de puissance. Dans l'exemple de la figure 1, l'appareil interrupteur comporte trois pôles de puissance P1,P2,P3.An electrical switch device, for example of the contactor, contactor-breaker or choke type, comprises one or more power poles. In the example of the figure 1 , the switch device comprises three power poles P1, P2, P3.

L'appareil interrupteur comporte des lignes de courant amont (lignes de source), qui établissent la continuité électrique entre le réseau d'alimentation électrique et les pôles P1,P2,P3, et des lignes de courant aval L1,L2,L3 (lignes de charge) qui établissent la continuité électrique entre les pôles de l'appareil interrupteur et une charge électrique, généralement un moteur électrique M, que l'on souhaite commander et/ou protéger grâce à l'appareil interrupteur. Les lignes de courant amont sont connectées ou déconnectées des lignes de courant aval par des contacts de pôles C1,C2,C3. De façon connue, les contacts C1,C2,C3 comportent des contacts mobiles disposés sur un pont mobile 28 et des contacts fixes. Le pont mobile 28 est actionné par un électroaimant de commande 20 et par un ressort de pression de contact 25. L'électroaimant de commande 20 comporte une culasse fixe, une armature mobile 23, un ressort de rappel 26 et une bobine d'excitation 21. Le mouvement de fermeture de l'armature mobile 23 de l'électroaimant 20 est généré par le passage d'un courant d'excitation Is dans la bobine d'excitation 21. Préférentiellement la bobine d'excitation 21 est alimentée par une tension d'excitation continue.The switch apparatus comprises upstream current lines (source lines), which establish the electrical continuity between the power supply network and the poles P1, P2, P3, and downstream power lines L1, L2, L3 (lines charging) which establish the electrical continuity between the poles of the switch device and an electrical load, usually an electric motor M, that it is desired to control and / or protect with the switch device. The upstream current lines are connected or disconnected from the downstream current lines by pole contacts C1, C2, C3. In known manner, the contacts C1, C2, C3 comprise movable contacts disposed on a movable bridge 28 and fixed contacts. The movable bridge 28 is actuated by a control electromagnet 20 and a contact pressure spring 25. The control electromagnet 20 comprises a fixed yoke, a movable armature 23, a return spring 26 and an excitation coil 21. the moving armature 23 of the electromagnet 20 is generated by the passage of an excitation current Is in the excitation coil 21. Preferably the excitation coil 21 is supplied with a DC excitation voltage.

Dans le mode de réalisation détaillé en figure 2, on a représenté un appareil interrupteur à pôles rupteurs, mais on pourrait tout à fait envisager également que l'appareil soit à pôles contacteurs. Le fonctionnement d'un appareil à pôles rupteurs est le suivant : lorsque aucun courant d'excitation ls ne circule dans la bobine 21 de l'électroaimant, le ressort de rappel 26 provoque la séparation entre l'armature mobile 23 et la culasse fixe de l'électroaimant. L'armature mobile 23 coopère mécaniquement avec une liaison mécanique 22 non détaillée ici (tel qu'un poussoir) de façon à agir sur le pont mobile 28, entraînant ainsi l'ouverture des contacts par séparation des contacts mobiles avec les contacts fixes. Le ressort de rappel 26 doit pour cela avoir une force supérieure à celle du ressort de pression de contact 25. L'apparition d'un courant d'excitation Is dans la bobine d'excitation 21 provoque le déplacement inverse de l'armature mobile 23 vers la culasse fixe de l'électroaimant 20, libérant ainsi le pont mobile 28. L'effort de fermeture des contacts est alors assuré par le ressort de pression de contact 25 qui appuie sur le pont mobile 28 pour plaquer les contacts mobiles contre les contacts fixes. Un appareil à pôles rupteurs présente notamment l'avantage de diminuer les risques de rebond à la fin du mouvement de fermeture des contacts puisque comme le pont mobile 28 est désolidarisé de l'armature mobile 23 de l'électroaimant à ce moment-là, on diminue ainsi globalement l'inertie du pont mobile en mouvement.In the embodiment detailed in figure 2 there is shown a switch poles breaker device, but we could also consider that the device is poles contactors. The operation of a poles breaker device is as follows: when no excitation current ls flows in the coil 21 of the electromagnet, the return spring 26 causes the separation between the movable armature 23 and the fixed yoke of the electromagnet. The movable armature 23 cooperates mechanically with a mechanical link 22 not detailed here (such as a pusher) so as to act on the movable bridge 28, thus causing the opening of the contacts by separation of the movable contacts with the fixed contacts. The return spring 26 must for this purpose have a force greater than that of the contact pressure spring 25. The occurrence of an excitation current Is in the excitation coil 21 causes the reverse displacement of the moving armature 23 to the fixed yoke of the electromagnet 20, thus releasing the movable bridge 28. The closing force of the contacts is then ensured by the contact pressure spring 25 which presses on the movable bridge 28 to press the movable contacts against the contacts fixed. A pole poles device has the particular advantage of reducing the risk of rebound at the end of the closing movement of the contacts since as the movable bridge 28 is disengaged from the mobile armature 23 of the electromagnet at that time, one thus decreases globally the inertia of the mobile bridge in motion.

Dans un appareil interrupteur à pôles rupteurs, il est possible de concevoir par construction une épaisseur des pastilles de contacts suffisante de telle façon que la fin de vie du produit ne soit pas la conséquence d'une épaisseur trop faible des pastilles, mais d'une course d'usure restante des contacts trop faible. En effet, lorsque cette course d'usure devient nulle, cela signifie que, lorsque l'armature mobile 23 a fini son mouvement de fermeture, le poussoir 22 reste encore en contact avec le pont mobile 28 ce qui entrave l'effort de pression que doit exercer le ressort 25 pour plaquer les contacts mobiles contre les contacts fixes. La pression de contact n'étant plus suffisante, il n'est plus possible dans ces conditions de garantir le bon fonctionnement de l'appareil interrupteur. Ainsi, l'usure des contacts peut dépendre non pas de l'épaisseur restante des pastilles, mais de la course d'usure restante des contacts.In a switch pole switch device, it is possible to design by construction a sufficient thickness of the contact pads so that the end of life of the product is not the consequence of a too small thickness of the pellets, but a wear race remaining contacts too weak. Indeed, when this wear stroke becomes zero, this means that when the moving armature 23 has finished its closing movement, the pusher 22 still remains in contact with the movable bridge 28 which hinders the pressure force that must exert the spring 25 to press the movable contacts against the fixed contacts. The contact pressure is no longer sufficient, it is no longer possible under these conditions to ensure proper operation of the switch device. Thus, the wear of the contacts may depend not on the remaining thickness of the pads, but on the remaining wear stroke of the contacts.

Selon l'invention, l'appareil interrupteur comporte des premiers moyens de mesure 11,12,13,11' capables de délivrer au moins un signal primaire mesurant au moins un signal électrique représentatif de l'état conducteur d'au moins un pôle de puissance P1,P2,P3. Dans le mode de réalisation de la figure 1, lesdits premiers moyens de mesure comprennent des capteurs de courant 11,12,13 monté en série sur chaque ligne de courant aval L1,L2,L3 et délivrant chacun un signal primaire, respectivement 31,32,33, fonction d'un courant principal Ip circulant dans chaque pôle, respectivement P1,P2,P3 de l'appareil interrupteur. Habituellement, de tels capteurs de courant 11,12,13 sont utilisés dans le but d'assurer notamment des fonctions de protection de type défaut thermique, défaut magnétique ou défaut de court-circuit dans un contacteur-disjoncteur. Les capteurs de courant 11,12,13 sont par exemple des capteurs de courant de type Rogowski. Dans ce cas, le signal primaire obtenu est en réalité une image de la dérivée du courant Ip, ce qui permet d'avoir un signal important dès l'apparition du courant, facilitant ainsi la détection de l'instant d'apparition du courant Ip.According to the invention, the switch device comprises first measuring means 11, 12, 13, 11 'capable of delivering at least one primary signal measuring at least one electrical signal representative of the conducting state of at least one pole of power P1, P2, P3. In the embodiment of the figure 1 said first measuring means comprise current sensors 11, 12, 13 connected in series on each downstream current line L1, L2, L3 and each delivering a primary signal, respectively 31, 32, 33 depending on a main current. Ip flowing in each pole, respectively P1, P2, P3 of the switch device. Usually, such current sensors 11, 12, 13 are used for the purpose of providing, in particular, protection functions of the thermal defect, magnetic fault or short circuit fault type in a contactor-circuit breaker. The current sensors 11, 12, 13 are, for example, Rogowski type current sensors. In this case, the primary signal obtained is actually an image of the derivative of the current Ip, which makes it possible to have an important signal as soon as the current appears, thus facilitating the detection of the moment of appearance of the current Ip .

Dans le mode de réalisation alternatif de la figure 4, les premiers moyens de mesure 11' sont placés en aval des contacts C1,C2,C3, entre les lignes de courant aval L1,L2,L3 et un point neutre N virtuel de appareil interrupteur, de façon à délivrer des signaux primaires, respectivement 31',32',33', fonction de la tension phase/neutre des différents pôles de puissance, respectivement P1,P2,P3. Cette solution alternative peut s'avérer plus simple à mettre en oeuvre dans des appareils ne possédant pas de capteurs de courant. Dans l'exemple simplifié de la figure 4, les moyens de mesure 11' comportent de façon connue, en dérivation de chaque pôle mesuré, une première résistance forte, permettant de faire baisser l'intensité du courant, placée en série avec deuxième une résistance dont on mesure la tension aux bornes. Le point neutre N réunit l'extrémité des deuxièmes résistances. D'autres systèmes de mesure de tension similaires existent. Après un traitement analogique éventuel, les moyens de mesure 11' génèrent donc des signaux primaires 31',32',33', représentatifs des tensions phases/neutre des différents pôles. Dans un autre mode de réalisation alternatif, on pourrait aussi envisager d'utiliser des premiers moyens de mesure capables de mesurer une tension phase/phase entre deux pôles de puissance.In the alternative embodiment of the figure 4 the first measuring means 11 'are placed downstream of the contacts C1, C2, C3 between the downstream current lines L1, L2, L3 and a virtual neutral point N of a switch device, so as to deliver primary signals, respectively 31 ', 32', 33 ', depending on the phase / neutral voltage of the different power poles, respectively P1, P2, P3. This alternative solution may be simpler to implement in devices that do not have current sensors. In the simplified example of figure 4 , the measuring means 11 'comprise in known manner, in derivation of each measured pole, a first strong resistance, to lower the intensity of the current, placed in series with a second resistor whose voltage is measured at the terminals. The neutral point N joins the end of the second resistors. Other similar voltage measurement systems exist. After possible analog processing, the measuring means 11 'thus generate primary signals 31', 32 ', 33', representative of the phase / neutral voltages of the different poles. In another alternative embodiment, one could also consider using first measuring means capable of measuring a phase / phase voltage between two power poles.

Les signaux primaires 31,32,33 ou 31',32',33' sont envoyés à destination d'une unité de traitement 10 de l'appareil interrupteur. Cette unité de traitement 10 est par exemple implantée dans un circuit intégré de type ASIC, monté sur un circuit imprimé à l'intérieur de l'appareil interrupteur. Elle peut notamment servir à piloter l'électroaimant de commande 20 ainsi que, dans le cas d'un contacteur-disjoncteur, à piloter un déclencheur thermique et/ou magnétique.The primary signals 31, 32, 33 or 31 ', 32', 33 'are sent to a processing unit 10 of the switch device. This processing unit 10 is for example implanted in an integrated circuit of the ASIC type, mounted on a printed circuit inside the switch device. It can in particular be used to control the control electromagnet 20 as well as, in the case of a contactor-circuit breaker, to control a thermal and / or magnetic trip.

L'appareil interrupteur comporte également des seconds moyens de mesure 14 pour mesurer le courant d'excitation Is circulant dans la bobine d'excitation 21 de l'électroaimant 20. Comme la bobine 21 est alimentée en tension continue, les seconds moyens de mesure 14 peuvent être composés d'une résistance branchée en série sur le circuit de commande de la bobine 21 dont on mesure directement la tension aux bornes. Après un traitement analogique éventuel de cette mesure, les moyens de mesure 14 génèrent donc un signal secondaire 34, représentatif du courant d'excitation Is, qui est envoyé à l'unité de traitement 10.The switch device also comprises second measuring means 14 for measuring the excitation current Is flowing in the excitation coil 21 of the electromagnet 20. As the coil 21 is supplied with DC voltage, the second measuring means 14 may be composed of a resistor connected in series on the control circuit of the coil 21, the terminal voltage of which is measured directly. After possible analog processing of this measurement, the measuring means 14 thus generate a secondary signal 34, representative of the excitation current Is, which is sent to the processing unit 10.

Dans le cas d'un appareil interrupteur du type contacteur/disjoncteur qui possède déjà des capteurs de courant 11,12,13 mesurant des courants principaux Ip pour assurer la protection d'une charge électrique, ces mêmes capteurs de courant peuvent alors être avantageusement utilisés dans le cadre de la présente invention pour déterminer également l'instant de fermeture des contacts C1,C2,C3. De plus, si un tel appareil contacteur/disjoncteur comporte déjà une unité de traitement électronique 10 chargée notamment de piloter un électroaimant de commande 20, cette unité de traitement 10 possède aussi une information 34 représentative du courant d'excitation ls. Il est alors facile et économique d'intégrer dans un tel appareil interrupteur un procédé de détermination de l'usure des contacts tel que décrit dans l'invention, de façon à être capable d'alerter l'utilisateur au moment voulu et ainsi de prévenir des pannes ou des défauts éventuels de l'appareil interrupteur.In the case of a contactor / circuit breaker type switch device which already has current sensors 11, 12, 13 measuring the main currents Ip for protecting an electric load, these same current sensors can then be advantageously used. in the context of the present invention to also determine the closing time of the contacts C1, C2, C3. In addition, if such a contactor / circuit breaker device already comprises an electronic processing unit 10 charged in particular to drive a control electromagnet 20, this processing unit 10 also has information 34 representative of the excitation current ls. It is then easy and economical to integrate in such a switch apparatus a method for determining the wear of the contacts as described in the invention, so as to be able to alert the user at the desired time and thus to prevent possible faults or faults in the switchgear.

En référence à la figure 3, le procédé qui est mis en oeuvre dans l'unité de traitement 10 repose sur le principe suivant :

  • Lors de l'apparition d'un ordre de commande 50 de fermeture des contacts, le courant d'excitation Is, schématisé par la courbe 51, envoyé à la bobine 21 de l'électroaimant 20 commence à croître. Durant cette phase de décollage, l'armature mobile 23 de l'électroaimant 20 reste encore immobile et le courant d'excitation Is croît, selon une courbe sensiblement asymptotique.
With reference to the figure 3 the process which is carried out in the processing unit 10 is based on the following principle:
  • When a contact control command 50 for closing the contacts appears, the excitation current Is, shown diagrammatically by the curve 51, sent to the coil 21 of the electromagnet 20 begins to increase. During this take-off phase, the reinforcement mobile 23 of the electromagnet 20 remains still and the excitation current Is increases, according to a substantially asymptotic curve.

Arrivé à un instant A, la bobine d'excitation 21 a emmagasiné suffisamment d'ampères-tours pour provoquer le démarrage du mouvement de fermeture de l'armature mobile 23. A partir de cet instant, l'entrefer de l'électroaimant 20 va progressivement diminuer, ce qui va provoquer une variation de la réluctance du circuit magnétique composé de la culasse fixe et de l'armature mobile 23 de l'électroaimant 20. Cette variation de la réluctance entraîne la chute du courant d'excitation Is. Cette chute du courant d'excitation Is se poursuit jusqu'à un instant C correspondant à la fin de la course de l'armature mobile 23, c'est-à-dire à la fin du mouvement de fermeture de l'électroaimant 20. Au-delà de l'instant C, l'entrefer et donc la réluctance de l'électroaimant ne varient plus et le courant d'excitation Is recommence à croître, comme indiqué sur la courbe 51.Arrived at a moment A, the excitation coil 21 has stored enough ampere-turns to cause the start of the closing movement of the moving armature 23. From this moment, the gap of the electromagnet 20 is gradually decrease, which will cause a change in the reluctance of the magnetic circuit composed of the fixed yoke and the movable armature 23 of the electromagnet 20. This variation in the reluctance causes the drop in excitation current Is. excitation current Is continues until a time C corresponding to the end of the travel of the movable armature 23, that is to say at the end of the closing movement of the electromagnet 20. beyond the instant C, the air gap and therefore the reluctance of the electromagnet no longer vary and the excitation current Is again increasing, as indicated on the curve 51.

Parallèlement, à partir de l'instant A, le mouvement de l'armature mobile libère progressivement le pont mobile 28 et celui-ci est alors entraîné par le ressort de pression de contacts 25. Le pont mobile 28 se met alors en mouvement jusqu'à un instant B où les contacts mobiles de chaque pôle de puissance vont être plaqués contre les contacts fixes correspondants, provoquant l'état conducteur du pôle. A partir de cet instant B, un courant principal Ip mesuré par les différents capteurs de courant 11,12,13 va apparaître, ainsi que schématisé par la courbe 52. Dans le cas où chaque pôle comporte deux contacts fixes et deux contacts mobiles, comme dans la figure 2, l'instant B correspond avantageusement à la fermeture des deux paires de contacts fixes/mobiles, ce qui permet de détecter la plus grande usure des pastilles des deux paires de contacts d'un même pôle. Dans le mode de réalisation alternatif de la figure 4, l'instant B peut être déterminé sur chaque pôle par l'apparition, en aval des contacts, d'une tension phase/neutre mesurée par les premiers moyens de mesure 11' entre un pôle et le neutre virtuel N. De même, l'instant B pourrait aussi être détecté avec une mesure de tension phase/phase entre deux des pôles de l'appareil, en aval des contacts.Meanwhile, from instant A, the movement of the mobile armature gradually releases the movable bridge 28 and the latter is then driven by the contact pressure spring 25. The movable bridge 28 then starts moving at a time B where the movable contacts of each power pole will be pressed against the corresponding fixed contacts, causing the conductive state of the pole. From this moment B, a main current Ip measured by the various current sensors 11, 12, 13 will appear, as schematized by the curve 52. In the case where each pole comprises two fixed contacts and two movable contacts, as in the figure 2 , the moment B advantageously corresponds to the closing of the two pairs of fixed / mobile contacts, which makes it possible to detect the greater wear of the pellets of the two pairs of contacts of the same pole. In the alternative embodiment of the figure 4 the instant B can be determined on each pole by the appearance, downstream of the contacts, of a phase / neutral voltage measured by the first measuring means 11 'between a pole and the virtual neutral N. Also, moment B could also be detected with a phase / phase voltage measurement between two of the poles of the device, downstream of the contacts.

Ainsi, l'unité de traitement 10 est capable de détecter la fin du mouvement de fermeture de l'électroaimant, correspondant à l'instant C, en détectant l'apparition d'un minimum du courant d'excitation ls, représenté par un point de rebroussement sur la courbe ls de la figure 3, à partir du signal secondaire 34 reçu. D'autre part, l'unité de traitement 10 est aussi capable de détecter l'instant de fermeture des contacts, correspondant à l'instant B, en détectant l'apparition de signaux électriques représentatifs de l'état conducteur des pôles (c'est-à-dire soit courant principal Ip, soit tension phase/neutre, soit tension phase/phase) à partir du ou des signaux primaires 31,32,33 ou 31',32',33'. En comparant les variations du ou des signaux électriques et du courant d'excitation ls en fonction du temps, l'unité de traitement 10 est à même de déterminer le temps de parcours de la course d'usure des contacts.Thus, the processing unit 10 is able to detect the end of the closing movement of the electromagnet, corresponding to the instant C, by detecting the appearance of a minimum of the excitation current ls, represented by a point of cusp on the curve ls of the figure 3 from the received secondary signal 34. On the other hand, the processing unit 10 is also capable of detecting the instant of closure of the contacts, corresponding to the moment B, by detecting the appearance of electrical signals representative of the conducting state of the poles (that is to say, main current Ip, or phase / neutral voltage, or phase / phase voltage) from primary signal (s) 31, 32, 33 or 31 ', 32', 33 '. By comparing the variations of the electrical signal (s) and the excitation current ls as a function of time, the processing unit 10 is able to determine the travel time of the wear race of the contacts.

En effet, le temps T1 entre l'instant A et l'instant C correspond à la durée du mouvement de fermeture de l'armature mobile 23 de l'électroaimant. Le temps T2 entre l'instant A et l'instant B correspond à la durée du mouvement de fermeture du pont mobile 28. La différence entre T1 et T2, appelé Tu, correspond au temps de parcours nécessaire pour effectuer la course d'usure des contacts (appelée encore course d'écrasement des contacts), entre l'instant B et l'instant C, schématisé sur le diagramme 53. Il est évident que plus les pastilles des contacts fixes et/ou mobiles sont usées, plus le temps T2 est important, et donc plus le temps Tu est faible.Indeed, the time T1 between the instant A and the instant C corresponds to the duration of the closing movement of the movable armature 23 of the electromagnet. The time T2 between the instant A and the instant B corresponds to the duration of the closing movement of the movable bridge 28. The difference between T1 and T2, called Tu, corresponds to the travel time required to perform the wear race of the contacts (also called contact crushing stroke), between the instant B and the instant C, shown diagrammatically in the diagram 53. It is obvious that the more the pellets of the fixed and / or mobile contacts are worn, the more the time T2 is important, and therefore the more time you are weak.

Pour éviter d'éventuelles imprécisions ponctuelles dans les mesures et le calcul du temps Tu, un filtrage ou un lissage peut facilement être opéré par l'unité de traitement 10 notamment en ne prenant en compte que des valeurs moyennes calculées à partir d'une pluralité de mesures effectuées sur un nombre déterminé de cycles de fermeture de l'électroaimant, par exemple de l'ordre de quelques dizaines de cycles.To avoid any occasional inaccuracies in the measurements and the calculation of the time Tu, filtering or smoothing can easily be performed by the processing unit 10, especially by taking into account only average values calculated from a plurality measurements made on a given number of closing cycles of the electromagnet, for example of the order of a few tens of cycles.

Indifféremment, l'information relative à l'usure des contacts peut comporter une information de la durée de vie résiduelle des contacts, exprimée en pourcentage, en degrés d'usure, etc... , et/ou une information d'alerte indiquant la fin de vie des contacts de l'appareil interrupteur.Regardless, the information relating to the wear of the contacts may include information on the residual life of the contacts, expressed as a percentage, in degrees of wear, etc., and / or an alert information indicating the end of life of the switch device contacts.

Pour élaborer une information de la durée de vie résiduelle des contacts, l'unité de traitement 10 compare le temps de parcours mesuré Tu de la course d'usure des contacts avec un temps de parcours initial Ti correspondant à une course d'usure initiale des contacts (appelée encore course d'écrasement à l'état neuf) et surveille l'évolution dans le temps de l'écart entre Tu et Ti. Ce temps de parcours initial Ti correspond à une valeur d'étalonnage, déterminée pour un type d'électroaimant donné.To elaborate information on the residual life of the contacts, the processing unit 10 compares the measured travel time Tu of the contact wear race with an initial travel time Ti corresponding to an initial wear stroke of the contacts. contacts (still called crush stroke in new condition) and monitors the evolution in time of the gap between Tu and Ti. This initial travel time Ti corresponds to a calibration value, determined for a given type of electromagnet.

Pour élaborer une information d'alerte de fin de vie des contacts, l'unité de traitement 10 compare le temps de parcours mesuré Tu de la course d'usure des contacts avec un temps de parcours minimum Tmini correspondant à une course minimale d'usure des contacts acceptable au-dessous duquel il n'est plus possible de garantir les performances attendues de l'appareil interrupteur. Ce temps de parcours minimal Tmini est également déterminée pour un type d'électroaimant donné.To develop an end-of-life alert information of the contacts, the processing unit 10 compares the measured travel time Tu of the wear race of the contacts. contacts with a minimum travel time Tmini corresponding to a minimum contact wear travel acceptable below which it is no longer possible to guarantee the expected performance of the switch device. This minimum travel time Tmini is also determined for a given type of electromagnet.

L'appareil interrupteur possède alors des moyens de mémorisation internes 15 reliés à l'unité de traitement 10 et capables de mémoriser cette valeur initiale Ti et/ou cette valeur minimale Tmini. Les moyens de mémorisation 15 sont constitués par exemple d'une mémoire non-volatile de type EEPROM ou mémoire Flash. Avantageusement, pour des raisons de coût et d'encombrement, l'unité de traitement 10 et les moyens de mémorisation 15 sont implantés dans un même circuit intégré de l'appareil interrupteur. La valeur initiale Ti est stockée dans les moyens de mémorisation 15 soit avec une valeur prédéterminée lors de la fabrication de l'appareil interrupteur, soit avec une première mesure de Tu effectuée lors des premières opérations de commutation de l'appareil interrupteur .The switch device then has internal storage means 15 connected to the processing unit 10 and capable of storing this initial value Ti and / or this minimum value Tmini. The storage means 15 consist, for example, of a non-volatile memory of the EEPROM or Flash memory type. Advantageously, for reasons of cost and space, the processing unit 10 and the storage means 15 are located in the same integrated circuit of the switch device. The initial value Ti is stored in the storage means 15 either with a predetermined value during the manufacture of the switch device or with a first measurement of Tu performed during the first switching operations of the switch device.

Pour comparer Tu avec Ti et/ou Tmini, il convient de faire une hypothèse sur la vitesse réelle de la partie mobile 23 de l'électroaimant durant le parcours de fermeture des contacts. En effet Ti et Tmini ont été déterminés par exemple à partir d'une vitesse nominale de la partie mobile 23 de l'électroaimant, et cette vitesse nominale n'est pas forcément identique à la vitesse réelle ayant servi à déterminer Tu.To compare Tu with Ti and / or Tmini, it is appropriate to make an assumption on the actual speed of the moving part 23 of the electromagnet during the closing path of the contacts. Indeed, Ti and Tmini have been determined for example from a nominal speed of the moving part 23 of the electromagnet, and this nominal speed is not necessarily identical to the actual speed used to determine Tu.

Dans une première variante simplifiée, on considère que la vitesse de déplacement de l'armature mobile 23 reste sensiblement constante pour un type d'électroaimant donné d'un calibre donné. Dans ce cas, en surveillant la dérive de l'écart existant entre le temps de parcours mesuré Tu et le temps de parcours initial Ti, l'unité de traitement 10 est facilement capable de calculer la durée de vie résiduelle des contacts. De même, l'unité de traitement 10 est facilement capable de donner une information de fin de vie des contacts, lorsque Tu devient inférieur à Tmini, sans nécessiter de correction sur la mesure de Tu.In a first simplified variant, it is considered that the moving speed of the moving armature 23 remains substantially constant for a given type of electromagnet of a given caliber. In this case, by monitoring the drift of the gap existing between the measured travel time Tu and the initial travel time Ti, the processing unit 10 is easily able to calculate the residual life of the contacts. Similarly, the processing unit 10 is easily able to give end-of-life information of the contacts, when you become less than Tmini, without requiring correction on the measurement of Tu.

Dans une seconde variante, on considère que la vitesse de déplacement de l'armature mobile 23 dépend non seulement du type d'électroaimant mais également de la tension d'alimentation de la bobine d'excitation (ou tout du moins de la tension d'alimentation moyenne vue par la bobine dans le cas d'une commande par découpage). En effet, plus la tension d'alimentation est élevée, plus la vitesse réelle de déplacement de l'armature mobile 23 peut être importante durant le mouvement de fermeture. Dans ce cas, l'appareil interrupteur dispose de moyens pour mesurer cette tension d'alimentation. Ces moyens sont reliés à l'unité de traitement 10, permettant à celle-ci d'affecter au temps de parcours mesuré Tu un coefficient correcteur prenant en compte les variations de la vitesse, avant d'effectuer une comparaison avec Ti et/ou Tmini, de manière à obtenir une meilleure précision dans l'élaboration de l'information relative à l'usure des contacts.In a second variant, it is considered that the speed of displacement of the moving armature 23 depends not only on the type of electromagnet but also on the supply voltage of the excitation coil (or at least the voltage of the electromagnetic coil). average power seen by the coil in the case of a control by cutting). Indeed, the higher the supply voltage, the higher the real speed of displacement of the mobile armature 23 can be important during the movement of closing. In this case, the switch device has means for measuring this supply voltage. These means are connected to the processing unit 10, allowing it to assign to the measured travel time Tu a correction coefficient taking into account the variations of the speed, before making a comparison with Ti and / or Tmini , in order to obtain a better precision in the elaboration of the information relating to the wear of the contacts.

Dans une troisième variante, on considère que la vitesse de déplacement de l'armature mobile 23 dépend en plus d'autres paramètres, tels que la température de fonctionnement de l'appareil. Il convient néanmoins de ne pas pénaliser le procédé avec des calculs qui deviendraient trop complexes. C'est pourquoi, dans ce cas, pour estimer plus précisément la vitesse de déplacement de l'armature mobile 23, l'unité de traitement calcule une durée de la phase de décollage T3 (voir figure 3) qui correspond au temps écoulé entre un instant O d'apparition d'un courant Is dans la bobine et l'instant déterminé par le maximum du courant ls, lors du début du démarrage du mouvement de l'armature mobile 23. Cette durée T3 étant également fonction de la température de fonctionnement de l'appareil et de la tension d'alimentation de la bobine, on peut alors faire une corrélation simple entre la variation de la durée T3 et la variation de la vitesse de l'armature mobile. En comparant la durée T3 mesurée avec une durée de référence mémorisée, on peut affecter un coefficient correcteur au temps de parcours mesuré Tu, prenant en compte les variations de la vitesse, afin d'obtenir une meilleure précision dans l'élaboration de l'information relative à l'usure des contacts.In a third variant, it is considered that the moving speed of the moving armature 23 also depends on other parameters, such as the operating temperature of the apparatus. However, it is important not to penalize the process with calculations that would become too complex. Therefore, in this case, to more precisely estimate the moving speed of the moving armature 23, the processing unit calculates a duration of the T3 take-off phase (see FIG. figure 3 ) which corresponds to the time elapsed between an instant O of appearance of a current Is in the coil and the instant determined by the maximum of the current ls, at the beginning of the start of the movement of the moving armature 23. This duration T3 also being a function of the operating temperature of the apparatus and the supply voltage of the coil, one can then make a simple correlation between the variation of the duration T3 and the variation of the speed of the moving armature. By comparing the measured duration T3 with a stored reference duration, a correction coefficient can be assigned to the measured travel time Tu, taking into account the variations of the speed, in order to obtain a better precision in the development of the information. on contact wear.

L'appareil interrupteur comporte en outre des moyens de communication 18 qui permettent de le connecter à un bus de communication B, tel qu'une liaison série, un bus de terrain, un réseau local, un réseau global (de type Intranet ou Internet) ou autre. Ces moyens de communication 18 sont reliés à l'unité de traitement 10 afin qu'une information relative à l'usure des contacts de pôles calculée par l'unité de traitement 10 puisse être transmise sur le bus de communication B. L'appareil interrupteur comporte aussi des moyens de signalisation 17 reliés à l'unité de traitement 10. Ces moyens de signalisation 17, tels qu'un mini écran ou un ou plusieurs voyants en face avant de appareil interrupteur, permettent à un opérateur situé à proximité de l'appareil interrupteur de visualiser une information relative à l'usure des contacts de pôles calculée par l'unité de traitement 10.The switch device further comprises communication means 18 which make it possible to connect it to a communication bus B, such as a serial link, a field bus, a local network, a global network (of the Intranet or Internet type). Or other. These communication means 18 are connected to the processing unit 10 so that information relating to the wear of the pole contacts calculated by the processing unit 10 can be transmitted on the communication bus B. The switch device also includes signaling means 17 connected to the processing unit 10. These signaling means 17, such as a mini-screen or one or more lights on the front of the switch device, allow an operator located near the switch device to display information relating to the wear of the pole contacts calculated by the processing unit 10.

Par ailleurs, dans le cas où l'unité de traitement 10 est chargée de piloter l'électroaimant de commande 20 au moyen d'un ordre de commande, l'unité de traitement 10 est capable d'asservir cet ordre de commande à une information de fin de vie des contacts de pôles, de façon à pouvoir verrouiller toute possibilité de commande de fermeture des pôles de puissance de l'appareil interrupteur en cas d'usure des contacts trop importante, puisqu'on ne serait alors plus en mesure de garantir les performances annoncées de l'appareil interrupteur. On assure ainsi une fonction supplémentaire de sécurité très appréciable, puisque l'appareil interrupteur peut s'auto-verrouiller en cas risque de dysfonctionnement.Moreover, in the case where the processing unit 10 is responsible for controlling the control electromagnet 20 by means of a control command, the processing unit 10 is able to slave this command command to a piece of information. end of life of the pole contacts, so as to lock any possibility of closing control of the power poles of the switch device in case of excessive wear of the contacts, since it would no longer be possible to guarantee the advertised performance of the switch device. This provides an additional safety function very significant, since the switch device can self-lock in case of malfunction.

Dans un mode de réalisation préféré, l'appareil interrupteur possède un capteur de courant 11,12,13 pour chacun de ses pôles P1,P2,P3 de puissance. L'unité de traitement 10 reçoit alors autant de signaux primaires 31,32,33 que de pôles et est donc capable de détecter séparément l'usure des contacts sur chaque pôle de puissance. Dans ce cas, l'usure des contacts de l'appareil interrupteur sera calculée soit pôle par pôle, soit en prenant le pôle de puissance dont les contacts sont les plus usés.In a preferred embodiment, the switch device has a current sensor 11, 12, 13 for each of its power poles P1, P2, P3. The processing unit 10 then receives as many primary signals 31, 32, 33 as poles and is therefore able to separately detect the wear of the contacts on each power pole. In this case, the wear of the contacts of the switch device will be calculated either pole by pole or by taking the power pole whose contacts are the most worn.

Dans un autre mode de réalisation, l'appareil interrupteur ne possède pas un capteur de courant 11,12,13 dans chaque pôle P1,P2,P3 de puissance, mais possède par exemple un capteur de courant uniquement pour un seul pôle. L'unité de traitement 10 reçoit alors un seul signal primaire et n'est capable de détecter réellement que l'usure des contacts de ce pôle de puissance. Dans ce cas, l'usure de l'ensemble des contacts de l'appareil interrupteur sera déterminée à partir de cette seule mesure pour un pôle, sans tenir compte des éventuelles disparités entre les usures des différents pôles.In another embodiment, the switch device does not have a current sensor 11, 12, 13 in each power pole P1, P2, P3, but for example has a current sensor for only one pole. The processing unit 10 then receives a single primary signal and is only able to actually detect the wear of the contacts of this power pole. In this case, the wear of all the contacts of the switch device will be determined from this single measurement for a pole, without taking into account any disparities between the wear of the different poles.

Claims (17)

  1. Method for determining the wear of pole contact (C1, C2, C3) in a switch appliance which includes one or more power poles provided with contacts operated by a controlling electromagnet (20), the movement of which between an open position and a closed position is controlled by an excitation coil (21), the contact wear being determined on the basis of a travel time (Tu) of the wear path of the contacts (C1, C2, C3), characterized in that the travel time (Tu) of the wear path of the contacts is generated, during a closure movement of the electromagnet:
    • by measuring at least one electrical signal (Ip) representative of the conductive state of at least one power pole (P1, P2, P3),
    • by measuring an excitation current (Is) circulating in the coil (21) of the electromagnet (20),
    • by calculating the time difference between the instant of closure of the contacts, determined on the basis of said electrical signal (Ip), and the end instant of the closure movement of the electromagnet, determined on the basis of said excitation current (Is).
  2. Method according to Claim 1, characterized in that the end instant of the closure movement of the electromagnet is determined by the detection of a minimum of said excitation current (Is).
  3. Method according to Claim 2, characterized in that the instant of closure of the contacts (C1, C2, C3) is determined by the appearance of said electrical signal (Ip).
  4. Method according to Claim 2, characterized in that the instant of closure of the contacts (C1, C2, C3) of each pole is determined by the appearance of a main current (Ip) circulating in each power pole (P1, P2, P3) of the switch appliance.
  5. Method according to Claim 2, characterized in that the instant of closure of the contacts (C1, C2, C3) of each pole is determined by the appearance, downstream of the contacts, of a phase/neutral voltage between each power pole (P1, P2, P3) and a neutral point (N).
  6. Method according to Claim 2, characterized in that the instant of closure of the pole contacts (C1, C2, C3) is determined by the appearance, downstream of the contacts, of a phase/phase voltage between two power poles (P1, P2, P3).
  7. Method according to one of Claims 1 to 6, characterized in that the contact wear is determined on the basis of the trend of the measured travel time (Tu) of the wear path of the contacts relative to an initial travel time (Ti) of the wear path of the contacts stored in storage means (15) of the switch appliance.
  8. Method according to one of Claims 1 to 6, characterized in that the contact wear is determined on the basis of the comparison of the measured travel time (Tu) of the wear path of the contacts with a minimum acceptable travel time (Tmin) of the wear path of the contacts stored in storage means (15) of the switch appliance.
  9. Switch appliance comprising one or more power poles (P1, P2, P3) provided with contacts (C1, C2, C3) that are operated by a controlling electromagnet (20), the movement of which is controlled by an excitation coil (21), characterized in that the switch appliance comprises:
    • first measurement means (11, 12, 13, 11') delivering at least one primary signal (31, 32, 33, 31', 32', 33') representative of the conductive state of at least one power pole (P1, P2, P3),
    • second measurement means (14) delivering a secondary signal (34) representative of an excitation current (Is) circulating in the coil (21) of the electromagnet (20),
    • a processing unit (10) capable of receiving the primary signal or signals (31, 32, 33, 31', 32', 33') and the secondary signal (34), making it possible to implement the method according to one of the preceding claims.
  10. Switch appliance according to Claim 9, characterized in that the first measurement means (11, 12, 13) are placed in series on current lines (L1, L2, L3) of the switch appliance, in order to measure the main currents (Ip) circulating in the power poles (P1, P2, P3).
  11. Switch appliance according to Claim 9, characterized in that the first measurement means (11') are placed between downstream current lines (L1, L2, L3) and a neutral point (N) of the switch appliance, in order to measure the phase/neutral voltages of the power poles (P1, P2, P3).
  12. Switch applicant according to Claim 10 or 11, characterized in that it comprises storage means (15) capable of storing an initial travel time (Ti) of the wear path of the contacts.
  13. Switch appliance according to Claim 12, characterized in that the processing unit (10) calculates a measured travel time (Tu) of the wear path of the contacts (C1, C2, C3), and compares said measured time (Tu) with the stored initial travel time (Ti), to determine an indication relating to the wear of the pole contacts.
  14. Switch appliance according to Claim 13, characterized in that the processing unit (10) and the storage means (15) are implanted in an integrated circuit of the switch appliance.
  15. Switch appliance according to Claim 13, characterized in that it comprises communication means (18) linked to the processing unit (10) making it possible to transmit over a communication bus (B) an indication relating to the wear of the pole contacts.
  16. Switch appliance according to Claim 13, characterized in that it comprises signalling means (17) linked to the processing unit (10) making it possible to display an indication relating to the wear of the pole contacts.
  17. Switch appliance according to Claim 13, in which the processing unit (10) delivers a controlling command to the electromagnet (20), characterized in that the processing unit (10) is capable of servo-controlling the controlling command of the electromagnet (20) to an indication relating to the wear of the pole contacts.
EP02799097A 2001-12-21 2002-12-17 Method for determining wear of a switchgear contacts Expired - Lifetime EP1466336B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0117104A FR2834120B1 (en) 2001-12-21 2001-12-21 METHOD FOR DETERMINING THE WEAR OF CONTACTS OF A SWITCHING APPARATUS
FR0117104 2001-12-21
PCT/FR2002/004413 WO2003054895A1 (en) 2001-12-21 2002-12-17 Method for determining wear of a switchgear contacts

Publications (2)

Publication Number Publication Date
EP1466336A1 EP1466336A1 (en) 2004-10-13
EP1466336B1 true EP1466336B1 (en) 2009-07-22

Family

ID=8871110

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02799097A Expired - Lifetime EP1466336B1 (en) 2001-12-21 2002-12-17 Method for determining wear of a switchgear contacts

Country Status (12)

Country Link
US (1) US7109720B2 (en)
EP (1) EP1466336B1 (en)
JP (1) JP4112497B2 (en)
KR (1) KR100926394B1 (en)
CN (1) CN1261951C (en)
AT (1) ATE437444T1 (en)
DE (1) DE60233074D1 (en)
ES (1) ES2327220T3 (en)
FR (1) FR2834120B1 (en)
NO (1) NO325543B1 (en)
RU (1) RU2297065C2 (en)
WO (1) WO2003054895A1 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7596459B2 (en) * 2001-02-28 2009-09-29 Quadlogic Controls Corporation Apparatus and methods for multi-channel electric metering
DE10345183B4 (en) * 2003-09-29 2005-10-13 Siemens Ag Device for detecting contact erosion in switching devices
DE102005045095A1 (en) * 2005-09-21 2007-04-05 Siemens Ag A method for determining the burnup of contacts of an electromagnetic switching device and electromagnetic switching device with a device operating according to this method
FR2891392B1 (en) * 2005-09-23 2009-03-20 Schneider Electric Ind Sas DEVICE FOR NEUTRALIZING AN ELECTRICAL DEVICE SWITCH
EP1793235A1 (en) * 2005-11-30 2007-06-06 ABB Technology AG Monitoring System for High-Voltage Switch Gears
FR2901053B1 (en) * 2006-05-15 2008-10-17 Schneider Electric Ind Sas ELECTRONIC CONTROL DEVICE FOR ELECTROMAGNETIC APPARATUS
CN201302605Y (en) 2006-06-26 2009-09-02 Abb技术有限公司 High-power switch capable of determining and displaying burning loss of contact part
FR2919109B1 (en) * 2007-07-20 2009-09-11 Schneider Electric Ind Sas DEVICE FOR DETECTING THE POSITION OF A MOBILE PART IN AN ELECTRICAL DEVICE SWITCH.
US7617739B1 (en) * 2007-11-08 2009-11-17 Cosense Inc. Non-invasive ultrasonic system to determine internal pressure in flexible tubing
FR2924262B1 (en) * 2007-11-26 2009-12-11 Sagem Securite METHOD OF MASKING A PASSAGE AT THE END OF LIFE OF AN ELECTRONIC DEVICE AND DEVICE COMPRISING A CORRESPONDING CONTROL MODULE
FR2942068B1 (en) * 2009-02-06 2011-01-21 Schneider Electric Ind Sas EVALUATION OF THE WEAR OF THE CONTACTS BY A DOUBLE MOBILE ACTUATOR.
CN101813750B (en) * 2009-02-24 2014-04-16 施耐德电器工业公司 Device and method for detecting wear and aging of contactor
FR2945661A1 (en) 2009-05-18 2010-11-19 Schneider Electric Ind Sas EVALUATION OF THE WEAR OF CONTACTS ENFONCES BY THE VARIATION OF THE ROTATION OF THE TREE OF POLES
US20110062960A1 (en) * 2009-09-15 2011-03-17 Lenin Prakash Device and method to monitor electrical contact status
ES2380182T3 (en) * 2009-11-25 2012-05-09 Abb Research Ltd. Procedure and device for determining wear of a contact element
US9048049B2 (en) * 2011-03-22 2015-06-02 Panasonic Intellectual Property Management Co., Ltd. Electromagnetic opening/closing device
WO2013038176A2 (en) 2011-09-12 2013-03-21 Metroic Limited Current measurement
FR2981787B1 (en) 2011-10-21 2014-08-01 Schneider Electric Ind Sas METHOD FOR DIAGNOSING AN OPERATING STATE OF A CONTACTOR AND CONTACTOR FOR CARRYING OUT SAID METHOD
GB201120295D0 (en) 2011-11-24 2012-01-04 Metroic Ltd Current measurement apparatus
FR2983629B1 (en) 2011-12-02 2013-11-22 Schneider Electric Ind Sas METHOD FOR EVALUATING THE TEMPERATURE OF AN ELECTROMAGNETIC CONTACTOR AND CONTACTOR FOR CARRYING OUT SAID METHOD
EP2883068B1 (en) * 2013-03-12 2016-03-09 ABB Technology AG Apparatus for online monitoring of medium and high voltage circuit breaker
EP3201640B1 (en) 2014-09-29 2020-04-22 ABB Schweiz AG Method and device for monitoring circuit breaker
EP3035360B1 (en) * 2014-12-16 2017-03-08 General Electric Technology GmbH Improvements in or relating to circuit interruption devices
CN105070601B (en) * 2015-09-02 2017-07-28 常熟开关制造有限公司(原常熟开关厂) Breaker contact point wear monitoring method and a kind of breaker based on magnetic induction
FR3053828B1 (en) * 2016-07-08 2019-10-25 Schneider Electric Industries Sas INTERCONNECTION MODULE OF A CIRCUIT BREAKER AND A CONTACTOR FOR AN ELECTRICAL ASSEMBLY
FR3053829B1 (en) * 2016-07-08 2019-10-25 Schneider Electric Industries Sas INTERCONNECTION MODULE OF A CIRCUIT BREAKER AND A CONTACTOR FOR AN ELECTRICAL ASSEMBLY COMPRISING A VOLTAGE SENSOR
FR3060758B1 (en) * 2016-12-16 2021-01-08 Schneider Electric Ind Sas METHOD AND DEVICE FOR DIAGNOSING THE WEAR OF AN ELECTRIC SWITCHING APPARATUS, AND ELECTRICAL APPARATUS INCLUDING SUCH A DEVICE
CN106849442A (en) * 2017-04-26 2017-06-13 合肥巨动力系统有限公司 A kind of variable number of turn lenticular wire motor stator winding
US10340640B2 (en) 2017-05-04 2019-07-02 Schneider Electric USA, Inc. System and method for determining the current condition of power contacts
CN107334606B (en) * 2017-08-11 2023-03-31 合肥哈工力训智能科技有限公司 Rehabilitation robot joint initial position detection device and method
CN109193353B (en) * 2018-09-28 2020-05-19 全球能源互联网研究院有限公司 Arc generating equipment and method for evaluating arc ablation resistance of electrical contact material
JP6973365B2 (en) * 2018-12-19 2021-11-24 オムロン株式会社 Relay status determination device, relay status determination system, relay status determination method, and program
JP6988785B2 (en) 2018-12-28 2022-01-05 オムロン株式会社 Relay status predictor, relay status predictor, relay status predictor, and program
CN112014779B (en) * 2020-07-08 2023-06-23 中车株洲电力机车研究所有限公司 Locomotive transformer excitation abnormality diagnosis method, electronic equipment and storage medium
FR3112650B1 (en) 2020-07-20 2023-05-12 Schneider Electric Ind Sas Method for diagnosing an operating state of an electrical switching device and electrical switching device for implementing such a method
FR3119461B1 (en) 2021-02-04 2023-07-21 Schneider Electric Ind Sas Method for estimating an operating state of an electrical switching device and electrical switching device for implementing such a method
CN113344977B (en) * 2021-06-29 2022-05-27 河北工业大学 Contact pressure measurement model construction method based on image processing
CN114019366B (en) * 2021-11-05 2024-01-16 苏州迪芬德物联网科技有限公司 Electrical component contact loss evaluation method
GB2619722A (en) * 2022-06-13 2023-12-20 L C Switchgear Ltd Switch condition monitoring

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319193A (en) * 1980-05-14 1982-03-09 Northern Telecom Limited Testing of relays and similar devices
SE433546B (en) * 1982-10-25 1984-05-28 Asea Ab DEVICE CONTROL CONTROL OF AN ELECTRICAL DEVICE DEVICE FOR CONTROL CONVERSION OF AN ELECTRICAL DEVICE
FR2602610B1 (en) * 1986-08-08 1994-05-20 Merlin Et Gerin STATIC TRIGGER OF AN ELECTRIC CIRCUIT BREAKER WITH CONTACT WEAR INDICATOR
US5488530A (en) * 1993-04-22 1996-01-30 Mcdonnell Douglas Corporation System and method for protecting relay contacts
FR2725316B1 (en) * 1994-09-29 1996-11-22 Gec Alsthom T & D Sa SELF-MONITORING CIRCUIT, ESPECIALLY ELECTRICAL EQUIPMENT AND PARTICULARLY A HIGH VOLTAGE CIRCUIT BREAKER AT SF6
WO1996013732A1 (en) * 1994-10-27 1996-05-09 Siemens Aktiengesellschaft Process for monitoring the wear of at least one contact in a switching device and switching device designed therefor
DE19603319A1 (en) * 1996-01-31 1997-08-07 Siemens Ag Method for determining the remaining service life of contacts in switchgear and associated arrangement
DE19603310A1 (en) * 1996-01-31 1997-08-07 Siemens Ag Method for determining the remaining service life of contacts in switchgear and associated arrangement
DE19734224C1 (en) * 1997-08-07 1999-02-04 Siemens Ag Method and device for determining switchgear-specific data on contacts in switchgear and / or for determining company-specific data in the network connected with it
US6466023B2 (en) * 1998-12-28 2002-10-15 General Electric Company Method of determining contact wear in a trip unit
US6522247B2 (en) * 2000-05-23 2003-02-18 Kabushiki Kaisha Toshiba Apparatus monitoring system and apparatus monitoring method

Also Published As

Publication number Publication date
ATE437444T1 (en) 2009-08-15
CN1261951C (en) 2006-06-28
DE60233074D1 (en) 2009-09-03
JP2005513729A (en) 2005-05-12
JP4112497B2 (en) 2008-07-02
RU2297065C2 (en) 2007-04-10
NO325543B1 (en) 2008-06-16
WO2003054895A1 (en) 2003-07-03
FR2834120B1 (en) 2004-02-06
AU2002364323A1 (en) 2003-07-09
ES2327220T3 (en) 2009-10-27
RU2004122421A (en) 2005-03-27
NO20042941L (en) 2004-09-01
KR100926394B1 (en) 2009-11-11
FR2834120A1 (en) 2003-06-27
CN1618110A (en) 2005-05-18
EP1466336A1 (en) 2004-10-13
KR20040071241A (en) 2004-08-11
US20050122117A1 (en) 2005-06-09
US7109720B2 (en) 2006-09-19

Similar Documents

Publication Publication Date Title
EP1466336B1 (en) Method for determining wear of a switchgear contacts
EP0258090B1 (en) Static tripping device for a circuit breaker with electronic contact wear indication
EP2849196B1 (en) Method for determining a cause of a loss of voltage downstream from a circuit breaker, auxiliary apparatus for a circuit breaker, electric system comprising a circuit breaker and such an auxiliary apparatus
FR2953938A1 (en) METHOD FOR OPENING OR CLOSING AN ELECTRICAL CIRCUIT AT AN ELECTRIC COUNTER
EP2849195B1 (en) Auxiliary device for electric circuit breaker, electrical system comprising a circuit breaker and such an auxiliary device and method to determine the ground of the circuit breaker opening with such an auxiliary device
FR2674702A1 (en) PROTECTIVE DEVICE FOR ELECTRIC MOTORS.
EP1557922A1 (en) Differential protection device with simplified adjusting means for the protection parameters
EP1485931B1 (en) Electrical device comprising a controlled piezoelectric actuator
FR2974684A1 (en) SYSTEM FOR PROTECTING AND SUPERVISING A CIRCUIT FOR DISTRIBUTING ELECTRICAL ENERGY WITH CONTINUOUS CURRENT
EP2927928A1 (en) Method for determining an overheating of at least one connection terminal of an electrical device, associated auxiliary apparatus, and electrical system including such an electrical device and such an auxiliary apparatus
EP3790034A1 (en) Auxiliary electronic protection module and associated shut-off device
EP2648010A1 (en) Method for managing alarms in accordance with fault currents in an electrical facility and device for implementing said method
EP0723325A1 (en) Monitoring and control device for an electrical system
FR2943840A1 (en) Mono stable or bi stable electromagnetic actuator i.e. contactor, has disconnection unit for disconnecting winding having resistance equal to alert threshold, and another winding receiving hundred percentage of total electric energy
CA1227832A (en) Appartus for delectinf failures in a chopper equipped electrical power supply
EP2693585B1 (en) System for protecting a plurality of electrical outlets against short circuits, and electrical facility comprising such a protective system
EP3977577A1 (en) Electric line (l) protection device for detecting a leakage fault, a short-circuit, fault, an overcurrent fault and an arc fault
WO2000063932A1 (en) System for diagnosing electric contact with mechanical displacement
FR2757220A1 (en) Control method for automatic switch-off of motor vehicle IC engine starter
FR2761209A1 (en) PROTECTION DEVICE OF AN ENGINE WITH A THERMAL FAULT SIGNAL FUNCTION ADVANCED TO MANEUVER
EP3511970B1 (en) Electronic switch with a detector for providing information about the tripping of the switch on a bus
EP4016578A1 (en) Device for diagnosing a switching event, associated switching device and diagnostic method
FR2835061A1 (en) Contact breaker/contactor moving armature position determination having armature position open/closed position moving with excitation coil inductance found and surface curve created following gap function/inductance/circulating current
EP4075471A1 (en) Auxiliary electrical protecting module, electrical protecting apparatus comprising such module, and associated operating method
EP3776617A1 (en) Electronic cut-off device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040610

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CUNY, JEAN-CHRISTOPHE

Inventor name: DELBAERE, STEPHANE

Inventor name: BAURAND, GILLES

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DELBAERE, STEPHANE

Inventor name: CUNY, JEAN-CHRISTOPHE

Inventor name: BAURAND, GILLES

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHNEIDER ELECTRIC INDUSTRIES SAS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60233074

Country of ref document: DE

Date of ref document: 20090903

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2327220

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091122

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

26N No opposition filed

Effective date: 20100423

BERE Be: lapsed

Owner name: SCHNEIDER ELECTRIC INDUSTRIES SAS

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091023

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20121122

Year of fee payment: 11

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 60233074

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20180809

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20181207

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190125

Year of fee payment: 17

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191217

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191217

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191218

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211227

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211228

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60233074

Country of ref document: DE