EP1465285B1 - Koaxialleitung mit Zwangskühlung - Google Patents

Koaxialleitung mit Zwangskühlung Download PDF

Info

Publication number
EP1465285B1
EP1465285B1 EP04007218A EP04007218A EP1465285B1 EP 1465285 B1 EP1465285 B1 EP 1465285B1 EP 04007218 A EP04007218 A EP 04007218A EP 04007218 A EP04007218 A EP 04007218A EP 1465285 B1 EP1465285 B1 EP 1465285B1
Authority
EP
European Patent Office
Prior art keywords
coaxial line
inner conductor
line according
tube
insulation material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04007218A
Other languages
English (en)
French (fr)
Other versions
EP1465285A1 (de
Inventor
Franz Dr. Ing. Pitschi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spinner GmbH
Original Assignee
Spinner GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spinner GmbH filed Critical Spinner GmbH
Publication of EP1465285A1 publication Critical patent/EP1465285A1/de
Application granted granted Critical
Publication of EP1465285B1 publication Critical patent/EP1465285B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/06Coaxial lines

Definitions

  • the invention relates to a coaxial line according to the preamble of claim 1.
  • a coaxial line is known from DE 101 08 843 A known.
  • the invention has for its object to provide a coaxial line with improved cooling ability.
  • the coaxial line is characterized in that in the tubular inner conductor, a tube of smaller diameter closed at its two ends is arranged coaxially and that the annular space between this tube and the tubular inner conductor communicates with the channels in the Isolierstoff workn. Then, the cooling medium flows only through the annular gap or annulus between the tubular inner conductor and the enclosed by this and expediently also mounted at its ends to the relevant réelleleiterijns publisheden tube smaller diameter. With sufficient design of the ring cross-section, the cooling effect remains virtually unchanged, while significantly lower weight of the line and less effort required for the coolant circulation ancillaries.
  • the cooling of the thermally much less loaded outer conductor is not the subject of the invention. It can be done by means mounted on the outer conductor cooling fins, cooling coils or similar measures known per se.
  • insulating supports can be formed as outwardly guided through the outer conductor tubes (claim 2). Depending on the radial plane, three or four insulating supports, which are offset by 120 ° or 90 °, are generally sufficient. Depending on the required coolant flow, it may be sufficient to use only a portion of these insulating supports for supplying and discharging the cooling medium. By appropriate structural design of the Isolierstoff warn is then to ensure that no additional distortions of the RF field in the circumferential direction arise.
  • the Isolierstoff handn may be formed as a solid discs with radial channels (claim 3), for example, to divide the line into longitudinally-tight sections.
  • the channels of the Isolierstoff open into a chamber in an inner conductor connector at the end of the tubular inner conductor (claim 4).
  • the inner conductor connector also forms the bearing for the respective end of the tubular inner conductor.
  • the tube is the end face closed by a formed on the inner conductor connector flange (claim 5).
  • the tube may be closed at the end also via flanges, which are mounted axially and radially floating on the respective inner conductor connecting piece (claim 6).
  • the play in the axial direction avoids the emergence of axial constraining forces, either as a result of manufacturing tolerances, either because of different heat-dependent changes in length of the tube and this surrounding, tubular inner conductor.
  • the tube may have at its outer periphery against the inner wall of the tubular inner conductor supporting centering (claim 7). This ensures that the cross-section of the annular gap or annular space between the tubular inner conductor and the tube enclosed by it remains constant in the circumferential direction, uzw. even if the coaxial line overall describes a slight arc in the longitudinal direction.
  • the centering elements may be arranged along a helix, i. be arranged helically around the tube (claim 8), uzw. also as individual, spaced-apart elements.
  • centering elements may consist of axially extending webs (claim 9). This is aerodynamically more favorable than the arrangement along a helix.
  • the centering elements may be integral with the tube. (Claim 10). This is manufacturing technology particularly advantageous if the tube is not made of metal but of plastic.
  • tubular inner conductor may have in its jacket axial channels communicating with the channels in the Isolierstoff mann (claim 11).
  • Such an inner conductor can be made inexpensively, for example, as an extruded aluminum profile.
  • the coaxial line consists of separately cooled, electrically and mechanically interconnected sections (claim 12).
  • tubular inner conductors of adjoining sections of the line are best connected to one another via complementary plug connections (claim 13).
  • Such a complementary plug connection may consist of a flange plate terminating the chamber of the respective inner conductor connection with an axially extending first annular collar which engages over a second annular collar on the flange plate of the subsequent line section and in turn is contactingly overlapped by a ring of axially extending contact springs, which contacts the second Concentric annular collar surrounds (claim 14).
  • the first ring collar forms a kind of a plug, the second annular collar together with the contact spring ring the complementary coupler.
  • the free ends of the contact springs of the contact spring ring lie in a radial plane which is axially set back relative to the end face of the second annular collar containing radial plane (claim 15).
  • pre-centering is achieved when juxtaposing two line sections, in which the first annular collar engages over the second annular collar before the end face of the first annular collar comes to rest under the contact springs. This avoids that due to alignment springs to a damage of the contact springs and therefore to a non-uniform contact over the circumference, which would lead to the formation of reflections and intermodulation products as well as in the transmitted currents of several 1000 amps overheating and possibly Burning the contact surfaces would result.
  • the flange plates carrying the contacting annular collars are screwed to the associated inner conductor connecting pieces (claim 16).
  • the contact spring ring can be manufactured as a single part of the most suitable material for it. He will then be at his root with the Gland plate welded.
  • each of the tubular insulating material supports can be tilted with its inner end in the inner conductor connector and with its outer end in the réelleleiterwandung in an axial plane tilted (claim 19).
  • the tiltable mounting can be realized, for example, by annular beads at the respective ends of the insulating supports in conjunction with dome-shaped counter-bearings in the relevant recordings on the inner conductor connector and on a passage through the wall of the outer conductor.
  • FIG. 1 shows - shortened in the longitudinal direction - a portion of a coolable coaxial cable for transmitting very high RF power.
  • the line comprises an outer conductor tube 1, which is equipped at its two ends with connecting flanges 2.
  • the diameter of the outer conductor tube 1 may be in the range of 120 mm or more.
  • the outer conductor 1 coaxially surrounds a tubular inner conductor 3, which is equipped at its two ends with inner conductor connecting pieces 4.
  • Each of the inner conductor connecting pieces 4 is mounted on insulating supports 5 made of a suitable dielectric, preferably a ceramic material, in the corresponding connecting flanges 2, and the like. in this embodiment, four each insulating supports 5, as shown Fig. 2 evident.
  • the Isolierstoff Caren 5 are tubular and sealed by the connecting flanges 2 led to the outside. Their inner ends are sealed (see the illustrated grooves for receiving O-rings) in recesses of the inner conductor connecting pieces 4th
  • Chambers 6 are formed in the inner conductor connecting pieces 4 and communicate with the channels 5.1 in the insulating supports 5 via bores such as 6.1.
  • the inner conductor connecting pieces 4 have a first flange 4.1, which is overlapped by the respective end of the inner conductor tube 3. With this flange 4.1, the relevant end of the inner conductor tube 3 is preferably welded continuously over a circumferential seam. Alternatively, between the periphery of the flange 4.1 and the end of the inner conductor tube 3, an O-ring may be provided (not shown).
  • the inner conductor links 4 have a second flange 4.2 of smaller diameter. This is overlapped by the respective end of a coaxially arranged in the inner conductor tube 3 tube 7 of smaller diameter.
  • This tube 7 is not in the field-filled space and therefore does not have to be made of metal.
  • the coaxial annular space 8 between the tubular inner conductor 3 and the tube 7 communicates via holes 6.3 apertures 6.2 with the chamber 6 in the respective inner conductor connector 4, see also Fig. 2 ,
  • a preferably liquid cooling medium e.g. Water
  • a preferably liquid cooling medium e.g. Water
  • each chamber 6 On its side facing away from the tubular inner conductor 2, each chamber 6 is closed by a flange plate 10 or 11, which is connected to the inner conductor connector 4 via screws 9.
  • the flange plate 10 on the one (in Fig. 1 left) end of the line section has an axially oriented annular collar 10.1 with an inner diameter d1.
  • the flange plate 11 on the other (in Fig. 1 right) end of the line section has an annular collar 11.1 with the smaller outer diameter d2 ⁇ d1.
  • a contact spring ring 11.2 With the flange plate 11, a contact spring ring 11.2 is connected, which surrounds the annular collar 11.1 coaxial.
  • the free ends of the contact springs lie in a radial plane extending from the radial plane, which is the end face of the annular collar 11.1 contains an axial distance a is reset.
  • Fig. 3 illustrates that when two such line sections A and B of the annular collar 10.1 a plug element and the collar 11.1 forms together with the contact spring ring 11.2 a coupler element for the realization of the contacting connection between the tubular inner conductors 3 of the juxtaposed line pieces A and B.
  • contacting connection of the outer conductor 1 is between the connecting flanges 2 of in Fig. 4 shown ring 20 inserted from a feathered sheet.
  • Fig. 5 the line sections A and B are shown in the interconnected state.
  • the Jardinleiter fürsflansche 2 are screwed together as usual via tie rods 21.
  • the annular collars 10.1 and 11.1 together form the contact spring ring 11.2 a complementary connector for the tubular inner conductor.
  • Fig. 1 symbolically denoted by ⁇ 1
  • Fig. 8 shows such a sealed and RF-tight implementation.
  • the tubular insulating support 5 is sealed with an axial clearance ⁇ 2 received via an O-ring 52 in a guide sleeve 51, which sits with a protagonistflansch 53 in a recess 2.1 in the wall of strictlyleiter fürsflansches 2.
  • the thickness of theticianflansches 53 is slightly smaller than the depth of the recess.
  • a so-called worm contact 54 is added, which is elastic in the radial direction.
  • the worm contact is in turn surrounded by an O-ring 55.
  • the base flange 53 of the guide sleeve 51 is secured by means of a pressure plate 56 in the recess 2.1.
  • Perpendicular to the drawing plane, ie in the longitudinal direction of the line, the recess 2.1 is formed slot-like, so that the insulating material 5 including the guide sleeve 51 heat-induced changes in length ⁇ 1 of the tubular inner conductor 3 can follow relative to the outer conductor 1 and no Forcing forces occur. At the same time lets. This type of implementation and heat-related changes in length of the insulating support 5 in the radial direction.
  • FIG. 9 and 10 Another and simpler way to prevent the occurrence of constraining forces by heat induced length changes of the inner conductor relative to the outer conductor, illustrate the Fig. 9 and 10 .
  • the insulating support 5 is pivotally received in the inner conductor connector 4 and in the guide sleeve 51, either by kugelkalottenförmige training of its two ends in conjunction with sufficiently large-sized recesses in the inner conductor connector 4 and in the wall ofalthoughleiteritatisflansches 2 ( Fig. 9 ) or, complementary thereto, by forming corresponding annular beads in the receptacles of the ends of the insulating support 5 on the one hand in the inner conductor connector 4 and on the other hand in the guide sleeve 51 (FIG. Fig. 10 ).
  • the insulating sleeve can tilt ⁇ by small angle ⁇ around the point M.
  • the relatively thin, tubular inner conductor 3 is cooled by a cooling medium which flows through the annular space 8 created by means of the tube 7 of smaller diameter (cf. Fig. 1 ).
  • the inner conductor may be designed as a thick-walled tube 30 with numerous, closely spaced, axial channels 31.
  • Fig. 11 shows the corresponding cross section.
  • made of aluminum such tubes can be very easily produced by the extrusion process.
  • FIG. 12 is one opposite Fig. 1 modified embodiment shown.
  • the tube 7 enclosed by the tubular inner conductor 3 is closed at its two ends by flanges 71, each of which has a central journal 71.1 with which it is connected in a recess 41.1 sitting in the inner conductor connector 41 with play in particular in the axial but also in the radial direction. The radial play is drawn exaggerated for clarity.
  • the tube 7 is thus floating between the inner conductor links 41.
  • the space 8 between the tubular inner conductor 3 and the tube 7 communicates with the respective chamber 6 in the inner conductor connecting piece 41 via recesses 71.2 (cf. Fig.

Landscapes

  • Insulators (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
  • Waveguides (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

  • Die Erfindung betrifft eine Koaxialleitung nach dem Oberbegriff des Anspruches 1. Eine derartige Vorrichtung ist aus der DE 101 08 843 A bekannt.
  • Bestimmte Anwendungen, z.B. auf dem Gebiet der Plasmaphysik, erfordern die Einspeisung von HF-Leistungen von mehr als 1MW mittels Koaxialleitungen, deren Durchmesser aus mechanischen und/oder HF-technischen Gründen nicht beliebig groß gemacht werden kann. Insbesondere im Dauerstrichbetrieb entsteht deshalb am Innenleiter vor allem infolge Ohm'scher Verluste und im Bereich der Isolierstützen vor allem infolge dielektrischer Verluste eine so große Wärmemenge je Zeiteinheit, dass eine Zwangskühlung notwendig ist. Nach dem Stand der Technik wird zur Zwangskühlung ein gasförmiges Medium durch den Ringraum zwischen dem Innenleiter und dem Außenleiter hindurchgeleitet. Die auf diese Weise abführbare Verlustwärmemenge ist jedoch begrenzt, zumal sich der Druck und damit die Strömungsgeschwindigkeit des gasförmigen Kühlmediums aus mehreren Gründen nicht beliebig erhöhen lässt.
  • Zur Kühlung von supraleitenden Koaxialkabeln wie aus der US-A-3 946 141 bekannt, wurde auch schon flüssiges Helium benutzt, wofür jedoch umfangreiche und kostspielige Nebeneinrichtungen notwendig sind.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Koaxialleitung mit verbesserter Kühlmöglichkeit zu schaffen.
  • Diese Aufgabe ist erfindungsgemäß durch die im Kennzeichen des Anspruches 1 angegebenen Merkmale gelöst.
  • Infolgedessen können über die Leitung bei gegebenem Leitungsdurchmesser sowohl im Puls- als auch im Dauerstrichbetrieb erheblich höhere HF-Leistungen als bisher übertragen werden, dies insbesondere bei Benutzung eines flüssigen Kühlmediums.
  • Die Koaxialleitung zeichnet sich dadurch aus, dass in dem rohrförmigen Innenleiter ein an seinen beiden Enden stirnseitig verschlossenes Rohr kleineren Durchmessers koaxial angeordnet ist und dass der Ringraum zwischen diesem Rohr und dem rohrförmigen Innenleiter mit den Kanälen in den Isolierstoffstützen kommuniziert. Dann strömt das Kühlmedium lediglich durch den Ringspalt oder Ringraum zwischen dem rohrförmigen Innenleiter und dem von diesem umschlossenen und zweckmäßig ebenfalls an seinen Enden an den betreffenden Innenleiterverbindungsstücken gelagerten Rohr kleineren Durchmessers. Bei ausreichender Bemessung des Ringquerschnitts bleibt die Kühlwirkung praktisch unverändert, bei gleichzeitig erheblich geringerem Gewicht der Leitung und geringerem Aufwand für die zur Kühlmittelzirkulation erforderlichen Nebenaggregate.
  • Die Kühlung des thermisch wesentlich geringer belasteten Außenleiters ist nicht Gegenstand der Erfindung. Sie kann mittels auf dem Außenleiter angebrachter Kühlrippen, Kühlschlangen oder ähnlichen an sich bekannten Maßnahmen erfolgen.
  • Diese Isolierstoffstützen können als durch den Außenleiter hindurch nach außen geführte Rohre ausgebildet sein (Anspruch 2). Je Radialebene genügen in der Regel drei oder vier Isolierstoffstützen, die um 120° bzw. um 90° versetzt angeordnet sind. Abhängig von dem benötigten Kühlmitteldurchfluss kann es genügen, nur einen Teil dieser Isolierstoffstützen zum Zu- und Abführen des Kühlmediums zu benutzen. Durch geeignete konstruktive Ausbildung der Isolierstoffstützen ist dann sicherzustellen, dass keine zusätzlichen Verzerrungen des HF-Feldes in Umfangsrichtung entstehen.
  • Alternativ können die Isolierstoffstützen auch als Vollscheiben mit radialen Kanälen ausgebildet sein (Anspruch 3), z.B. um die Leitung in längsdichte Abschnitte zu gliedern.
  • Bevorzugt münden die Kanäle der Isolierstoffstützen in eine Kammer in einem Innenleiterverbindungsstück am Ende des rohrförmigen Innenleiters (Anspruch 4). Das Innenleiterverbindungsstück bildet gleichzeitig das Lager für das jeweilige Ende des rohrförmigen Innenleiters.
  • Zweckmäßig ist das Rohr stirnseitig durch einen an dem Innenleiterverbindungsstück ausgebildeten Flansch verschlossen (Anspruch 5).
  • Stattdessen kann das Rohr stirnseitig auch über Flansche verschlossen sein, die an dem jeweiligen Innenleiterverbindungsstück axial und radial schwimmend gelagert sind (Anspruch 6). Insbesondere das Spiel in axialer Richtung vermeidet die Entstehung axialer Zwangskräfte, sei es infolge von Fertigungstoleranzen, sei es wegen unterschiedlicher wärmeabhängiger Längenänderungen des Rohrs und des diesen umschließenden, rohrförmigen Innenleiters.
  • Zusätzlich kann das Rohr an seinem Außenumfang sich gegen die Innenwand des rohrförmigen Innenleiters abstützende Zentrierelemente haben (Anspruch 7). Dadurch wird sichergestellt, dass der Querschnitt des Ringspalts oder Ringraums zwischen dem rohrförmigen Innenleiter und dem von ihm umschlossenen Rohr in Umfangsrichtung konstant bleibt, uzw. auch dann, wenn die Koaxialleitung insgesamt in Längsrichtung einen leichten Bogen beschreibt.
  • Die Zentrierelemente können längs einer Wendel, d.h. schraubenförmig um das Rohr angeordnet sein (Anspruch 8), uzw. auch als einzelne, voneinander beabstandete Elemente.
  • Stattdessen können die Zentrierelemente aus axial verlaufenden Stegen bestehen (Anspruch 9). Dies ist strömungstechnisch günstiger als die Anordnung längs einer Wendel.
  • In allen Ausführungsformen können die Zentrierelemente mit dem Rohr einstückig sein. (Anspruch 10). Dies ist herstellungstechnisch besonders dann vorteilhaft, wenn das Rohr nicht aus Metall sondern aus Kunststoff besteht.
  • Alternativ kann der rohrförmige Innenleiter in seinem Mantel axiale Kanäle haben, die mit den Kanälen in den Isolierstoffstützen kommunizieren (Anspruch 11). Ein derartiger Innenleiter kann beispielsweise als Strangpressprofil aus Aluminium preiswert hergestellt werden.
  • Bei größerer Länge besteht die Koaxialleitung aus getrennt voneinander kühlbaren, elektrisch und mechanisch miteinander verbundenen Abschnitten (Anspruch 12).
  • In diesem Fall sind die rohrförmigen Innenleiter aneinander grenzender Abschnitte der Leitung am besten über komplementäre Steckverbindungen miteinander verbindbar (Anspruch 13).
  • Eine solche komplementäre Steckverbindung kann aus einer die Kammer des jeweiligen Innenleiterverbindungsstücks abschließenden Flanschplatte mit einem sich axial erstreckenden ersten Ringbund bestehen, der einen zweiten Ringbund an der Flanschplatte des anschließenden Leitungsabschnitts übergreift und seinerseits von einem Kranz sich axial erstreckender Kontaktfedern kontaktierend übergriffen wird, der den zweiten Ringbund konzentrisch umgibt (Anspruch 14). Der erste Ringbund bildet gewissermaßen einen Stecker, der zweite Ringbund zusammen mit dem Kontaktfederkranz den komplementären Kuppler.
  • Zweckmäßig liegen die freien Enden der Kontaktfedern des Kontaktfederkranzes in einer radialen Ebene, die gegenüber der die Stirnfläche des zweiten Ringbundes enthaltenden, radialen Ebene axial zurückgesetzt ist (Anspruch 15). Dadurch wird beim Aneinandersetzen von zwei Leitungsstücken eine Vorzentrierung erreicht, bei der der erste Ringbund den zweiten Ringbund übergreift, bevor die Stirnfläche des ersten Ringbundes unter die Kontaktfedern zu liegen kommt. Dadurch wird vermieden, dass es infolge von Fluchtungsfedern zu einer Beschädigung der Kontaktfedern und daher zu einer über den Umfang ungleichmäßigen Kontaktierung kommt, die sowohl zur Entstehung von Reflexionen und Intermodulationsprodukten führen würde als auch bei den zu übertragenden Strömen von mehreren 1000 Ampere eine Überhitzung und gegebenenfalls Verbrennung der Kontaktflächen zur Folge hätte.
  • Zweckmäßig sind die die kontaktierenden Ringbunde tragenden Flanschplatten mit den zugehörigen Innenleiterverbindungsstücken verschraubt (Anspruch 16). Dies erleichtert die Umrüstung der Verbindungsstellen von Stecken auf Kuppeln und umgekehrt. Des weiteren kann der Kontaktfederkranz als Einzelteil aus dem dafür am besten geeigneten Werkstoff hergestellt werden. Er wird dann an seiner Wurzel mit der Flanschplatte verschweißt.
  • Da der rohrförmige Innenleiter trotz Kühlung thermisch wesentlich höher belastet ist als der Außenleiter, müssen die auftretenden Wärmedehnungen berücksichtigt werden. Hierzu können die Isolierstoffstützen in axialer Richtung schwimmend durch den Außenleiter hindurchgeführt sein (Anspruch 17).
  • Eine Möglichkeit hierfür besteht darin, dass das durch den Außenleiter hindurchgeführte Ende der Isolierstoffstütze von einem Führungsflansch umschlossen ist, der in axialer Richtung schwimmend in einer Ausnehmung des Außenleiters gehalten, gegenüber diesem radialelastisch abgedichtet und mit ihm radialelastisch kontaktiert ist (Anspruch 18). Die radialelastische Abdichtung kann mittels O-Ringen erfolgen und die radialelastische Kontaktierung kann mittels eines schraubenförmig gewickelten und ringförmig geschlossenen Kontaktelementes, einem sogenannten Wurmkontakt, realisiert werden.
  • Statt dessen kann auch jede der rohrförmigen Isolierstoffstützen mit ihrem innenliegenden Ende in dem Innenleiterverbindungsstück und mit ihrem außenliegenden Ende in der Außenleiterwandung in einer axialen Ebene verkippbar gelagert sein (Anspruch 19). Die verkippbare Lagerung läßt sich z.B durch Ringwulste an den betreffenden Enden der Isolierstoffstützen in Verbindung mit kalottenförmigen Gegenlagern in den betreffenden Aufnahmen am Innenleiterverbindungsstück und an einer Durchführung durch die Wandung des Außenleiters verwirklichen.
  • In der Zeichnung ist ein Ausführungsbeispiel einer Koaxialleitung nach der Erfindung dargestellt. Es zeigt:
  • Fig. 1
    einen verkürzt dargestellten Leitungsabschnitt im Längsschnitt;
    Fig. 2
    eine teilweise im Schnitt gehaltene Stirnansicht;
    Fig. 3
    die zur Verbindung miteinander bestimmten Endbereiche von zwei aufeinander folgenden Leitungsabschnitten;
    Fig. 4
    eine Ansicht des in den Fig. 3 und 5 dargestellten Dichtungs- und Kontaktierungsrings zwischen den Verbindungsflanschen der Aussenleiter;
    Fig. 5
    die gleichen Endbereiche wie in Fig. 3 nach Herstellung der Verbindung;
    Fig. 6
    eine teilweise im Schnitt gehaltene Seitenansicht eines als 90°-Bogen ausgeführten Leitungsabschnittes;
    Fig. 7
    den Endbereich eines Leitungsabschnitts im Längsschnitt mit einer alternativen Ausführung der Isolierstoffstützen;
    Fig. 8
    die Durchführung einer Isolierstoffstütze durch den Außenleiter, überwiegend im Schnitt und in vergrößertem Maßstab als Stirnansicht;
    Fig. 9
    eine andere Ausführungsform der Durchführung der Isolierstoffstütze im Längsschnitt und in vergrößertem Maßstab;
    Fig. 10
    eine zu Fig. 9 alternative Ausführungsform;
    Fig. 11
    eine Stirnansicht einer anderen Ausführungsform des Innenleiterrohrs;
    Fig. 12
    einen Leitungsabschnitt ähnlich Fig. 1, jedoch in einer anderen Ausführungsform;
    Fig. 13
    einen Schnitt längs der Linie XIII-XIII in Figur 12.
  • Figur 1 zeigt - in Längsrichtung verkürzt - einen Abschnitt einer kühlbaren Koaxialleitung zur Übertragung sehr hoher HF-Leistungen. Die Leitung umfaßt ein Außenleiterrohr 1, das an seinen beiden Enden mit Verbindungsflanschen 2 ausgestattet ist. Der Durchmesser des Außenleiterrohrs 1 kann im Bereich von 120 mm und mehr liegen. Der Außenleiter 1 umschließt koaxial einen rohrförmigen Innenleiter 3, der an seinen beiden Enden mit Innenleiterverbindungsstücken 4 ausgestattet ist. Jedes der Innenleiterverbindungsstücke 4 ist über Isolierstoffstützen 5 aus einem geeigneten Dielektrikum, vorzugsweise einem keramischen Werkstoff, in den korrespondierenden Verbindungsflanschen 2 gelagert, uzw. in diesem Ausführungbeispiel über je vier Isolierstoffstützen 5, wie aus Fig. 2 hervorgeht. Die Isolierstoffstützen 5 sind rohrförmig ausgebildet und durch die Verbindungsflansche 2 abgedichtet nach außen geführt. Ihre innenliegenden Enden sitzen abgedichtet (vgl. die dargestellten Nuten zur Aufnahme von O-Ringen) in Vertiefungen der Innenleiterverbindungsstücke 4.
  • In den Innenleiterverbindungsstücken 4 sind Kammern 6 ausgebildet, die über Bohrungen wie 6.1 mit den Kanälen 5.1 in den Isolierstoffstützen 5 in Verbindung stehen. Die Innenleiterverbindungsstücke 4 haben einen ersten Flansch 4.1, der von dem jeweiligen Ende des Innenleiterrohrs 3 übergriffen wird. Mit diesem Flansch 4.1 ist das betreffende Ende des Innenleiterrohrs 3 vorzugsweise durchgehend über eine Umfangsnaht verschweißt. Alternativ kann zwischen dem Umfang des Flansches 4.1 und dem Ende des Innenleiterrohrs 3 ein O-Ring vorgesehen sein (nicht dargestellt).
  • Dann ist zusätzlich eine HF-technisch einwandfreie Kontaktierung zwischen dem Flansch 4.1 und dem Innenleiterrohr 3 notwendig. Axial beabstandet von dem ersten Flansch 4.1 haben die Innenleiterverbindungsstücke 4 einen zweiten Flansch 4.2 kleineren Durchmessers. Dieser wird von dem jeweiligen Ende eines koaxial in dem Innenleiterrohr 3 angeordneten Rohres 7 kleineren Durchmessers übergriffen. Dieses Rohr 7 liegt nicht im felderfüllten Raum und muss daher nicht aus Metall bestehen. Der koaxiale Ringraum 8 zwischen dem rohrförmigen Innenleiter 3 und dem Rohr 7 kommuniziert über Bohrungen 6.3 Durchbrüche 6.2 mit der Kammer 6 in dem jeweiligen Innenleiterverbindungsstück 4, siehe auch Fig. 2.
  • Über die herausgeführten Anschlüsse der Isolierstoffstützen 5 wird am einen Ende des Leitungsabschnitts ein vorzugsweise flüssiges Kühlmedium, z.B. Wasser, eingespeist, das dann den Ringraum 8 durchströmt und über die Isolierstoffstützen 5 am anderen Ende des Leitungsabschnitts abgezogen wird. Auf diese Weise werden der rohrförmige Innenleiter 3 und die Innenleiterverbindungsstücke 4 von innen gekühlt.
  • Auf ihrer von dem rohrförmigen Innenleiter 2 abgewandten Seite ist jede Kammer 6 durch eine Flanschplatte 10 bzw. 11, die mit dem Innenleiterverbindungsstück 4 über Schrauben 9 verbunden ist, abgeschlossen. Die Flanschplatte 10 an dem einen (in Fig. 1 linken) Ende des Leitungsabschnitts hat einen axial orientierten Ringbund 10.1 mit einem Innendurchmesser d1. Die Flanschplatte 11 an dem anderen (in Fig. 1 rechten) Ende des Leitungsabschnitts hat einen Ringbund 11.1 mit dem kleineren Außendurchmesser d2 < d1. Mit der Flanschplatte 11 ist ein Kontaktfederkranz 11.2 verbunden, der den Ringbund 11.1 koaxial umgibt. Die freien Enden der Kontaktfedern liegen in einer Radialebene, die von der Radialebene, die die Stirnfläche des Ringbundes 11.1 enthält, um einen Axialabstand a zurückgesetzt ist.
  • Fig. 3 veranschaulicht, dass beim Aneinandersetzen von zwei derartigen Leitungsabschnitten A und B der Ringbund 10.1 ein Steckerelement und der Ringbund 11.1 zusammen mit dem Kontaktfederkranz 11.2 ein Kupplerelement zur Realisierung der kontaktierenden Verbindung zwischen den rohrförmigen Innenleitern 3 der aneinander gesetzten Leitungsstücke A und B bildet. Zur querdichten, kontaktierenden Verbindung der Außenleiter 1 ist zwischen die Verbindungsflansche 2 der in Fig. 4 dargestellte Ring 20 aus einem gefiederten Blech eingefügt.
  • In Fig. 5 sind die Leitungsabschnitte A und B im miteinander verbundenen Zustand dargestellt. Die Außenleiterverbindungsflansche 2 sind wie üblich über Zuganker 21 miteinander verschraubt. Die Ringbunde 10.1 und 11.1 bilden zusammen dem Kontaktfederkranz 11.2 eine komplementäre Steckverbindung für die rohrförmigen Innenleiter. Damit auch im Bereich dieser Innenleitersteckverbindungen 10.1, 11.1, 11.2 eine ausreichende Kühlung sichergestellt ist,sind diese in axialer Richtung kurzbauend, aus gut wärmeleitenden Werkstoffen und in ausreichender Materialstärke hergestellt.
  • Richtungsänderungen im Verlauf der Leitung werden mittels Krümmern oder Leitungsbögen realisiert, die prinzipiell den gleichen Aufbau wie die geraden Leitungsabschnitte in Fig. 1 haben. In Fig. 6 ist ein 90°-Bogen dargestellt. Zur Erzielung eines weiteren Freiheitsgrades sind in diesem Fall die Außenleiterverbindungsflansche 2 zusätzlich, in an sich bekannter Weise mit Kugellagern 21 ausgestattet. An der Innenleitersteckverbindung sind keine weiteren Maßnahmen erforderlich, weil das Steckerteil (10.1) und das Kupplerteil (11.1, 11.2) relativ zueinander beliebig verdrehbar sind.
  • Wenn der felderfüllte Raum zwischen dem Außenleiter und dem Innenleiter im Betrieb der Leitung mit Gas, z.B. N2, bedrückt werden soll oder muss, sind an bestimmten Stellen der Leitung längsdichte Verbindungen notwendig. Dann werden statt der rohrförmigen Isolierstoffstützen Vollscheiben 57 aus Keramik verwendet, wie in Fig. 7 dargestellt. Diese haben eine ausreichende Anzahl von radialen Kanälen 57.1 zur Ein- oder Ausleitung des Kühlmediums. Die Kanäle 57.1 kommunizieren am Außenumfang mit einem Ringkanal 57.2 und am Innenumfang mit einem Ringkananl 6.4 der über die Bohrungen 6.3 mit der Kammer 6 in dem Innenleiterverbindungsstück 4 kommuniziert.
  • Im Betrieb der Leitung dehnt sich deren Innenleiter trotz Kühlung stärker als der Außenleiter. Eine erste Möglichkeit, diese Dehnung, die in Fig. 1 symbolisch mit Δ 1 bezeichnet ist, aufzufangen, besteht darin, die Isolierstoffstützen 5 schwimmend durch die Wandung des Außenleiters hindurchzuführen. Fig. 8 zeigt eine solche, abgedichtete und HF-dichte Durchführung. Die rohrförmige Isolierstoffstütze 5 ist mit einem axialen Spiel Δ 2 abgedichtet über einen O-Ring 52 in einer Führungshülse 51 aufgenommen, die mit einem Fußflansch 53 in einer Ausnehmung 2.1 in der Wandung des Außenleiterverbindungsflansches 2 sitzt. Die Dicke des Fußflansches 53 ist etwas kleiner als die Tiefe der Ausnehmung. In einer Nut des Fußflansches 53 ist ein sog. Wurmkontakt 54 aufgenommen, der in radialer Richtung elastisch ist. Der Wurmkontakt wird seinerseits von einem O-Ring 55 umschlossen. Es verbleibt ein Spalt Δ 3. Der Fußflansch 53 der Führungshülse 51 ist mittels einer Druckplatte 56 in der Ausnehmung 2.1 gesichert. Senkrecht zur Zeichenebene, d.h. in Längsrichtung der Leitung, ist die Ausnehmung 2.1 langlochartig ausgebildet, so dass die Isolierstoffstütze 5 einschließlich der Führungshülse 51 wärmebedingten Längenänderungen Δ 1 des rohrförmigen Innenleiters 3 relativ zum Außenleiter 1 folgen kann und keine Zwangskräfte auftreten. Gleichzeitig läßt. diese Art der Durchführung auch wärmebedingte Längenänderungen der Isolierstoffstütze 5 in radialer Richtung zu.
  • Eine andere und einfachere Möglichkeit, das Auftreten von Zwangskräften durch wärmebedingte Längenänderungen des Innenleiters relativ zum Außenleiter zu verhindern, veranschaulichen die Fig. 9 und 10. Die Isolierstoffstütze 5 ist im Innenleiterverbindungsstück 4 und in der Führungshülse 51 schwenkbar aufgenommen, und zwar entweder durch kugelkalottenförmige Ausbildung ihrer beiden Enden in Verbindung mit ausreichend groß dimensionierten Ausnehmungen im Innenleiterverbindungsstück 4 und in der Wandung des Außenleiterverbindungsflansches 2 (Fig. 9) oder, komplementär hierzu, durch Ausbildung entsprechender Ringwulste in den Aufnahmen der Enden der Isolierstoffstütze 5 einerseits in dem Innenleiterverbindungsstück 4 und andererseits in der Führungshülse 51 (Fig. 10). In beiden Fällen kann die Isolierstoffhülse um kleine Winkel α um den Punkt M kippen.
  • Bei den bisher beschriebenen Ausführungsformen wird der relativ dünne, rohrförmige Innenleiter 3 durch ein Kühlmedium gekühlt, das durch den mittels des Rohres 7 kleineren Durchmessers geschaffenen Ringraum 8 strömt (vgl. Fig. 1). Alternativ hierzu kann der Innenleiter als dickwandiges Rohr 30 mit zahlreichen, eng benachbarten, axialen Kanälen 31 ausgeführt sein. Fig. 11 zeigt den entsprechenden Querschnitt. Insbesondere aus Aluminum können solche Rohre sehr einfach im Strangpressverfahren hergestellt werden.
  • In Figur 12 ist eine gegenüber Fig. 1 abgewandelte Ausführungsform dargestellt. Das von dem rohrförmigen Innenleiter 3 umschlossene Rohr 7 ist an seinen beiden Enden durch Flansche 71 verschlossen, von denen jeder einen zentralen Lagerzapfen 71.1 hat, mit dem er in einer Ausnehmung 41.1 in dem Innenleiterverbindungsstück 41 mit Spiel insbesondere in axialer aber auch in radialer Richtung sitzt. Das radiale Spiel ist der Deutlichkeit halber übertrieben groß gezeichnet. Das Rohr 7 ist somit zwischen den Innenleiterverbindungsstücken 41 schwimmend gelagert. Der Raum 8 zwischen dem rohrförmigen Innenleiter 3 und dem Rohr 7 kommuniziert mit der jeweiligen Kammer 6 in dem Innenleiterverbindungsstück 41 über Ausnehmungen 71.2 (vgl. Fig. 13) in dem Zapfen 71.1 und den sich in radialer Richtung anschließenden Umfangsspalt zwischen dem jeweiligen Flansch 71 und der diesem zugewandten Stirnfläche des Innenleiterverbindungsstücks 41. Damit der Querschnitt des Ringraums 8 über den Umfang konstant bleibt, sind zwischen dem Rohr 7 und dem rohrförmigen Innenleiter 3 Abstandsstücke oder Zentrierelemente 72 angeordnet. Diese können in der in Fig. 12 angedeuteten Weise das Rohr 7 wendelförmig umgeben. Dann verläuft die Strömung des Kühlmediums in dem Raum 8 ebenfalls wendel- oder schraubenförmig. Wenn dies vermieden werden soll, sind die Zentrierelemente 72 nicht durchgehend sondern nur in Form kurzer Abschnitte angeordnet. Stattdessen können die Zentrierelemente auch aus axial verlaufenden Stegen 72.1 bestehen, wie in Fig. 13 angedeutet, damit die Strömung des Kühlmediums axial gerichtet bleibt.

Claims (19)

  1. Koaxialleitung mit einem rohrförmigen Innenleiter (3), einem Außenleiter (1), Isolierstoffstützen (5) zwischen dem Innenleiter und dem Außenleiter und Anschlüssen zum Hindurchleiten eines Kühlmediums durch die Leitung, dadurch gekennzeichnet, dass in dem rohrförmigen Innenleiter (3) ein an seinen beiden Enden stirnseitig verschlossenes Rohr (7) kleineren Durchmessers koaxial angeordnet ist und dass der Ringraum (8) zwischen diesem Rohr (7) und dem rohrförmigen Innenleiter (3) mit Kanälen (5.1; 57.1) in den Isolierstoffstützen (5; 57) kommuniziert, über die das Kühlmedium dem Innenleiter (3) zugeführt, durch diesen hindurchgeleitet und aus diesem abgeführt wird.
  2. Koaxialleitung nach Anspruch 1, dadurch gekennzeichnet, dass die Isolierstoffstützen als durch den Außenleiter (1) hindurch nach außen geführte Rohre (5) ausgebildet sind.
  3. Koaxialleitung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Isolierstoffstützen als Vollscheiben (57) mit radialen Kanälen (57.1) ausgebildet sind.
  4. Koaxialleitung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Kanäle (5.1; 57.1) der Isolierstoffstützen (5; 57) in eine Kammer (6) in einem Innenleiterverbindungsstück (4) am Ende des rohrförmigen Innenleiters (3) münden.
  5. Koaxialleitung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Rohr (7) stirnseitig durch einen an dem Innenleiterverbindungsstück (4) ausgebildeten Flansch (4.2) verschlossen ist.
  6. Koaxialleitung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Rohr (7) stirnseitig über Flansche (71) verschlossen ist, die an dem jeweiligen Innenleiterverbindungsstück axial und radial schwimmend (41.1, 71.1) gelagert sind.
  7. Koaxialleitung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Rohr (7) an seinem Aussenumfang sich gegen die Innenwand des rohrförmigen Innenleiters (3) abstützende Zentrierelemente (72) hat.
  8. Koaxialleitung nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass die Zentrierelemente (72) längs einer Wendel (schraubenförmig) um das Rohr (7) angeordnet sind.
  9. Koaxialleitung nach Anspruch 7, dadurch gekennzeichnet, dass die abstützenden Zentrierelemente (72) aus axial verlaufenden Stegen (72.1) bestehen.
  10. Koaxialleitung nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, dass die abstützenden Zentrierelemente (72) mit dem Rohr (7) einstückig sind.
  11. Koaxialleitung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der rohrförmige Innenleiter (30) in seinem Mantel axiale Kanäle (31) hat, die mit den Kanälen in den Isolierstoffstützen kommunizieren.
  12. Koaxialleitung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass sie aus getrennt voneinander kühlbaren, elektrisch und mechanisch miteinander verbundenen Abschnitten (A, B) besteht.
  13. Koaxialleitung nach Anspruch 12, dadurch gekennzeichnet, dass die rohrförmigen Innenleiter (3, 30) aneinandergrenzender Abschnitte (A, B) der Leitung über komplementäre Steckverbindungen miteinander verbindbar sind.
  14. Koaxialleitung nach Anspruch 13, dadurch gekennzeichnet, dass die komplementäre Steckverbindung aus einer die Kammer (6) des Innenleiterverbindungsstücks (4) abschließenden Flanschplatte (10) mit einem sich axial erstreckenden ersten Ringbund (10.1) besteht, der einen zweiten Ringbund (11.1) an der Flanschplatte (11) des anschließenden Leitungsabschnitts übergreift und seinerseits von einem Kranz (11.2) sich axial erstreckender Kontaktfedern kontaktierend übergriffen wird, der den zweiten Ringbund (11.1) konzentrisch umgibt.
  15. Koaxialleitung nach Anspruch 14, dadurch gekennzeichnet, dass die freien Enden der Kontaktfedern des Kontaktfedernkranzes (11.2) in einer radialen Ebene liegen, die gegenüber der die Stirnfläche des zweiten Ringbundes (11.1) enthaltenden, radialen Ebene axial zurückgesetzt ist.
  16. Koaxialleitung nach Anspruch 15, dadurch gekennzeichnet, dass die Flanschplatten (10, 11) mit dem Innenleiterverbindungsstück (4) verschraubt sind.
  17. Koaxialleitung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die Isolierstoffstützen (5) in axialer Richtung schwimmend durch den Außenleiter (1) hin-durchgeführt sind.
  18. Koaxialleitung nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass das durch den Außenleiter (1) hindurchgeführte Ende jeder Isolierstoffstütze (5) von einem Führungsflansch (51) umschlossen ist, der in axialer Richtung schwimmend in einer Ausnehmung des Außenleiters gehalten, gegenüber diesem radialelastisch abgedichtet und mit ihm radialelastisch kontaktiert ist.
  19. Koaxialleitung nach einem der Ansprüche 2 bis 18, dadurch gekennzeichnet, dass jede der rohrförmigen Isolier-stoffstützen (5) mit ihrem innenliegenden Ende in dem Innenleiterverbindungsstück (4) und mit ihrem außenliegenden Ende in der Außenleiterwandung (1) in einer axialen Ebene verkippbar gelagert ist.
EP04007218A 2003-04-02 2004-03-25 Koaxialleitung mit Zwangskühlung Expired - Lifetime EP1465285B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10315021 2003-04-02
DE10315021 2003-04-02
DE10322482 2003-05-19
DE10322482 2003-05-19

Publications (2)

Publication Number Publication Date
EP1465285A1 EP1465285A1 (de) 2004-10-06
EP1465285B1 true EP1465285B1 (de) 2009-07-01

Family

ID=32851859

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04007218A Expired - Lifetime EP1465285B1 (de) 2003-04-02 2004-03-25 Koaxialleitung mit Zwangskühlung

Country Status (5)

Country Link
US (1) US7009103B2 (de)
EP (1) EP1465285B1 (de)
JP (1) JP2004312003A (de)
DE (2) DE102004014757B4 (de)
ES (1) ES2328477T3 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2984617B1 (fr) * 2011-12-14 2014-11-28 Alstom Technology Ltd Coude a angles d'orientation multiples pour lignes a haute tension
US10283241B1 (en) 2012-05-15 2019-05-07 The United States Of America As Represented By The Secretary Of The Navy Responsive cryogenic power distribution system
DE102014206000A1 (de) * 2014-03-31 2015-10-01 Siemens Aktiengesellschaft Kühlvorrichtung
JP6315361B2 (ja) * 2014-04-04 2018-04-25 ダイナミック イー フロー ゲーエムベーハー 電磁機械用電子中空導体
FR3038488A1 (fr) * 2015-06-30 2017-01-06 Thales Sa Refroidissement d'un troncon de ligne coaxiale et d'un dispositif de production de plasma
PL435036A1 (pl) 2020-08-20 2022-02-21 General Electric Company Polska Spółka Z Ograniczoną Odpowiedzialnością Konstrukcja połączeń dla zespołu generatora
US11795837B2 (en) 2021-01-26 2023-10-24 General Electric Company Embedded electric machine
CN115588535B (zh) * 2022-10-28 2024-06-28 新疆胡杨线缆制造有限公司 一种自带定位结构的输变电线缆

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3331911A (en) * 1965-07-26 1967-07-18 Westinghouse Electric Corp Coaxial cable joint with a gas barrier
US3749811A (en) * 1971-03-10 1973-07-31 Siemens Ag Superconducting cable
DE2130692B2 (de) * 1971-06-21 1978-01-12 Linde Ag, 6200 Wiesbaden Tieftemperaturkabel
GB1482967A (en) * 1973-10-24 1977-08-17 Siemens Ag Superconductive electric cable and cooling apparatus therefor
DE2429158A1 (de) * 1974-06-18 1976-01-08 Bbc Brown Boveri & Cie Vollgekapselte hochspannungsschaltanlage
US3902000A (en) * 1974-11-12 1975-08-26 Us Energy Termination for superconducting power transmission systems
US4053700A (en) * 1975-06-06 1977-10-11 Westinghouse Electric Corporation Coupling flex-plate construction for gas-insulated transmission lines
FR2455378A1 (fr) * 1979-04-23 1980-11-21 Alsthom Cgee Jeu de barres de poste a haute tension
US4370511A (en) * 1981-03-17 1983-01-25 Westinghouse Electric Corp. Flexible gas insulated transmission line having regions of reduced electric field
DE3369034D1 (en) * 1983-01-27 1987-02-12 Bbc Brown Boveri & Cie Cooled electrical component
IT1277740B1 (it) * 1995-12-28 1997-11-12 Pirelli Cavi S P A Ora Pirelli Cavo superconduttore per alta potenza
DE19633857A1 (de) * 1996-08-16 1998-02-19 Siemens Ag Gekapselte, gasisolierte Hochspannungsanlage mit geschottetem Verbindungsbaustein
KR20010092749A (ko) * 1998-12-24 2001-10-26 지아네시 피에르 지오반니 초전도체를 사용하는 전력 전송 시스템
DE10108843A1 (de) * 2000-06-05 2002-01-03 Didier Werke Ag Kühlbarer Koaxialleiter

Also Published As

Publication number Publication date
JP2004312003A (ja) 2004-11-04
ES2328477T3 (es) 2009-11-13
DE102004014757B4 (de) 2007-09-06
DE102004014757A1 (de) 2004-11-25
EP1465285A1 (de) 2004-10-06
DE502004009680D1 (de) 2009-08-13
US7009103B2 (en) 2006-03-07
US20050067175A1 (en) 2005-03-31

Similar Documents

Publication Publication Date Title
EP0142678B1 (de) Halbleiterventil
EP0585203B1 (de) Plasmaspritzgerät
EP2052199B1 (de) Apparat zur kombinierten durchführung von wärmeübertragung und statischem mischen mit einer flüssigkeit
DD284639A5 (de) Einrichtung und verfahren zum schweissen von rohrfoernigen teilen
EP1465285B1 (de) Koaxialleitung mit Zwangskühlung
DE1639257B1 (de) Hochfrequenz plasmagenerator
DE2813860A1 (de) Eintank-roentgengenerator
DE10346290B4 (de) RF-Verbinder für starre Koaxialleitungen und Verbindungsverfahren für starre Koaxialleitungen
EP2168409B1 (de) Vorrichtung zur erzeugung eines plasma-jets
EP2407267B1 (de) Schweißbrenner mit einem einen Isolierschlauch aufweisenden Brennerhals
EP0074106A1 (de) Wassergekühlter Schutzgasschweissbrenner für automatische Schweissanlagen mit von innen ausblasbarer Gasdüse
DE3840485A1 (de) Fluessigkeitsgekuehlter plasmabrenner mit uebertragenem lichtbogen
DE4031879C2 (de)
DE1081160B (de) Toroidfoermig gestaltete Reaktionskammer fuer die Erzeugung von Starkstrom- Ringentladungen
DE69032604T2 (de) Kryovorkühler für supraleitende Magnete
EP0849026A1 (de) Schutzgasschweissbrenner
WO2002023591A1 (de) Strahlungsquelle und bestrahlungsanordnung
DE19847770A1 (de) Wärmetauscher mit einem Verbindungsstück
DE1764359B2 (de) Keramische entladungsroehre fuer einen gaslaser
DE2532990C3 (de) Wanderfeldrohre
DE19904948C2 (de) Druckstufensystem für eine Vorrichtung zum Elektronenstrahlschweißen in Druckbereichen &gt;10 hoch-4mbar
DE2530851C2 (de) Heizvorrichtung zur Erzeugung eines heißen Gasstrahls
DE19806030A1 (de) Vorrichtung zum Ableiten von Verlustwärme
DE919551C (de) Sich drehendes elektrisches Widerstandsschweissgeraet
AT411116B (de) Kühldose zur flüssigkeitskühlung von elektrischen bauelementen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040819

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SPINNER GMBH

17Q First examination report despatched

Effective date: 20070104

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004009680

Country of ref document: DE

Date of ref document: 20090813

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2328477

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100406

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110401

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110324

Year of fee payment: 8

Ref country code: ES

Payment date: 20110324

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110519

Year of fee payment: 8

Ref country code: IT

Payment date: 20110331

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004009680

Country of ref document: DE

Representative=s name: PATENTANWAELTE HENKEL, BREUER & PARTNER, DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120325

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004009680

Country of ref document: DE

Effective date: 20121002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120402

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120325

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121002