EP1465151A2 - Stimmen von Noten in einem Zusammenklang - Google Patents

Stimmen von Noten in einem Zusammenklang Download PDF

Info

Publication number
EP1465151A2
EP1465151A2 EP04012924A EP04012924A EP1465151A2 EP 1465151 A2 EP1465151 A2 EP 1465151A2 EP 04012924 A EP04012924 A EP 04012924A EP 04012924 A EP04012924 A EP 04012924A EP 1465151 A2 EP1465151 A2 EP 1465151A2
Authority
EP
European Patent Office
Prior art keywords
chord
notes
sustained
note
page
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04012924A
Other languages
English (en)
French (fr)
Other versions
EP1465151A3 (de
Inventor
Jack W. Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paul Reed Smith Guitars LP
Original Assignee
Paul Reed Smith Guitars LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paul Reed Smith Guitars LP filed Critical Paul Reed Smith Guitars LP
Priority claimed from EP99956738A external-priority patent/EP1145220A1/de
Publication of EP1465151A2 publication Critical patent/EP1465151A2/de
Publication of EP1465151A3 publication Critical patent/EP1465151A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/36Accompaniment arrangements
    • G10H1/38Chord
    • G10H1/383Chord detection and/or recognition, e.g. for correction, or automatic bass generation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/18Selecting circuits
    • G10H1/20Selecting circuits for transposition
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/44Tuning means
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H3/00Instruments in which the tones are generated by electromechanical means
    • G10H3/12Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument
    • G10H3/125Extracting or recognising the pitch or fundamental frequency of the picked up signal
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H3/00Instruments in which the tones are generated by electromechanical means
    • G10H3/12Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument
    • G10H3/14Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means
    • G10H3/18Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means using a string, e.g. electric guitar
    • G10H3/186Means for processing the signal picked up from the strings
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/325Musical pitch modification
    • G10H2210/331Note pitch correction, i.e. modifying a note pitch or replacing it by the closest one in a given scale
    • G10H2210/335Chord correction, i.e. modifying one or several notes within a chord, e.g. to correct wrong fingering or to improve harmony
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/395Special musical scales, i.e. other than the 12- interval equally tempered scale; Special input devices therefor
    • G10H2210/471Natural or just intonation scales, i.e. based on harmonics consonance such that most adjacent pitches are related by harmonically pure ratios of small integers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/571Chords; Chord sequences
    • G10H2210/586Natural chords, i.e. adjustment of individual note pitches in order to generate just intonation chords
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2250/00Aspects of algorithms or signal processing methods without intrinsic musical character, yet specifically adapted for or used in electrophonic musical processing
    • G10H2250/131Mathematical functions for musical analysis, processing, synthesis or composition
    • G10H2250/161Logarithmic functions, scaling or conversion, e.g. to reflect human auditory perception of loudness or frequency

Definitions

  • This invention relates to algorithms and devices for use in producing music. It is disclosed in the context of an instrument including a keyboard, but is believed to have utility for any other polyphonic instrument or in other applications as well.
  • an instrument which retunes itself in response to the chord being sustained and the way that chord is voiced.
  • an instrument which retunes itself in response to the chord being sustained and the separation of the notes in the chord.
  • an instrument which blends the notes of a chord the instrument is playing in view of the chord being sustained and its voicing.
  • an instrument which blends the notes of a chord the instrument is playing in view of the chord being sustained and the separation of the notes in the chord.
  • an instrument which retunes itself in view of the chord being sustained and the way talented musicians in ensembles tune to each other.
  • a method is provided to develop alternative methods to retune the notes of a keyboard in view of the harmonics of contention, that is, harmonics that are separated typically by more than about one and one-half cents and less than about thirty-five cents apart, produced by the notes of the chord.
  • a method is provided to produce consonant harmonics on a keyboard with equal tempered stretch tuning.
  • a method is provided to obtain the consensus of experts as to the most desirable strategies for tuning different styles of music.
  • a method is provided to obtain the consensus of experts as to the most desirable strategies for blending notes of a chord.
  • a method is provided to obtain the consensus of experts as to the most desirable strategies for tuning in view of the kind(s) of ensemble(s) which is (are) performing (a) musical composition(s).
  • a method of retuning a keyboard-type instrument starts from, and returns to, equal tempered stretch tuning based on the type of chord being sustained and the voicing of the chord.
  • a method for generating harmonics for stretched tuning preserves consonance of harmonics.
  • a method for retuning a keyboard type instrument is based on the chord type being played and the way the chord is voiced.
  • a method for determining which notes should be tuned as a sustained chord and which notes should be treated as passing notes.
  • a method for implementing options for how sustained chords can be retuned to eliminate dissonances and generate enhanced overtones.
  • a method for permitting musicians to select tuning strategies from combinations of options.
  • a method for retuning based on the chords for example, 2-note chords, 3-note chords, 4-note chords, 5-note chords, created by the sustained notes.
  • a method for retuning based on the history of sustained notes.
  • a method for retuning based on tuning options as indicated by the setting of switches.
  • a method for tuning based on the length of time notes have been sustained and the interval positions they serve.
  • a method for starting from, and returning to equal tempered tuning based on the chord type being sustained, the voicing of the chord, and choices among options that have been made by experts.
  • a method for blending sustained chords so that no note stands out.
  • a method for retuning instruments so that they will closely approximate the way musicians and ensembles typically tune to each other.
  • a musical instrument includes a first switch having a first position in which the instrument is capable of producing tones, the intervals between which are equal tempered intervals of a twelve note octave.
  • the first switch has a second position in which the instrument is capable of producing tones, the intervals between at least some of which are determined by identifying at least selected ones of the notes the instrument is being commanded to produce.
  • the instrument also includes a processor including a map by which the identified notes are mapped to a chord type. The processor identifies a note in that chord type and substitutes a frequency closer to a harmonic of the identified note for the frequency of at least one harmonic of at least one other note the instrument is being commanded to produce.
  • the instrument includes a second switch.
  • the processor includes at least two different maps.
  • the second switch has a position for each map, permitting selection of one of the at least two different maps by which the instrument maps the identified intervals to a chord type.
  • the instrument includes a third switch.
  • the processor includes at least two different chord type decision engines.
  • the third switch has a position for each chord type decision engine, permitting selection of one of the at least two different decision engines by which the instrument identifies a note of the chord type.
  • the processor is a processor for substituting a frequency within a predetermined range of a harmonic of the identified note for the frequency of at least one harmonic of at least one other note the instrument is being commanded to produce.
  • the processor is a processor for substituting frequencies closer to at least two harmonics of the identified note for the frequencies of harmonics of at least two other notes the instrument is being commanded to produce.
  • the processor is a processor for substituting frequencies closer to at least two harmonics of the identified note for the frequencies of at least two harmonics of at least one other note the instrument is being commanded to produce.
  • the processor is a processor for permitting mapping of the identified notes to at least one of: a major triad; a minor triad; a triad suspended by a second; a triad suspended by a fourth; a major sixth; a minor sixth; a major seventh; a minor major seventh; a dominant seventh; a minor dominant seventh; a half diminished chord; a full diminished chord; and, an augmented chord.
  • the processor is a processor for resolving contention among competing ones of: a major triad; a minor triad; a triad suspended by a second; a triad suspended by a fourth; a major sixth; a minor sixth; a major seventh; a minor major seventh; a dominant seventh; a minor dominant seventh; a half diminished chord; a full diminished chord; and, an augmented chord, and mapping according to the contention resolution.
  • the instrument includes a second switch.
  • the processor includes at least two different chord type contention resolutions.
  • the second switch has a position for each chord type contention resolution, permitting selection of one of the at least two different chord type contention resolutions by which the instrument identifies the chord type.
  • the processor is a processor for permitting mapping of the identified notes to an inversion of the chord.
  • the instrument includes a second switch.
  • the processor includes a substitution decision engine.
  • the second switch has a position in which the substitution decision engine is disabled and a position in which the substitution decision engine is enabled.
  • the substitution decision engine has as an input at least one of: how long the instrument is commanded to sustain one of the twelve notes; the history of accumulated time of uninterrupted sustainment of a sustained note; the position a sustained note occupies in a chord; the position a sustained note occupied in a chord on at least one prior occasion; and, how much the note's current assigned frequency varies from equal-tempered tuning.
  • the processor includes a lookup table by which the identified notes are mapped to a chord type, by which a note of the chord type is identified, and/or by which a frequency closer to a harmonic of the identified note is substituted for the frequency of at least one harmonic of at least one other note the instrument is being commanded to produce.
  • the instrument includes a keyboard having multiple keys for producing tones which are octaves of the at least one harmonic of the at least one other note the instrument is being commanded to produce.
  • the processor substitutes octaves of the frequency closer to a harmonic of the identified note for the octaves of the frequency of at least one harmonic of the at least one other note the instrument is being commanded to produce.
  • the processor includes a substitution decision engine having as an input how long the instrument is commanded to sustain one of the twelve notes.
  • the processor reassigns the keys to producing tones which are octaves of the at least one harmonic of the at least one other note the instrument is being commanded to produce when the instrument is no longer commanded to sustain one of the twelve notes.
  • the processor is a processor for adjusting the amplitude of the frequency closer to a harmonic of the identified note which is substituted for the frequency of at least one harmonic of at least one other note the instrument is being commanded to produce.
  • the processor is a processor for adjusting the amplitudes of more than one of the tones the instrument produces in response to the commands to produce.
  • the instrument includes a second switch.
  • the processor includes at least two different amplitude decision engines.
  • the second switch has a position for each amplitude decision engine, permitting selection of one of the at least two different amplitude engines by which the instrument adjusts the amplitudes of the tones.
  • a musical instrument includes a first switch having a first position in which the instrument is capable of producing tones, the amplitudes of which are determined by identifying at least selected ones of the notes the instrument is being commanded to produce.
  • the instrument further includes a processor including a map by which the identified notes are mapped to a chord type. The processor identifies a note in that chord type, and adjusts the amplitude of at least one of the tones the instrument produces in response to the commands to produce in response to the identified note.
  • the first switch has a second position in which the amplitude of the at least one tone the instrument produces in response to the commands to produce is not adjusted.
  • the processor is a processor for adjusting the amplitudes of more than one of the tones the instrument produces in response to the commands to produce in response to the identified note when the first switch is in the first position.
  • a method of operating a musical instrument capable of producing tones, the intervals between which are equal tempered intervals of a twelve note octave, and tones, the intervals between at least some of which are determined by identifying at least selected ones of the notes the instrument is being commanded to produce includes identifying the at least selected ones of the notes the instrument is being commanded to produce, providing a map for mapping the identified notes to a chord type, identifying a note in that chord type, and substituting a frequency closer to a harmonic of the identified note for the frequency of at least one harmonic of at least one other note the instrument is being commanded to produce.
  • the method further includes providing at least two different maps, and selecting one of the at least two different maps by which the identified intervals are mapped to a chord type.
  • the method includes providing at least two different chord type decision engines, and selecting one of the at least two different decision engines by which the instrument identifies a note of the chord type.
  • substituting a frequency closer to a harmonic of the identified note for the frequency of at least one harmonic of at least one other note the instrument is being commanded to produce includes substituting a frequency within a predetermined range of a harmonic of the identified note for the frequency of at least one harmonic of at least one other note the instrument is being commanded to produce.
  • the method includes substituting frequencies closer to at least two harmonics of the identified note for the frequencies of harmonics of at least two other notes the instrument is being commanded to produce.
  • the method includes substituting frequencies closer to at least two harmonics of the identified note for the frequencies of at least two harmonics of at least one other note the instrument is being commanded to produce.
  • providing a map for mapping the identified notes to a chord type includes providing a map for mapping the identified notes to at least one of a major triad, a minor triad, a triad suspended by a second, a triad suspended by a fourth, a major sixth, a minor sixth, a major seventh, a minor major seventh, a dominant seventh, a minor dominant seventh, a half diminished chord, a full diminished chord, and an augmented chord.
  • the method includes resolving contention among competing ones of a major triad, a minor triad, a triad suspended by a second, a triad suspended by a fourth, a major sixth, a minor sixth, a major seventh, a minor major seventh, a dominant seventh, a minor dominant seventh, a half diminished chord, a full diminished chord, and an augmented chord, and mapping according to the contention resolution.
  • the method includes providing at least two different chord type contention resolutions, and permitting selection of one of the at least two different chord type contention resolutions by which the instrument identifies the chord type.
  • providing a map for mapping the identified notes to a chord type includes providing a map for mapping the identified notes to an inversion of the chord.
  • the method includes providing a substitution decision engine, and selectively enabling the substitution decision engine.
  • the method includes providing as an input at least one of: how long the instrument is commanded to sustain one of the twelve notes; the history of accumulated time of uninterrupted sustainment of a sustained note; the position a sustained note occupies in a chord; the position a sustained note occupied in a chord on at least one prior occasion; and how much the note's current assigned frequency varies from equal-tempered tuning.
  • the method includes providing a lookup table by which the identified notes are mapped to a chord type, by which a note of the chord type is identified, and/or by which a frequency closer to a harmonic of the identified note is substituted for the frequency of at least one harmonic of at least one other note the instrument is being commanded to produce.
  • the instrument includes a keyboard having multiple keys for producing tones which are octaves of the at least one harmonic of the at least one other note the instrument is being commanded to produce.
  • the method includes substituting octaves of the frequency closer to a harmonic of the identified note for the octaves of the frequency of at least one harmonic of the at least one other note the instrument is being commanded to produce.
  • the method includes providing a substitution decision engine having as an input how long the instrument is commanded to sustain one of the twelve notes, and reassigning the keys to producing tones which are octaves of the at least one harmonic of the at least one other note the instrument is being commanded to produce when the instrument is no longer commanded to sustain one of the twelve notes.
  • the method includes adjusting the amplitude of the frequency closer to a harmonic of the identified note which is substituted for the frequency of at least one harmonic of at least one other note the instrument is being commanded to produce.
  • the method includes providing at least two different amplitude decision engines, and selecting one of the at least two different amplitude engines by which the instrument adjusts the amplitude of the frequency.
  • the method includes adjusting the amplitudes of more than one of the tones the instrument produces in response to the commands to produce.
  • a method of operating a musical instrument capable of producing tones, the amplitudes of which are determined by identifying at least selected ones of the notes the instrument is being commanded to produce includes providing a map by which the identified notes are mapped to a chord type, identifying a note in that chord type, and adjusting the amplitude of at least one of the tones the instrument produces in response to the commands to produce in response to the identified note.
  • the method includes selectively maintaining unadjusted the amplitude of the at least one tone the instrument produces in response to the commands to produce.
  • the method includes adjusting the amplitudes of more than one of the tones the instrument produces in response to the commands to produce in response to the identified note when the first switch is in the first position.
  • notes being played on a keyboard are classified into one of two categories: members of a sustained chord; or, passing notes.
  • a keyboard which incorporates the methods of this invention when used to accompany, or be a member of, an ensemble of tunable instruments, for example, bowed instruments such as violins and cellos, brass instruments, reed instruments, and human voices, will reduce clashes/inconsistencies between the harmonies the keyboard produces and those produced by the musicians who naturally tune to each other to reduce some of the most undesirable dissonances, generate brilliant overtones, and produce harmonies consistent with those produced by ensembles.
  • Such an instrument uses an equal tempered scale as an underlying basis, as a point of departure and as a point of return.
  • voicing is the term sometimes used in this description to indicate the order, lowest to highest, of the interval positions in a chord, and their spread, for example, their separation by skipping octaves.
  • An asterisk (*) is generally used to indicate a skipped octave.
  • a "cent” is generally used to describe 1/1200 of an octave or 1/100 of a semitone or (2 ⁇ S) 1/1200 .
  • the symbol “ ⁇ ” is often used as an abbreviation for this.
  • “Maj” is the term sometimes used in this description to indicate a major triad.
  • Mi is the term sometimes used in this description to indicate a minor triad.
  • Dim is the term sometimes used in this description to indicate a diminished triad.
  • “Dim 7” is the term sometimes used in this description to indicate a full diminished 7 th .
  • “1 ⁇ 2 Dim” is the term sometimes used in this description to indicate a half diminished 7 th .
  • Dom 7 is the term sometimes used in this description to indicate a dominant 7 th .
  • “Ma 6” is the term sometimes used in this description to indicate a major 6 th .
  • “Mi 6” is the term sometimes used in this description to indicate a minor 6 th .
  • “Aug” is the term sometimes used in this description to indicate an augmented chord.
  • “dom 7 + 9” is the term sometimes used in this description to indicate a dominant 7th with added 9 th .
  • “9” is the term sometimes used in this description to indicate a 9 th chord. The person of ordinary skill in the art will immediately appreciate that other chords are possible, and that there are common, immediately recognizable symbols which designate many of those. Wherever any such chord is mentioned herein, I have endeavored to use a common description
  • An instrument constructed and operated according to the invention starts from an equal tempered scale and retunes the whole keyboard virtually in real time based on the type of chord which is being played and the way the chord is voiced. It returns to equal tempered tuning when the particular chord to which it has tuned itself is no longer being sustained.
  • S is the stretch constant
  • the threshold value depends on the history of sustained notes. The longer a note or chord has been sustained, then the longer a new note added to the chord must be sustained before it is considered to be more than a passing note. Passing notes do not affect the retuning of the keyboard. Sustained two-note, 3-note, 4-note and 5-note chords are retuned. Retuned sustained chords will always contain one note (typically the root) which is in equal tempered tuning.
  • the user can choose from among a number of optional tuning strategies, each developed to closely match tunings actually created by different kinds of ensembles for different kinds of music.
  • the keyboard is retuned, that is, the whole scale is reconstituted, almost instantaneously, whenever two or more notes are sounded together for an amount of time, for example, 1/5 of a second.
  • an amount of time for example, 1/5 of a second.
  • middle G and the D above it are sounded together and sustained for the specified amount of time, then in order to eliminate the dissonances that exist in the equal tempered scale between G and D, either all Gs in the keyboard will be flatted or all Ds will be sharped, and the whole spectrum of harmonics associated with those tones will also be sharped or flatted proportionally.
  • the 3 rd harmonic of G 3 is 588.00 cycles per second.
  • the 2 nd harmonic of D 4 is 587.34 cycles per second.
  • these two harmonics produce a beat note of .66 cycles per second.
  • a slight retuning can make these two harmonics coincide exactly, eliminating the beat note and reinforcing the harmonics.
  • One tuning adjustment often causes other harmonics (not simply octaves apart) to coincide and reinforce.
  • the 9th harmonic of the G, which is an A, and the 6th harmonic of the D coincide as the result of retuning to make the 3rd harmonic of G, which is a D, coincide with the 2nd harmonic of D.
  • the scale can be retuned for this interval by sharping all Ds and all the harmonics generated by those notes by the ratio 588 ⁇ 587.34.
  • Table I illustrates the equal tempered frequencies of the fundamentals of the notes in a G dom 7 chord, together with harmonics, and indicates harmonics which can be made to coincide by retuning the other notes of the chord.
  • the frequencies of each note are shown for three octaves, so that combinations of different rows can represent different voicings of the chord.
  • Some frequencies which could be retuned to eliminate dissonances are underlined.
  • the 11 th harmonic of the lowest octave of B and the 7 th harmonic of the middle octave of G differ by only 17 ⁇ .
  • Fig. 1 illustrates a flowchart of an algorithm to identify, tune and blend sustained chords.
  • the algorithm determines which keyboard keys are being sustained, for example, by being depressed and held, or by (a) sustaining pedal(s), or by rapid repetition. The specific notes struck, the time they were struck, and the time they were released, that is, no longer sustained, are computed and recorded. This information is sent to decision blocks 12, 13 and 14.
  • an algorithm accumulates future pitch-holding priority points as time of uninterrupted sustainment of a sustained note increases, and as the percentage of that time that the sustained note was the I or V of a chord.
  • the priority points may be assigned, for example, as follows. Each note accumulates the number of milliseconds since its uninterrupted current sustaining period began. Also recorded are the milliseconds it accumulated while the I of a chord, the milliseconds it accumulated while the V of a chord, and the position it last occupied in the chord. Every pair of sustained notes and every triplet of sustained notes, and every quadruplet of sustained notes constitute a sustained chord.
  • Each sustained chord accumulates sustained milliseconds and the milliseconds sustained when one of its members was the I of the chord, or the V of the chord and the milliseconds when both members of the chord were the I or the V.
  • the chords they form accumulate pitch-holding points which can build to the point that a variety of short-duration changes can pass by or through these 2-note chords without affecting their pitch by more than a threshold value.
  • Tuning and blending are different functions concerned with different domains.
  • the tuning process involves retuning an entire keyboard to the frequencies of retuned notes in sustained chords.
  • the blending function is concerned with the volumes of the individual notes sounding in a chord.
  • the blending function typically will operate only when activated, for example, by a pedal which returns to the "OFF" position when it is not depressed.
  • both the tuning and blending functions require that the chord type they constitute, the voicing of the chord, and the role each note plays in the chord all be determined. This is accomplished by using an algorithm and modulo-12 arithmetic which are illustrated in Fig. 2, the chord spiral and the methods disclosed herein.
  • a method according to the invention starts from, and returns to, equal tempered tuning with natural sharping which means that the frequency of each semitone is equal to (2S) 1/12 times its predecessor semitone, where S is a "stretch,” or sharping, constant close to unity, typically set between 1 and 1.003, for example, 1.002.
  • S is a "stretch,” or sharping, constant close to unity, typically set between 1 and 1.003, for example, 1.002.
  • Such a stretch constant is used, for example, to progressively sharp the tones in the scale as frequency increases, to counteract the tendency of tones to sound progressively flatter as frequency increases.
  • the frequency of the I is held at its original equal tempered tuning, while the frequency of V and all its octaves on the keyboard are retuned so that its 2 nd harmonic coincides precisely with the 3 rd harmonic of I.
  • the note that had been V and all its octaves on the keyboard return to equal tempered stretch tuning.
  • a method and apparatus To tune and/or blend a sustained chord, a method and apparatus according to the invention must identify the kind of a chord and the interval position each of the notes in the chord occupies.
  • the chord spiral illustrated in Fig. 2 is intended to help clarify, simplify and illuminate an algorithm which will determine sustained chord types and the interval position occupied by each note in the chord.
  • the chord spiral illustrates the relationships among notes along a scale of semitones and their relationships in an octave.
  • the chord type and the interval position each note occupies in the chord are deduced from these relationships.
  • the first position in the chord spiral, 1, represents the lowest note in a chord.
  • tallied rays are: ⁇ 1 ⁇ , ⁇ 4 ⁇ , ⁇ 6 ⁇ , ⁇ 10 ⁇ . These rays correspond to semitone positions 1, 10, 16, 18. Semitone differences between tallied rays are then computed going around the spiral in a clockwise direction. The differences, or step lengths, in semitones, going around the rays clockwise starting from ray ⁇ 1 ⁇ are: 3 , 2 , 4 , 3, a sequence, or signature, which indicates a particular order of the interval positions of a dom 7 chord. The lowest note is the V, the next higher is the III, followed by the VIIb, and finally, the I. The voicing of the chord as indicated by the positions tallied on the chord spiral illustrated in Fig. 2 is V, III, VIIb, I, with no skipped octaves illustrated. The absence of skipped octaves is indicated by the positions tallied on the chord spiral itself.
  • the sequence of intervals and the voicing information obtained from the chord spiral are used to determine the chord type and the interval each note occupies in the chord.
  • Tables II and III below indicate how the same set of notes, voiced in different ways, can be interpreted as different chord types, and how the notes themselves can be interpreted to occupy different positions in a chord when they are voiced in different ways.
  • One voicing, illustrated in Table II implies a mi 6 chord.
  • the other voicing, illustrated in Table III implies a 1 ⁇ 2 dim chord.
  • the signature of a chord type is the sequence of intervals, or differences, going around the chord spiral in a clockwise direction with the position 1 representing the lowest note.
  • the signature of a ma 6 chord with voicing V, I, III, VI (V being the lowest note) is 2, 3, 4, 3.
  • the signature of a maj with voicing III, V, I is 3, 5, 4.
  • a chord table which illustrates the interval sequences, or signatures, for many types of chords is Table III.
  • the invention contemplates a keyboard which tunes itself the way musicians tune to each other, yet keeps equal tempered tuning as a point of departure and return.
  • musicians tune to each other they take advantage of the tendency of harmonics which nearly coincide to lock together in sympathetic vibration. Therefore the tuning method herein employed searches for harmonics that contain threshold amounts of energy that almost coincide, thus providing an option to tune the notes to make those harmonics coincide exactly.
  • the keyboard deviates only a tolerable degree from the expected harmonic ratios that arise from equal tempered, or other traditional tuning algorithms.
  • To eliminate a beat note would otherwise sometimes require such a great deviation from traditional harmony that the dissonances will be preferred over the retuning that would eliminate them.
  • Since the energy contained in higher harmonics is generally less than the energy of lower ones, dissonances produced when higher harmonics do not coincide, yet tuning to eliminate dissonances caused by lower harmonics may require a greater degree of sharping or flatting. Thus conflicting objectives must be resolved.
  • chord type being sustained and its voicing are determined, for example, maj, dom 7, mi, 1 ⁇ 2 dim, and so on.
  • An algorithm determines which note, for example, the I note, in the chord is to be held at equal tempered tuning. All other notes are tuned with respect to that note. Any time any note(s) in the keyboard is (are) sharped or flatted, all of that (those) note's(s') octaves across the entire keyboard are sharped or flatted proportionally.
  • the way the notes in sustained chords are retuned, that is, to vary from equal tempered tuning is determined from, for example, a lookup table which classifies chords as to type and voicing. When a chord is no longer sustained, all notes in the entire keyboard return to their equal tempered relationships. When the type of chord being sustained changes, all notes are returned to equal tempered tuning, and then retuned to the next identified chord.
  • the high amplitude harmonics which are close in pitch change as the voicing of a chord changes.
  • the III can be tuned 13.7 ⁇ flat, so that its 8 th harmonic coincides with the 5 th harmonic of the I.
  • Another alternative is to tune the III 17.5 ⁇ sharp so that the 11 th harmonic of the III coincides with the 7 th harmonic of the I. If the I is below the III, the option to sharp the III 17.5 ⁇ is not as good, since the 11 th harmonic of the III would have to coincide with the 14 th harmonic of the I.
  • the 14 th harmonic naturally is considerably lower in amplitude than the 7 th .
  • the I - III and the I - VIIb are both intervals which present a number of tuning options. Voicing affects the desirability of different tuning options. For example, a dom 7 chord voiced V, III, VIIb, I places the 7 th harmonic of I close to the 11 th harmonic of III and produces a dissonance of moderate energy. If the III is sharped 17.5 cents, then its 7 th harmonic and the 11 th harmonic of I will coincide. If the VIIb is flatted 31.16 ⁇ at the same time that III is sharped 17 ⁇ , then the 2 nd harmonic of VIIb, the 7 th harmonic of I, and the 11 th harmonic of III will all coincide.
  • this tuning may be more desirable than so-called "just" tuning, wherein III is flatted 13.7 ⁇ .
  • the option of flatting III by 13.7 ⁇ may be preferred because with this voicing the sharping option aligns the 14 th (not the 7 th ) harmonic of I with the 11 th harmonic of III, thus producing a less energetic overtone.
  • Table VI illustrates some options for tuning the maj III interval when it is voiced I, III, when it is voiced III, I, and when it is voiced I * III (skipped octave).
  • Table VII illustrates some options for tuning the I - VIIb interval when it is voiced: I , VIIb; VIIb, I; and I * VIIb.
  • Major III Interval Tuning-voicing-voicing-voicingng Options and Consequences Interval Pair and voicingng Tuning Option Harmonics Aligned Tendency to Lock and Prominence of Overtones Note Augmented Possible Consequences I, III Flat III by 13.7 ⁇ 5 th of I w/4 th of III Very High V May sound III, I “ “ “ “ 5 th “ “ 8 th “ “ High V slightly I * III " " “ 5 th n “ 2 nd “ “ Very High V minor I, III Sharp III by 17.5 ⁇ 14 th of I w/11 th of III Very Low VIIb May sound III, I “ “ “ “ 7 th “ “ 11 th of III Medium “ brightly I * III " " " “ 28 th “ “ 11 th “ None " major I , III Sharp III by 34.3 ⁇ 9 th of I w/7 th of
  • a device or devices together with an algorithm will play synthesized, naturally produced and/or recorded music and will permit the notes of music to be sharped or flatted by specified amounts as chord types with various voicings and spreads are sounded.
  • Expert musicians, music critics, music conductors and the like listen to various optional tuning strategies developed for various styles of music, for example, gospel, blues, nineteenth century classical, modern jazz, and so on, and for various types of ensembles, for example, choral groups, string quartets and so on.
  • Strategies developed from such critical listening are implemented in tuning/blending databases, for example, for each of such styles of music.
  • Such a database will contain tuning and blending strategies for each voicing, including spread voicings, of each chord type.
  • voicings with HI, V and VIIb being the lowest note, and there are quite a few spread versions of these voicings (that is, voicings in which an octave is skipped between adjacent notes of the chord), such as I * III V VIIb and I * III * V VIIb Consequently, there may be as many as 100 voicings of the dom 7 chord, and each is a separate entry in the database.
  • a tuning strategy is provided for each entry in the database. That tuning strategy includes which note is to be held at equal tempered tuning, and the ratios of all notes with respect to the note that is held at equal tempered tuning.
  • the strategy for tuning a dom 7 voiced I * III V VIIb for the blues being sung by a vocal group may be to set I (the root) equal tempered, III 13.6 cents flat with respect to its equal tempered frequency, V 2 cents sharp with respect to its equal tempered frequency, and VIIb 31.2 cents flat with respect to its equal tempered frequency.
  • equal tempered tuning includes equal tempered stretch tuning as previously described.
  • Each tuning/blending database entry also contains a blending strategy, which again may be arrived at, for example, by experts listening to synthesized and/or modified recorded chords.
  • Each blending strategy will indicate how many dB above or below some reference level, for example, equal loudness, the amplitude of each note should be set.
  • There is a control for example, a pedal, to activate and deactivate the blending function. When the blending function is not activated, the volume of each note will be controlled in a conventional manner, for example, by the force applied to the key, a volume setting, or the like.
  • the volume of each note in a combination of sustained notes is set by the instrument to blend the chord, that is, to adjust the amplitudes of the various notes of the chord so that no individual note(s) dominate(s) the sound.
  • the blending device/algorithm takes into account the following parameters in adjusting relative amplitudes of the various notes of the chord which is to be blended. Loudness is the listener's subjective response to the energy and frequency of a note. The psychoacoustics of perceived loudness have been the subject of considerable study, including that leading up to the publication of the equal loudness contours, illustrated in Fig. 3 ("the Physics of Music Instruments", p. 162, 2 nd Ed.).
  • the equal loudness contours may be stored in the instrument and employed in calculations by the instrument to determine the desired amplitudes of the blended notes of a played chord when the blending function is selected on the instrument.
  • voicing of the chord also affects the blending of notes. In general, if two notes are located less than three semitones apart, then their volumes should be substantially equal. Thirds which are internal to a chord can be reduced in volume. Minor sevenths which are internal to a chord and separated from other notes by at least three semitones, and minor sevenths at the top of the chord can be substantially reduced in volume. The volumes of major and minor thirds can be reduced even more when they are within or at the top of a chord and widely separated from other notes.
  • the blending device/algorithm will utilize a table, such as Table VI, containing deviations from, for example, the equal loudness contours, to which the instrument's processor will refer to blend the notes of a played chord once the loudnesses, note positions and voicing have been determined.
  • Table VI a table containing deviations from, for example, the equal loudness contours, to which the instrument's processor will refer to blend the notes of a played chord once the loudnesses, note positions and voicing have been determined.
  • Table VI containing deviations from, for example, the equal loudness contours, to which the instrument's processor will refer to blend the notes of a played chord once the loudnesses, note positions and voicing have been determined.
  • Table VI containing deviations from, for example, the equal loudness contours, to which the instrument's processor will refer to blend the notes of a played chord once the loudnesses, note positions and voicing have been determined.
  • Such a loudness curve may be, for example, an equal loudness contour based upon the frequency and amplitude of the lowest frequency note in the chord and established by interpolation between curves in Fig. 3. The amplitude of each other note in the chord is then set relative to the amplitude for the lowest frequency note.
  • the contents of the equal loudness contours or some other suitable amplitude adjusting algorithm can be stored in a lookup table with an appropriate interpolation engine, with the amplitudes of the notes of the chord being adjusted as dictated by the contents of the table with the aid of the interpolation engine.
  • Table VIII illustrates one method for adjusting the amplitudes of the various notes of several chords voiced in several different ways relative to the equal loudness contour amplitude, v, of a reference note of the chord. Notes of the illustrated chords whose amplitudes are adjusted downward by some number of dB relative to v are indicated, for example, "-2.0" indicating a downward adjustment of amplitude by 2 dB relative to v. This blending of amplitudes will be maintained as long as the chord is sustained or until the blending pedal is released.
  • Table VIII The entries in Table VIII are for the purpose of illustration only. Musicians who are chord blending specialists, for example, barbershop chorus or quartet directors and coaches, and string quartet instructors and advisors, can listen to the suggested blendings in Table VIII and adjust values, or suggest adjustments to values, such as those contained in Table VIII to produce chords with notes that, in their judgment, blend well. Consensus among experts can be used to establish blending values for the notes of various chords voiced in various ways. These consensus values can be incorporated into blending tables, like Table VIII, which are incorporated into instruments constructed according to this invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Telephonic Communication Services (AREA)
  • Channel Selection Circuits, Automatic Tuning Circuits (AREA)
EP04012924A 1998-10-29 1999-10-29 Stimmen von Noten in einem Zusammenklang Withdrawn EP1465151A3 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10615098P 1998-10-29 1998-10-29
US106150P 1998-10-29
EP99956738A EP1145220A1 (de) 1998-10-29 1999-10-29 Verfahren und vorrichtung zur erzeugung von verschiebbarer temperierter stimmung

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP99956738.1 Division 1999-10-29
EP99956738A Division EP1145220A1 (de) 1998-10-29 1999-10-29 Verfahren und vorrichtung zur erzeugung von verschiebbarer temperierter stimmung

Publications (2)

Publication Number Publication Date
EP1465151A2 true EP1465151A2 (de) 2004-10-06
EP1465151A3 EP1465151A3 (de) 2009-07-08

Family

ID=32852299

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04012924A Withdrawn EP1465151A3 (de) 1998-10-29 1999-10-29 Stimmen von Noten in einem Zusammenklang

Country Status (1)

Country Link
EP (1) EP1465151A3 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248119A (en) * 1978-11-13 1981-02-03 Nippon Gakki Seizo Kabushiki Kaisha Electronic musical instrument providing chord tones in just intonation
US4498363A (en) * 1982-02-13 1985-02-12 Victor Company Of Japan, Ltd. Just intonation electronic keyboard instrument
JPH03241397A (ja) * 1990-02-20 1991-10-28 Yamaha Corp 楽音周波数情報発生装置
US5442129A (en) * 1987-08-04 1995-08-15 Werner Mohrlock Method of and control system for automatically correcting a pitch of a musical instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248119A (en) * 1978-11-13 1981-02-03 Nippon Gakki Seizo Kabushiki Kaisha Electronic musical instrument providing chord tones in just intonation
US4498363A (en) * 1982-02-13 1985-02-12 Victor Company Of Japan, Ltd. Just intonation electronic keyboard instrument
US5442129A (en) * 1987-08-04 1995-08-15 Werner Mohrlock Method of and control system for automatically correcting a pitch of a musical instrument
JPH03241397A (ja) * 1990-02-20 1991-10-28 Yamaha Corp 楽音周波数情報発生装置

Also Published As

Publication number Publication date
EP1465151A3 (de) 2009-07-08

Similar Documents

Publication Publication Date Title
US6777607B2 (en) Moving tempered music scale method and apparatus
JP2909085B2 (ja) 音高制御システム
JPH09508982A (ja) 純正律調律
US5202526A (en) Apparatus for interpreting written music for its performance
Jaatinen et al. Octave stretching phenomenon with complex tones of orchestral instruments
US6924426B2 (en) Automatic expressive intonation tuning system
EP1465151A2 (de) Stimmen von Noten in einem Zusammenklang
US3051032A (en) Single manual double countermelody electrical musical instrument
US6657115B1 (en) Method for transforming chords
US6323408B1 (en) Music creation
Erlich Tuning, tonality, and twenty-two-tone temperament
US7807908B1 (en) Method for automatic real-time variable performance intonation of chromatic instruments
Sankey et al. A consonance-based approach to the harpsichord tuning of Domenico Scarlatti
Rasch Farey systems of musical intonation
Brook Orchestration and pitch precision in the orchestral music of marc sabat
Lawrence The diatonic scale: More than meets the ear
Sethares Adaptive tunings
Walker Constructus Profanem
Gunther et al. Tuning, Intonation, and Temperament—Choosing Frequencies for Musical Notes
Pierce 14. Consonance and Scales
White Potential mathematical models for the Western musical scale: A historical and empirical comparison
Mueller MUSC 1100: Textbook
Lindley Some Thoughts Concerning the Effects of Tuning on Selected Musical Works (From Landini to Bach)
Denton et al. The History of Musical Tuning and Temperament during the Classical and Romantic Periods
Hooker In Search of the Perfect Musical Scale

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1145220

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 20060331

RIC1 Information provided on ipc code assigned before grant

Ipc: G10H 1/44 20060101ALI20090316BHEP

Ipc: G10H 1/38 20060101ALI20090316BHEP

Ipc: G10H 3/18 20060101ALI20090316BHEP

Ipc: G10H 3/12 20060101AFI20090316BHEP

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

AKX Designation fees paid

Designated state(s): DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100109