EP1462614B1 - Turbine thermique à écoulement axial - Google Patents
Turbine thermique à écoulement axial Download PDFInfo
- Publication number
- EP1462614B1 EP1462614B1 EP04101054.7A EP04101054A EP1462614B1 EP 1462614 B1 EP1462614 B1 EP 1462614B1 EP 04101054 A EP04101054 A EP 04101054A EP 1462614 B1 EP1462614 B1 EP 1462614B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rotor
- blade
- blades
- density
- turbomachine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910045601 alloy Inorganic materials 0.000 claims description 11
- 239000000956 alloy Substances 0.000 claims description 11
- 229910021324 titanium aluminide Inorganic materials 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 10
- 229910000831 Steel Inorganic materials 0.000 claims description 8
- 229910000765 intermetallic Inorganic materials 0.000 claims description 8
- 239000010959 steel Substances 0.000 claims description 8
- OQPDWFJSZHWILH-UHFFFAOYSA-N [Al].[Al].[Al].[Ti] Chemical compound [Al].[Al].[Al].[Ti] OQPDWFJSZHWILH-UHFFFAOYSA-N 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 239000007769 metal material Substances 0.000 claims 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 229910000601 superalloy Inorganic materials 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 208000016261 weight loss Diseases 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 2
- 229910004349 Ti-Al Inorganic materials 0.000 description 2
- 229910004692 Ti—Al Inorganic materials 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000011151 fibre-reinforced plastic Substances 0.000 description 2
- 239000001995 intermetallic alloy Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- 229910010038 TiAl Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910006281 γ-TiAl Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/005—Sealing means between non relatively rotating elements
- F01D11/006—Sealing the gap between rotor blades or blades and rotor
- F01D11/008—Sealing the gap between rotor blades or blades and rotor by spacer elements between the blades, e.g. independent interblade platforms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/30—Fixing blades to rotors; Blade roots ; Blade spacers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/50—Intrinsic material properties or characteristics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/606—Directionally-solidified crystalline structures
Definitions
- the invention relates to the field of power plant technology. It relates to an axial flow thermal turbomachine according to the preamble of claim 1, which has a reduced rotor weight compared to the known prior art.
- Thermal turbomachinery As high-pressure compressor for gas turbines or turbines consist essentially of a rotor equipped with blades and a stator, are hung in the vanes. The blades and vanes each have an airfoil and a blade root. To be able to fasten the blades on the rotor or in the stator, grooves are inserted in the stator and on the rotor shaft. In these grooves, the feet of the guide vanes and blades are inserted and locked there.
- the fixed guide vanes have the task of directing the flow of the compressed or the gaseous medium to be relaxed on the rotating rotor blading so that the energy conversion takes place with the best possible efficiency.
- blades in one piece from a single material for. B. stainless steel for gas turbine compressor or a nickel-based superalloy for gas turbines to produce and to equip with these similar blades a row of blades.
- Such blades are hereinafter referred to as conventional blades.
- the average mass of a row of blades is limited by the carrying capacity of the rotor.
- a rotor with integral blading in particular for an engine, are circumferentially arranged on the rotor blades, wherein the rotor blade to reduce vibrations, a metallic blade root, a metallic blade leaf portion, at least part of the Blade leading edge and the adjoining portion of the blade surface, and having a blade made of fiber reinforced plastic.
- the attachment of the blade made of plastic to the metallic blade section by gluing / riveting or by clamping takes place.
- Out DE 14 26 816 A1 is an axial turbomachine with a compressor blade ring in which Verguss sapll GmbHe of casting resin or aluminum or Al alloys are arranged between adjacent blades known. By casting the spaces between the blade roots, the circumferential distance should be kept exactly as well as materials and production times saved.
- the aim of the invention is to avoid the mentioned disadvantages of the prior art.
- the invention is based on the object to develop a thermal turbomachine, in which due to a reduced weight, the life of the rotor is increased.
- this object is achieved in a thermal turbomachine according to the preamble of claim 1, characterized in that the intermediate pieces between the blades of a blade row consist of intermetallic compounds.
- the advantages of the invention are that on the one hand, the weight of the rotor is reduced, and on the other hand, the brittleness of the intermetallic spacers no increased risk for the operation of the machine means.
- the intermediate pieces consist of an intermetallic ⁇ -TiAl compound or an intermetallic orthorhombic TiAl compound, because this inventive use of material leads to a considerable weight reduction of the rotor.
- the specific gravity of titanium-aluminide intermetallic compounds is only about 50% of that of stainless Cr-Ni-W steel.
- FIGURE shows a cross section through the rotor according to the invention of a high-pressure compressor for a gas turbine.
- Fig. 1 shows a cross section through a blade row of a rotor 1 for a high-pressure compressor of a gas turbine.
- the rotor 1 is surrounded by a stator 2.
- blades 3, 3 ' are mounted, while in the stator 2 vanes 5 are mounted.
- the blades 3, 3 ', 5 are exposed to a temperature of approximately 600 ° C. for several thousand hours at a pressure of approximately 32 bar.
- the shaft of the rotor 1 is also made of steel.
- the density of steel is about 7.9 g / cm 3 .
- intermediate pieces 4 are respectively mounted in the circumferential groove of the rotor 1 in a blade row of the rotor 1.
- these intermediate pieces 4 are made of an intermetallic compound, here of a ⁇ -titanium-aluminide compound.
- This intermetallic compound used for the production of the intermediate pieces 4 has the following chemical composition (in% by weight): Ti (30.5-31.5) Al- (8.9-9.5) W- (0.3-0.4) Si.
- Titanium-metal intermetallic compounds with aluminum have some interesting properties that make them attractive as engineering materials in the medium and higher temperature range. These include their lower compared to superalloys and lower than stainless steels. However, their technical usability often stands in the way of their brittleness.
- the ⁇ -titanium-aluminide intermetallic compound described above is characterized by about 50% lower density than the steel used in this embodiment for the rotor and the blades. Furthermore, it has an E-modulus at room temperature of 171 GPa and a thermal conductivity ⁇ of 24 W / mK.
- Table 1 compares further physical properties of the two alloys. Table 1: Physical properties of the different materials Density in g / cm 3 Thermal expansion coefficient in K -1 ⁇ -Ti-Al 4 10x10 -6 Stainless steel 7.9 18.6 x 10 -6
- the weight reduction of the inventive rotor has an advantageous effect on increasing the life of the machine.
- intermetallic spacers is carried out in a known manner by casting, hot-isostatic pressing and heat treatment with a minimum of mechanical post-processing.
- the intermediate piece 4 of the high-pressure compressor may, for example, also be made of a known intermetallic orthorhombic titanium-aluminide alloy with a density of 4.55 g / cm 3 .
- Orthorhombic titanium aluminide alloys are based on the ordered compound Ti 2 AlNb and have the following chemical composition: Ti (22-27) Al- (21-27) Nb.
- Ti (22-27) Al- (21-27) Nb The inventive use of a titanium high-temperature alloy, which has, for example, the following chemical composition (in% by weight): 0.06 C, 0.4 Si, 5.8 Al, 4 Sn, 4 Zr, 0.5 Mo, ⁇ 0.05 Fe, 0.11 O, ⁇ 0.03 N, ⁇ 0.006 H, remainder Ti, is conceivable.
- the invention not only for high-pressure compressor rotors, but also for turbine rotors with turbine blades made of a superalloy, for example a nickel-based superalloy, in which the intermediate pieces between the blades, for example of a ⁇ -titanium-aluminide intermetallic alloy or an intermetallic orthorhombic titanium-aluminide alloy.
- a superalloy for example a nickel-based superalloy
- the intermediate pieces between the blades for example of a ⁇ -titanium-aluminide intermetallic alloy or an intermetallic orthorhombic titanium-aluminide alloy.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Claims (4)
- Turbomachine thermique à écoulement axial comprenant un rotor (1) en matériau métallique ayant une première densité (D1), des aubes mobiles (3, 3') et des pièces intermédiaires (4) étant montées en alternance dans une rainure périphérique, lesdites pièces intermédiaires (4) se composant d'un matériau ayant une deuxième densité (D2) inférieure à la première densité (D1), caractérisée en ce que le matériau de deuxième densité (D2) est un composé intermétallique.
- Turbomachine selon la revendication 1, caractérisée en ce que le composé intermétallique est un alliage de γ-titane-aluminiure ou un alliage orthorhombique de titane/aluminiure.
- Turbomachine selon la revendication 2, caractérisée en ce que l'alliage de γ-titane-aluminiure présente la composition chimique suivante (indications en pourcentages en poids) : Ti-(30,5-31,5)Al-(8,9-9,5)W-(0,3-0,4)Si.
- Turbomachine selon l'une quelconque des revendications 1 à 3, caractérisée en ce que la turbomachine est un compresseur haute pression d'une turbine à gaz avec un rotor (1) qui se compose essentiellement d'un acier inoxydable Cr-Ni.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10313490 | 2003-03-26 | ||
DE10313490A DE10313490A1 (de) | 2003-03-26 | 2003-03-26 | Axial durchströmte thermische Turbomaschine |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1462614A2 EP1462614A2 (fr) | 2004-09-29 |
EP1462614A3 EP1462614A3 (fr) | 2006-11-15 |
EP1462614B1 true EP1462614B1 (fr) | 2015-01-28 |
Family
ID=32798101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04101054.7A Expired - Lifetime EP1462614B1 (fr) | 2003-03-26 | 2004-03-15 | Turbine thermique à écoulement axial |
Country Status (4)
Country | Link |
---|---|
US (1) | US7037079B2 (fr) |
EP (1) | EP1462614B1 (fr) |
JP (1) | JP2004293549A (fr) |
DE (1) | DE10313490A1 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE502006003197D1 (de) * | 2005-07-12 | 2009-04-30 | Alstom Technology Ltd | Keramische wärmedämmschicht |
DE102009030398A1 (de) * | 2009-06-25 | 2010-12-30 | Mtu Aero Engines Gmbh | Verfahren zum Herstellen und/oder Reparieren einer Schaufel für eine Strömungsmaschine |
WO2014093826A2 (fr) | 2012-12-14 | 2014-06-19 | United Technologies Corporation | Coulage à multiples injections |
SG11201503276PA (en) | 2012-12-14 | 2015-06-29 | United Technologies Corp | Hybrid turbine blade for improved engine performance or architecture |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE513407C (de) | 1926-11-02 | 1930-11-27 | Conservenfabrik Und Trocknungs | Verfahren zum Trocknen von Fruchtsaeften |
US2327839A (en) * | 1940-03-26 | 1943-08-24 | Bbc Brown Boveri & Cie | Turbine construction |
GB750397A (en) * | 1951-12-10 | 1956-06-13 | Power Jets Res & Dev Ltd | Damped turbine and dynamic compressor blades |
US2857134A (en) * | 1954-03-17 | 1958-10-21 | Parsons C A & Co Ltd | Assembly of blades for turbines and the like |
DE1426816A1 (de) * | 1963-07-02 | 1969-03-13 | Licentia Gmbh | Verfahren zur Herstellung eines Schaufelkranzes einer Axialstroemungsmaschine,insbesondere eines Axialverdichters |
JPS57168005A (en) * | 1981-04-10 | 1982-10-16 | Hitachi Ltd | Rotor structue for axial machines |
US4743166A (en) * | 1984-12-20 | 1988-05-10 | General Electric Company | Blade root seal |
DE3789776T2 (de) * | 1986-02-05 | 1994-08-18 | Hitachi Ltd | Hitzebeständiger Stahl und daraus hergestellte Gasturbinenteile. |
EP0513407B1 (fr) * | 1991-05-13 | 1995-07-19 | Asea Brown Boveri Ag | Procédé de fabrication d' une aube de turbine |
US5906096A (en) * | 1992-08-06 | 1999-05-25 | Hitachi, Ltd. | Compressor for turbine and gas turbine |
GB9606963D0 (en) * | 1996-04-02 | 1996-06-05 | Rolls Royce Plc | A root attachment for a turbomachine blade |
DE19751129C1 (de) | 1997-11-19 | 1999-06-17 | Mtu Muenchen Gmbh | FAN-Rotorschaufel für ein Triebwerk |
DE10110102C2 (de) | 2000-12-18 | 2002-12-05 | Deutsch Zentr Luft & Raumfahrt | Rotorschaufel |
-
2003
- 2003-03-26 DE DE10313490A patent/DE10313490A1/de not_active Withdrawn
-
2004
- 2004-03-15 EP EP04101054.7A patent/EP1462614B1/fr not_active Expired - Lifetime
- 2004-03-22 JP JP2004083409A patent/JP2004293549A/ja not_active Withdrawn
- 2004-03-25 US US10/808,493 patent/US7037079B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US7037079B2 (en) | 2006-05-02 |
JP2004293549A (ja) | 2004-10-21 |
DE10313490A1 (de) | 2004-10-14 |
US20060062674A1 (en) | 2006-03-23 |
EP1462614A2 (fr) | 2004-09-29 |
EP1462614A3 (fr) | 2006-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1447524B1 (fr) | Aube hybride pour turbomachines thermiques | |
EP1322838B1 (fr) | Aube de turbomachine et turbomachine | |
EP1462617B1 (fr) | Aubage pour une turbomachine axiale | |
EP1389265B1 (fr) | Turbine à gaz | |
EP3999716B1 (fr) | Aube de rotor pour une turbomachine, module de turbine associé et utilisation des mêmes | |
DE112009002015B4 (de) | Turbolader und Schaufellagerring hierfür | |
CH702553B1 (de) | Turbinenleitapparatbaugruppe. | |
DE10016068C2 (de) | Dampfturbine | |
EP1735525A1 (fr) | Turbomachine | |
EP3034788B1 (fr) | Aube de compresseur d'une turbine a gaz | |
WO2016087214A1 (fr) | Aube mobile de turbine, rotor associé et turbomachine | |
EP1462614B1 (fr) | Turbine thermique à écoulement axial | |
DE102015221324A1 (de) | Turbinenrotor für eine Niederdruckturbine eines Gasturbinensystems | |
DE102012015137A1 (de) | Niedermodulige Gasturbinenverdichterschaufel | |
EP4077882B1 (fr) | Aube pour une turbomachine | |
WO2010052052A1 (fr) | Rotor pour une turbomachine | |
DE102006010863B4 (de) | Turbomaschine, insbesondere Verdichter | |
EP1895094B1 (fr) | Rotor avec cordon de soudure refroidi par tourbillon | |
WO2021013282A1 (fr) | Aube mobile pour une turbomachine, module de turbine associé et utilisation de celui-ci | |
EP3450583B1 (fr) | Alliage de nickel haute limite élastique à durcissement par précipitation augmentée | |
DE202023106979U1 (de) | Leitschaufelcluster für eine Strömungsmaschine | |
DE102019208666A1 (de) | Rotoren für hochdruckverdichter und niederdruckturbine eines getriebefantriebwerks sowie verfahren zu ihrer herstellung | |
EP1956190B1 (fr) | Profil pour une aube de turbine et installation de turbine | |
WO2015082624A1 (fr) | Roue de compresseur |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20070426 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20070711 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502004014820 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F01D0005300000 Ipc: F01D0005280000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01D 5/30 20060101ALI20140917BHEP Ipc: F01D 5/28 20060101AFI20140917BHEP Ipc: F01D 5/02 20060101ALI20140917BHEP Ipc: F01D 11/00 20060101ALI20140917BHEP |
|
INTG | Intention to grant announced |
Effective date: 20141017 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: DE Ref legal event code: R081 Ref document number: 502004014820 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 502004014820 Country of ref document: DE Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004014820 Country of ref document: DE Effective date: 20150305 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 708339 Country of ref document: AT Kind code of ref document: T Effective date: 20150315 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20150128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150128 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150128 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150128 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150128 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150128 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004014820 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150128 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150128 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150315 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150128 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150128 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150128 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150128 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150128 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20151130 |
|
26N | No opposition filed |
Effective date: 20151029 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150315 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150128 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150331 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 708339 Country of ref document: AT Kind code of ref document: T Effective date: 20150315 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004014820 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 502004014820 Country of ref document: DE Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150315 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170322 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20040315 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170322 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150331 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150528 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170727 AND 20170802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150128 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004014820 Country of ref document: DE Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004014820 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180315 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180315 |