EP1461511B1 - Treibladungszünderelement - Google Patents
Treibladungszünderelement Download PDFInfo
- Publication number
- EP1461511B1 EP1461511B1 EP02796159A EP02796159A EP1461511B1 EP 1461511 B1 EP1461511 B1 EP 1461511B1 EP 02796159 A EP02796159 A EP 02796159A EP 02796159 A EP02796159 A EP 02796159A EP 1461511 B1 EP1461511 B1 EP 1461511B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cartridge
- propellant
- filament
- substrate
- terminals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003380 propellant Substances 0.000 title claims abstract description 37
- 230000000977 initiatory effect Effects 0.000 title description 2
- 239000000463 material Substances 0.000 claims abstract description 29
- 239000011435 rock Substances 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims description 18
- 238000002485 combustion reaction Methods 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 229910002804 graphite Inorganic materials 0.000 claims description 2
- 239000010439 graphite Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 description 13
- 238000005422 blasting Methods 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 7
- 239000003999 initiator Substances 0.000 description 6
- 239000004411 aluminium Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000002360 explosive Substances 0.000 description 5
- -1 ore Substances 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 241001354471 Pseudobahia Species 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000005478 sputtering type Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21C—MINING OR QUARRYING
- E21C37/00—Other methods or devices for dislodging with or without loading
- E21C37/06—Other methods or devices for dislodging with or without loading by making use of hydraulic or pneumatic pressure in a borehole
- E21C37/14—Other methods or devices for dislodging with or without loading by making use of hydraulic or pneumatic pressure in a borehole by compressed air; by gas blast; by gasifying liquids
Definitions
- This invention is concerned generally with a customized low energy method of breaking rock in a controlled manner.
- rock includes rock, ore, coal, concrete and any similar hard mass, whether above or underground, which is difficult to break or fracture. It is to be understood that “rock” is to be interpreted broadly.
- propellant is to be interpreted broadly to include a blasting agent, propellant, gas-evolving substance, explosive or similar means which, once initiated, generates high pressure jet material typically at least partly in gaseous form. Propellants of this nature are known in the art. "Blasting agent” and “propellant” are used interchangeably in this specification.
- the invention provides apparatus for breaking rock which includes a cartridge which forms an enclosure, a propellant inside the enclosure, and at least one element which is electrically energisable, characterized in that it is made from inert material exposed to the propellant which, when energised, initiates combustion of the propellant to release high pressure material inside the cartridge.
- inert material means a material which, unless energised, cannot give rise to a spark or other phenomenon which can initiate the blasting agent.
- the element may be in the nature of a filament or electrical resistor.
- the element may be made from any appropriate material but a preferred material is carbon, eg. in the form of graphite.
- the element may be treated in any appropriate way to enhance the efficiency with which the propellant is initiated.
- the element may be dipped in or coated with aluminium powder or any similar agent which gives rise to a sputtering effect when the element is energised.
- the element may be in the nature of a fusible link ie. a portion of the element may be disintegrate when an electric current in excess of a predetermined amount is passed through the element. Disintegration of the element gives rise to the generation of high energy and relatively small particles which are propelled into the propellant thereby to initiate combustion of the blasting agent.
- This approach should be contrasted with a technique wherein the element in the form of a filament wire is heated by the passage of electric current to a higher temperature at which the propellant is initiated but wherein the filament remains integral and does not disintegrate due to the direct effect of the electric current passing through the filament (see for instance WO- 01/65199).
- the filament may be coated to prevent the propellant, or moisture in the propellant, from reacting or fusing with the material contained in the filament.
- the filament may for example be a wire or band made from aluminium, nickel-chrome, carbon or a similar material, or a resistor such as a ceramic metal device which, when energized, does not fuse or disintegrate but instead, remains integral despite dissipating sufficient heat to initiate combustion of the propellant.
- the cartridge may include a base and a side wall which extends from the base.
- the side wall may be generally cylindrical.
- the cartridge may be made from a malleable material which, in this sense, indudes a material which is capable of plastic deformation, without fracture, at least to a predetermined extent.
- the cartridge is preferably made from a plastics material eg. polypropylene, polyethylene or the like.
- a plastics material eg. polypropylene, polyethylene or the like.
- the scope of the invention is not limited in this regard.
- An upper end of the cartridge ie. an end which opposes the base, may be domed and the filament may be located at the upper end.
- the filament may be relatively small and thus, when energized, cause the production of a localized relatively high energy hot spot.
- the filament may be elongate so that, when energized, the propellant is initiated over a fairly substantial length or area or at a plurality of points.
- the electrical leads may be connected to terminals to facilitate connection of the leads to a control unit.
- the terminals are preferably on an outer side of the cartridge.
- the terminals may be covered with a removable closure.
- the terminals may be covered with a frangible or breakable closure.
- the closure is designed to protect the terminals from damage or exposure prior to use of the cartridge.
- the element, or elements, as the case may be, with suitable leads or conductors to the elements and, where applicable control devices such as timing circuits and capacitors or other energy sources for operating the timing circuits, may be mounted on a suitable substrate or motherboard, to facilitate handling of these components and assembly thereof together with the remainder of the cartridge.
- the invention also extends to an element of the aforementioned kind, and to a substrate which carries the element and, where required, one or more components for use with, or required to energize, the element.
- FIG. 1 of the accompanying drawings illustrates a hole 10 which is drilled into a rock mass 12 from a face 14 using conventional drilling equipment.
- a cartridge 16 is loaded into the hole.
- the cartridge has a base 18 and a generally cylindrical wall 20 which extends from the base and which terminates at an upper end, remote from the base, in a rounded shape 22.
- the cartridge is made from a plastics material using injection techniques which are known in the art.
- the cartridge is for example made from a high density plastics material such as high density polypropylene.
- the cartridge It is desirable to form the cartridge from a malleable material which enables the cartridge to be plastically deformed, without rupture, at least to a predetermined extent eg. of the order of 10%, or more.
- the cartridge forms an enclosure for a propellant material 24 which is of known composition.
- the propellant is loaded into the cartridge under factory conditions using techniques which are known in the art.
- An initiator 26 is located at an upper end of the cartridge.
- the initiator has an element when, in this case, is in the form of a filament made from inert material such as carbon wire which, preferably, is formed into a coil or with a zig zag configuration.
- the filament extends from two leads 30 and 32 which pass through the wall of the cartridge so that filament is exposed, in the interior of the cartridge, to the propellant 24.
- the leads 30 and 32 extend to a blasting control unit, not shown, of a type which is known in the art.
- Stemming 40 is placed into the hole from the rock face covering the cartridge to a desired extent and is consolidated by being tamped in position.
- the filament is energized by sending a signal of a determined energy content through the wires 30 and 32 to the filament.
- the filament is thereby heated and glows creating, in effect, a localized hot spot which transfers sufficient energy to the propellant, in the immediate vicinity of the filament, to cause ignition of the propellant.
- the propellant when ignited, causes the release of high pressure jet material which is substantially in gaseous form.
- This material produces a shock wave which is used to fracture the rock 12, typically with an initial fracture being established at the bottom 40 of the hole 10.
- the carbon filament 26 is, as noted, inert and consequently it is possible to provide the cartridge 16 in a form which is ready for use in the sense that the propellant 24 can be loaded into the cartridge even though the initiator 26 is already fixed to the cartridge. In many other instances it is not possible to provide the cartridge, loaded with propellant, if the initiator is already fixed to the cartridge for it is possible inadvertently to energise the initiator and thus cause unwanted combustion of the propellant. Due to the fact that the filament is made from an inert material it is believed that this danger is effectively eliminated.
- the filament may be coated with aluminium paint which, when heated, increases the quantity of energy which is released and, depending on circumstances, can give rise to a sputtering effect which enhances the efficiency with which the propellant is ignited.
- the filament could alternatively be in the form of a wire or band and could be made from aluminium or nickel-chrome. These materials may be of a kind which, when heated by electric current, fuse and disintegrate. In a variation use is made of a suitable resistor, made for example from a ceramic/metal composition which, when heated, glows but does not spatter or disintegrate, and which provides the necessary "hot spot" to initiate combustion.
- the arrangement shown in Figure 2 is similar in many respect to what is shown in Figure 1 and where applicable like reference numerals are used to designate like components.
- the filament initiator 26 is, however, in this case located at a position more or less midway between the base 18 and the rounded upper end of the cartridge.
- the leads 30 and 32 extend from an upper entry point to the filament and are embedded in the wall 20 of the cartridge. The filament 26 is fired in the same way as what has been described in connection with Figure 1.
- the filament is not localized in the way shown in Figures 1 and 2 but, instead, is elongate.
- the filament extends from end points of wires 30 and 32 which, as is the case with the Figure 2 embodiment, are embedded in the side wall 20.
- the filament is shaped into the form of a ring which extends around an internal surface of the wall 20. Consequently, when the filament is initiated, combustion of the propellant 24 takes place over an extended length or area or, otherwise put, at a plurality of points.
- the filament 26 may be designed and operated so that when energized it is heated to glow and cause a localized temperature increase of sufficient magnitude to initiate the blasting agent.
- the filament may be in the form of a fusable link such that a region of the filament is heated to disintegration point by the passage of electrical current. Components of the filament which are released upon disintegration are extremely hot and a sputtering-type action results as the filament disintegrates.
- the filament may be coated with an inert material such as a suitable lacquer, eg. of nitrocellulose.
- Figure 4 is an enlarged view in cross section of an upper end 22 of a cartridge which may be of the type shown in any one of Figures 1 to 3.
- the leads 30 and 32 are, as has been described, embedded in the wall 20 of the cartridge and terminate in relatively rigid terminals 50 and 52 respectively, which project outwardly from the cartridge.
- the terminals are covered by means of a cap 54 which protects the terminals during transport and storage of the cartridge. If the terminals are to be accessed to enable electrical connections to be made to the terminals then the cap is removed.
- the cap may for example be threadedly engaged with the cartridge. Alternatively the cap may be formed substantially integrally with the cartridge or be secured thereto in a manner which inhibits removal of the cap.
- the cap includes a lid 56 which is breakable, or which can be tom from the remainder along a line of weakness, not shown, to expose the terminals so that electrical connections can be made thereto.
- Figure 5 illustrates another modification which can be made to the aforementioned principles.
- Figure 5 shows a cartridge 10 which is filled with propellant 24.
- a substrate 60 is located in the cartridge.
- the substrate is made from an inexpensive non-electrically conductive material, and may be in the nature of a printed circuit board, be formed from a suitable plastic material, or the like.
- the substrate may be rigid or flexible.
- Discrete components may be mounted directly to the substrate using techniques which are known in the electronics art. Alternatively components may be formed on the substrate using deposition techniques similar to those employed in the manufacture of printed circuit boards, integrated circuits and the like.
- a filament 26 is formed on, or is mounted to, the substrate and leads 62 are formed connecting the substrate to a timing circuit 64.
- the circuit is also formed on or bonded to the substrate and includes leads 66 which extend to terminals 68.
- the conductors 30 and 32 which are inherently more robust than the leads 62 and 64 on the substrate, are directly connected to the terminals.
- the substrate may be of any appropriate shape or size so that when the substrate is positioned inside the cartridge the filament 26 is substantially automatically positioned at a desired location inside the cartridge.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Air Bags (AREA)
- Disintegrating Or Milling (AREA)
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
Claims (8)
- Vorrichtung zum Brechen von Fels, aufweisend eine Kartusche (16), welche ein Gehäuse bildet, ein Treibladungsmittel (24) innerhalb des Gehäuses, und zumindest ein Element (26), welches elektrisch mit Energie versorgbar ist, dadurch gekennzeichnet, dass das Element aus einem inertem Material hergestellt ist, welches, wenn es mit Energie versorgt wird, eine Verbrennung des Treibladungsmittels initiiert, um in der Kartusche Hochdruckmaterial freizusetzen.
- Vorrichtung nach Anspruch 1, wobei das Element aus einem Material hergestellt ist, welches aus Kohlenstoff, Graphit, Aluminium und Nickel-Chrom hergestellt ist.
- Vorrichtung nach Anspruch 1 oder 2, wobei die Kartusche aus einem schmiedbaren Material hergestellt ist und eine zylindrische Seitenwandung (20), eine Basis (18) und ein domförmiges Ende (22) aufweist, welches der Basis gegenüber liegt.
- Vorrichtung nach einem der Ansprüche 1 bis 3, aufweisend elektrische Leitungen (30, 32), die sich ausgehend von Anschlüssen auf einer Außenseite der Kartusche zu dem Element erstrecken.
- Vorrichtung nach Anspruch 4, aufweisend einen entfernbaren Verschluss (54), welcher die Anschlüsse abdeckt.
- Vorrichtung nach einem der Ansprüche 1 bis 5, aufweisend ein Substrat (60), auf welchem das Substrat angebracht ist, und welches in dem Treibladungsmittel eingebettet ist.
- Vorrichtung nach Anspruch 6, aufweisend eine Steuereinrichtung (64) zum Steuern des Betriebs des Elements auf dem Substrat.
- Vorrichtung nach einem der Ansprüche 1 bis 7, wobei das Element (26) in Form eines länglichen Filaments (26) vorliegt.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ZA200105466 | 2002-01-03 | ||
ZA200105466 | 2002-01-03 | ||
PCT/ZA2002/000212 WO2003056133A1 (en) | 2002-01-03 | 2002-12-17 | Element for initiating propellant |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1461511A1 EP1461511A1 (de) | 2004-09-29 |
EP1461511B1 true EP1461511B1 (de) | 2005-10-26 |
Family
ID=25589223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02796159A Expired - Lifetime EP1461511B1 (de) | 2002-01-03 | 2002-12-17 | Treibladungszünderelement |
Country Status (7)
Country | Link |
---|---|
US (1) | US20060096487A1 (de) |
EP (1) | EP1461511B1 (de) |
AT (1) | ATE307960T1 (de) |
AU (2) | AU2002360870A1 (de) |
CA (1) | CA2471716A1 (de) |
DE (1) | DE60206965T2 (de) |
WO (1) | WO2003056133A1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2014347703A1 (en) * | 2013-11-05 | 2016-06-09 | Fowlds 3 Limited | A cartridge |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2995987A (en) * | 1954-06-18 | 1961-08-15 | John A Fitzpatrick | Aluminum-chlorine detonator catalyst for hydrocarbon propellant |
DE1195696B (de) * | 1964-01-11 | 1965-07-01 | Dynamit Nobel Ag | Einrichtung zum Traenkungsschiessen |
FR1540287A (fr) * | 1966-12-26 | 1968-09-27 | Inst Francais Du Petrole | Dispositif pour l'explosion de charges dans un milieu liquide |
US3618520A (en) * | 1969-02-04 | 1971-11-09 | Asahi Chemical Ind | Method of cracking concrete |
US5765923A (en) * | 1992-06-05 | 1998-06-16 | Sunburst Excavation, Inc. | Cartridge for generating high-pressure gases in a drill hole |
US5612506A (en) * | 1994-10-26 | 1997-03-18 | General Dynamics Land Systems, Inc. | Method of and apparatus for generating a high pressure gas pulse using fuel and oxidizer that are relatively inert at ambient conditions |
KR100261458B1 (ko) * | 1995-07-24 | 2000-07-01 | 미나미 이조 | 방전파괴장치및방전파괴방법 |
EP1172630A1 (de) * | 1995-07-24 | 2002-01-16 | Hitachi Zosen Corporation | Vorrichtung zum Zerstören mittels elektrischer Entladung und Herstellungsverfahren dafür |
CA2228646A1 (en) * | 1995-08-04 | 1997-02-20 | John David Watson | Method and apparatus for controlled small-charge blasting of hard rock and concrete by explosive pressurization of the bottom of a drill hole |
AUPQ591000A0 (en) * | 2000-02-29 | 2000-03-23 | Rockmin Pty Ltd | Cartridge shell and cartridge for blast holes and method of use |
-
2002
- 2002-12-17 US US10/500,704 patent/US20060096487A1/en not_active Abandoned
- 2002-12-17 EP EP02796159A patent/EP1461511B1/de not_active Expired - Lifetime
- 2002-12-17 WO PCT/ZA2002/000212 patent/WO2003056133A1/en not_active Application Discontinuation
- 2002-12-17 DE DE60206965T patent/DE60206965T2/de not_active Expired - Lifetime
- 2002-12-17 AU AU2002360870A patent/AU2002360870A1/en not_active Abandoned
- 2002-12-17 AT AT02796159T patent/ATE307960T1/de not_active IP Right Cessation
- 2002-12-17 CA CA002471716A patent/CA2471716A1/en not_active Abandoned
-
2008
- 2008-12-15 AU AU2008258138A patent/AU2008258138A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
AU2008258138A1 (en) | 2009-01-22 |
DE60206965D1 (de) | 2005-12-01 |
DE60206965T2 (de) | 2006-08-03 |
US20060096487A1 (en) | 2006-05-11 |
ATE307960T1 (de) | 2005-11-15 |
AU2002360870A1 (en) | 2003-07-15 |
WO2003056133A1 (en) | 2003-07-10 |
EP1461511A1 (de) | 2004-09-29 |
CA2471716A1 (en) | 2003-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4944225A (en) | Method and apparatus for firing exploding foil initiators over long firing lines | |
US5436791A (en) | Perforating gun using an electrical safe arm device and a capacitor exploding foil initiator device | |
US2776623A (en) | Closure device | |
EP0601880A2 (de) | Detonator für Bohrlochperforator mit explodierender Folie | |
EP0645599B1 (de) | Elektrothermische, chemische Patrone | |
CN1080873C (zh) | 破坏装置 | |
EP1461511B1 (de) | Treibladungszünderelement | |
RU2151364C1 (ru) | Электротермический химический патрон | |
ZA200405234B (en) | Element for initiating propellant. | |
US11698245B2 (en) | Stackable propellant module for gas generation | |
US20060027123A1 (en) | Explosive pressure wave concentrator | |
US2883931A (en) | Detonator | |
US6318268B1 (en) | Demolishing apparatus using discharge impulse | |
JP3328184B2 (ja) | 破壊方法 | |
CA2215239C (en) | Electrothermal chemical cartridge | |
US2783712A (en) | Re-utilisable blasting apparatus assembly applicable for blasting in coal mines | |
JP3328185B2 (ja) | 破壊方法 | |
JP3688203B2 (ja) | 破壊方法 | |
JPH10266588A (ja) | 破壊装置および破壊方法 | |
ZA200405233B (en) | Explosive pressure wave concentrator. | |
US20050132921A1 (en) | Explosive for rock breaking | |
JPS6323356B2 (de) | ||
EP1472200A1 (de) | Sprengstoff zum sprengen von gestein |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040726 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051026 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051026 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051026 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051026 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051026 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051026 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051026 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051026 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051026 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051026 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051026 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60206965 Country of ref document: DE Date of ref document: 20051201 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051231 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060126 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060126 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060126 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060327 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060727 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20110322 Year of fee payment: 9 Ref country code: DE Payment date: 20110325 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20110330 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110715 Year of fee payment: 9 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20111217 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120831 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60206965 Country of ref document: DE Effective date: 20120703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111217 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120102 |