EP1459345B1 - Plasma display device and control method therefor - Google Patents

Plasma display device and control method therefor Download PDF

Info

Publication number
EP1459345B1
EP1459345B1 EP02799845A EP02799845A EP1459345B1 EP 1459345 B1 EP1459345 B1 EP 1459345B1 EP 02799845 A EP02799845 A EP 02799845A EP 02799845 A EP02799845 A EP 02799845A EP 1459345 B1 EP1459345 B1 EP 1459345B1
Authority
EP
European Patent Office
Prior art keywords
gas
plasma
display device
screen
plasma display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02799845A
Other languages
German (de)
French (fr)
Other versions
EP1459345A1 (en
Inventor
Jacques Pelletier
Ana Lacoste
Yves Arnal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1459345A1 publication Critical patent/EP1459345A1/en
Application granted granted Critical
Publication of EP1459345B1 publication Critical patent/EP1459345B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space

Definitions

  • the invention relates to the field of plasma screens or billboards. It relates in particular to the wall-mounted plasma television screens.
  • Plasma screens generally include an array of cells confined between two parallel glass plates. Each cell is controlled by at least one pair of electrodes in contact with the discharge gas. When sufficient voltage is applied between two electrodes, a discharge is generated in the gas contained in the cell. This discharge causes the emission of ultraviolet radiation by the gas.
  • the walls of the cells are lined with luminophores that transform the invisible radiation (ultraviolet radiation) that it receives into visible radiation (color).
  • FIGS. 1 and 2 There are currently two types of screen structures shown in FIGS. 1 and 2.
  • cells 21, 22, 23 that are separated by partitions 31, 32, 33 are confined between two glass plates 11 and 12. extending perpendicular to the partitions.
  • Phosphor layers 18 partially cover the inner walls of the cells 21, 22, 23.
  • FIG. 1 represents a plasma screen of the "matrix" type, that is to say having a Structure 1 Alternating Current with Matrix Maintenance (ACM).
  • the first glass plate 11 has on its inner surface an array of electrodes Xn, Xn + 1, Xn + 2 ... parallel.
  • Each electrode Xn, Xn + 1, Xn + 2 ... corresponds to a display line of the screen.
  • the electrodes are embedded in a thick layer 13 (about 20 ⁇ m thick) of dielectric material consisting for example of enamel, this layer 13 being covered with a layer 14 of dielectric material (less than 1 ⁇ m thick) ) consisting for example of oxide of magnesium (MgO) whose surface is in contact with the discharge gas.
  • MgO oxide of magnesium
  • the second glass plate 12 also has on its inner surface an array of parallel electrodes Yn, Yn + 1 ... positioned perpendicularly to the row electrodes Xn, Xn + 1, Xn + 2 ... of the first glass plate 11 and constituting the column electrodes. Like the electrodes Xn, Xn + 1, Xn + 2 ... of lines, these electrodes are embedded in a thick layer 15 of dielectric material possibly covered with a thin layer 16 of magnesium oxide.
  • FIG. 2 represents a "coplanar" type plasma screen, that is to say having a Coplanar Maintenance Alternating Current (ACC) structure 2.
  • ACC Coplanar Maintenance Alternating Current
  • the two electrode arrays Xn, Xn + 1, Xn + 2 and Yn, Yn + 1 ... are arranged in parallel, intercalated, on the same glass plate 11.
  • a network of electrodes Z addressing is embedded in the opposite glass plate 12.
  • the two arrays of electrodes Xn, Xn + 1, Xn + 2 and Yn, Yn + 1 ... control the ignition (generally called “breakdown" By the person skilled in the art) of the plasma contained in each cell 21, 22, 23.
  • the electrodes Xn, Xn + 1, Xn + 2 and Yn, Yn + 1 ... form with the dielectric layers 13 or In which they are embedded a capacitance capable of storing electrical charges on its surface and through which a voltage is applied to generate or maintain a luminous discharge (shown in dotted lines) in the plasma.
  • the plasma In response to the discharge, the plasma emits UV rays.
  • the UV absorbing phosphors 18 re-emit C radiation in a visible frequency.
  • the phosphors 18 are for example arranged in strips of cells of the plasma screen. Each strip of the screen emits in a basic color: red, green or blue.
  • the phosphors 18 are thus distributed on the screen in a repeating pattern of three successive bands each having a different emission color.
  • the switching on and off of the cells is controlled by the superimposition of electrical pulses, namely: an alternating "maintenance" voltage (d a frequency of the order of 50 to 100 kHz), permanently applied between the X and Y electrodes of a cell and less than the breakdown voltage of the plasma, an "ignition” pulse to exceed the ignition voltage cells, and an “erase” pulse to cancel the electrical charge maintained by the AC voltage at the surface of the dielectric barriers.
  • the plasma is thus excited by a succession of pulsed discharges created by the alternating maintenance voltage between the ignition pulse and the erase pulse.
  • the pulse discharge current pulse lasts about 100 ns, during which time the electrons excite and ionize the gas.
  • Typical operating values of plasma cells are, for Neon-Xenon mixtures at sub-atmospheric pressure of starting voltages between 250 V and 300 V, and maintenance voltages between 150 V and 200 V.
  • the breakdown voltage depends on the product of the pressure by the inter-electrode distance, the minimum value of which is order of 5 to 10 torrxcm.
  • the current density during the pulse discharge can reach 5 to 10 A / cm.
  • the density of the plasma is of the order of 10 11 to 10 14 cm -3 and the electronic temperature of some eV.
  • a disadvantage of the previously described techniques is that the plasma operating window (difference between the extinction or erasing voltage and the breakdown voltage) is narrow, which leads to a relative complexity of the addressing of the cells and imposes a unsatisfactory compromise to a good light output.
  • a discharge maintenance threshold (extinction voltage) lower than the breakdown voltage is imperative for the operation of cells that can go from the off state to the on state, and reciprocally, by firing and erasing pulses which modify the electrical charge of the cell.
  • extinction voltage extinction voltage
  • the difference between breakdown voltage and extinction voltage is not too low for the operating points of all the cells of the screen. fall within this margin.
  • this margin increases with the proportion of Xenon in the Neon-Xenon mixture. This is because the starting voltage increases with the proportion of Xenon due to the low secondary emission coefficient of Xenon ions relative to Neon ions.
  • the increase in maintenance and breakdown voltages causes an increase in the complexity and losses of the control circuits and the transport of the electrical power.
  • this power can be reduced by reducing the starting and maintenance voltages, but to the detriment of the UV efficiency as we have seen previously.
  • the choice of the gas or gas mixture determines the yield of UV photons.
  • the presence of a layer of MgO as a secondary electron-emitting material requires the use of rare gases which do not modify its surface properties (the secondary emission coefficients being sensitive to changes in the surfaces).
  • Xenon is an effective UV emitter while Neon is an efficient secondary electron emitter by ionic bombardment of MgO. Therefore, low breakdown voltage can be achieved by using low Xenon mixtures (less than 10% percent).
  • the collection efficiency of the UV photons by the phosphors is also an important factor in the efficiency of the cell. Indeed, the photons that hit the surfaces not covered with luminophores, ie the surfaces covered with the MgO layer, are lost, which affects the overall efficiency of the cell.
  • the efficiency of converting the phosphors of the UV photons into visible photons does not depend on the structure of the cell or the characteristics of the plasma, but only on the intrinsic performances of the phosphors. Currently the conversion efficiency reaches values of the order of 20 to 25%.
  • the limitation of the life of the cells is due to the progressive spraying of the layer of magnesium oxide, the thickness of which is limited, under the effect of the pulses of ionic current.
  • An object of the invention is to provide a plasma screen having improved technical performance: a better light output, a simplified cell structure, a longer life.
  • the invention proposes a plasma display device of the type comprising in a screen a chamber containing a discharge type gas capable of being excited to generate, alone or in combination with phosphor means intended to be themselves excited by radiation emitted by said gas, visible light, the device comprising means for generating on one side of said chamber a uniformly distributed electric field able to ignite a plasma in said gas, as well as on the one hand a matrix of controllable elements and on the other hand means that control said elements.
  • the matrix of controllable elements is arranged between the electric field and the gas and the control means control the elements so that they individually modulate the electric field and thus selectively generate light zones on the screen.
  • the matrix of controllable elements is arranged between the gas and the phosphors and the control means control said elements so that they individually modulate the radiation emitted by the plasma and intended to be received by the phosphors and thus selectively control the light appearing on the screen.
  • the matrix of controllable elements is disposed downstream of the gas or phosphor means and the control means control said elements so that they individually modulate the visible light generated and thus selectively control the light appearing on the screen.
  • the functions of injection of the power and control of the light on the screen are dissociated: the power is supplied by the electric field generator means while the control of the light appearing on the screen is achieved by the controllable elements.
  • the device of the invention is capable of operating independently of the differences between electrical breakdown field and electric extinction field. Therefore, a good light output of the screen can be obtained by choosing gases or gas mixtures to optimize photon production.
  • the device of the invention has a simplified structure, which reduces its manufacturing cost.
  • the electric field is generated by microwaves.
  • the plasma is thus not excited by polarized electrodes as in the devices of the prior art, which makes it possible to eliminate the problem of sputtering the walls of the ion bombardment.
  • the UV yield and the lifetime of the device are improved.
  • this device does not require an MgO dielectric layer.
  • FIG. 3 is a functional diagram illustrating the operation of a plasma screen according to the invention of the type comprising luminophores.
  • an electric field E is generated uniformly distributed near a chamber containing a gas.
  • this field When this field is applied to the gas, it generates a plasma that emits ultraviolet radiation.
  • This radiation is directed to a phosphor that absorbs ultraviolet radiation and re-emits radiation visible to the observer looking at the screen.
  • a matrix of controllable elements is positioned in (1), between the electric field and the gas.
  • Control means control the elements so that they individually modulate the electric field transmitted to the gas and thus control the light generated on the screen.
  • the intensity of the field E is greater than the ignition intensity of the plasma.
  • a matrix of controllable elements is positioned in (2), between the gas and the phosphors.
  • Control means controls the elements to individually modulate the UV radiation emitted by the plasma and to be received by the phosphors and thus selectively control the light appearing on the screen.
  • the electric field E is permanently applied to the gas and distributed so that a uniform plasma is generated continuously.
  • the electric field E therefore has in steady state an intensity greater than the intensity of maintenance of the plasma.
  • the intensity must be greater than the plasma firing intensity only when the screen is switched on.
  • a matrix of controllable elements is positioned at (3), downstream of the phosphor means (ie between the phosphor and the external observer).
  • Control means controls the elements to individually modulate the visible light generated by the phosphors and thereby selectively control the light appearing on the screen.
  • the electric field E has a steady state intensity greater than the holding intensity of the plasma and when the screen is switched on, an intensity greater than 1 ignition intensity of the plasma.
  • FIG. 4 is a functional diagram illustrating the operation of a plasma screen according to the invention of the type without phosphor.
  • an electric field E is generated uniformly distributed near a chamber containing a gas.
  • this field is applied to the gas, it generates a plasma that emits radiation visible to the observer who is watching the screen.
  • This type of structure makes it possible in particular to produce "black and white” screens.
  • the cells may comprise gases of different compositions. Each cell thus generates radiation in a color (typically green, red or blue) depending on the composition of the gas it contains. This produces "color" screens.
  • a matrix of controllable elements is positioned in (4), between the electric field and the gas.
  • This configuration is analogous to the configuration (1) of FIG. 3.
  • Control means control the elements so that they individually modulate the electric field transmitted to the gas and thus control the light generated on the screen.
  • the intensity of the field E is greater than the ignition intensity of the plasma.
  • a matrix of controllable elements is positioned at (5), downstream of the plasma (s).
  • This configuration is analogous to the configuration (3) of FIG. 3.
  • Control means control the elements so that they individually modulate the visible light generated by the plasma (s) and thus selectively control the light appearing on the screen.
  • the electric field E has in steady state an intensity greater than the intensity of maintenance of the plasma and at the start of the screen, an intensity greater than the ignition intensity of the plasma.
  • FIG. 5 is a representative diagram of a plasma screen structure 3 according to an embodiment corresponding to the configuration (1) of FIG. 3.
  • the structure 3 comprises a chamber 17 divided into a matrix of cells 21, 22, 23 separated by partitions 31, 32, 33 and filled with a gas or gas mixture.
  • the cells 21, 22, 23 are confined between a glass plate 11 defining the front face of the screen (that is to say the face facing the viewer's eye) and a cavity 41 defining the rear face of the screen and in which is generated an electric field E microwave uniformly distributed.
  • the cavity 41 may for example consist of a very low-loss dielectric material (such as, for example, silicon oxide SiO 2 ) and a dielectric cooling liquid.
  • the electric field E may be distributed uniformly, either by a two-dimensional network of microwave applicators, or by microwave resonators, such as ring resonators fed in parallel and in phase.
  • microwaves here and throughout the present text means electromagnetic waves with a frequency greater than or equal to 200 MHz.
  • the microwave frequencies used are for example the microwave frequencies ISM (Industrial Scientific and Medical) generally used for consumer applications (ie 433 MHz, 920 MHz, 2.45 GHz) or frequencies used for mobile telephony.
  • Field E presents an amplitude capable of igniting the plasma at each of the cells, and in a very short time (for example of the order of one microsecond).
  • At least two control electrode arrays X and Y are positioned between the cavity 41 and the rear of the chamber 17 divided into cells 21, 22, 23.
  • One of the arrays X comprises at least one series of electrodes Xn , Xn + 1, Xn + 2 ... positioned vertically, parallel to the columns of the screen.
  • the other network Y comprises at least one series of electrodes Yn, Yn + 1, Yn + 2 ... positioned horizontally, parallel to the lines of the screen.
  • Controllable elements 19 are connected between each electrode of the network X and each electrode of the network Y. These controllable elements 19 are positioned at the rear of each cell, between the cell 21, 22 or 23 and the cavity 41 of uniform field E. An element 19 is thus controlled by a pair of electrodes Yn, Xn + 2. Depending on the command he has received, the element 19 modulates the electric field E transmitted from the cavity 41 to the cell 22.
  • each of the elements 19 is controlled by at least one pair of given electrodes, this pair consisting of an electrode of the network X and an electrode of the network Y.
  • the electrode arrays X and Y individually control the states of each element 19 of the matrix of elements.
  • Each element 19 may have at least two transmission states: a first state in which it transmits an ignition field to the cell 22, a second state in which it transmits a field smaller than the value for holding the plasma in the cell 22 .
  • Such elements 19 may for example be constituted by electro-mechanical micro-systems (MEMS).
  • MEMS electro-mechanical micro-systems
  • the transmission elements 19 may also consist of structures of the semiconductor component type, such as, for example, quantum well structures.
  • the corresponding element 19 When lighting a cell 22, the corresponding element 19 is controlled so as to modulate the field E to transmit to the cell 22 an electric field equal to the ignition field. This field generates a discharge in the gas contained in the cell 22 which produces UV radiation. Phosphors 18 present on the walls of cell 22 absorb UV radiation and re-emit C radiation in a visible frequency.
  • the luminophores lined the walls of the cells on all available surfaces so as to collect the maximum of UV radiation and thus improve the luminous efficiency of the screen.
  • FIG. 6 is a representative diagram of a plasma screen structure 4 according to an alternative embodiment of the invention. This variant corresponds to the configuration (4) of FIG.
  • the structure 4 is similar to the structure 3 of FIG. 5 except that the walls of the cells 21, 22, 23 are not covered with luminophores.
  • the gas contained in the chamber 17, under the effect of a discharge directly generates a visible radiation C.
  • This type of structure allows for "black and white” screens in the case where the cells are filled an identical gas or "color” in the case where the cells contain plasmas of different gas composition each emitting visible radiation in one of the three fundamental colors (red, green and blue).
  • Fig. 7 is a representative diagram of a plasma screen structure according to a second embodiment of the invention.
  • This embodiment corresponds to the configuration (2) of FIG. embodiment, a matrix of controllable elements 19 is positioned between the gas and phosphors 18.
  • the X and Y electrode arrays control the elements 19 to individually modulate the UV radiation emitted by the plasma and intended to be received by the luminophores 18 and thus selectively control the light appearing on the screen.
  • the field E is permanently applied to the gas so that uniform plasma is generated continuously.
  • Fig. 8 is a representative diagram of a plasma screen structure 6 according to a third embodiment of the invention. This embodiment corresponds to the configuration (3) of FIG. 3.
  • the matrix of controllable elements 19 is positioned downstream of the visible light generating elements.
  • the X and Y electrode arrays control the elements 19 so that they individually modulate the visible light generated (as the case may be by the plasma (s) or the phosphors) and thus selectively control the light appearing on the screen.
  • the elements 19 may be constituted by electro-mechanical micro-systems (MEMS), micro opto-electro-mechanical systems (MOEMS), even Photonic Prohibited Band devices (photonic crystals or BIPs) whose transmission state can be controlled.
  • MEMS electro-mechanical micro-systems
  • MOEMS micro opto-electro-mechanical systems
  • BIPs Photonic Prohibited Band devices
  • An advantage of the plasma screens described above is the simplicity of the technology used, both in terms of the structure of the cells and their addressing, since on the one hand the cells are free of electrodes, dielectric barrier and MgO secondary emission layer, on the other hand the low voltage circuits are sufficient for the addressing of the cells (the control of the transmission elements does not require power electronics).
  • Another advantage is the existence of a very wide operating window for the excitation of the plasma.
  • the only condition is to apply an electric field greater than the electrical breakdown field for a gas or given gas mixture at a given pressure.
  • the gas mixture can therefore be optimized to obtain the best UV efficiency of the discharge or the emission of radiation at well-defined wavelengths. For example, it is possible to obtain plasma priming with pure Xenon whose efficiency is known for the production of UV photons.
  • the choice of gas and working pressure is considerably expanded compared to dielectric barrier discharge plasma screen technologies, which makes it possible to choose the point of operation of the cells of the screen.
  • Another advantage is also a better light output. Indeed, the energy dissipated in the plasma is entirely devoted to the excitation and the ionization of the only effective atoms (for example Xenon) for the production of UV photons.
  • Another advantage is due to the absence of electrodes and the absence of MgO deposit opposite these electrodes. The corresponding place may therefore be occupied by luminophores, which makes it possible to improve the luminous efficiency of the cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

The plasma display has a chamber (17) retaining a gas, which is excited to emit visible light, in combination with a phosphorescent layer (18) that emits light when excited by ultraviolet light from the discharge. A uniformly distributed electric field (E) ignites the discharge, and a matrix of control elements (19) locally modulates the electric field to selectively illuminate screen points.

Description

DOMAINE TECHNIQUE DE L'INVENTIONTECHNICAL FIELD OF THE INVENTION

L'invention concerne le domaine des écrans ou panneaux d'affichage à plasma. Elle concerne en particulier les écrans à plasma de télévision murale.The invention relates to the field of plasma screens or billboards. It relates in particular to the wall-mounted plasma television screens.

DESCRIPTION DE L'ETAT DE L'ARTDESCRIPTION OF THE STATE OF ART

Les écrans à plasma comprennent généralement un réseau de cellules confinées entre deux plaques de verre parallèles. Chaque cellule est commandée par au moins une paire d'électrodes en contact avec le gaz de décharge. Lorsqu'une tension suffisante est appliquée entre deux électrodes, une décharge est générée dans le gaz contenu dans la cellule. Cette décharge entraîne l'émission par le gaz d'un rayonnement ultra-violet. Les parois des cellules sont tapissées de luminophores qui transforment le rayonnement invisible (rayonnement ultra-violet) qu'il reçoivent en rayonnement visible (couleur).Plasma screens generally include an array of cells confined between two parallel glass plates. Each cell is controlled by at least one pair of electrodes in contact with the discharge gas. When sufficient voltage is applied between two electrodes, a discharge is generated in the gas contained in the cell. This discharge causes the emission of ultraviolet radiation by the gas. The walls of the cells are lined with luminophores that transform the invisible radiation (ultraviolet radiation) that it receives into visible radiation (color).

Il existe actuellement deux types de structures d'écran représentées aux figures 1 et 2. Sur ces figures, des cellules 21, 22, 23 élémentaires séparées par des cloisons 31, 32, 33 sont confinées entre deux plaques de verres 11 et 12 s'étendant perpendiculairement aux cloisons. Des couches 18 de luminophores recouvrent partiellement les parois internes des cellules 21, 22, 23.There are currently two types of screen structures shown in FIGS. 1 and 2. In these figures, cells 21, 22, 23 that are separated by partitions 31, 32, 33 are confined between two glass plates 11 and 12. extending perpendicular to the partitions. Phosphor layers 18 partially cover the inner walls of the cells 21, 22, 23.

La figure 1 représente un écran à plasma de type « matriciel », c'est-à-dire présentant une structure 1 à Courant Alternatif à entretien Matriciel (ACM). Sur cette figure, la première plaque de verre 11 comporte sur sa surface interne un réseau d'électrodes Xn, Xn+1, Xn+2... parallèles. Chaque électrode Xn, Xn+1, Xn+2... correspond à une ligne d'affichage de l'écran. Les électrodes sont noyées dans une couche 13 épaisse (d'environ 20 µm d'épaisseur) de matériau diélectrique constitué par exemple d'émail, cette couche 13 étant recouverte d'une couche 14 de matériau diélectrique (d'épaisseur inférieure à 1 µm) constituée par exemple d'oxyde de magnésium (MgO) dont la surface est en contact avec le gaz de décharge. La seconde plaque de verre 12 comporte également sur sa surface interne un réseau d'électrodes Yn, Yn+1... parallèles positionnées perpendiculairement aux électrodes de lignes Xn, Xn+1, Xn+2... de la première plaque de verre 11 et constituant les électrodes de colonne. Comme les électrodes Xn, Xn+1, Xn+2... de lignes, ces électrodes sont noyées dans une couche 15 épaisse de matériau diélectrique éventuellement recouverte d'une couche 16 fine d'oxyde de magnésium.FIG. 1 represents a plasma screen of the "matrix" type, that is to say having a Structure 1 Alternating Current with Matrix Maintenance (ACM). In this figure, the first glass plate 11 has on its inner surface an array of electrodes Xn, Xn + 1, Xn + 2 ... parallel. Each electrode Xn, Xn + 1, Xn + 2 ... corresponds to a display line of the screen. The electrodes are embedded in a thick layer 13 (about 20 μm thick) of dielectric material consisting for example of enamel, this layer 13 being covered with a layer 14 of dielectric material (less than 1 μm thick) ) consisting for example of oxide of magnesium (MgO) whose surface is in contact with the discharge gas. The second glass plate 12 also has on its inner surface an array of parallel electrodes Yn, Yn + 1 ... positioned perpendicularly to the row electrodes Xn, Xn + 1, Xn + 2 ... of the first glass plate 11 and constituting the column electrodes. Like the electrodes Xn, Xn + 1, Xn + 2 ... of lines, these electrodes are embedded in a thick layer 15 of dielectric material possibly covered with a thin layer 16 of magnesium oxide.

La figure 2 représente un écran à plasma de type « coplanaire », c'est-à-dire présentant une structure 2 à Courant Alternatif à entretien Coplanaire (ACC). Dans cette structure, les deux réseaux d'électrodes Xn, Xn+1, Xn+2 et Yn, Yn+1... sont disposés parallèlement, de manière intercalée, sur la même plaque de verre 11. Un réseau d'électrodes Z d'adressage est noyé dans la plaque de verre 12 opposée.FIG. 2 represents a "coplanar" type plasma screen, that is to say having a Coplanar Maintenance Alternating Current (ACC) structure 2. In this structure, the two electrode arrays Xn, Xn + 1, Xn + 2 and Yn, Yn + 1 ... are arranged in parallel, intercalated, on the same glass plate 11. A network of electrodes Z addressing is embedded in the opposite glass plate 12.

Dans les deux structures 1 et 2 d'écran représentées aux figures 1 et 2, les deux réseaux d'électrodes Xn, Xn+1, Xn+2 et Yn, Yn+1... commandent l'allumage (généralement appelé « claquage » par l'homme du métier) du plasma contenu dans chaque cellule 21, 22, 23. En effet, les électrodes Xn, Xn+1, Xn+2 et Yn, Yn+1... forment avec les couches diélectriques 13 ou 15 dans lesquelles elles sont noyées une capacité capable de stocker à sa surface des charges électriques et à travers laquelle on applique une tension nécessaire pour engendrer ou entretenir une décharge lumineuse (représentée en pointillés) dans le plasma.In the two screen structures 1 and 2 shown in FIGS. 1 and 2, the two arrays of electrodes Xn, Xn + 1, Xn + 2 and Yn, Yn + 1 ... control the ignition (generally called "breakdown" By the person skilled in the art) of the plasma contained in each cell 21, 22, 23. In fact, the electrodes Xn, Xn + 1, Xn + 2 and Yn, Yn + 1 ... form with the dielectric layers 13 or In which they are embedded a capacitance capable of storing electrical charges on its surface and through which a voltage is applied to generate or maintain a luminous discharge (shown in dotted lines) in the plasma.

Le fonctionnement de ces décharges s'apparente à celui des décharges à barrière diélectrique (DBD), simples décharges luminescentes à pression élevée. Lorsqu'une décharge est provoquée entre deux électrodes X et Y, la couche 14 d'oxyde de magnésium (MgO) en contact avec le plasma subit un bombardement d'ions présents dans la décharge et émet des électrons e sous l'effet de ce bombardement. La couche d'oxyde de magnésium 14 joue un rôle crucial pour obtenir un coefficient d'émission d'électrons secondaires élevé sous impact ionique, cette émission d'électrons secondaires e permettant d'entretenir la décharge avec des tensions entre électrodes X et Y d'autant plus faibles que le coefficient d'émission secondaire est élevé.The operation of these discharges is similar to that of dielectric barrier discharges (DBD), simple high pressure glow discharges. When a discharge is caused between two electrodes X and Y, the layer 14 of magnesium oxide (MgO) in contact with the plasma undergoes a bombardment of ions present in the discharge and emits electrons e under the effect of this bombing raid. The magnesium oxide layer 14 plays a crucial role in obtaining a high secondary electron emission coefficient under ionic impact, this secondary electron emission e making it possible to maintain the discharge with tensions between electrodes X and Y all the lower as the secondary emission coefficient is high.

En réponse à la décharge, le plasma émet des rayons UV. Les luminophores 18 qui absorbent les UV réémettent un rayonnement C dans une fréquence visible. Les luminophores 18 sont par exemple disposés par bandes de cellules de l'écran à plasma. Chaque bande de l'écran émet dans une couleur élémentaire : le rouge, le vert ou le bleu. Les luminophores 18 sont ainsi répartis sur l'écran selon un motif répétitif de trois bandes successives ayant chacune une couleur d'émission différente.In response to the discharge, the plasma emits UV rays. The UV absorbing phosphors 18 re-emit C radiation in a visible frequency. The phosphors 18 are for example arranged in strips of cells of the plasma screen. Each strip of the screen emits in a basic color: red, green or blue. The phosphors 18 are thus distributed on the screen in a repeating pattern of three successive bands each having a different emission color.

Compte tenu du mode de fonctionnement purement capacitif des cellules élémentaires 21, 22, 23, l'allumage et l'extinction des cellules sont commandés par la superposition d'impulsions électriques, à savoir: une tension « d'entretien » alternative (d'une fréquence de l'ordre de 50 à 100 kHz), appliquée en permanence entre les électrodes X et Y d'une cellule et inférieure à la tension de claquage du plasma, une impulsion « d'allumage » pour dépasser la tension d'allumage des cellules, et une impulsion « d'effacement » pour annuler la charge électrique entretenue par la tension alternative à la surface des barrières diélectriques. Le plasma est donc excité par une succession de décharges impulsionnelles créées par la tension d'entretien alternative entre l'impulsion d'allumage et l'impulsion d'effacement. L'impulsion de courant de décharge impulsionnelle dure environ 100 ns, temps durant lequel les électrons e excitent et ionisent le gaz. La chute de tension entre les surfaces des barrières diélectriques due à la présence du plasma provoque l'arrêt de la décharge jusqu'à l'application de la nouvelle impulsion alternative d'entretien. Le plasma et les atomes excités libèrent ensuite les photons générés à chaque impulsion de courant. Dans le cas d'un mélange Néon-Xénon, les photons UV émis par le Xénon, (en particulier depuis le niveau résonant Xe(3P1) et les excimères) viennent alors exciter les luminophores 18, disposés généralement en dehors des zones actives des électrodes, qui réémettent des photons visibles.Given the purely capacitive mode of operation of the elementary cells 21, 22, 23, the switching on and off of the cells is controlled by the superimposition of electrical pulses, namely: an alternating "maintenance" voltage (d a frequency of the order of 50 to 100 kHz), permanently applied between the X and Y electrodes of a cell and less than the breakdown voltage of the plasma, an "ignition" pulse to exceed the ignition voltage cells, and an "erase" pulse to cancel the electrical charge maintained by the AC voltage at the surface of the dielectric barriers. The plasma is thus excited by a succession of pulsed discharges created by the alternating maintenance voltage between the ignition pulse and the erase pulse. The pulse discharge current pulse lasts about 100 ns, during which time the electrons excite and ionize the gas. The voltage drop between the surfaces of the dielectric barriers due to the presence of the plasma causes the discharge to stop until the application of the new alternative maintenance pulse. Plasma and excited atoms then release the photons generated at each current pulse. In the case of a Neon-Xenon mixture, the UV photons emitted by the Xenon, (in particular since the resonant level Xe ( 3 P 1 ) and the excimers) then excite the phosphors 18, arranged generally outside the active zones electrodes, which re-emit visible photons.

Les valeurs typiques de fonctionnement de cellules à plasma sont, pour des mélanges Néon-Xénon à pression sub-atmosphérique des tensions d'amorçage comprises entre 250 V et 300 V, et des tensions d'entretien comprises entre 150 V et 200 V. La tension de claquage dépend du produit de la pression par la distance inter-électrode dont la valeur minimale est de l'ordre de 5 à 10 torrxcm. La densité de courant pendant la décharge impulsionnelle peut atteindre 5 à 10 A/cm . La densité du plasma est de l'ordre de 1011 à 1014 cm-3 et la température électronique de quelques eV.Typical operating values of plasma cells are, for Neon-Xenon mixtures at sub-atmospheric pressure of starting voltages between 250 V and 300 V, and maintenance voltages between 150 V and 200 V. The breakdown voltage depends on the product of the pressure by the inter-electrode distance, the minimum value of which is order of 5 to 10 torrxcm. The current density during the pulse discharge can reach 5 to 10 A / cm. The density of the plasma is of the order of 10 11 to 10 14 cm -3 and the electronic temperature of some eV.

D'autres variantes de la technologie décrite ci-dessus ont fait et font l'objet d'études et de développement importants (entretien du plasma par tension radiofréquence), mais les principes de fonctionnement des écrans plats, basés sur des décharges à barrière diélectrique restent les mêmes.Other variants of the technology described above have been and are the subject of significant studies and development (maintenance of plasma by radio frequency voltage), but the principles of operation of flat screens, based on dielectric barrier discharges remain the same.

Les documents WO 96/32827 et US 5877589 décrivent des écrans à plasma dans lesquels des électrodes sont aptes à être commandées pour générer des champs électriques dans des cellules renfermant un gaz à décharge.The documents WO 96/32827 and US 5877589 describe plasma screens in which electrodes are controllable to generate electric fields in cells containing a gas discharge.

Un inconvénient des techniques précédemment décrites est que la fenêtre de fonctionnement du plasma (écart entre la tension d'extinction ou d'effacement et la tension de claquage) est étroite, ce qui entraîne une relative complexité de l'adressage des cellules et impose un compromis peu favorable à un bon rendement lumineux.A disadvantage of the previously described techniques is that the plasma operating window (difference between the extinction or erasing voltage and the breakdown voltage) is narrow, which leads to a relative complexity of the addressing of the cells and imposes a unsatisfactory compromise to a good light output.

En effet, l'existence d'un seuil d'entretien de la décharge (tension d'extinction) inférieure à la tension de claquage est impératif pour le fonctionnement des cellules qui peuvent passer de l'état éteint à l'état allumé, et réciproquement, par des impulsions d'allumage et d'effacement qui modifient la charge électrique de la cellule. Comme toutes les cellules d'un écran à plasma ne sont pas identiques, il est préférable que l'écart entre tension de claquage et tension d'extinction ne soit pas trop faible pour que les points de fonctionnement de toutes les cellules de l'écran s'inscrivent dans cette marge.Indeed, the existence of a discharge maintenance threshold (extinction voltage) lower than the breakdown voltage is imperative for the operation of cells that can go from the off state to the on state, and reciprocally, by firing and erasing pulses which modify the electrical charge of the cell. As all the cells of a plasma display are not identical, it is preferable that the difference between breakdown voltage and extinction voltage is not too low for the operating points of all the cells of the screen. fall within this margin.

Dans le cas d'un mélange Néon-Xénon, cette marge croît avec la proportion de Xénon dans le mélange Néon-Xénon. Ceci est dû au fait que la tension d'amorçage augmente avec la proportion de Xénon en raison du faible coefficient d'émission secondaire des ions Xénon par rapport aux ions Néon. Or, l'augmentation des tensions d'entretien et de claquage entraîne une augmentation de la complexité et des pertes des circuits de commande et de transport de la puissance électrique.In the case of a Neon-Xenon mixture, this margin increases with the proportion of Xenon in the Neon-Xenon mixture. This is because the starting voltage increases with the proportion of Xenon due to the low secondary emission coefficient of Xenon ions relative to Neon ions. However, the increase in maintenance and breakdown voltages causes an increase in the complexity and losses of the control circuits and the transport of the electrical power.

Par conséquent, pour réduire la tension d'amorçage, il est nécessaire de limiter la proportion de Xénon dans le gaz, ce qui réduit corrélativement le rendement en UV du plasma. Dans ce cas, la marge entre tension de claquage et tension d'extinction devient très faible, ce qui impose un ajustement plus délicat des impulsions de commande.Therefore, to reduce the starting voltage, it is necessary to limit the proportion of Xenon in the gas, which correspondingly reduces the UV yield of the plasma. In this case, the margin between breakdown voltage and extinction voltage becomes very low, which imposes a more delicate adjustment of the control pulses.

Enfin, la superposition des trois types d'impulsions (entretien, allumage et effacement), à ajuster de façon fine, rend la fonction d'adressage relativement complexe.Finally, the superposition of the three types of pulses (maintenance, ignition and erasure), to be fine-tuned, makes the addressing function relatively complex.

Un autre inconvénient des écrans à plasma existants est que la commande des cellules nécessite des impulsions de tension et des courants pics élevés qui ne peuvent être générés que grâce à des circuits électroniques de puissance. Or ces circuits représentent une part importante du coût des écrans plasma.Another drawback of existing plasma screens is that the control of the cells requires high voltage pulses and high peak currents that can only be generated by means of electronic power circuits. These circuits represent a significant part of the cost of plasma screens.

En outre, la complexité de l'adressage des cellules, basé sur les effets mémoires des charges électriques en regard des électrodes, participent également au coût élevé de l'électronique de commande.In addition, the complexity of the addressing of the cells, based on the memory effects of the electrical charges facing the electrodes, also contribute to the high cost of the control electronics.

Un autre inconvénient des écrans à plasma existants est qu'ils présentent un rendement lumineux médiocre, inhérent au mode de fonctionnement de la décharge.Another disadvantage of existing plasma screens is that they have a poor light output, inherent in the mode of operation of the discharge.

En effet, le rendement des écrans à plasma actuels est de l'ordre de 1 à quelques Im/W (lumen par Watt), ce qui signifie que seulement quelques % de l'énergie électrique dissipée par cellule est convertie en lumière visible. Les principaux facteurs qui contrôlent le rendement lumineux sont, par ordre logique de la chaîne de conversion :

  • la puissance dissipée dans les circuits de commande et d'adressage,
  • le rendement en UV de la décharge, c'est-à-dire le rapport de l'énergie émise sous forme de photons UV par rapport à l'énergie injectée dans le plasma,
  • l'efficacité de collection des UV par les luminophores,
  • le rendement de conversion des photons UV en photons visibles par les luminophores,
  • l'efficacité de collection des photons visibles.
Indeed, the efficiency of current plasma screens is of the order of 1 to a few Im / W (lumen per Watt), which means that only a few% of the electrical energy dissipated per cell is converted into visible light. The main factors that control the light output are, in logical order of the conversion chain:
  • the power dissipated in the control and addressing circuits,
  • the UV yield of the discharge, that is to say the ratio of the energy emitted in the form of UV photons relative to the energy injected into the plasma,
  • the UV collection efficiency of the phosphors,
  • the conversion efficiency of the UV photons into visible photons by the phosphors,
  • the collection efficiency of visible photons.

En ce qui concerne la puissance dissipée dans les circuits de commande et d'adressage, cette puissance peut être réduite par la réduction des tensions d'amorçage et d'entretien, mais au détriment des rendement UV comme on l'a vu précédemment.As regards the power dissipated in the control and addressing circuits, this power can be reduced by reducing the starting and maintenance voltages, but to the detriment of the UV efficiency as we have seen previously.

Le choix du gaz ou mélange de gaz est déterminant du rendement en photons UV. En parallèle, la présence d'une couche de MgO, comme matériau émetteur d'électrons secondaires impose l'utilisation de gaz rares qui ne modifient pas ses propriétés de surface (les coefficients d'émission secondaire étant sensible aux modification des surfaces). Dans le cas d'un mélange Néon-Xénon, le Xénon est un émetteur d'UV efficace tandis que le Néon est un émetteur d'électrons secondaires efficace par bombardement ionique du MgO. Par conséquent, une faible tension de claquage peut être obtenue par l'utilisation de mélanges pauvres en Xénon (pourcentage inférieur à 10%). On constate donc que, dans une cellule de type à décharge barrière électrique, une part importante de l'énergie injectée dans le plasma est transférée non seulement dans l'excitation et l'ionisation des atomes de Néon (dont les énergies d'excitation et d'ionisation sont bien supérieures à celles du Xénon), mais aussi dans le bombardement ionique du MgO à la surface des barrière diélectriques (et les collisions avec les neutres dans les gaines ioniques collisionnelles). Autrement dit, l'énergie injectée dans une cellule est dissipée majoritairement dans des pertes improductives, inhérentes au mode de fonctionnement des décharges à barrière diélectrique.The choice of the gas or gas mixture determines the yield of UV photons. In parallel, the presence of a layer of MgO as a secondary electron-emitting material requires the use of rare gases which do not modify its surface properties (the secondary emission coefficients being sensitive to changes in the surfaces). In the case of a Neon-Xenon mixture, Xenon is an effective UV emitter while Neon is an efficient secondary electron emitter by ionic bombardment of MgO. Therefore, low breakdown voltage can be achieved by using low Xenon mixtures (less than 10% percent). It can therefore be seen that, in an electric discharge type cell, a large part of the energy injected into the plasma is transferred not only to the excitation and ionisation of the Neon atoms (whose excitation energies and ionization rates are much higher than those of Xenon), but also in the ionic bombardment of MgO at the surface of dielectric barriers (and collisions with neutrals in collisional ionic sheaths). In other words, the energy injected into a cell is mainly dissipated in unproductive losses inherent to the operating mode of the dielectric barrier discharges.

L'efficacité de collection des photons UV par les luminophores est également un facteur important dans le rendement de la cellule. En effet, les photons qui frappent les surfaces non recouvertes de luminophores, c'est à dire les surfaces recouvertes de la couche de MgO, sont perdus, ce qui affecte profondément de rendement global de la cellule.The collection efficiency of the UV photons by the phosphors is also an important factor in the efficiency of the cell. Indeed, the photons that hit the surfaces not covered with luminophores, ie the surfaces covered with the MgO layer, are lost, which affects the overall efficiency of the cell.

Le rendement de conversion des luminophores des photons UV en photons visibles ne dépend pas de la structure de la cellule ou des caractéristiques du plasma, mais uniquement des performances intrinsèques des luminophores. Actuellement le rendement de conversion atteint des valeurs de l'ordre de 20 à 25%.The efficiency of converting the phosphors of the UV photons into visible photons does not depend on the structure of the cell or the characteristics of the plasma, but only on the intrinsic performances of the phosphors. Currently the conversion efficiency reaches values of the order of 20 to 25%.

Enfin, le rendement lumineux final du pourcentage de photons visibles succeptibles de traverser la face avant de l'écran, certains étant perdus sur la face arrière de l'écran et d'autres étant absorbés à la traversée des électrodes ou des couches diélectriques présentes (MgO, émail).Finally, the final luminous yield of the percentage of visible photons that can pass through the front face of the screen, some being lost on the rear face of the screen and others being absorbed at the crossing of the electrodes or dielectric layers present ( MgO, enamel).

Un autre inconvénient des écrans à plasma existants est la complexité de la structure des cellules qui rend leur fabrication complexe. La fabrication des écrans à plasma représente ainsi une part importante de leur coût final.Another disadvantage of existing plasma screens is the complexity of the cell structure which makes their manufacture complex. The manufacture of plasma screens is thus an important part of their final cost.

Enfin, un autre inconvénient des écrans à plasma existants est la durée de vie relativement courte des cellules.Finally, another disadvantage of existing plasma screens is the relatively short life of the cells.

La limitation de la durée de vie des cellules est due à la pulvérisation progressive de la couche d'oxyde de magnésium, dont l'épaisseur est limitée, sous l'effet des impulsions de courant ionique. Une fois la couche d'oxyde de magnésium entièrement pulvérisée, la couche diélectrique épaisse sous-jacente, qui ne présente pas un coefficient d'émission secondaire aussi élevé, n'émet pas d'électrons secondaires en quantité suffisante pour permettre d'allumer la décharge. La cellule reste alors en permanence à l'état éteint.The limitation of the life of the cells is due to the progressive spraying of the layer of magnesium oxide, the thickness of which is limited, under the effect of the pulses of ionic current. Once the magnesium oxide layer has been completely pulverized, the underlying thick dielectric layer, which does not exhibit such a high secondary emission coefficient, does not emit secondary electrons in sufficient quantity to enable the light to be ignited. discharge. The cell then remains permanently in the off state.

La limitation de la durée de vie des cellules est également due à la dégradation des performances des luminophores avec le temps. Cette dégradation est en général attribuée à l'action des UV qui affecterait considérablement la composition chimique de la surface des luminophores, en particulier par photo-désorption des éléments volatils, par exemple de l'oxygène dans le cas des oxydes.The limitation of cell life is also due to the degradation of phosphor performance over time. This degradation is generally attributed to the action of UV which would significantly affect the chemical composition of the surface of the phosphors, in particular by photo-desorption of volatile elements, for example oxygen in the case of oxides.

Un but de l'invention est de proposer un écran à plasma présentant des performances techniques améliorées : un meilleur rendement lumineux, une structure de cellules simplifiée, une durée de vie plus importante.An object of the invention is to provide a plasma screen having improved technical performance: a better light output, a simplified cell structure, a longer life.

RESUME DE L'INVENTIONSUMMARY OF THE INVENTION

A cet effet, l'invention propose un dispositif d'affichage à plasma du type comportant dans un écran une chambre renfermant un gaz de type à décharge apte à être excité pour générer, seul ou en combinaison avec des moyens luminophores destinés à être eux-mêmes excités par un rayonnement émis par ledit gaz, une lumière visible, le dispositif comportant des moyens pour générer d'un côté de ladite chambre un champ électrique distribué uniformément apte à allumer un plasma dans ledit gaz, ainsi que d'une part une matrice d'éléments commandables et d'autre part des moyens qui commandent lesdits éléments.To this end, the invention proposes a plasma display device of the type comprising in a screen a chamber containing a discharge type gas capable of being excited to generate, alone or in combination with phosphor means intended to be themselves excited by radiation emitted by said gas, visible light, the device comprising means for generating on one side of said chamber a uniformly distributed electric field able to ignite a plasma in said gas, as well as on the one hand a matrix of controllable elements and on the other hand means that control said elements.

Dans une mise en oeuvre de l'invention, la matrice d'éléments commandables est disposée entre le champ électrique et le gaz et les moyens de commande commandent les éléments pour qu'ils modulent individuellement le champ électrique et génèrent ainsi sélectivement des zones lumineuses sur l'écran.In one implementation of the invention, the matrix of controllable elements is arranged between the electric field and the gas and the control means control the elements so that they individually modulate the electric field and thus selectively generate light zones on the screen.

Dans une autre mise en oeuvre de l'invention, la matrice d'éléments commandables est disposée entre le gaz et les luminophores et les moyens de commande commandent lesdits éléments pour qu'ils modulent individuellement le rayonnement émis par le plasma et destiné à être reçu par les luminophores et contrôlent ainsi sélectivement la lumière apparaissant sur l'écran.In another implementation of the invention, the matrix of controllable elements is arranged between the gas and the phosphors and the control means control said elements so that they individually modulate the radiation emitted by the plasma and intended to be received by the phosphors and thus selectively control the light appearing on the screen.

Dans une autre mise en oeuvre de l'invention, la matrice d'éléments commandables est disposée en aval du gaz ou des moyens luminophores et les moyens de commande commandent lesdits éléments pour qu'ils modulent individuellement la lumière visible générée et contrôlent ainsi sélectivement la lumière apparaissant sur l'écran.In another implementation of the invention, the matrix of controllable elements is disposed downstream of the gas or phosphor means and the control means control said elements so that they individually modulate the visible light generated and thus selectively control the light appearing on the screen.

Dans un tel dispositif, les fonctions d'injection de la puissance et de commande de la lumière sur l'écran sont dissociées : la puissance est fournie par les moyens générateur de champ électrique tandis que la commande de la lumière apparaissant sur l'écran est réalisée par les éléments commandables.In such a device, the functions of injection of the power and control of the light on the screen are dissociated: the power is supplied by the electric field generator means while the control of the light appearing on the screen is achieved by the controllable elements.

Du fait de cette dissociation, la puissance nécessaire pour la commande des éléments commandables est réduite par rapport aux puissances nécessaires dans les circuits de commande des dispositifs à plasma de l'art antérieur.Because of this dissociation, the power required for the control of the controllable elements is reduced compared to the powers required in the control circuits of the plasma devices of the prior art.

Corrélativement, les puissances dissipées dans la commande sont réduites.Correlatively, the powers dissipated in the control are reduced.

Par ailleurs, du fait de cette dissociation, l'injection de puissance est réalisée de manière plus efficace. Ainsi, le dispositif de l'invention est capable de fonctionner indépendamment des écarts entre champ électrique de claquage et champ électrique d'extinction. Par conséquent, un bon rendement lumineux de l'écran peut être obtenu en choisissant des gaz ou mélanges de gaz permettant d'optimiser la production de photons.Moreover, because of this dissociation, the power injection is performed more efficiently. Thus, the device of the invention is capable of operating independently of the differences between electrical breakdown field and electric extinction field. Therefore, a good light output of the screen can be obtained by choosing gases or gas mixtures to optimize photon production.

Enfin, le dispositif de l'invention présente une structure simplifiée, ce qui permet de réduire son coût de fabrication.Finally, the device of the invention has a simplified structure, which reduces its manufacturing cost.

Dans une mise en oeuvre préférée de l'invention, le champ électrique est généré par des micro-ondes. Le plasma n'est donc pas excité par des électrodes polarisées comme dans les dispositifs de l'art antérieur, ce qui permet d'éliminer le problème de la pulvérisation des parois du au bombardement ionique. Le rendement UV et la durée de vie du dispositif s'en trouvent améliorés. En outre, ce dispositif ne nécessite pas de couche diélectrique MgO.In a preferred embodiment of the invention, the electric field is generated by microwaves. The plasma is thus not excited by polarized electrodes as in the devices of the prior art, which makes it possible to eliminate the problem of sputtering the walls of the ion bombardment. The UV yield and the lifetime of the device are improved. In addition, this device does not require an MgO dielectric layer.

PRESENTATION DES DESSINSPRESENTATION OF THE DRAWINGS

D'autres caractéristiques et avantages ressortiront encore de la description qui suit, laquelle est purement illustrative et non-limitative et doit être lue en regard des dessins annexés parmi lesquels :

  • les figures 1 et 2 déjà commentées sont des schéma représentant en coupe transversale selon une ligne de cellules des structures d'écran à plasma de l'art antérieur, respectivement une structure d'écran à plasma de type matriciel et une structure d'écran à plasma de type coplanaire ;
  • les figures 3 et 4 sont des diagrammes fonctionnels illustrant le fonctionnement de deux types de structures d'écran à plasma ;
  • la figure 5 est un schéma représentatif en coupe transversale selon une ligne de cellules d'une structure d'écran à plasma conforme à un mode de réalisation du dispositif de l'invention ;
  • la figure 6 est un schéma représentatif en coupe transversale selon une ligne de cellules d'une structure d'écran conforme à une variante de réalisation du dispositif de la figure 5 ;
  • la figure 7 est un schéma représentatif en coupe transversale selon une ligne de cellules d'une structure d'écran à plasma conforme à un deuxième mode de réalisation du dispositif de l'invention ;
  • la figure 8 est un schéma représentatif en coupe transversale selon une ligne de cellules d'une structure d'écran conforme à un troisième mode de réalisation du dispositif de l'invention ;
  • la figure 9 est un schéma représentatif en vue de derrière d'un dispositif de commande des cellules pouvant être utilisé dans un dispositif de l'invention.
Other features and advantages will become apparent from the description which follows, which is purely illustrative and non-limiting and should be read with reference to the appended drawings among which:
  • FIGS. 1 and 2 already commented are diagrams representing in cross-section along a line of cells of the plasma screen structures of the prior art, respectively a matrix type plasma screen structure and a screen structure to coplanar type plasma;
  • Figures 3 and 4 are functional diagrams illustrating the operation of two types of plasma screen structures;
  • Figure 5 is a representative cross-sectional diagram along a cell line of a plasma screen structure according to an embodiment of the device of the invention;
  • Figure 6 is a representative cross-sectional diagram along a cell line of a screen structure according to an alternative embodiment of the device of Figure 5;
  • Figure 7 is a representative cross sectional diagram along a cell line of a plasma screen structure according to a second embodiment of the device of the invention;
  • Figure 8 is a representative cross sectional diagram along a cell line of a screen structure according to a third embodiment of the device of the invention;
  • Figure 9 is a representative rear view diagram of a cell controller for use in a device of the invention.

DESCRIPTION DES DESSINSDESCRIPTION OF THE DRAWINGS

La figure 3 est un diagramme fonctionnel illustrant le fonctionnement d'un écran à plasma conforme à l'invention du type comprenant des luminophores.FIG. 3 is a functional diagram illustrating the operation of a plasma screen according to the invention of the type comprising luminophores.

Selon ce diagramme, on génère un champ électrique E distribué uniformément à proximité d'une chambre contenant un gaz. Lorsque ce champ est appliqué au gaz, il génère un plasma qui émet un rayonnement ultra-violet. Ce rayonnement est dirigé vers une substance luminophore qui absorbent le rayonnement ultra-violet et réémet un rayonnement visible pour l'observateur qui regarde l'écran.According to this diagram, an electric field E is generated uniformly distributed near a chamber containing a gas. When this field is applied to the gas, it generates a plasma that emits ultraviolet radiation. This radiation is directed to a phosphor that absorbs ultraviolet radiation and re-emits radiation visible to the observer looking at the screen.

Selon une première configuration, une matrice d'éléments commandables est positionnée en (1), entre le champ électrique et le gaz. Des moyens de commande commandent les éléments pour qu'ils modulent individuellement le champ électrique transmis au gaz et contrôlent ainsi la lumière générée sur l'écran. Dans cette configuration, l'intensité du champ E est supérieure à l'intensité d'allumage du plasma.According to a first configuration, a matrix of controllable elements is positioned in (1), between the electric field and the gas. Control means control the elements so that they individually modulate the electric field transmitted to the gas and thus control the light generated on the screen. In this configuration, the intensity of the field E is greater than the ignition intensity of the plasma.

Selon une deuxième configuration, une matrice d'éléments commandables est positionnée en (2), entre le gaz et les luminophores. Des moyens de commande commandent les éléments pour qu'ils modulent individuellement le rayonnement UV émis par le plasma et destiné à être reçu par les luminophores et contrôlent ainsi sélectivement la lumière apparaissant sur l'écran. Dans cette configuration, le champ électrique E est appliqué en permanence au gaz et distribué de sorte qu'un plasma uniforme est généré en permanence. Le champ électrique E présente donc en régime permanent une intensité supérieure à l'intensité de maintien du plasma. L'intensité ne doit être supérieure à l'intensité d'allumage du plasma que lors de la mise en marche de l'écran.According to a second configuration, a matrix of controllable elements is positioned in (2), between the gas and the phosphors. Control means controls the elements to individually modulate the UV radiation emitted by the plasma and to be received by the phosphors and thus selectively control the light appearing on the screen. In this configuration, the electric field E is permanently applied to the gas and distributed so that a uniform plasma is generated continuously. The electric field E therefore has in steady state an intensity greater than the intensity of maintenance of the plasma. The intensity must be greater than the plasma firing intensity only when the screen is switched on.

Selon une troisième configuration, une matrice d'éléments commandables est positionnée en (3), en aval des moyens luminophores (c'est à dire entre les luminophore et l'observateur extérieur). Des moyens de commande commandent les éléments pour qu'ils modulent individuellement la lumière visible générée par les luminophores et contrôlent ainsi sélectivement la lumière apparaissant sur l'écran. De même que lorsque les éléments commandables sont positionnés en (2), le champ électrique E présente en régime permanent une intensité supérieure à l'intensité de maintien du plasma et lors de la mise en marche de l'écran, une intensité supérieure à l'intensité d'allumage du plasma.According to a third configuration, a matrix of controllable elements is positioned at (3), downstream of the phosphor means (ie between the phosphor and the external observer). Control means controls the elements to individually modulate the visible light generated by the phosphors and thereby selectively control the light appearing on the screen. Just as when the controllable elements are positioned in (2), the electric field E has a steady state intensity greater than the holding intensity of the plasma and when the screen is switched on, an intensity greater than 1 ignition intensity of the plasma.

La figure 4 est un diagramme fonctionnel illustrant le fonctionnement d'un écran à plasma conforme à l'invention du type sans luminophore.FIG. 4 is a functional diagram illustrating the operation of a plasma screen according to the invention of the type without phosphor.

Selon ce diagramme, on génère un champ électrique E distribué uniformément à proximité d'une chambre contenant un gaz. Lorsque ce champ est appliqué au gaz, il génère un plasma qui émet un rayonnement visible pour l'observateur qui regarde l'écran.According to this diagram, an electric field E is generated uniformly distributed near a chamber containing a gas. When this field is applied to the gas, it generates a plasma that emits radiation visible to the observer who is watching the screen.

Ce type de structure permet en particulier de réaliser des écrans « noir et blanc ».This type of structure makes it possible in particular to produce "black and white" screens.

Dans le cas où l'écran comprend une chambre à plasma divisée en cellule, les cellules peuvent comprendre des gaz de compositions différentes. Chaque cellule génère ainsi un rayonnement dans une couleur (typiquement vert, rouge ou bleu) dépendant de la composition du gaz qu'elle contient. On obtient ainsi des écrans « couleurs ».In the case where the screen comprises a plasma chamber divided into a cell, the cells may comprise gases of different compositions. Each cell thus generates radiation in a color (typically green, red or blue) depending on the composition of the gas it contains. This produces "color" screens.

Selon une première configuration, une matrice d'éléments commandables est positionnée en (4), entre le champ électrique et le gaz. Cette configuration est analogue à la configuration (1) de la figure 3. Des moyens de commande commandent les éléments pour qu'ils modulent individuellement le champ électrique transmis au gaz et contrôlent ainsi la lumière générée sur l'écran. Dans cette configuration, l'intensité du champ E est supérieure à l'intensité d'allumage du plasma.According to a first configuration, a matrix of controllable elements is positioned in (4), between the electric field and the gas. This configuration is analogous to the configuration (1) of FIG. 3. Control means control the elements so that they individually modulate the electric field transmitted to the gas and thus control the light generated on the screen. In this configuration, the intensity of the field E is greater than the ignition intensity of the plasma.

Selon une deuxième configuration, une matrice d'éléments commandables est positionnée en (5), en aval du ou des plasma(s). Cette configuration est analogue à la configuration (3) de la figure 3. Des moyens de commande commandent les éléments pour qu'ils modulent individuellement la lumière visible générée par le ou les plasma(s) et contrôlent ainsi sélectivement la lumière apparaissant sur l'écran. Le champ électrique E présente en régime permanent une intensité supérieure à l'intensité de maintien du plasma et lors de la mise en marche de l'écran, une intensité supérieure à l'intensité d'allumage du plasma.According to a second configuration, a matrix of controllable elements is positioned at (5), downstream of the plasma (s). This configuration is analogous to the configuration (3) of FIG. 3. Control means control the elements so that they individually modulate the visible light generated by the plasma (s) and thus selectively control the light appearing on the screen. The electric field E has in steady state an intensity greater than the intensity of maintenance of the plasma and at the start of the screen, an intensity greater than the ignition intensity of the plasma.

La figure 5 est un schéma représentatif d'une structure 3 d'écran à plasma conforme à un mode de réalisation correspondant à la configuration (1) de la figure 3.FIG. 5 is a representative diagram of a plasma screen structure 3 according to an embodiment corresponding to the configuration (1) of FIG. 3.

La structure 3 comprend une chambre 17 divisée en une matrice de cellules 21, 22, 23 séparées par des cloisons 31, 32, 33 et remplies d'un gaz ou mélange de gaz. Les cellules 21, 22, 23 sont confinées entre une plaque de verre 11 définissant la face avant de l'écran (c'est à dire la face orientée vers l'oeil du spectateur) et une cavité 41 définissant la face arrière de l'écran et dans laquelle est généré un champ électrique E micro-onde distribué uniformément.The structure 3 comprises a chamber 17 divided into a matrix of cells 21, 22, 23 separated by partitions 31, 32, 33 and filled with a gas or gas mixture. The cells 21, 22, 23 are confined between a glass plate 11 defining the front face of the screen (that is to say the face facing the viewer's eye) and a cavity 41 defining the rear face of the screen and in which is generated an electric field E microwave uniformly distributed.

La cavité 41 peut par exemple être constituée d'un matériau diélectrique à très faible perte (comme par exemple de l'oxyde de silicium SiO2) et d'un liquide diélectrique de refroidissement. Le champ électrique E peut être distribué uniformément, soit par un réseau bi-dimensionnel d'applicateurs micro-onde, soit par des résonateurs micro-onde, comme par exemple des résonateurs en anneaux alimentés en parallèle et en phase. On entend par « micro-ondes » ici et dans tout le présent texte des ondes électromagnétiques de fréquence supérieure ou égale à 200 MHz. Les fréquence micro-ondes utilisées sont par exemple les fréquences micro-ondes ISM (Industrielles Scientifiques et Médicales) généralement utilisées pour les applications grand public (soit 433 MHz, 920 MHz, 2,45 GHz) ou les fréquences utilisées pour la téléphonie mobile. Le champ E présente une amplitude capable d'allumer le plasma au niveau de chacune des cellules, et ce en un temps très court (par exemple de l'ordre de la microseconde).The cavity 41 may for example consist of a very low-loss dielectric material (such as, for example, silicon oxide SiO 2 ) and a dielectric cooling liquid. The electric field E may be distributed uniformly, either by a two-dimensional network of microwave applicators, or by microwave resonators, such as ring resonators fed in parallel and in phase. The term "microwaves" here and throughout the present text means electromagnetic waves with a frequency greater than or equal to 200 MHz. The microwave frequencies used are for example the microwave frequencies ISM (Industrial Scientific and Medical) generally used for consumer applications (ie 433 MHz, 920 MHz, 2.45 GHz) or frequencies used for mobile telephony. Field E presents an amplitude capable of igniting the plasma at each of the cells, and in a very short time (for example of the order of one microsecond).

Au moins deux réseaux d'électrodes X et Y de commande sont positionnés entre la cavité 41 et l'arrière de la chambre 17 divisée en cellules 21, 22, 23. L'un des réseaux X comprend au moins une série d'électrodes Xn, Xn+1, Xn+2... positionnées verticalement, parallèlement aux colonnes de l'écran. L'autre réseau Y comprend au moins une série d'électrodes Yn, Yn+1, Yn+2... positionnées horizontalement, parallèlement aux lignes de l'écran.At least two control electrode arrays X and Y are positioned between the cavity 41 and the rear of the chamber 17 divided into cells 21, 22, 23. One of the arrays X comprises at least one series of electrodes Xn , Xn + 1, Xn + 2 ... positioned vertically, parallel to the columns of the screen. The other network Y comprises at least one series of electrodes Yn, Yn + 1, Yn + 2 ... positioned horizontally, parallel to the lines of the screen.

Des éléments commandables 19 sont connectés entre chaque électrode du réseau X et chaque électrode du réseau Y. Ces éléments commandables 19 sont positionés à l'arrière de chaque cellule, entre la cellule 21, 22 ou 23 et la cavité 41 de champ E uniforme. Un élément 19 est ainsi commandé par une paire d'électrode Yn, Xn+2. En fonction de la commande qu'il a reçu, l'élément 19 module le champ électrique E transmis de la cavité 41 à la cellule 22.Controllable elements 19 are connected between each electrode of the network X and each electrode of the network Y. These controllable elements 19 are positioned at the rear of each cell, between the cell 21, 22 or 23 and the cavity 41 of uniform field E. An element 19 is thus controlled by a pair of electrodes Yn, Xn + 2. Depending on the command he has received, the element 19 modulates the electric field E transmitted from the cavity 41 to the cell 22.

Comme représenté sur la figure 9, chacun des éléments 19 est commandé par au moins une paire d'électrodes donnée, cette paire étant constituée d'une électrode du réseau X et une électrode du réseau Y. Ainsi, les réseaux d'électrodes X et Y commandent individuellement les états de chaque élément 19 de la matrice d'éléments.As shown in FIG. 9, each of the elements 19 is controlled by at least one pair of given electrodes, this pair consisting of an electrode of the network X and an electrode of the network Y. Thus, the electrode arrays X and Y individually control the states of each element 19 of the matrix of elements.

Chaque élément 19 peut présenter au moins deux états de transmission : un premier état selon lequel il transmet un champ d'allumage à la cellule 22, un deuxième état selon lequel il transmet un champ inférieur à la valeur de maintien du plasma dans la cellule 22.Each element 19 may have at least two transmission states: a first state in which it transmits an ignition field to the cell 22, a second state in which it transmits a field smaller than the value for holding the plasma in the cell 22 .

De tels éléments 19 peuvent par exemple être constitués par des Micro-Systèmes Electro-Mécaniques (MEMS).Such elements 19 may for example be constituted by electro-mechanical micro-systems (MEMS).

Les éléments de transmission 19 peuvent également être constitués par des structures de type composants semi-conducteurs, comme par exemple des structures à puits quantiques.The transmission elements 19 may also consist of structures of the semiconductor component type, such as, for example, quantum well structures.

Lors de l'allumage d'une cellule 22, l'élément 19 correspondant est commandé de manière à moduler le champ E pour transmettre à la cellule 22 un champ électrique égal au champ d'allumage. Ce champ génère une décharge dans le gaz contenu dans la cellule 22 qui produit un rayonnement UV. Des luminophores 18 présents sur les parois de la cellule 22 absorbent le rayonnement UV et réémettent un rayonnement C dans une fréquence visible.When lighting a cell 22, the corresponding element 19 is controlled so as to modulate the field E to transmit to the cell 22 an electric field equal to the ignition field. This field generates a discharge in the gas contained in the cell 22 which produces UV radiation. Phosphors 18 present on the walls of cell 22 absorb UV radiation and re-emit C radiation in a visible frequency.

Pour maintenir la cellule 22 allumée, il suffit de commander l'élément 19 correspondant de manière à moduler le champ E pour transmettre à la cellule 22 un champ au moins égal au champ de maintien de l'allumage. Cette tension entretient la décharge dans le gaz et par conséquent la production du rayonnement C visible.To keep the cell 22 on, it suffices to control the corresponding element 19 so as to modulate the field E to transmit to the cell 22 a field at least equal to the ignition maintenance field. This voltage maintains the discharge in the gas and consequently the production of visible radiation C.

Enfin, pour éteindre la cellule 22, il suffit de commander l'élément 19 correspondant de manière à moduler le champ E pour transmettre à la cellule 22 un champ électrique inférieur au champ électrique de maintien. Ce champ électrique n'est pas suffisant pour entretenir la décharge dans le gaz et l'émission de rayonnement C visible cesse.Finally, to turn off the cell 22, it is sufficient to control the corresponding element 19 so as to modulate the field E to transmit to the cell 22 an electric field lower than the holding electric field. This electric field is not sufficient to maintain the discharge in the gas and the visible C radiation emission ceases.

On notera que les luminophores 18 tapissent les parois des cellules sur toutes les surfaces disponibles de façon à collecter le maximum de rayonnement UV et ainsi améliorer le rendement lumineux de l'écran.It will be noted that the luminophores lined the walls of the cells on all available surfaces so as to collect the maximum of UV radiation and thus improve the luminous efficiency of the screen.

La figure 6 est un schéma représentatif d'une structure 4 d'écran à plasma conforme à une variante de réalisation de l'invention. Cette variante correspond à la configuration (4) de la figure 4.Figure 6 is a representative diagram of a plasma screen structure 4 according to an alternative embodiment of the invention. This variant corresponds to the configuration (4) of FIG.

La structure 4 est similaire à la structure 3 de la figure 5 excepté que les parois des cellules 21, 22, 23 ne sont pas recouvertes de luminophores. Dans cette variante, le gaz contenu dans la chambre 17, sous l'effet d'une décharge, génère directement un rayonnement visible C. Ce type de structure permet de réaliser des écrans « noir et blanc » dans le cas où les cellules sont remplies d'un gaz identique ou « couleur » dans le cas où les cellules contiennent des plasmas de composition gazeuses différentes émettant chacun un rayonnement visible dans l'une des trois couleurs fondamentales (rouge, vert et bleu).The structure 4 is similar to the structure 3 of FIG. 5 except that the walls of the cells 21, 22, 23 are not covered with luminophores. In this variant, the gas contained in the chamber 17, under the effect of a discharge, directly generates a visible radiation C. This type of structure allows for "black and white" screens in the case where the cells are filled an identical gas or "color" in the case where the cells contain plasmas of different gas composition each emitting visible radiation in one of the three fundamental colors (red, green and blue).

La figure 7 est un schéma représentatif d'une structure 5 d'écran à plasma conforme à un deuxième mode de réalisation de l'invention. Ce mode de réalisation correspond à la configuration (2) de la figure 3. Dans ce mode de réalisation, une matrice d'éléments commandables 19 est positionnée entre le gaz et des luminophores 18. Les réseaux d'électrodes X et Y commandent les éléments 19 pour qu'ils modulent individuellement le rayonnement UV émis par le plasma et destiné à être reçu par les luminophores 18 et contrôlent ainsi sélectivement la lumière apparaissant sur l'écran. Dans ce mode de réalisation, le champ E est appliqué en permanence au gaz de sorte qu'un plasma uniforme est généré en permanence.Fig. 7 is a representative diagram of a plasma screen structure according to a second embodiment of the invention. This embodiment corresponds to the configuration (2) of FIG. embodiment, a matrix of controllable elements 19 is positioned between the gas and phosphors 18. The X and Y electrode arrays control the elements 19 to individually modulate the UV radiation emitted by the plasma and intended to be received by the luminophores 18 and thus selectively control the light appearing on the screen. In this embodiment, the field E is permanently applied to the gas so that uniform plasma is generated continuously.

La figure 8 est un schéma représentatif d'une structure 6 d'écran à plasma conforme à un troisième mode de réalisation de l'invention. Ce mode de réalisation correspond à la configuration (3) de la figure 3. La matrice d'éléments commandables 19 est positionnée en aval des éléments générateurs de lumière visible. Les réseaux d'électrodes X et Y commandent les éléments 19 pour qu'ils modulent individuellement la lumière visible générée (selon les cas par le ou les plasma(s) ou les luminophores) et contrôlent ainsi sélectivement la lumière apparaissant sur l'écran.Fig. 8 is a representative diagram of a plasma screen structure 6 according to a third embodiment of the invention. This embodiment corresponds to the configuration (3) of FIG. 3. The matrix of controllable elements 19 is positioned downstream of the visible light generating elements. The X and Y electrode arrays control the elements 19 so that they individually modulate the visible light generated (as the case may be by the plasma (s) or the phosphors) and thus selectively control the light appearing on the screen.

Dans le cas des structures d'écran des figures 7 et 8 (correspondant aux configurations (2) et (3) de la figure 3), les éléments 19 peuvent être constitués par des Micro-Systèmes Electro-Mécaniques (MEMS), des micro-systèmes opto-électro-mécaniques (MOEMS), voire des dispositifs à Bande Interdite Photonique (cristaux photoniques ou BIP) dont on peut commander l'état de transmission.In the case of the screen structures of FIGS. 7 and 8 (corresponding to the configurations (2) and (3) of FIG. 3), the elements 19 may be constituted by electro-mechanical micro-systems (MEMS), micro opto-electro-mechanical systems (MOEMS), even Photonic Prohibited Band devices (photonic crystals or BIPs) whose transmission state can be controlled.

Un avantage des écrans à plasma décrit ci-dessus est la simplicité de la technologie utilisée, tant au niveau de la structure des cellules qu'au niveau de leur adressage, puisque d'une part les cellules sont exemptes d'électrodes, de barrière diélectrique et de couche d'émission secondaire de type MgO, d'autre part les circuits basse tension suffisent pour l'adressage des cellules (la commande des éléments de transmission ne nécessite pas d'électronique de puissance).An advantage of the plasma screens described above is the simplicity of the technology used, both in terms of the structure of the cells and their addressing, since on the one hand the cells are free of electrodes, dielectric barrier and MgO secondary emission layer, on the other hand the low voltage circuits are sufficient for the addressing of the cells (the control of the transmission elements does not require power electronics).

Un autre avantage est l'existence d'une fenêtre de fonctionnement très large pour l'excitation du plasma. La seule condition est d'appliquer un champ électrique supérieur au champ électrique de claquage pour un gaz ou mélange de gaz donné à une pression donnée. Le mélange de gaz peut par conséquent être optimisé pour obtenir le meilleur rendement UV de la décharge ou l'émission de rayonnement selon des longueurs d'onde bien définies. Par exemple, il est possible d'obtenir un amorçage du plasma avec du Xénon pur dont on connaît l'efficacité pour la production de photons UV. Le choix du gaz et de la pression de travail se trouve considérablement élargi par rapport aux technologies d'écran à plasma à décharge à barrière diélectrique, ce qui permet de choisir le point de fonctionnement des cellules de l'écran.Another advantage is the existence of a very wide operating window for the excitation of the plasma. The only condition is to apply an electric field greater than the electrical breakdown field for a gas or given gas mixture at a given pressure. The gas mixture can therefore be optimized to obtain the best UV efficiency of the discharge or the emission of radiation at well-defined wavelengths. For example, it is possible to obtain plasma priming with pure Xenon whose efficiency is known for the production of UV photons. The choice of gas and working pressure is considerably expanded compared to dielectric barrier discharge plasma screen technologies, which makes it possible to choose the point of operation of the cells of the screen.

Un autre avantage est également un meilleur rendement lumineux. En effet, l'énergie dissipée dans le plasma est entièrement consacrée à l'excitation et l'ionisation des seuls atomes efficaces (par exemple le Xénon) pour la production de photons UV.Another advantage is also a better light output. Indeed, the energy dissipated in the plasma is entirely devoted to the excitation and the ionization of the only effective atoms (for example Xenon) for the production of UV photons.

Par ailleurs, dans le cas d'un champ électrique micro-ondes, l'absence d'électrodes élimine le problème de la pulvérisation des parois due au bombardement ionique. Par conséquent peu d'énergie se trouve dissipée sous cette forme. Les parois étant au potentiel flottant, l'énergie des ions sur les parois ne dépasse pas la dizaine d'électron-volt (eV).Moreover, in the case of a microwave electric field, the absence of electrodes eliminates the problem of sputtering the walls due to ion bombardment. As a result, little energy is dissipated in this form. Since the walls are at floating potential, the energy of the ions on the walls does not exceed about ten electron volts (eV).

Un autre avantage encore est du à l'absence d'électrodes et à l'absence de dépôt MgO en regard de ces électrodes. La place correspondante peut donc être occupée par des luminophores, ce qui permet d'améliorer le rendement lumineux des cellules.Another advantage is due to the absence of electrodes and the absence of MgO deposit opposite these electrodes. The corresponding place may therefore be occupied by luminophores, which makes it possible to improve the luminous efficiency of the cells.

Enfin, un autre avantage est la durée de vie accrue des cellules. En effet, étant donné l'absence de couche de MgO et de bombardement ionique énergétique, la durée de vie des cellules n'est pas liée à leur durée de fonctionnement. Avec la technologie utilisée par l'invention, la durée de vie des cellules n'est limitée que par la durée de vie des luminophores.Finally, another benefit is the increased cell life. Indeed, given the absence of MgO layer and energy ion bombardment, the life of the cells is not related to their operating time. With the technology used by the invention, the life of the cells is limited only by the lifetime of the phosphors.

On pourra noter que dans les mises en oeuvre décrites correspondant aux figures 7 et 8, il n'est pas nécessaire que la chambre 17 contenant le gaz de décharge soit divisée en cellules, étant donné que les éléments 19 contrôlent directement les zones d'allumage et d'extinction de l'écran en aval du plasma.It may be noted that in the implementations described corresponding to FIGS. 7 and 8, it is not necessary for the chamber 17 containing the discharge gas to be divided into cells, since the elements 19 directly control the ignition zones. and extinguishing the screen downstream of the plasma.

Claims (14)

  1. Plasma display device of the type comprising, in a screen, a chamber (17) containing a discharge gas that can be excited in order to generate, alone or in combination with phosphor means (18) that are themselves intended to be excited by radiation emitted by said gas, visible light,
    characterized in that it includes means for generating, on one side of said chamber, a uniformly distributed electric field capable of igniting a plasma in said gas and, on the one hand, a matrix of drivable elements (19) which is placed between the electric field and the gas and, on the other hand, means (X, Y) that drive said elements (19) so that they individually modulate the electric field and thus selectively generate luminous areas on the screen.
  2. Plasma display device of the type comprising, in a screen, a chamber (17) containing a discharge gas capable, under the effect of the electric field, of generating, in combination with phosphor means (18) intended to be excited by radiation emitted by said gas, visible light,
    characterized in that it includes means for generating, on one side of said chamber, a uniformly distributed electric field capable of igniting and then sustaining a plasma, and also, on the one hand, a matrix of drivable elements (19) which is placed between the gas and the phosphors (18) and, on the other hand, means (X, Y) that drive said elements (19) so that they individually modulate the radiation emitted by the plasma and intended to be received by the phosphors (18) and thus selectively control the light appearing on the screen.
  3. Plasma display device of the type comprising, in a screen, a chamber (17) containing a discharge gas that can be excited in order to generate, alone or in combination with phosphor means (18) themselves intended to be excited by radiation emitted by said gas, visible light,
    characterized in that it includes means for generating, on one side of said chamber, a uniformly distributed electric field capable of igniting a plasma in said gas, and also, on the one hand, a matrix of drivable elements (19) that is placed between an external observer and the gas or the phosphor means (18) and, on the other hand, means (X, Y) which drive said elements (19) so that they individually modulate the visible light generated and thus selectively control the light appearing on the screen.
  4. Plasma display device according to one of the preceding claims, characterized in that the drive means comprise at least two series of electrodes (X, Y) extending in the form of arrays so as to drive the drivable elements (19) in a matrix fashion.
  5. Plasma display device according to one of the preceding claims, characterized in that the drivable elements (19) comprise microelectromechanical systems and/or microoptoelectromechanical systems and/or photonic bandgap devices, the transmission state of which may be controlled.
  6. Plasma display device according to one of the preceding claims, characterized in that the electric field is generated by microwaves of 200 MHz frequency or higher.
  7. Plasma display device according to one of the preceding claims, characterized in that the means for generating the electric field comprise a two-dimensional array of microwave applicators.
  8. Plasma display device according to one of Claims 1 to 6, characterized in that the means for generating the electric field comprise microwave resonators supplied in parallel and in phase.
  9. Plasma display device according to one of the preceding claims, characterized in that the chamber (17) containing the gas is divided into cells (21, 22, 23) coated with phosphors (18).
  10. Plasma display device according to preceding Claim 9, characterized in that a cell (21; 22; 23) has a bottom coated over its entire surface with phosphors (18).
  11. Plasma display device as claimed in one of Claims 1 to 8, characterized in that the chamber (17) is divided into cells (21, 22, 23) containing different gas mixtures capable of generating radiation of different wavelengths.
  12. Method of driving a plasma display device of the type comprising, in a screen, a chamber (17) containing a discharge gas that can be excited so as to generate visible light, which method comprises the steps consisting:
    - in generating a uniformly distributed field (E) having a higher intensity than the intensity of the field needed to ignite a plasma in the gas; and
    - in modulating the field (E) thus generated, in order to transmit it to a portion of the plasma so as to selectively ignite or sustain or extinguish said portion.
  13. Method of driving a plasma display device of the type comprising, in a screen, a chamber (17) containing a discharge gas that can be excited in order to generate visible light, which method comprises the steps consisting:
    - in generating a uniformly distributed field (E) having a higher intensity than the intensity of the field needed to ignite or sustain a plasma in the gas;
    - in applying the field (E) to the gas in order to generate visible or UV light radiation; and
    - in modulating the radiation emitted by a portion of the plasma so as to selectively control the light appearing.
  14. Method of driving a plasma display device of the type comprising, in a screen, a chamber (17) containing a discharge gas that can be excited in order to generate ultraviolet radiation, which method comprises the steps consisting:
    - in generating a uniformly distributed field (E) having a higher intensity than the intensity of the field needed to ignite a plasma in the gas;
    - in applying the field (E) to the gas in order to generate ultraviolet radiation;
    - in collecting the ultraviolet radiation and re-emitting visible radiation; and
    - in modulating the visible light radiation.
EP02799845A 2001-12-24 2002-12-23 Plasma display device and control method therefor Expired - Lifetime EP1459345B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0116820A FR2834113B1 (en) 2001-12-24 2001-12-24 PLASMA DISPLAY DEVICE AND CONTROL METHOD THEREOF
FR0116820 2001-12-24
PCT/FR2002/004522 WO2003056597A1 (en) 2001-12-24 2002-12-23 Plasma display device and control method therefor

Publications (2)

Publication Number Publication Date
EP1459345A1 EP1459345A1 (en) 2004-09-22
EP1459345B1 true EP1459345B1 (en) 2007-06-20

Family

ID=8870952

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02799845A Expired - Lifetime EP1459345B1 (en) 2001-12-24 2002-12-23 Plasma display device and control method therefor

Country Status (9)

Country Link
US (1) US20050093443A1 (en)
EP (1) EP1459345B1 (en)
JP (1) JP2005513750A (en)
KR (1) KR20040090963A (en)
AT (1) ATE365374T1 (en)
CA (1) CA2470446A1 (en)
DE (1) DE60220827T2 (en)
FR (1) FR2834113B1 (en)
WO (1) WO2003056597A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2839198B1 (en) * 2002-04-30 2004-06-04 Thomson Licensing Sa PLASMA VISUALIZATION PANEL WITH MICROWAVE RADIATION DISCHARGE EXCITATION
KR101130576B1 (en) 2010-11-12 2012-03-30 주식회사 나노브릭 Display method and device using photonic crystal characteristics
EP3118884A1 (en) 2015-07-15 2017-01-18 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Electrode assembly for a dielectric barrier discharge plasma source and method of manufacturing such an electrode assembly

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112231B1 (en) * 1970-08-10 1976-04-17
JPH0785798A (en) * 1993-09-10 1995-03-31 Daiden Co Ltd Method and device for controlling and improving luminance in plasma display device
US5765073A (en) * 1995-04-10 1998-06-09 Old Dominion University Field controlled plasma discharge printing device
US5877589A (en) * 1997-03-18 1999-03-02 International Business Machines Corporation Gas discharge devices including matrix materials with ionizable gas filled sealed cavities
KR19990004791A (en) * 1997-06-30 1999-01-25 엄길용 Plasma display device
US7075610B2 (en) * 1997-09-16 2006-07-11 Michael Scalora Liquid crystal display device and light emitting structure with photonic band gap transparent electrode structures
JP2000039854A (en) * 1998-07-22 2000-02-08 Fuji Photo Film Co Ltd Flat display device
US6310665B1 (en) * 1999-12-28 2001-10-30 Sharp Kabushiki Kaisha Liquid crystal display apparatus and optical addressing device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20050093443A1 (en) 2005-05-05
KR20040090963A (en) 2004-10-27
EP1459345A1 (en) 2004-09-22
FR2834113B1 (en) 2004-06-04
DE60220827D1 (en) 2007-08-02
FR2834113A1 (en) 2003-06-27
CA2470446A1 (en) 2003-07-10
WO2003056597A1 (en) 2003-07-10
ATE365374T1 (en) 2007-07-15
JP2005513750A (en) 2005-05-12
DE60220827T2 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
FR2730333A1 (en) RADIATION SOURCE DISPLAY DEVICE
FR2812449A1 (en) Personal computer/television information terminal plasma display screen having forward/rear substrate and columns/row rib sections forming pixel cells with nearby electrode supports/sweep electrodes.
US6570339B1 (en) Color fiber-based plasma display
FR2675306A1 (en) Thin-film cold cathode structure and device using this cathode
JP2006114484A (en) Plasma display panel
FR2530851A1 (en) PLAN VIEWING APPARATUS FOR TELEVISIONS AND TERMINALS
EP1459345B1 (en) Plasma display device and control method therefor
FR2797987A1 (en) Plasma display screen with improved operation and efficiency and extended operating life
EP0000274B1 (en) Gas discharge display memory panel
FR2529400A1 (en) GAS LASER WITH EXCITATION BY TRANSVERSE ELECTRIC DISCHARGE TRIGGERED BY PHOTOIONIZATION
FR2765392A1 (en) ION PUMPING OF A MICROPOINT FLAT SCREEN
EP1390940B1 (en) Display method for a coplanar plasma display panel using a pulse train with sufficiently high frequency to stabilise the discharges
FR2936093A1 (en) Tubular discharge UV lamp e.g. tanning lamp, for e.g. refrigerator, has two electrodes associated to main faces of one of dielectric tubes, where electrodes are in form of bands that partially occupy, in projection, interelectrode spaces
EP1500121A1 (en) Plasma display panel with microwave radiation discharge excitation
FR2791807A1 (en) Surface discharge AC color plasma display panel has matrix of surface discharge electrode pairs on front substrate and electrodes connected to row bus on rear substrate
JP2005513750A6 (en) Plasma display apparatus and control method thereof
KR20070076970A (en) Plasma display panel and manufacturing method of plasma display panel
JP3683200B2 (en) Backlight for light emitting device and flat display
FR2845820A1 (en) Integrated transformer field transmission display screen element having individual transformers with primary /address mechanism and secondary display mechanism connection display mechanism.
JP2002164022A (en) Light emitting device and back light for plane display
WO2018189189A1 (en) Source of ultraviolet light
JP2004288654A5 (en)
WO2001075927A1 (en) Ac matrix plasma panel
WO2004107385A2 (en) Plasma display panel comprising a reduced-section discharge expansion zone
FR2786607A1 (en) IMPROVEMENT IN COPLANAR TYPE PLASMA PANELS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040628

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17Q First examination report despatched

Effective date: 20050525

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60220827

Country of ref document: DE

Date of ref document: 20070802

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070920

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070620

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070620

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070620

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071001

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070620

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070920

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070620

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070921

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070620

26N No opposition filed

Effective date: 20080325

BERE Be: lapsed

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNR

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20081125

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081215

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090102

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081125

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081224

Year of fee payment: 7

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091223

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091223