EP1458469A1 - Reacteur catalytique, installation et procede de reaction correspondants - Google Patents

Reacteur catalytique, installation et procede de reaction correspondants

Info

Publication number
EP1458469A1
EP1458469A1 EP02799812A EP02799812A EP1458469A1 EP 1458469 A1 EP1458469 A1 EP 1458469A1 EP 02799812 A EP02799812 A EP 02799812A EP 02799812 A EP02799812 A EP 02799812A EP 1458469 A1 EP1458469 A1 EP 1458469A1
Authority
EP
European Patent Office
Prior art keywords
gas
flow
reactor according
reactor
mixing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02799812A
Other languages
German (de)
English (en)
Inventor
Daniel Gary
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1458469A1 publication Critical patent/EP1458469A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0278Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/10Mixing gases with gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4316Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod

Definitions

  • the present invention relates to a catalytic reactor for reacting a homogeneous, in particular flammable, mixture of a first and a second gas, of the type comprising
  • reaction chamber in which is disposed a catalytic reaction bed, and means for introducing the two gases into the reaction chamber.
  • Catalytic reaction installations are known in which a mixture of a combustible gas and an oxidizing gas is subjected to partial oxidation by catalysis.
  • the homogeneous mixture of oxidizing gas / fuel is conveyed, for example from a tank, by a supply line, then is injected into a catalytic reactor.
  • These mixers are used in particular for mixing a cooling gas in a hot exhaust gas.
  • mixers are described in documents EP-A-0 474 524 and EP-A-1 120 151.
  • the injection of the second gas into the first gas is carried out radially with respect to the flow of the first gas.
  • the present invention aims to overcome the operating and safety disadvantages of reactors known catalysts supplied with such fluids, and to provide a catalytic reactor whose supply has increased safety while having a low manufacturing cost.
  • the subject of the invention is a catalytic reactor of the aforementioned type, characterized in that the means of introduction include an injection device comprising first and second supply tubes, in that said first tube the supply carries a first inlet for said first gas and said second supply tube carries a second inlet for said second gas, in that said second supply tube comprises an outlet of said second gas opening into said first supply tube, and in that the introduction means further comprise a mixing device which is connected to the injection device, which is arranged downstream from the outlet of said second supply tube, and which opens into the reaction enclosure.
  • the reactor can include one or more of the following characteristics:
  • the mixing device is a static mixer comprising a tubular member and mixing elements; the mixing elements include blades integral with the tubular member;
  • the mixing device comprises a lining arranged in the tubular member
  • the packing is a structured packing;
  • the structured packing comprises a corrugated-cross packing;
  • the reactor includes a substantially laminar flow zone located immediately downstream of the mixing elements, this zone being constituted by a tubular member; the free height between the exit from the laminar flow zone and the reaction bed is between 140 mm and 160 mm, for an inside diameter of the enclosure of 160 mm; - The tubular member of the mixing device is arranged substantially coaxially with at least one of said supply tubes;
  • the mixing device is arranged inside the reaction chamber
  • the mixing device is arranged adjacent to the reaction chamber, and outside of it; said first and second supply tubes are arranged coaxially to each other, at least in the region of the outlet of said second feed tube, and this outlet is directed coaxially to said first feed tube;
  • the flow of gas in the reactor during its operation, has a general direction parallel to at least one of said supply tubes and this over substantially the entire length of the reactor;
  • the reactor comprises means for supplying said first and second supply tubes adapted to convey the two gases at substantially identical speed, at least in the zone of the outlet of said second supply tube; -
  • the reactor includes a thermal insulation layer disposed between the reaction chamber and the reaction bed; and the reactor constitutes a reactor for a partial oxidation reaction.
  • the subject of the invention is also a catalytic reaction installation, characterized in that it comprises:
  • a catalytic reactor as defined above, a source of oxidizing gas connected to said first inlet, and
  • the invention further relates to a process for the chemical reaction between two gases, in particular a gas oxidizer and a combustible gas, characterized in that it comprises the following successive stages: a first flow of a first gas is introduced into the flow of a second gas by forming a heterogeneous flow;
  • the heterogeneous flow passes through the mixing elements of a mixing device while being homogenized; the homogenized flow passes through a catalytic reaction bed in which the two gases carry out a chemical reaction.
  • the method can comprise one or more of the following steps: the flow rates of the two gases are adjusted so that the residence time of the two gases in the mixing device is significantly lower at the self-ignition time of the mixture of the two gases, in particular less than 0.05 s, and preferably less than 0.01 s;
  • Figure 1 is a schematic view in longitudinal section of a first embodiment production of a catalytic reaction installation according to the invention
  • Figure 2 is a schematic view of a catalytic reaction installation according to a second embodiment of the invention.
  • FIG. 1 is shown, in longitudinal section, a catalytic reaction installation according to the invention, designated by the general reference 2.
  • the installation 2 is intended to chemically react a mixture of an oxidizing gas and a combustible gas.
  • the combustible gas is for example a light C. to C s hydrocarbon or a mixture of these hydrocarbons, in particular natural gas.
  • the oxidizing gas is for example a gas rich in O 2 / such as air, O 2 or a mixture 0 2 / N 2 .
  • the installation comprises a source of oxidizing gas 4, in this case an oxygen tank, as well as a source of combustible gas 6 such as a CH 4 tank.
  • the source of combustible gas is a natural gas storage or network.
  • the installation 2 further comprises a catalytic reactor 8 comprising an inlet for the oxidizing gas 10, an inlet for the combustible gas 12, as well as an outlet for the reaction gas 14.
  • the oxygen tank 4 is connected to the inlet oxidant gas 10 via a first pipe 16 and a first valve 18.
  • the CH 4 tank 6 is connected to the fuel gas inlet 12 via a second pipe 20 and d a second valve 22.
  • the catalytic reactor 8 consists of an injection device 24, a mixing device 26 and a reaction chamber 28.
  • the reaction chamber 28 comprises a cylindrical metallic body or ferrule 30 with a circular section of axis central XX, arranged vertically.
  • the body 30 is substantially closed at its lower part, leaving the gas outlet 14 from the reactor.
  • the enclosure 28 also comprises a cover 32 screwed tightly onto the upper part of the body 30.
  • a central opening 34 is formed in the cover 32, coaxial with the axis X- X.
  • a tubular connector 36 extending coaxially to one central axis XX, is sealed to the central opening 34 and passes through the latter.
  • the tubular connector 36 comprises at its two ends an upper 38 and lower 40 connection flange.
  • the tubular connector 36 has an internal diameter d i .
  • the injection device 24 comprises an outer tube 42 of inner diameter cl as well as an inner tube 44.
  • the inner tube 44 has an outer diameter at less than the diameter cl.
  • the two tubes 42, 44 extend coaxially to the axis X-X.
  • the outer tube 42 ends at its lower end with a flange 46, by which it is connected to the upper flange 38 of the tubular connector 36.
  • the upper end 48 of the outer tube is substantially closed.
  • An oxidant supply port 50 is formed in the side wall of the upper end 48 of the outer tube. In this supply orifice 50 opens the first pipe 16.
  • the inner tube 44 passes through the upper end 48 of the outer tube, and is connected to the second pipe 20.
  • the inner tube 44 extends through the tubular connector 36 and ends in an outlet orifice 52 which opens coaxially with the axis X-X into an inlet of the mixing device 26.
  • the mixing device 26 is a static mixer. It consists of a tubular sheath 54 and mixing elements 56, disposed inside the sheath 54.
  • the sheath 54 has a hollow cylindrical shape with circular section of internal diameter d., And is fixed by a flange 58 to the lower flange 40 of the tubular connection 36. Thus, the mixing device 26 is entirely located inside the reaction chamber 28.
  • Inner diameters d. of the outer tube 42, of the tubular connector 36 and of the sheath 54 are identical.
  • the mixing elements 56 consist of two layers of four blades 60, the two layers being axially spaced from one another.
  • the blades 60 protrude from the inner wall of the sheath 54 and have a generally helical shape.
  • the outlet orifice 52 of the inner tube 44 is disposed adjacent to the upper end of the mixing elements 56. Between the outlet 52 of the inner tube 44 and the mixing elements 56 there remains a free distance E_ which is for example between 0 mm and 50 mm.
  • E_ free distance between 0 mm and 50 mm.
  • the reaction chamber 28 further contains a reaction bed 64 covering the entire cross section of the enclosure 28.
  • the reaction bed 64 consists of two upper thermal barrier 66 and lower 68 layers, as well as a layer median 70 of catalyst.
  • the two upper layers 66 and lower 68 consist of aluminum oxide balls, and extend for example over an axial height of 150 mm.
  • the middle layer 70 consists of granules of a ceramic support, coated with platinum or rhodium. Alternatively, other materials can be used as a thermal barrier or a catalyst.
  • the reaction bed 64 is supported by a support grid 71 secured to the ferrule 30.
  • the free height B .. is for example between 140 mm and 160 mm, for an inner diameter of the shell of 160 mm
  • the components of the catalytic reactor 8, unless otherwise indicated, preferably consist of special alloys such as Z5 NC32-21 ("HASTELLOY") or any other suitable material.
  • the installation according to the invention operates as follows:
  • the oxidant gas 10 and combustible gas 12 inputs are supplied with oxygen and CH 4 respectively.
  • the gases are preheated, for example to 300 ° C, and pressurized for example from 8 to 12 bars.
  • Oxygen as an oxidizing gas, is introduced into the external tube 42 through the supply orifice 50 and flows in a substantially laminar manner coaxially with the axis XX.
  • CH 4 as a combustible gas, flows, also in a substantially laminar manner and in the same direction as oxygen, in the inner tube 44 to the outlet orifice 52. It should be noted that the risks of self-ignition of such a mixture are increased when the temperature and / or the working pressure increases. At high temperatures these mixtures are self-igniting. A flame can develop without the presence of any other external source of ignition.
  • CH 4 is introduced coaxially and in the same direction in the flow of oxygen, and a heterogeneous mixture CH 4 / oxygen is formed.
  • the gas flow rates are preferably chosen so that they are substantially identical at the location of the outlet orifice 52. Consequently, a creation of a mixture does not take place upstream of the device of mixture 26, so that the risk of self-ignition of the mixture is avoided.
  • the heterogeneous CH 4 / oxygen mixture immediately enters the mixing device 26.
  • the heterogeneous mixture is driven in turbulent rotation by the blades 60 and is homogenized so that a homogeneous CH 4 / oxygen mixture is established on the cross section of the mixing device 26.
  • the mixture has a difference in average concentration of the mixture of less than 5%, measured over the cross section of the mixer.
  • the residence time of the gas in the mixing device 26 is very short, less than the self-ignition time of the mixture.
  • the residence time is typically less than 0.05 s and preferably less than 0.01 s, so that the risk of self-ignition of the mixture in the mixing device 26 is very low or eliminated.
  • the turbulent flow is transformed into a substantially laminar flow in the laminar flow zone 63.
  • the free height H ⁇ which remains between the outlet of the mixing device 26 and the upper surface 72 of the bed allows the homogeneous mixture to increase its homogeneity.
  • the mixture has an average concentration deviation of less than 3%, preferably less than 2%.
  • the synthesis gas CO + H 2 passes through the lower thermal barrier layer 68 and is withdrawn at the outlet 14 of the reactor.
  • the static mixing device 26 is compact, inexpensive and has a low pressure drop. It equalizes the concentration and, if necessary, the gas velocities and their temperatures over a short flow distance. As a result, the formation of detonation cells in the mixing device 26 is prevented, which gives it high security.
  • Installation 2 is highly secure, since the oxidant / fuel gases are stored and transported separately. The risk of auto-ignition of the mixing in a common supply line is therefore avoided.
  • Figure 2 is shown a second embodiment of a catalytic reaction installation 2 according to the invention. Only the differences from the first embodiment will be described. Similar elements have identical references.
  • the tubular connection 36 of the cover 32 extends only on the outside of the cover 32.
  • This connection 36 has an axial height N. and carries at its upper end the upper flange 38.
  • the cover 32 is in frustoconical shape, s' widening towards the reaction bed 64.
  • the opening angle ⁇ between the central axis XX and the truncated cone is chosen so that the gas mixture flows in a substantially laminar manner in the cover 32.
  • the mixing device 26 is located outside of the reaction enclosure 28 and directly adjacent to it. It is interposed between the injection device 24 and the cover 32.
  • the sheath 54 of the mixing device 26 has a lower flange 80 connected to the upper flange 38 of the cover 32.
  • the mixing elements 56 are flush with this flange lower 80.
  • the flange 46 of the injection device 24 is connected to the upper flange 58 of the sheath 54.
  • tubular connector 36 of the cover acts as a laminar flow zone 63.
  • Figure 3 is shown a third embodiment of an installation according to the invention.
  • This installation differs from that of the first embodiment by the following points.
  • the mixing elements 56 of the mixing device 26 consist of a corrugated-cross structured packing. 90.
  • the lining 90 comprises two layers 92 of corrugated-crossed sheets with a general vertical plane, angularly offset by 90 ° relative to each other around the axis XX. Examples of cross-corrugated packings are described in documents CA-A-1 095 827 and EP-A-0 158 917.
  • the reaction bed 64 has a diameter less than the inside diameter of the ferrule 30.
  • the annular gap present between the reaction bed 64 and the shell is filled with a layer of thermal insulation 94.
  • the thermal insulation layer 94 is a rigid self-supporting assembly consisting for example of a refractory material such as alumina.
  • the thermal insulation layer 94 extends in the axial direction between the two ends of the enclosure 28.
  • the space extending between the mixing device 26 and the enclosure 28 is also filled with the insulation layer thermal 94.
  • This layer follows, at its upper part, the shape of the cover 32 and of the mixing device 26.
  • the thermal insulation limits the heat losses from the gas mixture.
  • endothermic chemical reactions which may be necessary in the lower part of the middle layer 70 can be carried out without external heat supply.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Ce réacteur catalytique met en réaction un mélange d'un premier et d'un second gaz. Il comprend une enceinte de réaction 28 comportant un lit de réaction 64 catalytique. Il comprend un dispositif d'injection 24 comprenant des premier 42 et second 44 tubes d'alimentation en des premier et second gaz. Le premier tube d'alimentation 42 porte une premiíre entrée 10 et le second tube d'alimentation 44 porte une seconde entrée 12. La sortie 52 du second tube 44 débouche dans le premier tube 42. Le réacteur comprend en outre un dispositif de mélange 26 qui est raccordé au dispositif d'injection 24, qui est disposé en aval de la sortie 52 du second tube 42, et qui débouche dans l'enceinte de réaction 28. Application aux installations de fabrication de gaz de synthíse.

Description

Réacteur catalytique, installation et procédé de réaction correspondants .
La présente invention concerne un réacteur catalytique pour mettre en réaction un mélange homogène, notamment inflammable, d'un premier et d'un second gaz, du type comprenant
- une enceinte de réaction dans laquelle est disposé un lit de réaction catalytique, et des moyens d'introduction des deux gaz dans l'enceinte de réaction.
Elle s'applique notamment aux installations de fabrication de gaz de synthèse.
On connaît des installations de réaction catalytique dans lesquelles un mélange d'un gaz combustible et d'un gaz comburant est soumis à une oxydation partielle par catalyse.
De telles installations sont connues par exemple des documents EP-A-0 931 842, EP-A-0 686 701, et US-A-5 720 901.
Dans les installations de ces documents, le mélange homogène de gaz comburant/combustible est acheminé, par exemple depuis un réservoir, par une conduite d'alimentation, puis est injecté dans un réacteur catalytique.
Etant donné que ces mélanges sont fortement inflammables, il existe un risque d'auto-inflammation du mélange le long de la conduite d'alimentation, susceptible d'engendrer une déflagration voire une détonation au sein de la conduite d'alimentation ou du réacteur catalytique.
Par ailleurs, on connaît des mélangeurs statiques d'un gaz dans un autre gaz. Des exemples de tels mélangeurs sont décrits dans les documents EP-A-0 663 236 et EP-A-0 960
650. Ces mélangeurs sont utilisés notamment pour mélanger un gaz de refroidissement dans un gaz d'échappement chaud.
D'autres exemples de mélangeurs sont décrits dans les documents EP-A-0 474 524 et EP-A-1 120 151. Dans ces mélangeurs, l'injection du second gaz dans le premier gaz est effectuée radialement par rapport à l'écoulement du premier gaz .
La présente invention a pour but de pallier les inconvénients d'exploitation et de sécurité des réacteurs catalytiques connus alimentés avec de tels fluides, et de proposer un réacteur catalytique dont son alimentation ait une sécurité augmentée tout en ayant un faible coût de fabrication. A cet effet l'invention a pour objet un réacteur catalytique du type précité, caractérisé en ce que les moyens -d' introduction -comprennent un dispositif d'injection comprenant des premier et second tubes d'alimentation, en ce que ledit premier tube d'alimentation porte une première entrée pour ledit premier gaz et ledit second tube d'alimentation porte une seconde entrée pour ledit second gaz, en ce que ledit second tube d'alimentation comprend une sortie dudit second gaz débouchant dans ledit premier tube d'alimentation, et en ce que les moyens d'introduction comprennent en outre un dispositif de mélange qui est raccordé au dispositif d'injection, qui est disposé en aval de la sortie dudit second tube d'alimentation, et qui débouche dans l'enceinte de réaction.
Selon d'autres modes de réalisation, le réacteur peut comporter l'une ou plusieurs des caractéristiques suivantes :
- le dispositif de mélange est un mélangeur statique comprenant un organe tubulaire et des éléments de mélange ; les éléments de mélange comprennent des pales solidaires de l'organe tubulaire ;
- le dispositif de mélange comprend un garnissage disposé dans l'organe tubulaire ;
- le garnissage est un garnissage structuré ; le garnissage structuré comprend un garnissage ondulé-croisé ;
- le réacteur comporte une zone de flux sensiblement laminaire située immédiatement en aval des éléments de mélange, cette zone étant constituée par un organe tubulaire ; - la hauteur libre entre la sortie de la zone de flux laminaire et le lit de réaction est comprise entre 140 mm et 160 mm, pour un diamètre intérieur de l'enceinte de 160 mm ; - l'organe tubulaire du dispositif de mélange est disposé sensiblement coaxialement à au moins l'un desdits tubes d'alimentation ;
- le dispositif de mélange est disposé à l'intérieur de l'enceinte de réaction ;
- le dispositif de mélange est disposé adjacent à l'enceinte de réaction, et à l'extérieur de celui-ci ; lesdits premier et second tubes d'alimentation sont disposés coaxialement l'un à l'autre, au moins dans la zone de la sortie dudit second tube d'alimentation, et cette sortie est dirigée coaxialement audit premier tube d'alimentation ;
- l'écoulement du gaz dans le réacteur, pendant le fonctionnement de celui-ci, a une direction générale parallèle à au moins l'un desdits tubes d'alimentation et ceci sur sensiblement toute la longueur du réacteur ;
- la distance libre entre la sortie dudit second tube et les éléments de mélange est comprise entre 0 mm et 50 mm ; - le réacteur comprend des moyens d'alimentation desdits premier et second tubes d'alimentation adaptés pour acheminer les deux gaz à vitesse sensiblement identique, au moins dans la zone de la sortie dudit second tube d'alimentation ; - le réacteur comprend une couche d'isolation thermique disposée entre l'enceinte de réaction et le lit de réaction ; et le réacteur constitue un réacteur pour une réaction d'oxydation partielle. L'invention a en outre pour objet une installation de réaction catalytique, caractérisée en ce qu'elle comprend :
- un réacteur catalytique tel que défini ci-dessus, une source de gaz comburant reliée à ladite première entrée, et
- une source de gaz combustible reliée à ladite seconde entrée.
L'invention a en outre pour objet un procédé de réaction chimique entre deux gaz, notamment d'un gaz comburant et d'un gaz combustible, caractérisé en ce qu'il comprend les étapes successives suivantes : un premier écoulement d'un premier gaz est introduit dans l'écoulement d'un second gaz en formant un écoulement hétérogène ;
- l'écoulement hétérogène traverse des éléments de mélange d'un dispositif de mélange en étant homogénéisé ; l'écoulement homogénéisé traverse un lit de réaction catalytique dans lequel les deux gaz effectuent une réaction chimique.
Selon d'autres modes de réalisation, le procédé peut comporter l'une ou plusieurs des étapes suivantes : les vitesses d'écoulement des deux gaz sont réglées de telle sorte que le temps de séjour des deux gaz dans le dispositif de mélange est nettement inférieur au temps d'auto-inflammation du mélange des deux gaz, notamment inférieur à 0,05 s, et de préférence inférieur à 0,01 s ;
- l'introduction dudit premier gaz dans l'écoulement dudit second gaz est effectuée de façon sensiblement laminaire ;
- l'introduction dudit premier gaz dans l'écoulement dudit second gaz est effectuée dans le sens d'écoulement dudit second gaz ; et
- l'introduction dudit premier gaz dans l'écoulement dudit second gaz est effectuée à vitesse sensiblement identique pour les deux gaz .
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés, sur lesquels : la Figure 1 est une vue schématique en coupe longitudinale d'un premier mode de réalisation d'une installation de réaction catalytique selon l'invention ; la Figure 2 est une vue schématique d'une installation de réaction catalytique selon un deuxième mode de réalisation de l'invention ; et
- la Figure 3 est une vue schématique d'un troisième mode de réalisation d'une installation de réaction catalytique selon l'invention. Sur la Figure 1 est représentée, en coupe longitudinale, une installation de réaction catalytique selon l'invention, désignée par la référence générale 2.
Sur les Figures, le sens général d'écoulement de gaz E est dirigé du haut vers le bas . Les entrées de gaz des éléments de l'installation 2 se trouvent donc à leurs
-extrémités supérieures, -tandis que les sorties de gaz- sont situées aux extrémités inférieures.
L'installation 2 est destinée à mettre en réaction chimique un mélange d'un gaz comburant et d'un gaz combustible. Le gaz combustible est par exemple un hydrocarbure léger de C. à Cs ou un mélange de ces hydrocarbures, en particulier du gaz naturel
(essentiellement CH4) ou du C3H8, tandis que le gaz comburant est par exemple un gaz riche en 02/ tel que de l'air, de l'02 ou un mélange 02/N2.
Dans le cas d'un mélange de CH4 et de l'air, la réaction d'oxydation partielle suivante se produit à l'intérieur de l'installation: 2 CH, + 02 → 2CO + 4 Ha (réaction d'oxydation partielle au méthane en vue de produire du gaz de synthèse) . L'installation comprend une source de gaz comburant 4, en l'occurrence un réservoir d'oxygène, ainsi qu'une source de gaz combustible 6 telle qu'un réservoir de CH4. En variante, la source de gaz combustible est un stockage ou un réseau de gaz naturel. L'installation 2 comprend en outre un réacteur catalytique 8 comprenant une entrée du gaz comburant 10, une entrée du gaz combustible 12, ainsi qu'une sortie pour le gaz de réaction 14. Le réservoir d'oxygène 4 est relié à l'entrée du gaz comburant 10 par l'intermédiaire d'une première conduite 16 et d'une première vanne 18. Le réservoir de CH4 6 est relié à l'entrée de gaz combustible 12 par l'intermédiaire d'une seconde conduite 20 et d'une seconde vanne 22. Le réacteur catalytique 8 est constitué d'un dispositif d'injection 24, d'un dispositif de mélange 26 et d'une enceinte de réaction 28.
L'enceinte de réaction 28 comprend un corps ou virole métallique cylindrique 30 à section circulaire d'axe central X-X, disposé verticalement. Le corps 30 est sensiblement fermé à sa partie inférieure, en laissant subsister la sortie de gaz 14 du réacteur. L'enceinte 28 comprend par ailleurs un couvercle 32 vissé de façon étanche sur la partie supérieure du corps 30. Une ouverture centrale 34 est ménagée dans le couvercle 32, coaxialement à l'axe X- X.
Un raccord tubulaire 36, s 'étendant coaxialement à 1 ' axe central X-X, est soudé de façon étanche sur l'ouverture centrale 34 et traverse cette dernière. Le raccord tubulaire 36 comprend à ses deux extrémités une bride de raccordement supérieure 38 et inférieure 40. Le raccord tubulaire 36 a un diamètre intérieur di .
Le dispositif d'injection 24 comprend un tube extérieur 42 de diamètre intérieur cl ainsi qu'un tube intérieur 44. Le tube intérieur 44 a un diamètre extérieur à_ inférieur au diamètre cl. Les deux tubes 42, 44 s'étendent coaxialement à l'axe X-X.
Le tube extérieur 42 se termine à son extrémité inférieure par une bride 46, par laquelle il est raccordé à la bride supérieure 38 du raccord tubulaire 36. L'extrémité supérieure 48 du tube extérieur est sensiblement fermée.
Un orifice d'alimentation 50 en comburant est ménagé dans la paroi latérale de l'extrémité supérieure 48 du tube extérieur. Dans cet orifice d'alimentation 50 débouche la première conduite 16. Le tube intérieur 44 traverse l'extrémité supérieure 48 du tube extérieur, et est raccordé à la seconde conduite 20.
Le tube intérieur 44 s'étend à travers le raccord tubulaire 36 et se termine par un orifice de sortie 52 qui débouche coaxialement à 1 ' axe X-X dans une entrée du dispositif de mélange 26.
Le dispositif de mélange 26 est un mélangeur statique. Il est constitué d'une gaine tubulaire 54 et d'éléments de mélange 56, disposés à l'intérieur de la gaine 54. La gaine 54 a une forme cylindrique creuse à section circulaire de diamètre intérieur d., et est fixée par une bride 58 à la bride inférieure 40 du raccord tubulaire 36. Ainsi, le dispositif de mélange 26 est entièrement situé à l'intérieur de l'enceinte de réaction 28.
Les diamètres intérieurs d. du tube extérieur 42, du raccord tubulaire 36 et de la gaine 54 sont identiques. Les éléments de mélange 56 sont constitués de deux couches de quatre pales 60, les deux couches étant axialement à distance l'une de l'autre. Les pales 60 font saillie sur la paroi intérieure de la gaine 54 et ont une forme générale hélicoïdale. L'orifice de sortie 52 du tube intérieur 44 est disposé adjacent à l'extrémité supérieure des éléments de mélange 56. Entre la sortie 52 du tube intérieur 44 et les éléments de mélange 56 subsiste une distance libre E_ qui est par exemple comprise entre 0 mm et 50 mm. L'extrémité inférieure 62 du dispositif de mélange
26, qui constitue sa sortie, est dépourvue des éléments de mélange 56 sur une hauteur axiale EL., et forme une zone 63 de flux laminaire de gaz .
L'enceinte de réaction 28 contient en outre un lit de réaction 64 couvrant toute la section transversale de l'enceinte 28. Le lit de réaction 64 est constitué de deux couches de barrière thermique supérieure 66 et inférieure 68, ainsi que d'une couche médiane 70 de catalyseur. Les deux couches supérieure 66 et inférieure 68 sont constituées de billes d'oxyde d' aluminium, et s'étendent par exemple sur une hauteur axiale de 150 mm. La couche médiane 70 est constituée de granules d'un support en céramique, revêtu de platine ou de rhodium. En variante, d'autres matières peuvent être utilisées en tant que barrière thermique ou que catalyseur.
Le lit de réaction 64 est soutenu par une grille de support 71 solidaire de la virole 30.
Entre l'extrémité inférieure 62 de la gaine 54 et une surface libre 72 de la couche supérieure 66 subsiste une hauteur libre B.. , qui assure une homogénéisation supplémentaire du mélange gaz comburant/gaz combustible. La hauteur libre ΕL. est par exemple comprise entre 140 mm et 160 mm, pour un diamètre intérieur de la virole de 160 mm Les composants du réacteur catalytique 8 , sauf indication contraire, sont constitués préférentiellement d'alliages spéciaux tels que du Z5 NC32-21 (« HASTELLOY ») ou de toute autre matière appropriée. L'installation selon l'invention fonctionne de la façon suivante :
Les entrées de gaz comburant 10 et de gaz combustible 12 sont alimentées en oxygène et en CH4 respectivement. Eventuellement les gaz sont préchauffés, par exemple à 300°C, et mis sous pression par exemple de 8 à 12 bars. L'oxygène, en tant que gaz comburant, est introduit dans le tube extérieur 42 par l'orifice d'alimentation 50 et s'écoule de façon sensiblement laminaire coaxialement à l'axe X-X. Le CH4, en tant que gaz combustible, s'écoule, également de façon sensiblement laminaire et dans le même sens que l'oxygène, dans le tube intérieur 44 jusqu'à l'orifice de sortie 52. Il est à noter que les risques d'auto-inflammation d'un tel mélange sont accrues dès lors que la température et/ou la pression de service augmentent. A haute température ces mélanges sont auto inflammables. Une flamme peut se développer sans la présence d'aucune autre source extérieure d'allumage.
A l'orifice de sortie 52, le CH4 est introduit coaxialement et dans le même sens dans l'écoulement de l'oxygène, et un mélange hétérogène CH4/oxygène est formé. Les vitesses d'écoulement des gaz sont de préférence choisies de telle sorte qu'elles soient sensiblement identiques à l'emplacement de l'orifice de sortie 52. En conséquence, une création d'un mélange n'a pas lieu en amont du dispositif de mélange 26, de sorte que le risque d'auto- inflammation du mélange est évitée.
Le mélange hétérogène CH4 /oxygène entre immédiatement dans le dispositif de mélange 26.
Le mélange hétérogène est entraîné en rotation turbulente par les pales 60 et est homogénéisé de sorte qu'il s'établisse un mélange homogène CH4/oxygène sur la section transversale du dispositif de mélange 26. A la sortie des éléments de mélange 56, le mélange a un écart de concentration moyenne du mélange inférieur à 5%, mesurée sur la section transversale du mélangeur. Le temps de séjour du gaz dans le dispositif de mélange 26 est très court, inférieur au temps d'auto-inflammation du mélange. Le temps de séjour est typiquement inférieur à 0,05s et de préférence inférieur à 0,01s, de sorte que le risque d'auto- inflammation du mélange dans le dispositif de mélange 26 est très faible' ou supprimé. L'écoulement turbulent se transforme en un écoulement sensiblement laminaire dans la zone de flux laminaire 63. La hauteur libre H^ qui subsiste entre la sortie du dispositif de mélange 26 et la surface supérieure 72 du lit permet au mélange homogène d'augmenter son homogénéité. A l'emplacement de la surface supérieure 72 du lit de réaction, le mélange a un écart de concentration moyenne inférieur à 3%, de préférence inférieur à 2%.
Puis le mélange homogène traverse suivant l'axe X-X la couche de barrière thermique supérieure 66 et entre dans la couche de catalyse 70. Dans la couche de catalyse 70 s'effectue alors la réaction précitée : 2CH4 + 02 => 2CO + 4H2.
Etant donnée que le mélange de gaz, à 1 ' entrée du lit de réaction 64, est très homogène, la formation de points chauds ou de dépôt de carbone solide, suivant les réactions CH4 + 202 => C02 + 2H20 et/ou CH4 + 02 => C + 2H20, est empêchée ou très faible. Le risque de dégradation du réacteur 8 par surchauffage ou bouchage est donc faible.
Le gaz de synthèse CO + H2 traverse la couche de barrière thermique inférieure 68 et est soutiré à la sortie 14 du réacteur. Le dispositif de mélange 26 statique est peu encombrant, bon marché et a une faible perte de charge. Il égalise la concentration et, le cas échéant, les vitesses des gaz et leurs températures sur une courte distance d'écoulement. En conséquence, la formation de cellules de détonation dans le dispositif de mélange 26 est empêchée, ce qui confère à celui-ci une sécurité élevée.
L'installation 2 présente une haute sécurité, étant donné que les gaz comburant/combustible sont stockés et acheminés séparément. Le risque d' auto-inflammation du mélange dans une conduite d'alimentation commune est donc évité.
Sur la Figure 2 est représenté un deuxième mode de réalisation d'une installation 2 de réaction catalytique selon l'invention. Uniquement les différences par rapport au premier mode de réalisation seront décrites. Les éléments analogues portent des références identiques.
Le raccord tubulaire 36 du couvercle 32 ne s'étend que sur le coté extérieur du couvercle 32. Ce raccord 36 a une hauteur axiale N. et porte à son extrémité supérieure la bride supérieure 38. Le couvercle 32 est en forme tronconique, s' élargissant vers le lit de réaction 64. L'angle d'ouverture α entre l'axe central X-X et le tronc de cône est choisi de telle sorte que le mélange de gaz s'écoule de façon sensiblement laminaire dans le couvercle 32.
Par ailleurs, le dispositif de mélange 26 est situé à l'extérieur de l'enceinte de réaction 28 et directement adjacent à celui-ci. Il est interposé entre le dispositif d'injection 24 et le couvercle 32. A cet effet, la gaine 54 du dispositif de mélange 26 comporte une bride inférieure 80 reliée à la bride supérieure 38 du couvercle 32. Les éléments de mélange 56 affleurent cette bride inférieure 80.
La bride 46 du dispositif d'injection 24 est reliée à la bride supérieure 58 de la gaine 54. Le tube intérieur
44 est raccourci par rapport au premier mode de réalisation, étant donné que les éléments de mélange 56 du dispositif de mélange 26 sont disposés adjacents à la bride 46 du tube extérieur 42. Le fonctionnement de cette installation 2 est analogue à celui du premier mode de réalisation.
Comme différence, le raccord tubulaire 36 du couvercle agit en tant que zone de flux laminaire 63.
Sur la Figure 3 est représenté un troisième mode de réalisation d'une installation selon l'invention.
Cette installation diffère de celle du premier mode de réalisation par les points suivants.
Les éléments de mélange 56 du dispositif de mélange 26 sont constitués d'un garnissage structuré ondulé-croisé 90. Le garnissage 90 comprend deux couches 92 de tôles ondulées-croisées à plan général vertical, décalées angulairement de 90° l'une par rapport à l'autre autour de l'axe X-X. Des exemples de garnissages ondulés-croisés sont décrits dans les documents CA-A-1 095 827 et EP-A-0 158 917. Par ailleurs, le lit de réaction 64 a un diamètre inférieur au diamètre intérieur de la virole 30. L'interstice annulaire présent entre le lit de réaction 64 et la virole est empli d'une couche d'isolation thermique 94.
La couche d'isolation thermique 94 est un ensemble rigide auto-portant constitué par exemple d'une matière réfractaire telle que de l'alumine. La couche d'isolation thermique 94 s'étend suivant la direction axiale entre les deux extrémités de l'enceinte 28. L'espace s ' étendant entre le dispositif de mélange 26 et l'enceinte 28 est également empli de la couche d'isolation thermique 94. Cette couche épouse, à sa partie supérieure, la forme du couvercle 32 et du dispositif de mélange 26. Toutefois, entre la sortie du dispositif de mélange 26 et la surface supérieure 72 du lit de réaction subsiste un espace vide 96 sensiblement en forme tronconique s ' élargissant vers le lit de réaction 64, qui permet l'écoulement sensiblement laminaire et la répartition du mélange de gaz sur toute la section transversale du lit. L'isolation thermique limite les pertes de chaleur du mélange de gaz. Ainsi, des réactions chimiques endothermiques éventuellement nécessaires dans la partie inférieure de la couche médiane 70 peuvent s'effectuer sans apport de chaleur extérieur.

Claims

REVENDICATIONS
1. Réacteur catalytique pour mettre en réaction un mélange homogène, notamment inflammable, d'un premier et d'un second gaz, du type comprenant
- une enceinte de réaction (28) dans laquelle est disposé un lit de réaction (64) catalytique, et
- des moyens d'introduction (24, 26) des deux gaz dans l'enceinte de réaction (28), caractérisé en ce que les moyens d'introduction comprennent un dispositif d'injection (24) comprenant des premier (42) et second (44) tubes d'alimentation, en ce que ledit premier tube d'alimentation (42) porte une première entrée (10) pour ledit premier gaz et ledit second tube d'alimentation (44) porte une seconde entrée (12) pour ledit second gaz, en ce que ledit second tube d'alimentation (44) comprend une sortie (52) dudit second gaz débouchant dans ledit premier tube d'alimentation (42), de façon à y former un premier mélange hétérogène du premier gaz et du second gaz, et en ce que les moyens d'introduction comprennent en outre un dispositif de mélange (26) qui est raccordé au dispositif d'injection (24), en étant disposé en aval de la sortie (52) dudit second tube d'alimentation (42) pour être ainsi apte à recevoir ledit premier mélange hétérogène afin de l'homogénéiser, le dispositif de mélange débouchant dans l'enceinte de réaction (28).
2. Réacteur suivant la revendication 1, caractérisé en ce que le dispositif de mélange (26) est un mélangeur statique comprenant un organe tubulaire (54) et des éléments de mélange (56) .
3. Réacteur suivant la revendication 2, caractérisé en ce que les éléments de mélange (56) comprennent des pales (60) solidaires de l'organe tubulaire (54).
4. Réacteur suivant la revendication 2, caractérisé en ce que le dispositif de mélange (26) comprend un garnissage (90 ) disposé dans l'organe tubulaire (54).
5. Réacteur suivant la revendication 4, caractérisé en ce que le garnissage est un garnissage structuré (90) .
6. Réacteur suivant la revendication 5, caractérisé en ce que le garnissage structuré comprend un garnissage ondulé-croisé (90) .
7. Réacteur suivant l'une des revendications 2 à 6, caractérisé en ce qu'il comporte une zone de flux sensiblement laminaire (63) située immédiatement en aval des éléments de mélange (56) , cette zone étant constituée par un organe tubulaire (54; 36) .
8. Réacteur suivant la revendication 7, caractérisé en ce que la hauteur libre (Hi) entre la sortie de la zone de flux laminaire (63) et le lit de réaction (64) est comprise entre 140 mm et 160 mm, pour un diamètre intérieur de l'enceinte (28) de 160 mm.
9. Réacteur suivant l'une quelconque des revendication 2 à 8, caractérisé en ce que l'organe tubulaire (54) du dispositif de mélange (26) est disposé sensiblement coaxialement à au moins l'un desdits tubes d'alimentation (42, 44).
10. Réacteur suivant l'une quelconque des revendications 1 à 9, caractérisé en ce que le dispositif de mélange (26) est disposé à l'intérieur de l'enceinte de réaction (28) .
11. Réacteur suivant l'une quelconque des revendications 1 à 9, caractérisé en ce que le dispositif de mélange (26) est disposé adjacent à l'enceinte de réaction (28), et à l'extérieur de celui-ci.
12. Réacteur suivant l'une quelconque des revendications 1 à 11, caractérisé en ce que lesdits premier
(42) et second (44) tubes d'alimentation sont disposés coaxialement l'un à l'autre, au moins dans la zone de la sortie (52) dudit second tube d'alimentation (44), et en ce que cette sortie (52) est dirigée coaxialement audit premier tube d'alimentation (42).
13. Réacteur suivant l'une quelconque des revendications 1 à 12, caractérisé en ce que l'écoulement du gaz (E) dans le réacteur (8) , pendant le fonctionnement de celui-ci, a une direction générale parallèle à au moins l'un desdits tubes d'alimentation (42, 44) et ceci sur sensiblement toute la longueur du réacteur.
14. Réacteur suivant l'une quelconque des revendications 2 à 13, caractérisé en ce que la distance libre (Hg) entre la sortie (52) dudit second tube (44) et les éléments de mélange (56) est comprise entre 0 mm et 50 mm.
15. Réacteur suivant l'une quelconque des revendications 1 à 14, caractérisé en ce qu'il comprend des moyens (18,22) d'alimentation desdits premier (42) et second
(44) tubes d'alimentation adaptés pour acheminer les deux gaz à vitesse sensiblement identique, au moins dans la zone de la sortie (52) dudit second tube d'alimentation (44).
16. Réacteur suivant l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend une couche d'isolation thermique (94) disposée entre l'enceinte de réaction (28) et le lit de réaction (64).
17. Réacteur suivant l'une quelconque des revendications précédentes, caractérisé en ce qu'il constitue un réacteur (8) pour une réaction d'oxydation partielle.
18. Installation de réaction catalytique, caractérisée en ce qu'elle comprend :
- un réacteur (8) conforme à l'une quelconque des revendications précédentes, - une source de gaz comburant (4) reliée à ladite première entrée (10) , et
- une source de gaz combustible (6) reliée à ladite seconde entrée (12) .
19. Procédé de réaction chimique entre deux gaz, notamment^ d'un _gaz comburant et d'un gaz combustible, caractérisé en ce qu'il comprend les étapes successives suivantes : un premier écoulement d'un premier gaz est introduit dans l'écoulement d'un second gaz en formant un écoulement hétérogène ;
- l'écoulement hétérogène traverse des éléments de mélange (56) d'un dispositif de mélange (26) en étant homogénéisé ; - l'écoulement homogénéisé traverse un lit de réaction catalytique (64) dans lequel les deux gaz effectuent une réaction chimique.
20. Procédé selon la revendication 19, caractérisé en ce que les vitesses d'écoulement des deux gaz sont réglées de telle sorte que le temps de séjour des deux gaz dans le dispositif de mélange (26) est nettement inférieur au temps d'auto-inflammation du mélange des deux gaz, notamment inférieur à 0,05 s, et de préférence inférieur à 0,01 s.
21. Procédé selon la revendication 19 ou 20, caractérisé en ce que l'introduction dudit premier gaz dans l'écoulement dudit second gaz est effectuée de façon sensiblement laminaire.
22. Procédé selon l'une quelconque des revendications 19 à 21, caractérisé en ce que l'introduction dudit premier gaz dans l'écoulement dudit second gaz est effectuée dans le sens d'écoulement dudit second gaz.
23. Procédé selon l'une quelconque des revendications 19 à 22, caractérisé en ce que l'introduction dudit premier gaz dans l'écoulement dudit second gaz est effectuée à vitesse sensiblement identique pour les deux gaz.
EP02799812A 2001-12-20 2002-12-13 Reacteur catalytique, installation et procede de reaction correspondants Withdrawn EP1458469A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0116581 2001-12-20
FR0116581A FR2833863B1 (fr) 2001-12-20 2001-12-20 Reacteur catalytique, installation et procede de reaction correspondants
PCT/FR2002/004345 WO2003053559A1 (fr) 2001-12-20 2002-12-13 Aeacteur catalytique, installation et procede de reaction correspondants

Publications (1)

Publication Number Publication Date
EP1458469A1 true EP1458469A1 (fr) 2004-09-22

Family

ID=8870778

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02799812A Withdrawn EP1458469A1 (fr) 2001-12-20 2002-12-13 Reacteur catalytique, installation et procede de reaction correspondants

Country Status (5)

Country Link
US (1) US20050095185A1 (fr)
EP (1) EP1458469A1 (fr)
AU (1) AU2002364449A1 (fr)
FR (1) FR2833863B1 (fr)
WO (1) WO2003053559A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6960325B2 (en) * 2002-08-22 2005-11-01 Hydrocarbon Technologies Apparatus for hydrocracking and/or hydrogenating fossil fuels
FR2848548B1 (fr) * 2002-12-17 2005-12-23 Air Liquide Procede de generation d'un melange de synthese co-h2 sous pression par oxydation partielle catalytique en minimisant la formation de suies
US7547422B2 (en) 2006-03-13 2009-06-16 Praxair Technology, Inc. Catalytic reactor
DE102008036243A1 (de) * 2008-08-04 2010-02-11 Ewe Ag Verfahren zum kontinuierlichen Konditionieren von Gas, vorzugsweise Erdgas
DE102008036269A1 (de) 2008-08-04 2010-02-11 Ewe Ag Vorrichtung zum kontinuierlichen Mischen von ausgespeichertem Erdgas mit Sauerstoff zu einem Brenngas für eine Erwärmung des unter Druck stehenden Erdgases vor oder nach seiner Entspannung
DE102008036270A1 (de) * 2008-08-04 2010-02-11 Ewe Ag Vorrichtung zum kontinuierlichen Vorwärmen eines Gemisches aus Brenngas, insbesondere Erdgas und Sauerstoff
DE102008036244A1 (de) * 2008-08-04 2010-02-11 Ewe Ag Vorrichtung für eine kontinuierliche Konditionierung von ausgespeichertem Erdgas
US8808654B2 (en) 2009-09-29 2014-08-19 Praxair Technology, Inc. Process for sulfur removal from refinery off gas
CN102858442B (zh) * 2010-02-22 2016-06-08 赫多特普索化工设备公司 用于混合腐蚀性气体和非腐蚀性气体的装置和方法
WO2012130254A1 (fr) * 2011-03-28 2012-10-04 Haldor Topsøe A/S Dispositif de mélange
CN105492393B (zh) * 2013-07-11 2018-06-22 赢创德固赛有限公司 制造金属氧化物的方法
JP6172039B2 (ja) * 2014-04-25 2017-08-02 住友金属鉱山株式会社 転化器
DE102015209874A1 (de) * 2015-05-29 2016-12-01 Thyssenkrupp Ag System zur Eindüsung einer reaktiven gashaltigen Komponente in einen Synthesereaktor
CN105836704B (zh) * 2016-03-24 2017-12-01 广西大学 一种用于化学制氢的氢气发生装置
CN107398236B (zh) * 2016-05-20 2019-10-15 中国石化工程建设有限公司 一种冷激式反应器
RU2666423C1 (ru) * 2017-11-30 2018-09-07 Акционерное Общество "Российский Концерн По Производству Электрической И Тепловой Энергии На Атомных Станциях" (Ао "Концерн Росэнергоатом") Устройство для смешивания и нагрева газовых сред

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2943062A (en) * 1956-01-19 1960-06-28 Kellogg M W Co Conversion of hydrocarbons to a hydrogen-rich gas
US3340320A (en) * 1964-06-08 1967-09-05 Phillips Petroleum Co Dehydrogenation reactor and process
CH608380A5 (en) * 1976-01-16 1979-01-15 Sulzer Ag Packing body in rectifying columns
FR2665088B1 (fr) * 1990-07-27 1992-10-16 Air Liquide Procede et dispositif de melange de deux gaz.
US5720901A (en) * 1993-12-27 1998-02-24 Shell Oil Company Process for the catalytic partial oxidation of hydrocarbons
FR2804045B1 (fr) * 2000-01-25 2002-03-29 Air Liquide Dispositif de melange d'un gaz secondaire dans un gaz principal
FR2811975B1 (fr) * 2000-07-19 2003-04-04 Air Liquide Procede et dispositif de production d'un melange gazeux contenant de l'hydrogene et du co

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03053559A1 *

Also Published As

Publication number Publication date
WO2003053559A1 (fr) 2003-07-03
AU2002364449A1 (en) 2003-07-09
US20050095185A1 (en) 2005-05-05
FR2833863B1 (fr) 2004-08-20
FR2833863A1 (fr) 2003-06-27

Similar Documents

Publication Publication Date Title
WO2003053559A1 (fr) Aeacteur catalytique, installation et procede de reaction correspondants
EP0666104B1 (fr) Dispositif pour la mise en oeuvre de réactions chimiques nécessitant au moins au démarrage un apport de calories
KR101535474B1 (ko) 버너
FR2608581A1 (fr) Procede et dispositif operant par voie de flamme pour la fabrication de gaz de synthese
EP0319369B1 (fr) Procédé et appareil pour la conversion des hydrocarbures
FR2850372A1 (fr) Nouveau reacteur d'oxydation partielle
FR2580380A1 (fr) Injecteur pour un reacteur de combustion, un generateur de vapeur en particulier
EP0418122B1 (fr) Réacteur d'oxydation à différentiel de perte de charge et son utilisation.
FR2556332A1 (fr) Procede de production de gaz de synthese a partir d'un combustible hydrocarbone
EP0223718A1 (fr) Dispositif pour la mise en contact de fluides se présentant sous la forme de phases différentes
EP2217361B1 (fr) Reacteur permettant la mise en oeuvre de reactions a tres haute temperature et haute pression
EP2132135B1 (fr) Four de vaporeformage utilisant des bruleurs poreux
EP2576435B1 (fr) Réacteur pour le reformage autotherme de gasoil
EP0221813A1 (fr) Procédé, réacteur d'oxydation d'une charge oxydable en phase gazeuse et son utilisation
EP0334710A1 (fr) Procédé d'oxydation d'une charge oxydable en phase gazeuse et réacteur pour la mise en oeuvre de ce procédé
CA2460622A1 (fr) Dispositif et methode de liaison a etancheite relative et controlee entre un conduit et un tube ceramique
EP0457643B1 (fr) Procédé de conversion thermique du méthane et réacteur pour la mise en oeuvre du procédé
EP2456549B1 (fr) Reacteur catalytique de vaporeformage d'une coupe d'hydrocarbures avec dispositif de melange et de distribution de gaz en amount de la zone catalytique
EP0297955B1 (fr) Brûleur pour oxydation partielle permettant la production de gaz de synthese
EP0232658B1 (fr) Procédé et dispositif de réaction exothermique entre des gaz
CA2254318C (fr) Dispositif pour la fabrication de bromure d'hydrogene et utilisation du dispositif
FR2622475A1 (fr) Procede de synthese catalytique heterogene, en phase gazeuse sous haute pression et reacteur de mise en oeuvre
EP0660039B1 (fr) Tête de combustion perfectionnée pour brûleur à gaz, brûleur équipé d'une telle tête et procédé de combustion
FR2811976A1 (fr) Procede et dispositif de production d'un melange gazeux contenant de l'hydrogene et du co par oxydation etagee d'un hydrocarbure
EP0231683A1 (fr) Réacteur échangeur thermique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17Q First examination report despatched

Effective date: 20050525

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060211