EP1456519A1 - Kolbenringträger mit kühlkanal - Google Patents

Kolbenringträger mit kühlkanal

Info

Publication number
EP1456519A1
EP1456519A1 EP02785004A EP02785004A EP1456519A1 EP 1456519 A1 EP1456519 A1 EP 1456519A1 EP 02785004 A EP02785004 A EP 02785004A EP 02785004 A EP02785004 A EP 02785004A EP 1456519 A1 EP1456519 A1 EP 1456519A1
Authority
EP
European Patent Office
Prior art keywords
ring
piston
cast
cooling channel
carrier according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02785004A
Other languages
English (en)
French (fr)
Inventor
Karl Merz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1456519A1 publication Critical patent/EP1456519A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/0009Cylinders, pistons
    • B22D19/0027Cylinders, pistons pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/20Pistons  having cooling means the means being a fluid flowing through or along piston
    • F02F3/22Pistons  having cooling means the means being a fluid flowing through or along piston the fluid being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/12Details
    • F16J9/22Rings for preventing wear of grooves or like seatings

Definitions

  • the present invention relates to a piston ring carrier with a cooling channel for casting into a light metal cast piston for an internal combustion engine, the piston ring carrier comprising a casting ring and the cooling channel being delimited by at least one first annular element made of sheet metal material and carried by the casting ring.
  • Pistons with cooled piston rings and corresponding piston ring carriers with a cooling channel through which a coolant circulates are increasingly required in the course of the striking increase in injection and compression pressure in modern internal combustion engines.
  • a first known piston ring carrier of the type mentioned two ring elements are formed as partial shells from a stainless steel sheet material, each with an inward into the cooling channel, i.e. thus provided in a ring plane bent collar and with this collar in abutment against each other, the welding is carried out by laser technology along the gap between the collars in the splitting plane.
  • the connection of the partial shells with the cast ring is made along its inner edges by micro plasma welding with material application.
  • the cooling channel is formed by the cast ring and a one-piece, in cross section approximately U-shaped or C-shaped ring element made of stainless steel sheet welded into the casting ring, the free edges of the ring element being sharp
  • BESTATIGUNGSKOPIE trained grooves are bent along the inner edges of the casting and are fixed therein by welding and / or soldering technology.
  • a piston ring carrier known from US-A-6, 105,540 is of similar design, but in which a one-piece, approximately u-shaped or c-shaped ring element made of stainless steel sheet is reduced in diameter under pressure and is thus pressed into the cast ring before it is welded to it.
  • the known piston ring carriers are alfinized before being poured into the pistons in order to produce an alfin layer on their surface, with which the cast material of the aluminum-based pistons can adequately bond. Alfining takes place at approx. 760 ° C in a liquid alfin bath. The parts are previously annealed at approx. 230 ° C and their oxide layer is removed by corundum blasting.
  • the cooling channel which is initially self-contained, must also be drilled from the interior of the piston after it has been poured into the piston in order to establish a connection between the piston interior and the cooling channel for the flow of a coolant. It can happen that the connection between the casting material of the piston and the cooling channel is torn off around the borehole, which in turn is not tolerable and leads to rejects.
  • types of light metal cast pistons which are provided with a piston ring carrier, but which are not directly connected to a cooling channel. Rather, a cooling channel is arranged at a distance from the piston ring carrier in the casting piston, and in this respect is essentially completely embedded in the casting material.
  • a cooling channel is arranged at a distance from the piston ring carrier in the casting piston, and in this respect is essentially completely embedded in the casting material.
  • the present invention has in particular the object of specifying a piston ring carrier with a cooling channel of the type mentioned at the outset, which is simpler, more efficient, faster and with significantly less waste and thereby is generally less expensive to produce.
  • This object is achieved according to the invention by a piston ring carrier with a cooling channel as defined in claim 1.
  • the piston ring carrier according to the invention is accordingly characterized in that the outer ring of the first ring element overlaps the inner radius of the cast ring and in this overlap area with the cast ring by resistance welding connected is.
  • This welding process results in a good and possibly also tight weld connection between the parts which cannot be welded well to one another.
  • the welding process is extremely fast and, for example, only takes about 40 milliseconds.
  • the cooling channel is delimited, apart from the first, at least also by a second ring element made of sheet metal material, the two ring elements, each with an inner collar oriented essentially in the axial direction, overlapping one another and essentially in the axial direction along one of these inner collars Laser welding are interconnected.
  • the welding in the axial direction is technically much easier to carry out than the welding mentioned perpendicular to it in a ring plane. If the same material is used for both ring elements, the laser welding can also be carried out very quickly in the course of only about one second, with a reproducibly tight weld seam being produced.
  • the cooling channel is delimited not only by the two ring elements but also by the cast ring and that the two ring elements with their outer radius each overlap the inner radius of the cast ring and are connected to the cast ring in each of these overlap regions by resistance pressure welding.
  • the cast ring is simply inserted between the two partial shells during manufacture before they are welded together in the axial direction by laser welding along the free edge of the inner collar.
  • the two partial shells are very easy to produce in terms of stamping and forming, and they only have to be machined from one direction, namely their axial direction.
  • the inner collar formed on them does not have to be very high.
  • their outside diameter and thus the mutual overlap with the cast ring can be chosen as large as desired.
  • the problematic connection between the stainless steel sheet metal parts and the cast ring in the prior art can also be produced easily and reproducibly by the resistance pressure welding, the mutual overlap of the stainless steel partial shells with the cast ring, which can be chosen as desired, being an additional advantage for the resistance welding.
  • the welding process is also extremely fast and, for example, only takes about 40 milliseconds.
  • the cooling duct is arranged at a distance from the cast ring, which is not limited to the cooling duct itself, but is at least connected to the cooling duct via the first ring element.
  • the casting ring and cooling channel thus form a unit which, as such, can be introduced into the casting mold during the production of the casting pistons. The use and complex additional placement of individual salt rings or the like is eliminated.
  • the cast ring is connected exclusively to the first ring element.
  • the first ring element could in principle be designed such that it limits the cooling channel alone.
  • first ring element can be provided between the cast ring and the cooling channel.
  • first ring element can be designed conically between the cast ring and the cooling channel.
  • At least one hollow nipple is formed on the first or a further ring element, which, after the piston ring carrier has been poured into the cast piston, facilitates the production of a connecting channel for the coolant between the cooling channel and the interior of the piston.
  • drilling the cooling channel itself and, if necessary, loosening its connection to the surrounding casting material it is sufficient to drill the hollow nipple, which is much less critical if the hollow nipple is placed alone because of the shallower drilling depth, especially if the hollow nipple is on it free end with a round cap is provided.
  • the hollow nipple can also be made so long that it protrudes into the interior of the piston.
  • the hollow nipple only has to be shortened, for example in terms of cutting technology, and there is no need to drill out the connecting channel.
  • an opening can also be provided in the free end of the hollow nipple, which allows air to escape from the cooling channel during the finishing.
  • the cross section of the opening may only be so large that, conversely, due to its surface tension, the liquid alfin cannot penetrate the cooling channel.
  • the opening in the cooling channel provides the air in the cooling channel with a defined escape option, so that no excess pressure can occur in the cooling channel even under the high temperatures in the Alfin bath. As a result, the welded connections are not stressed and it can certainly be avoided that air escapes at another point.
  • the local oxidation around the opening associated with the air outlet through the opening on the hollow nipple is harmless because the corresponding area of the hollow nipple is anyway removed again after being poured into the piston by drilling or shortening.
  • Fig. 1 shows an embodiment of a piston ring carrier with a directly connected
  • Cooling channel according to the invention in section, wherein the individual elements are not yet fully welded together;
  • FIG. 2 shows the piston ring carrier of FIG. 1 between two welding tongs of a resistance welding device
  • FIG. 3 shows a section of a finished piston ring carrier with a cooling channel according to the invention cast in a light metal cast piston, the right part of the figure additionally showing a connecting channel for the coolant flow between an interior of the piston and the cooling channel;
  • Fig. 4 on a ring element of the cooling channel of the inventive
  • Piston ring carrier the formation of a mounting lug and the placement of a hollow nipple thereon;
  • FIG. 5 shows the use of such a hollow nipple for producing the connecting channel between the piston interior and the cooling channel in a representation according to the right part of FIG. 3;
  • Fig. 7 in a representation according to the right part of Fig. 3, the use of a long hollow nipple for producing the connecting channel between the piston interior and the cooling channel, the hollow nipple extending into the piston interior.
  • Fig. 8 shows an embodiment of a piston ring carrier with a spaced cooling channel according to the invention in section
  • Cast-in light alloy cast iron Cast-in light alloy cast iron.
  • 1 denotes a cast ring of a piston ring carrier, a groove for the piston ring not being inserted here.
  • the cast ring 1 is inserted between two likewise ring-shaped elements 2 and 3 made of a thin stainless steel sheet, each of which is provided along its inner radius with an inner collar 2.1 or 3.1 formed in the axial direction, ie perpendicular to the ring plane.
  • the inner radii of the two ring elements 2 and 3 are matched to one another so that the ring elements 2 and 3 with their inner collars 2.1 and 3.1 can be inserted into one another in close mutual contact.
  • Fig. 1 shows the two ring elements inserted in such a way, with their inner collars 2.1 and 3.1 overlap each other to a certain extent.
  • the cast ring 1 also overlaps the two Ring elements 2 and 3 in that its inner radius is smaller than the outer radii of the ring elements.
  • the three parts described i.e. the cast ring 1 and the ring elements 2 and 3 together form a circumferential cooling duct 4. Accordingly, the two ring elements 2 and 3 each form partial shells of the cooling duct 4.
  • a circumferential weld seam 5 is produced between the two ring elements 2 and 3 along the free edge of the inner collar 2.1, which is smaller in diameter, by laser welding in the axial direction AR, which is shown in the right part of FIG.
  • the ring elements 2 and 3 are connected in their overlap area with the cast ring 1 by resistance pressure welding in a corresponding resistance pressure welding device with welding electrodes 6 and 7.
  • the two inner collars could also be arranged at a certain angle with respect to the axial direction and the laser welding could also only be carried out essentially in the axial direction.
  • the only decisive factor is that the weld seam can be carried out with a laser welding head arranged outside the ring plane and without deflecting the laser beam into the ring plane.
  • FIG. 3 shows a finished piston ring carrier 1 with a cooling channel 4 according to the invention already cast into a light metal cast piston 10, wherein the groove 11 for the piston ring has already been inserted into the cast ring.
  • the piston 10 is only partially shown. However, a depression 12 can be seen in its end face towards the combustion chamber and a hollow or interior space 13 which is open to the connecting rod and thus to the oil pan of the engine.
  • a plurality of connecting channels between the cooling channel 4 and the piston interior 13 are provided over the circumference of the cooling channel 4.
  • such a connecting channel 14 is shown, as can be produced from interior space 13, for example, by drilling after casting piston 10. Since there is a risk here of loosening the connection between the thin sheet material of the cooling channel and the surrounding cast material of the piston, for example in the area denoted by 15, an alternative for producing the connecting channels is explained below.
  • Fig. 4 shows in a detail e.g. the ring element or the cooling channel partial shell 2, on which a fastening lug 16 is formed. This can simply be produced by punching and / or drawing technology when punching out the ring element 2 and / or pulling out the inner collar 2.1.
  • a tubular hollow nipple 17 is welded on, this not necessarily vertically but also at an oblique angle.
  • the hollow nipple 17 is closed at its free end and provided with a round cap.
  • FIG. 5 now shows piston 10 with a piston ring carrier 1 according to the invention cast therein, with cooling channel 4, on which a hollow nipple 17 according to FIG. 4 is formed.
  • the hollow nipple 17 serves here as a section of the connecting channel 14, for the production of which it is sufficient to drill and drill only the free end of the hollow nipple.
  • the rounded end cap of the nipple makes drilling even easier.
  • a small opening 18 could also be provided at the free end of the hollow nipple 17, through which air can escape from the cooling channel during the finishing, as shown in FIG. 6.
  • the nipple 17 could also be made so long that it protrudes into the piston interior 13 and therefore not at all needs to be drilled, as shown in FIG. 7. In this case, to open the connecting channel 14, it is sufficient to remove the end projecting into the interior 13 by cutting.
  • the opening of the cooling channel from the piston interior 13 could also be carried out by eroding, with or without a hollow nipple.
  • FIG. 8 shows an embodiment of a piston ring carrier according to the invention with a cast ring 21 and a cooling channel 24 spaced therefrom.
  • the cooling channel 24 is delimited by a first ring element 22 and by a second ring element 23, both of which consist of a stainless steel sheet.
  • first ring element 22 is here in connection with the cast ring 21 and overlaps this or its inner radius with a larger outer radius.
  • the parts, i.e. the cast ring and the first ring element are joined together by resistance pressure welding.
  • the corresponding weld seam is preferably all-round.
  • the first ring element 22 initially has a conical section 22.1, in which a plurality of windows 22.2 are punched out over the circumference, in its overlap region with the cast ring 21. Further inward, the first ring element 22 is followed by a groove 22.3 which is approximately U-shaped in cross section and which in turn has an inner collar 22.4 oriented in the axial direction.
  • the channel 22.3 is closed by forming the cooling channel 24 by the second ring element 23, which is also provided at least on the inside with an inner collar 23.1 oriented in the axial direction.
  • the two ring elements 22 and 23 are inserted into one another in such a way that their two inner collars are in close mutual contact and are connected to one another by means of a circumferential laser welding which is carried out in the axial direction or essentially in the axial direction.
  • a corresponding laser weld seam is present in a second overlap region of the two ring elements 22 and 23 which is further out.
  • the second ring element 23 lies with an outer collar 23.2 on the conical section 22.2 of the first ring element 22 and is welded to the first ring element 22 along this outer collar 23.2.
  • the outer collar 23.3 could also be oriented the other way round and point into the cooling channel 24.
  • the two ring elements can also be produced very easily by deformation in only one direction (axial direction). The joining and connecting of the individual parts only requires operations in this direction, which is a decisive advantage especially for large-scale production.
  • FIG. 9 shows the piston ring carrier of FIG. 8 cast in a light metal cast piston 30, it being particularly clear in this illustration how the cooling channel 24 is spaced from the cast ring 21 and, moreover, is not in the same plane as this.
  • a section A of FIG. 9 also shows how the cooling channel 24 could also be produced in one piece from a single ring element 22.
  • This section A also shows that a hollow nipple 17 could also be formed on the cooling channel 24 spaced from the cast ring.
  • a hollow nipple 17 could of course also be provided on a multi-part cooling duct 24 and be designed in accordance with each of the above-described configurations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

Bei einem Kolbenringträger mit Kühlkanal zum Eingiessen in einen Leichtmetall-Gusskolben für einen Verbrennungsmotor umfasst der Kolbenringträger einen Gussring (1), wird der Kühlkanal (4) durch mindestens ein erstes Ringelement (2) aus einem Blechmaterial begrenzt und durch den Gussring (1) getragen. Das erste Ringelement (2) überlappt mit seinem äusseren Radius den Innenradius des Gussrings (1) und ist in diesem Überlappungsbereich mit dem Gussring (2) durch Widerstandspressschweissen verbunden. Bevorzugt wird der Kühlkanal (4) durch zwei Ringelemente (2, 3) aus Edelstahlblech begrenzt, wobei sich diese gegenseitig in Axialrichtung überlappen durch Laserschweissen in Axialrichtung miteinander verbunden sind. Der Kühlkanal (4) kann unmittelbar an den Gussring (4) anschliessen oder auch von diesem beabstandet angeordnet sein.

Description

BESCHREIBUNG
TITEL
Kolbenringträger mit Kühlkanal
TECHNISCHES GEBIET
Die vorliegende Erfindung betrifft einen Kolbenringträger mit Kühlkanal zum Eingiessen in einen Leichtmetall-Gusskolben für einen Verbrennungsmotor, wobei der Kolbenringträger einen Gussring umfasst und der Kühlkanal durch mindestens ein erstes ringförmiges Element aus einem Blechmaterial begrenzt und durch den Gussring getragen wird.
Kolben mit gekühlten Kolbenringen und entsprechenden Kolbenringträgem mit Kühlkanal, durch welchen ein Kühlmittel zirkuliert, werden in zunehmendem Masse im Zuge der markanten Erhöhung des Einspritz- und Kompressionsdrucks bei modernen Verbrennungsmotoren benötigt.
STAND DER TECHNIK
Bei einem ersten bekannten Kolbenringträger der genannten Art sind zwei Ringelemente als Teilschalen aus einem Edelstahl-Blechmaterial jeweils mit einem nach innen in den Kühlkanal, d.h. also in eine Ringebene hinein gebogenen Kragen versehen und mit diesen Kragen in Anlage aneinander verweisst, wobei die Schweissung lasertechnisch entlang des Spaltes zwischen den Kragen in der Spaltebene ausgeführt ist. Die Verbindung der Teilschalen mit dem Gussring ist entlang von dessen Innenkanten durch Mikroplasmaschweissen unter Materialauftrag hergestellt.
Bei einem anderen bekannten Kolbenringträger wird der Kühlkanal durch den Gussring und ein in diesen eingeschweisstes einstückiges, im Querschnitt etwa u-förmiges bzw. c-förmiges Ringelement aus Edelstahlblech gebildet, wobei die freien Kanten des Ringelements in scharf
BESTATIGUNGSKOPIE ausgebildete Nuten entlang der Innenkanten des Gussteils eingebogen und darin schweiss- und/oder löttechnisch fixiert sind.
Ähnlich ausgebildet ist ein aus der US-A-6, 105,540 bekannter Kolbenringträger, bei welchem jedoch ein einstückiges, etwa u-förmiges bzw. c-förmiges Ringelement aus Edelstahlblech unter Druckanwendung in seinem Durchmesser reduziert und so in den Gussring eingepresst wird, bevor es mit diesem verschweisst wird.
Die bekannten Kolbenringträger werden vor dem Eingiessen in die Kolben noch alfiniert, um auf ihrer Oberfläche eine Alfinschicht zu erzeugen, mit welcher sich das Gussmaterial der Kolben auf Aluminiumbasis ausreichend verbinden kann. Das Alfinieren erfolgt bei ca. 760°C in einem flüssigen Alfinbad. Zuvor werden die Teile bei ca. 230°C geglüht und durch Korundstrahlen von ihrer Oxidschicht befreit.
Problematisch bei den bekannten Kolbenringträgern ist vor allem die Verbindung zwischen dem Gussring und dem oder den Edelstahlblechteilen, weil die entsprechenden Materialien nicht gut miteinander verschweissbar sind. Auf der anderen Seite kommt es auf die Belastbarkeit und Dichtigkeit dieser Verbindung wegen des nachfolgenden Alfinierens aber entscheidend an, damit während des Alfinierens aus dem luftgefüllten Kühlkanal keine Luft und damit Sauerstoff austreten kann. Sauerstoff verhindert die Bildung einer Alfinschicht und bewirkt unter den hohen im Alfinbad vorherrschenden Temperaturen im Bereich der Undichtigkeitsstelle eine lokale Oxidation, die wiederum eine nicht tolerable, unvollständige Einbettung des Kolbenringträgers samt Kühlkanal im Gusskolben zur Folge hat. Jede noch so kleine Undichtigkeit führt damit zu einem Ausschussteil.
Ein Mittel um solchen Ausschuss einzugrenzen ist bei dem an zweiter Stelle erwähnten bekannten Kolbenringträger, die Laserschweissung zwischen dem Gussring und dem Edelstahl-Ringelement sehr langsam auszuführen. Typisch werden hier pro umlaufende Schweissnaht um die 20 sec benötigt.
Als nachteilig bei diesem bekannten Kolbenringträger ist weiterhin das Ausdrehen der erwähnten scharfen Nuten im Gussteil anzusehen, was mit einem hohen Werkzeugverschlejss verbunden ist. Desweiteren ist die umformtechnische Herstellung des einstückigen Edelstahl-Ringelements zumindest aufwendig und anspruchsvoll, was auch für das einstückige Ringelement nach der US-A-6, 105,540 gilt.
Als nachteilig bei dem bekannten Kolbenringträger mit den beiden Teilschalen ist ebenfalls deren vergleichsweise aufwendige Herstellung durch das Nach-Innen-Biegen der erwähnten Kragen anzusehen.
Bei allen bekannten Kolbenringträgern mit Kühlkanal muss desweiteren nach ihrem Eingiessen in den Kolben der zunächst in sich geschlossene Kühlkanal noch vom Kolben- Innenraum her angebohrt werden, um eine Verbindung zwischen dem Kolben-Innenraum und dem Kühlkanal für den Fluss eines Kühlmittels herzustellen. Hierbei kann es passieren, dass um das Bohrloch herum die Verbindung zwischen dem Gussmaterial des Kolbens und dem Kühlkanal abgerissen wird, was wiederum nicht tolerabel ist und zu Ausschuss führt.
Schliesslich sind Ausführungsarten von Leichtmetall-Gusskolben bekannt, welche mit einem Kolbenringträger versehen sind, an welchen direkt sich jedoch kein Kühlkanal anschliesst. Ein Kühlkanal ist vielmehr mit Abstand vom Kolbenringträger im Gusskolben angeordnet, und insofern im wesentlichen vollständig in dem Gussmaterial eingebettet. Zur Herstellung dieser Art isoliert angeordneter Kühlkanäle ist es üblich, in die Gussform beim Giessen der Kolben Salzinge einzulegen. Das Salz wird nach dem Giessen und dem Anbohren des Kühkanals herausgelöst. Zumindest das Handling beim Einlegen der Salzringe in die Gussform ist aufwendig und daher von Nachteil.
DARSTELLUNG DER ERFINDUNG
Im Hinblick auf die vorstehenden Ausführungen zum Stand der Technik und die in bezug auf diesen erwähnten Nachteile stellt sich die vorliegende Erfindung insbesondere die Aufgabe, einen Kolbenringträger mit Kühlkanal der eingangs genannten Art anzugeben, welcher einfacher, rationeller, schneller und mit deutlich weniger Ausschuss und dadurch insgesamt kostengünstiger herstellbar ist. Diese Aufgabe wird erfindungsgemäss gelöst durch einen Kolbenringträger mit Kühlkanal wie er im Patentanspruch 1 definiert ist.
Der erfindungsgemässe Kolbenringträger ist demnach dadurch gekennzeichnet, dass das erste Ringelement mit seinem äusseren Radius den Innenradius des Gussrings überlappt und in diesem Überlappungsbereich mit dem Gussring durch iderstandspressschweissen verbunden ist. Durch dieses Schweissverfahren ergibt sich eine gute sowie ggf. auch dichte Schweissverbindung zwischen den nicht gut miteinander verschweissbaren Teilen. Der Schweissvorgang ist ausserordentlich schnell und benötigt z.B. nur ca. 40 Millisekunden.
Gemäss einer ersten bevorzugten Ausführungsform wird der Kühlkanal ausser durch das erste mindestens auch noch durch ein zweites Ringelement aus einem Blechmaterial begrenzt, wobei sich die beiden Ringelemente mit einem jeweils im wesentlichen in Axialrichtung ausgerichteten Innenkragen gegenseitig überlappen und im wesentlichen in Axialrichtung entlang eines dieser Innenkragen durch Laserschweissen miteinander verbunden sind.
Das Schweissen in Axialrichtung ist machinentechnisch wesentlich einfacher ausführbar als das erwähnte Schweissen senkrecht dazu in einer Ringebene. Sofern für beide Ringelemente das gleiche Material verwendet ist, kann die Laserschweissung auch sehr schnell im Rahmen von etwa nur einer Sekunde durchgeführt werden, wobei eine reproduzierbar dichte Schweissnaht entsteht.
Desweiteren ist es bei dieser Ausführungsform möglich, dass der Kühlkanal ausser durch die beiden Ringelemente auch durch den Gussring begrenzt wird und dass die beiden Ringelemente mit ihrem äusseren Radius jeweils den Innenradius des Gussrings überlappen und in diesen Überlappungsbereichen jeweils mit dem Gussring durch Widerstandspressschweissen verbunden sind.
Der Gussring wird bei dieser Ausführungsform bei der Herstellung einfach zwischen die beiden Teilschalen eingelegt, bevor diese entlang des freien Randes des inneren Kragens in Axialrichtung laserschweisstechnisch miteinander verschweisst werden.
Die Vorteile dieser Ausbildung liegen zum einen darin, dass die beiden Teilschalen stanz- und umformtechnisch sehr einfach herstellbar sind, wobei sie nur aus einer Richtung, nämlich ihrer Axialrichtung, bearbeitet werden müssen. Die an ihnen ausgebildeten Innenkragen müssen nicht sehr hoch sein. Zum anderen kann ihr Aussendurchmesser und damit die gegenseitige Überlappung mit dem Gussring beliebig gross gewählt werden Die beim Stand der Technik problematische Verbindung zwischen den Edelstahlblechteilen und dem Gussring ist durch das Widerstandspressschweissen ebenfalls problemlos und reproduzierbar dicht herstellbar, wobei die beliebig gross wählbare gegenseitige Überlappung der Edelstahl-Teilschalen mit dem Gussring für das Widerstandsschweissen zusätzlich von Vorteil ist. Der Schweissvorgang ist, wie bereits erwähnt, auch ausserordentlich schnell und benötigt z.B. nur ca. 40 Millisekunden.
Gemäss einer anderen bevorzugten Ausführungsform der Erfindung ist der Kühlkanal mit Abstand von dem Gussring angeordnet, welcher insofern den Kühlkanal selbst nicht mit begrenzt, zumindest über das erste Ringelement mit dem Kühlkanal jedoch verbunden ist. Gussring und Kühlkanal bilden somit eine Einheit, die als solche in die Gussform bei der Herstellung der Gusskolben eingebracht werden kann. Die Verwendung und aufwendige zusätzliche Plazierung individueller Salzringe oder dergleichen entfällt.
Bei dieser Ausführungsform ist es weiter bevorzugt, dass der Gussring ausschliesslich mit dem ersten Ringelement verbunden ist. Das erste Ringelement könnte grundsätzlich so ausgeführt sein, dass es den Kühlkanal allein begrenzt. Bevorzugt ist es jedoch auch hier wieder, den Kühlkanal aus zwei Ringelementen zusammenzusetzen, und zwar so, dass diese durch Laserschweissen im wesentlichen in Axialrichtung miteinander entlang von z.B. zwei Schweissnähten verbunden werden können.
Um den Gusskolben auch bei dieser Ausführungsform als feste Einheit zu erhalten können in dem ersten Ringelement zwischen dem Gussring und dem Kühlkanal Fenster vorgesehen werden. Schliesslich kann das erste Ringelement bei dieser Ausführungsform zwischen dem Gussring und dem Kühlkanal konisch ausgebildet werden.
Gemäss einer weiteren bevorzugten Ausführungsform der Erfindung ist an dem ersten oder einem weiteren Ringelement mindestens ein Hohlnippel angeformt, der nach dem Eingiessen des Kolbenringträgers in den Gusskolben die Herstellung eines Verbindungskanals für das Kühlmittel zwischen dem Kühlkanal und dem Kolbeninnenraum erleichtert. Anstelle den Kühlkanal selbst anzubohren und hierbei ggf. ggf. dessen Verbindung zu dem umgebenden Gussmaterial zu lösen, genügt es, den Hohlnippel anzubohren, was bei geeigneter Plazierung des Hohlnippels allein schon wegen der geringeren Bohrtiefe weitaus weniger kritisch ist, insbesondere wenn der Hohlnippel an seinem freien Ende mit einer Rundkappe versehen ist. Bei geeigneter Ausbildung des Gusswerkzeugs für den Kolben mit einer Ausnehmung kann der Hohlnippel auch so lang gemacht werden, dass er bis in den Kolben- Innenraum hineinragt. In diesem Fall muss der Hohlnippel z.B. schneidtechnisch nur gekürzt werden und ein Aufbohren des Verbindungskanals entfällt ganz.
Im freien Ende des Hohlnippels kann schliesslich sogar noch eine Öffnung vorgesehen sein, die den Austritt von Luft aus dem Kühlkanal während des Alfinierens ermöglicht. Die Öffnung darf von ihrem Querschnitt her aber nur so gross bemessen sein, dass umgekehrt das flüssige Alfin auf Grund seiner Oberflächenspannung gerade nicht in den Kühlkanal eindringen kann. Durch die Öffnung wird der Luft in dem Kühlkanal während des Alfinierens eine definierte Entweichmöglichkeit zur Verfügung gestellt, wodurch sich im Kühlkanal selbst unter den hohen Temperaturen im Alfinbad kein Überdruck einstellen kann. Hierdurch werden die Schweissverbindungen nicht belastet und es kann sicher vermieden werden, dass Luft an einer anderen Stelle austritt. Die mit dem Luftaustritt durch die Öffnung am Hohlnippel verbundene lokale Oxidation rund um die Öffnung ist unschädlich, weil der entsprechende Bereich des Hohlnipells nach dem Eingiessen in den Kolben sowieso durch Anbohren oder Kürzen wieder entfernt wird.
KURZE ERLÄUTERUNG DER FIGUREN
Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert werden. Es zeigen:
Fig. 1 eine Ausführungsform eines Kolbenringträgers mit direkt angeschlossenem
Kühlkanal nach der Erfindung im Schnitt, wobei die einzelnen Elemente noch nicht vollständig miteinander verschweisst sind;
Fig. 2 den Kolbenringträger von Fig. 1 zwischen zwei Schweisszangen einer Widerstandsschweissvorrichtung;
Fig. 3 im Schnitt einen fertigen Kolbenringträger mit Kühlkanal nach der Erfindung in einem Leichtmetall-Gusskolben eingegossen, wobei im rechten Teil der Figur zusätzlich ein Verbindungskanal für den Kühlmittelfluss zwischen einem Innenraum des Kolbens und dem Kühlkanal dargestellt ist; Fig. 4 an einem Ringelement des Kühlkanals des erfindungsgemässen
Kolbenringträgers die Ausbildung einer Befestigungswarze sowie das Aufsetzen eines Hohlnippels darauf;
Fig. 5 in einer Darstellung gemäss dem rechten Teil von Fig. 3 die Verwendung eines solchen Hohlnippels zur Herstellung des Verbindungskanals zwischen dem Kolbeninnenraum und dem Kühlkanal;
Fig. 6 einen Hohlnippel mit einer kleinen Öffnung;
Fig. 7 in einer Darstellung gemäss dem rechten Teil von Fig. 3 die Verwendung eines langen Hohlnippels zur Herstellung des Verbindungskanals zwischen dem Kolbeninnenraum und dem Kühlkanal, wobei der Hohlnippel in den Koben- Innenraum hineinreicht.
Fig. 8 eine Ausführungsform eines Kolbenringträgers mit beabstandetem Kühlkanal nach der Erfindung im Schnitt, und
Fig. 9 im Schnitt den Kolbenringträger mit beabstandetem Kühlkanal in einem
Leichtmetall-Gusskolben eingegossen.
WEGE ZUR AUSFÜHRUNG DER ERFINDUNG
In Figur 1 bezeichnet 1 einen Gussring eines Kolbenringträgers, wobei eine Nut für den Kolbenring hier noch nicht eingestochen ist.
Der Gussring 1 ist eingelegt zwischen zwei ebenfalls jeweils ringförmige Elemente 2 und 3 aus einem dünnen Edelstahblech, welche entlang ihres Innenradius jeweils mit einem in Axialrichtung, d.h. senkrecht zur Ringebene jeweils ausgeformten Innenkragen 2.1 bzw. 3.1 versehen sind. Die Innenradien der beiden Ringelemente 2 und 3 sind so aufeinander abgestimmt, dass die Ringelemente 2 und 3 mit ihren Innenkragen 2.1 und 3.1 in enger gegenseitiger Anlage ineinander gesteckt werden können. Fig. 1 zeigt die beiden Ringelemente derart ineinandergesteckt, wobei sich ihre Innenkragen 2.1 und 3.1 gegenseitig ein Stück weit überlappen. Femer überlappt auch der Gussring 1 mit den beiden Ringelementen 2 und 3, indem sein Innenradius kleiner als die Aussenradien der Ringelemente bemessen ist.
In der Anordnung von Fig. 1 begrenzen die drei beschriebenen Teile, d.h. der Gussring 1 sowie die Ringelemente 2 und 3 gemeinsamen einen umlaufenden Kühlkanal 4. Entsprechend bilden die beiden Ringelemente 2 und 3 jeweils Teilschalen des Kühlkanals 4.
Im linken Teil von Fig. 1 sind die drei Teile 1 - 3 nur lose zusammengesetzt. Zur ihrer Verbindung wird einerseits entlang des freien Randes des im Durchmesser kleineren Innenkragens 2.1 durch Laserschweissen in Axialrichtung AR eine umlaufende Schweissnaht 5 zwischen den beiden Ringelementen 2 und 3 hergestellt, die im rechten Teil von Fig.1 dargestellt ist. Zum anderen werden gemäss Fig. 2 die Ringelemente 2 und 3 iη ihrem Überlappungsbereich mit dem Gussring 1 jeweils durch Widerstandspresschweissen in einer entsprechenden Widerstandspressschweissvorrichtung mit Schweisselektroden 6 und 7 verbunden.
Um das Widerstandspressschweissen zwischen den beiden Ringelementen 2 und 3 und dem Gussring 1 zu erreichen, wird letzterer mit beidseitigen, umlaufenden Schweissbuckeln 8 bzw. 9 versehen.
Anstatt exakt in Axialrichtung AR könnten die beiden Innenkragen gegenüber der Axialrichtung auch unter einem gewissen Winkel angeordnet sein und auch das Laserschweissen könnte nur im wesentlichen in Axialrichtung ausgeführt werden. Entscheidend ist allein, dass die Schweissnaht mit einem ausserhalb der Ringebene angeordneten Laserschweisskopf und ohne Ablenkung des Laserstrahls in die Ringebene ausführbar ist.
Fig. 3 zeigt einen fertiggestellten Kolbenringträger 1 mit Kühlkanal 4 nach der Erfindung bereits eingegossen in einen Leichtmetall-Gusskolben 10, wobei hier die Nut 11 für den Kolbenring bereits in den Gussring eingestochen ist. Der Kolben 10 ist nur teilweise dargestellt. Zu erkennen ist jedoch eine Vertiefung 12 in seiner Stirnseite zum Verbrennungsraum hin sowie ein Hohl- bzw. Innenraum 13, welcher zur Pleulstange und damit zur Ölwanne des Motors hin offen ist. Um den Kühlkanal 4 vom Kolben-Innenraum 13 her mit Öl als Kühlmittel beschicken zu können sind über den Umfang des Kühlkanals 4 mehrere Verbindungskanäle zwischen dem Kühlkanal 4 und dem Kolben-Innenraum 13 vorgesehen. Im rechten Teil von Fig. 3 ist ein solcher Verbindungskanal 14 dargestellt, wie er beispielsweise durch Bohren nach dem Giessen des Kolbens 10 aus Innenraum 13 aus hergestellt werden kann. Da hierbei die Gefahr besteht, die Verbindung zwischen dem dünnen Blechmaterial des Kühlkanals und dem umgebenden Gussamterial des Kolbens z.B in dem mit 15 bezeichneten Bereich zu lösen, wird nachfolgend eine Alternative zum Herstellen der Verbindungskanäle erläutert.
Fig. 4 zeigt in einem Ausschnitt z.B. das Ringelement bzw. die Kühlkanal-Teilschale 2, an welcher eine Befestigungswarze 16 ausgebildet ist. Diese kann einfach beim Ausstanzen des Ringlement 2 und/oder dem Ausziehen des Innenkragens 2.1 stanz- und/oder ziehtechnisch mit hergestellt werden. Auf der Befestigungswarze 16 wird dann in einem weiteren Arbeitsgang, z.B. reibschweisstechisch, ein röhrchenförmiger Hohlnippel 17 aufgeschweisst, wobei dies nicht notwendig senkrecht, sondern auch unter einem schrägen Winkel erfolgen kann. In Fig. 4 ist der Hohlnippel 17 an seinem freien Ende geschlossen und mit einer Rundkappe versehen.
Fig. 5 zeigt nun Kolben 10 mit einem darin eingegossenen erfindungsgemässen Kolbenringträger 1 mit Kühlkanal 4, an welchem ein Hohlnippel 17 gemäss Fig. 4 ausgebildet ist. Der Hohlnippel 17 dient hier als ein Abschnitt des Verbindungskanals 14, zu dessen Herstellung es genügt, lediglich das freie Ende des Hohlnippels an- und aufzubohren. Das Aufbohren wird durch die abgerundete Endkappe des Nippels zusätzlich erleichtert.
Gegenüber dem Anbohren des Kühlkanals 4 selbst besteht beim Anbohren des Hohlnippels 17 nicht die Gefahr eines Materialabrisses im Bereich 15 und es muss auch nicht so tief gebohrt werden.
In einer alternativen Ausführungsform könnte am freien Ende des Hohlnippels 17 auch noch eine kleine Öffnung 18 vorgesehen sein, durch welche beim Alfinieren Luft aus dem Kühlkanal entweichen kann, wie dies in Fig. 6 dargestellt ist.
In einerweiteren alternativen Ausführungsform könnte der Nippel 17 auch so lang ausgebildet werden, dass er in den Kolben-Innenraum 13 vorsteht und dadurch gar nicht angebohrt werden braucht, wie dies Fig. 7 zeigt. Zur Öffnung des Verbindungskanals14 genügt es in diesem Fall, das in den Innenraum 13 vorstehende Ende schneidtechnisch zu entfernen.
Das Öffnen des Kühlkanals vom Kolben-Innenraum 13 her könnte, mit oder ohne Hohlnippel, auch durch Erodieren ausgeführt werden.
Fig. 8 zeigt eine Ausführungsform eines Kolbenringträgers nach der Erfindung mit einem Gussring 21 und einem von diesem beabstandeten Kühlkanal 24. Der Kühlkanal 24 wird begrenzt durch ein erstes Ringelement 22 sowie durch ein zweites Ringelement 23, die beide jeweils aus einem Edelstahlblech bestehen. Nur das erste Ringelement 22 ist hier jedoch in Verbindung mit dem Gussring 21 und überlappt diesen bzw. dessen Innenradius mit einem grösseren Aussenradius. In dem entsprechenden Überlappungsbereich sind die Teile, d.h. der Gussring und das erste Ringelement durch Wiederstandspressschweissen miteinander verbunden. Die entsprechende Schweissnaht ist bevorzugt umlaufend.
Das erste Ringelement 22 weisst nach innen anschliessend an seinen Überlappungsbereich mit dem Gussring 21 zunächst einen konisch ausgebildeten Abschnitt 22.1 auf, in welchem über den Umfang verteilt mehrere Fenster 22.2 ausgestanzt sind. Weiter nach innen schliesst sich bei dem ersten Ringelement 22 eine im Querschnitt etwa u-förmig gebogene Rinne 22.3 an, welche wiederum einen in Axialrichtung ausgerichteten Innenkragen 22.4 aufweist. Abgeschlossen wird die Rinne 22.3 unter Ausbildung des Kühlkanals 24 durch das zweite Ringelement 23, welches zumindest innenseitig ebenfalls mit einem in Axialrichtung ausgerichteten Innenkragen 23.1 versehen ist. Wie bei der Ausführungsform von Fig. 1 sind die beiden Ringelemente 22 und 23 so ineinandergesteckt, dass sich ihre beiden Innenkragen in enger gegenseitiger Anlage befinden und mittels einer umlaufenden, in Axialrichtung oder im wesentlichen in Axialrichtung ausgeführten Laserschweissung miteinander verbunden.
Eine entsprechende Laser-Schweissnaht ist in einem weiter aussen liegenden zweiten Überlappungsbereich der beiden Ringelemente 22 und 23 vorhanden. Hier liegt das zweite Ringelement 23 mit einem Aussenkragen 23.2 an dem konischen Abschnitt 22.2 des ersten Ringelements 22 an und ist entlang dieses Aussenkragens 23.2 mit dem ersten Ringelement 22 verschweisst. Der Aussenkragen 23.3 könnte auch umgekehrt ausgerichtet sein und in den Kühlkanal 24 hineinzeigen. Wie bei der Ausführungsform von Fig. 1 können auch bei dieser Ausführungsform die beiden Ringelemente umformtechnisch jeweils sehr einfach durch Verformung in nur einer Richtung (Axialrichtung) hergestellt werden. Auch das Fügen und miteinander Verbinden der einzelnen Teile erfordert nur Operationen in dieser Richtung, was vor allem für eine Grossserienfertigung von entscheidendem Vorteil ist.
Fig. 9 zeigt den Kolbenringträger von Fig. 8 eingegossen in einem Leichtmetall-Gusskolben 30, wobei in dieser Darstellung besonders deutlich wird, wie der Kühkanal 24 von dem Gussring 21 beabstandet ist und ausserdem nicht in der gleichen Ebene liegt wie dieser.
In einem Ausschnitt A von Fig. 9 ist noch dargestellt, wie der Kühlkanal 24 auch einstückig aus einem einzigen Ringelement 22 hergestellt sein könnte. Weiter ist in diesem Ausschnitt A dargestellt, dass auch an dem vom Gussring beabstandeten Kühlkanal 24 ein Hohlnippel 17 angeformt sein könnte. Ein Hohlnippel 17 könnte natürlich auch an einem mehrteiligen Kühlkanal 24 vorgesehen und entsprechend jeder der vorbeschriebenen Ausbildungen ausgeführt sein.

Claims

PATENTANSPRÜCHE
1. Kolbenringträger mit Kühlkanal (4; 24) zum Eingiessen in einen Leichtmetall- Gusskolben (10; 30) für einen Verbrennungsmotor, wobei der Kolbenringträger einen Gussring (1; 21) umfasst und der Kühlkanal (4; 24) durch mindestens ein erstes Ringelement (2; 22) aus einem Blechmaterial begrenzt und durch den Gussring (1; 21) getragen wird, dadurch gekennzeichnet, dass das erste Ringelement (2; 22) mit seinem äusseren Radius den Innenradius des Gussrings (1; 21) überlappt und in diesem Überlappungsbereich mit dem Gussring (2; 21) durch Widerstandspressschweissen verbunden ist.
2. Kolbenringträger nach Anspruch 1 , dadurch gekennzeichnet, dass der Kühlkanal (4; 24) ausser durch das erste (2; 22) mindestens auch noch durch ein zweites Ringelement (3; 23) aus einem Blechmaterial begrenzt wird, wobei sich die beiden Ringelemente (2, 3; 2, 23) mit einem jeweils im wesentlichen in Axialrichtung (AR) ausgerichteten Innenkragen (2.1, 3.1; 22.4, 23.1) gegenseitig überlappen und im wesentlichen in Axialrichtung (AR) entlang eines dieser Innenkragen (2.1; 22.4) durch Laserschweissen miteinander verbunden sind.
3. Kolbenringträger nach Anspruch 2, dadurch gekennzeichnet, dass der Kühlkanal (4) ausser durch die beiden Ringelemente (2, 3) auch durch den Gussring (1) begrenzt wird und dass die beiden Ringelemente (2, 3) mit ihrem äusseren Radius jeweils den Innenradius des Gussrings (1) überlappen und in diesen Überlappungsbereichen jeweils mit dem Gussring (1) durch Widerstandspressschweissen verbunden sind.
4. Kolbenringträger nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Kühlkanal (24) mit Abstand von dem Gussring (21) angeordnet ist.
5. Kolbenringträger nach den Ansprüchen 2 und 4, dadurch gekennzeichnet, dass der Gussring (21) ausschliesslich mit dem ersten Ringelement (22) verbunden ist.
6. Kolbenringträger nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass in dem ersten Ringelement (22) zwischen dem Gussring (21) und dem Kühlkanal (24) Fenster (22.2) vorhanden sind.
7. Kolbenringträger nach einem der Ansprüche 4 - 6, dadurch gekennzeichnet, dass das erste Ringelement (22) zwischen dem Gussring (21) und dem Kühlkanal (24) konisch ausgebildet ist.
8. Kolbenringträger nach einem der Ansprüche 1 , dadurch gekennzeichnet, dass an dem ersten oder einem weiteren Ringelement mindestens ein Hohlnippel (17) angeformt ist.
9. Kolbenringträger nach Anspruch 8, dadurch gekennzeichnet, dass der Hohlnippel ein Rohrstück umfasst, welches auf eine an dem jeweiligen Ringelement vorhandene Befestigungswarze (16) insbesondere reibschweisstechnisch aufgesetzt ist.
10. Kolbenringträger nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass das freie Ende des Hohlnippels mit einer Rundkappe versehen ist.
11. Kolbenringträger nach einem der Ansprüche 8 - 10, dadurch gekennzeichnet, dass das freie Ende des Hohlnippels geschlossen ist.
12. Kolbenringträger nach einem der Ansprüche 8 - 10, dadurch gekennzeichnet, dass am freien Ende des Hohnippels eine kleine Öffnung vorhanden ist.
13. Kolbenringträger nach einem der Ansprüche 8 - 12, dadurch gekennzeichnet, dass die Länge des Hohlnippels so bemessen ist, dass der Hohlnippel beim Eingiessen in den Gusskolben in in der Gussmasse ebenfalls vollständig eingebettet wird.
14. Kolbenringträger nach einem der Ansprüche 8 - 12, dadurch gekennzeichnet, dass die Länge des Hohlnippels so bemessen ist, dass der Hohlnippel beim Eingiessen in den Gusskolben in einen Hohlraum desselben vorsteht.
15. Kolbenringträger nach einem der Anspruch 1 - 14 dadurch gekennzeichnet, dass das Blechmaterial ein Edelstahlblech ist.
EP02785004A 2001-12-21 2002-12-23 Kolbenringträger mit kühlkanal Withdrawn EP1456519A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CH23502001 2001-12-21
CH235001 2001-12-21
CH3432002 2002-02-27
CH3432002 2002-02-27
PCT/CH2002/000723 WO2003054371A1 (de) 2001-12-21 2002-12-23 Kolbenringträger mit kühlkanal

Publications (1)

Publication Number Publication Date
EP1456519A1 true EP1456519A1 (de) 2004-09-15

Family

ID=25736916

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02785004A Withdrawn EP1456519A1 (de) 2001-12-21 2002-12-23 Kolbenringträger mit kühlkanal

Country Status (3)

Country Link
EP (1) EP1456519A1 (de)
AU (1) AU2002350364A1 (de)
WO (1) WO2003054371A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006031094A1 (de) * 2006-07-05 2008-01-10 Ks Kolbenschmidt Gmbh Kühlmediumübertritt im Kolben mit kleiner Kompressionshöhe
FR3112375B1 (fr) * 2020-07-10 2022-12-02 Renault Sas Porte-segment pour piston.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2624412C3 (de) * 1976-05-31 1983-12-01 Alcan Aluminiumwerk Nürnberg GmbH, 6000 Frankfurt Verfahren zur Herstellung von Kolben mit einem Ringkanal
DE7617370U1 (de) * 1976-05-31 1976-10-07 Alcan Aluminiumwerk Nuernberg Gmbh, 6000 Frankfurt Kolben, insbesondere fuer brennkraftmaschinen
US4907545A (en) * 1988-12-28 1990-03-13 Caterpillar Inc. Liquid cooled piston ring carrier assembly and piston using same
JP2670388B2 (ja) * 1991-03-27 1997-10-29 日野自動車工業株式会社 エンジン用ピストンの中空耐摩環
DE19750021A1 (de) 1997-11-12 1999-05-20 Mahle Gmbh Gekühlter Ringträger
DE10011155A1 (de) * 2000-03-07 2001-09-13 Mahle Gmbh Kolben für Verbrennungsmotoren mit einer Ringträger-Kühlkanal-Kombination

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03054371A1 *

Also Published As

Publication number Publication date
WO2003054371A1 (de) 2003-07-03
AU2002350364A1 (en) 2003-07-09

Similar Documents

Publication Publication Date Title
DE4112889C2 (de) Verfahren zur Herstellung eines Kolbenkopfes mit Kühlung für einen mehrteiligen, gegliederten Kolben für Verbrennungsmotore, sowie danach hergestellter Kolbenkopf
EP1809885B1 (de) Einfach-reibschweissung
DE3616901C2 (de) Aufbau-Nockenwelle und Verfahren und Vorrichtung zu ihrer Herstellung
DE3601385C2 (de)
EP2188513B1 (de) Zweiteiliger kolben für einen verbrennungsmotor
DE69123856T2 (de) Befestigungselemente
EP2424709B1 (de) Verfahren zur herstellung eines kolbens für einen verbrennungsmotor
DE19532860A1 (de) Verfahren und Werkzeug zur Herstellung eines einstückigen Sammelrohres
DE3521206C2 (de)
DE102005029417A1 (de) Verfahren zur Herstellung eines Kolbens für einen Verbrennungsmotor
DE2828847C2 (de) Geschweißte Verbindung
WO2017133945A1 (de) Kolben einer brennkraftmaschine
EP0281591B1 (de) Verfahren, vorrichtung und kapsel zur pulvermetallurgischen herstellung von rohren oder dgl. langgestreckten profilen
DE10207946B4 (de) Schweißverfahren
DE1912905B2 (de) Korrosionsbeständiger Kegelhahn
DE2821752A1 (de) Verfahren zur herstellung von gekuehlten ventilen fuer brennkraftmaschinen und so erzielte ventile
DE10015709B4 (de) Kolben mit einem ringförmigen Kühlkanal
DE1758080C3 (de) Verfahren zur pulvermetallurgischen Herstellung stranggepresster Verbund korper
DE19852623C2 (de) Verfahren zum Bilden eines Durchgangslochs durch die Umfangswand eines Metallrohrs
WO2003054371A1 (de) Kolbenringträger mit kühlkanal
DE102021203241A1 (de) Kolben für eine Brennkraftmaschine und Verfahren zur Herstellung des Kolbens
EP1536125B1 (de) Kolben mit einem Abdeckelement für einen Kühlkanal
EP1180592A2 (de) Stahlkolben
DE2361712A1 (de) Verfahren zur herstellung hohler ventile fuer verbrennungsmotoren und andere maschinen im allgemeinen, sowie hiernach hergestelltes hohlventil
DE10230745B4 (de) Verfahren zur Herstellung eines Kolbens mit kurzer Kompressionshöhe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040621

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071103