EP1454051A1 - Thermohydrodynamic power amplifier - Google Patents

Thermohydrodynamic power amplifier

Info

Publication number
EP1454051A1
EP1454051A1 EP03752650A EP03752650A EP1454051A1 EP 1454051 A1 EP1454051 A1 EP 1454051A1 EP 03752650 A EP03752650 A EP 03752650A EP 03752650 A EP03752650 A EP 03752650A EP 1454051 A1 EP1454051 A1 EP 1454051A1
Authority
EP
European Patent Office
Prior art keywords
thk
pressure
working
fluid
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03752650A
Other languages
German (de)
French (fr)
Other versions
EP1454051B1 (en
Inventor
Jürgen KLEINWÄCHTER
Eckhart Weber
Olivier Paccoud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
POWERFLUID GMBH
Original Assignee
Colsman-Freyberger Claus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colsman-Freyberger Claus filed Critical Colsman-Freyberger Claus
Publication of EP1454051A1 publication Critical patent/EP1454051A1/en
Application granted granted Critical
Publication of EP1454051B1 publication Critical patent/EP1454051B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/02Compression machines, plants or systems with non-reversible cycle with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle

Definitions

  • Liquids are practically incompressible compared to gases, have a smaller, heat-related increase in volume, significantly higher specific heat capacities and offer the possibility of exchanging heat better.
  • the attempt to use liquids in heat engines as an alternative to working gas was undertaken in the mid-1920s by J. F. Malone from Newscastle-on-Tyne (England).
  • Fig. 1 the Malone machine is shown schematically. Thereby (1) the working cylinder, (2) the displacement cylinder, (3) the heater which is continuously heated by the external (flame) heat (3a), (4) the cooler, (5) the displacement piston, which is the regenerator ( 2a) 90 ° out of phase with the working piston (6) from hot to cold.
  • the object of the present invention is therefore to use the fundamental advantages of liquids as thermodynamic working media, already recognized by Malone, in a technically novel construction in such a way that the negative aspects described no longer occur.
  • thermo-hydrodynamic power amplifier TTK
  • the THK goes through a fundamentally different cycle than classic heat engines.
  • the liquid is heated isochorically from a to b.
  • the initial pressure Po corresponds to the ambient pressure (or a slightly higher pressure).
  • a shut-off element (17) opens and the liquid expands by working on a downstream system (hydraulic motor, compressor piston, etc.). This relaxation occurs until the initial pressure Po is again reached at a larger volume and higher temperature than the initial state a at c.
  • classic machines in which the fluid is brought back to the initial state a by mechanical back compression, the contraction of the liquid is brought about by heat extraction in the THK.
  • this has the great advantage that since all useful energy is withdrawn from b to c during the expansion phase, no mechanical energy has to be temporarily stored in any way (flywheel, wind boiler, etc.).
  • This principle also lies, as explained below , the possibility according to the invention of a crankshaft mechanism, with the constraining forces exerted by it on the fluid, can be completely dispensed with.
  • regenerator or recuperator is also included in the heat exchange process during work phases a ⁇ b and c - * a and the expansion of the fluid is isothermal, the work process defined by the key points a, b, c is the exception of irreversible losses in the fluid and heat loss thermodynamically ideal.
  • FIG. 4 shows the basic configuration of a THK in combination with a hydraulic motor.
  • (11) is the displacement piston which is moved up and down by a linear drive (12) inside the pressure cylinder (13). It periodically displaces the working fluid back and forth via a heater (14), regenerator (15) and cooler (16).
  • a hydraulic valve serves as a switchable shut-off element (17). This is closed at the beginning of the cycle (Fig. 3, section a ⁇ b) when the displacer moves down and thus transports the liquid to the hot side of the system.
  • the valve opens and the liquid expands at high pressure with the work being carried out by the hydraulic motor (18) with the flywheel (19) coupled. The relaxed fluid then collects in the collecting vessel (20).
  • a circulation line with the check valve (21) ensures that the fluid circulates continuously from the collecting vessel through the hydraulic motor as long as it is rotating.
  • the valve (17) is closed, the displacer (11) moves upward and displaces the fluid on the cold side of the system (Distance c ⁇ a in Fig. 3).
  • the cooling fluid contracts to the starting point a of the cycle (Fig. 3) and sucks in fluid via the line (22) and the check valve (23) from the collecting vessel (20).
  • regenerator (15) Since the regenerator (15) is flowed through in alternating directions by the hot and cold fluid, it temporarily stores heat almost without loss of entropy (because heat and cold are recovered along a linearly increasing temperature profile) and releases it back to the fluid at the right time.
  • thermo-hydrodynamic power amplifier TK
  • Fig. 4a the fluid is compressed isochorically.
  • the displacement piston (11) driven by the linear drive (12) is on its way down.
  • the hydraulic valve (17) is closed.
  • the route a -> • b is traveled in the PV diagram.
  • the fluid level in the expansion vessel (20) is at its lowest level.
  • Fig. 4a the fluid is compressed isochorically.
  • the displacement piston (11) driven by the linear drive (12) is on its way down.
  • the hydraulic valve (17) is closed.
  • the route a ⁇ b is covered.
  • the fluid level in the expansion vessel (20 is at its lowest level.
  • Fig. 4b the displacement piston (11) has reached bottom dead center.
  • the linear drive (12) stands.
  • the hydraulic valve (17) has opened.
  • the route b ⁇ c is traveled in the PV diagram.
  • the hydraulic motor (18) is driven by the relaxing liquid.
  • the fluid level in the expansion tank (20) increases.
  • FIG. 5 shows a PV diagram resulting from such a THK process. The process is started again according to the invention when the fluid is in the pressure state P 0 .
  • the medium that expands by moving the fluid from cold to hot flows through the hydraulic motor (17) under increasing pressure until at P'i at b the displacement piston (11) has reached its bottom dead center.
  • the fluid then relaxes with the displacer piston held at point c at P 0 , and is then contracted by regenerative cooling from c - ⁇ a.
  • the hydraulic valve (17) is closed during cycle part a ⁇ b ⁇ c and opened from c ⁇ b.
  • Such a variant of the THK cycle achieves lower outputs per cycle, but is characterized by a particularly smooth, continuous run and requires less pressure resistance due to the lower maximum pressure.
  • a further advantageous embodiment is the combination of the shut-off properties of the hydraulic valve (17) and the hydraulic motor.
  • 6 shows the indicator diagram of such a THK variant.
  • the fluid is isochorically compressed (valve 17 is closed) to the intermediate pressure Pi.
  • the fluid relaxes isobarically via the hydraulic motor (18) (valve 18 is open).
  • the fluid relaxes from b 'to c (valve 18 is open).
  • the valve 18 closed the fluid is again contracted from c to the initial state a by reversible heat removal.
  • THK thermoelectric heater
  • the cooler (16) Another advantageous embodiment of the THK according to the invention consists in the possibility of integrating the heater (14) and the cooler (16) into the fluid circuit only during the work cycle sections during which their respective function is required. On the one hand, this minimizes the negative effects of fluid dead volumes and, on the other hand, enables the pressure flow cross sections through the heater and the cooler to be designed without negative effects on the cycle with regard to a low dynamic flow resistance and optimal heat transfer properties.
  • Fig. 7 the corresponding, necessary by-pass lines with shut-off valves and their temporal use are shown schematically on the basis of the PV diagram.
  • the reheating by the heater (14) is due to the desired isothermal relaxation of b ⁇ c desired.
  • the fact that the fluid flows from a ⁇ b ⁇ c through the bypass 24c is marked in the PV diagram. If the fluid is subsequently reversibly cooled from c - ⁇ a and thereby contracts, only the effect of the cooler (16), but not that of the heater (14), is desired. For this reason, the heater is now shut off via the two valves 25a, 25b and the fluid is directed via the bypass 25c directly through the regenerator (15) and cooler (16) (valves 24a, 24b opened again).
  • the bypass lines 24c and 25c are provided with check valves 24d and 25d so that the fluid flows through (16) and (14) when the shut-off valves 24a, 24b and 25a, 25b are open.
  • a further embodiment of the THK machine according to the invention is to design it as a multi-cylinder machine (number n of cylinders> 2) and to control the timing of the linear drives (12) of the various cylinders in such a way that the resulting cycle overlap to a smoothed drive torque leads. This leads to much smaller flywheels.
  • the purely translatory movement of the expanding and contracting liquid column is also used to drive subsystems such as typically: air compressors, heat pump refrigeration machines, compressors, reverse osmosis systems and the like.
  • FIG. 8 shows such a THK machine according to the invention with linear force decoupling and a linear conformer. Since the subsystems in this case require a fixed working piston (instead of the "liquid" working piston described so far), the advantageous embodiment of this variant of the object according to the invention is due to the integration of the working piston (26) in the pressure cylinder (13) and the the air cushion (27) underneath the working piston makes the expansion vessel (Fig. 3, 26) unnecessary. tig.
  • the working piston which in this case also periodically moves downward during the expansion phase under the application of force, is held by the switchable shut-off element (29), which in this case is advantageously designed as a shoe brake which engages around the piston rod, until the desired maximum pressure (in the PV Indication diagram point b) is reached.
  • the force is then decoupled via the force KoiüOrmator (30), which is designed geometrically as a parallelogram.
  • the parallelogram is provided with swivel joints in its four corners, which cause its shape to change constantly due to the imprinted movement (indicated by 30, 31). If you now couple the piston rod of the desired subsystem to be operated with linear force at a corner point whose axis is perpendicular to the axis defined by the working piston, the force-effect of the working piston of the THK, which is due to the isothermal relaxation of b -> c is asymptotic, conformal, that is, even over the entire working stroke.
  • this type of THK can also be operated with the cycle variants shown in FIGS. 5 and 6 and described in the text, and can be optimized with the “by-pass” arrangements shown in FIG. 7.
  • thermodynamic machine Since the THK represents a reversible thermodynamic machine, there is a particularly advantageous variant according to the invention in its configuration as a refrigerator heat pump.
  • FIGS. 9a, 9b, 9c Such a THK machine is shown in FIGS. 9a, 9b, 9c, each with the corresponding work steps during the three work phases of the driving THK machine and the driven THK refrigerating machine heat pump.
  • the driving THK machine basically has the same structure as that shown in Fig. 8 and described in the previous text.
  • the conformer mechanism (30) pushes the working piston (26a) of the driven refrigeration machine and heat pump into the cylinder (13a) periodically and out of phase with the drive machine due to the pressure-free coupling (33a), which is also described.
  • Fig. 9a Working machine The fluid is heated isochorically from a to b.
  • the displacer (11) moves towards the fixed working piston (26)
  • Refrigerating machine The fluid is cooled isobarically by moving the displacer from a 'to c'.
  • the working piston (26a) is fixed.
  • the pressure-free coupling (33 a) is disengaged
  • Fig. 9b Working machine
  • the fluid expands isothermally from b to c Working piston (26) and displacement piston (11) move down together.
  • the pressure-free coupling (30) is engaged.
  • the shut-off element (29) is open
  • Refrigerating machine The working piston (26a) compresses the fluid.
  • the displacer piston is fixed in the outer dead center.
  • the shut-off element (29a) is open
  • Refrigerating machine The working piston (26a) is fixed at the bottom dead center by the shut-off element (29a).
  • the displacer piston pushes the fluid from b 'to a' (isochoric cooling)
  • the refrigeration machine heat pump therefore absorbs (16a) ambient heat (Kuhler), compresses it isothermally, and releases the heat again via (14a. User) Drive through “reverse” and works at a lower temperature level
  • 16a ambient heat
  • User User
  • all heat exchange processes can take place from liquid to liquid.
  • this enables much more economical and efficient coolers / heat exchangers.
  • analogous to the by-pass circuit of FIG. 7 (24c, 25c) such an arrangement can also be used in the refrigeration machine and the cooled fluid can thus flow directly through the corresponding heat sink without dead space effects.
  • the pressures must be matched to one another. According to the invention, this can be done either by corresponding volume ratios of the working machine cylinder (13) to the refrigerating machine cylinder (13a), or by a corresponding pressure reduction by means of a stepped working piston between the conformer (30) and the refrigerating machine.
  • THK refrigeration machine heat pump uses the basic principle of the known Vuilleumier refrigeration machine heat pump, which operates according to the Stirling principle, with adaptation to the special cycle of the THK machine. This variant is shown schematically in FIG.
  • both cylinder halves are filled with the same fluid at the same pressure (advantageously: 1 bar).
  • the displacement drives 12a. 12b move the displacement pistons 11a, 11b with the phase shifted by 90 °.
  • the fluid In the hot cylinder I, the fluid is brought to high pressure by heating by means of 14a. After this pressure has been reached, the valve (35) is opened and the drain fluid from cylinder I compresses the fluid in cylinder II with the development of heat. After the pressure has been equalized, the displacement piston (Ha) moves upwards in the "hot” cylinder, while in the “cold” cylinder the displacement piston moves down.
  • regenerators 15a and 15b are transferred and buffered for the following cycle section.
  • (11a) and (11b) move up synchronously. As soon as both have reached their top dead center, the valve (35) closes and the cycle begins again as described.
  • cylinder I acts as a regenerative pressure pulsator
  • cylinder II as a refrigeration machine heat pump runs through the cycle of the THK pulsator which is driven through clockwise in cylinder I to the left.
  • Heat is extracted from a desired room by (14b) at low temperature (refrigeration machine) and released again by (16c) at a medium temperature level (heat pump).
  • (16c) When operating as a heat pump or as a combined unit (simultaneous generation of cold and heat), it makes sense to connect the heat flows in series using (16c) and (16a).
  • the "Vuilleumier THK” refrigerator heat pump described here can also be operated without the valve (35).
  • the valve (35) is replaced in this case by a permanent, small passage opening in the wall (34).
  • the displacers (11a, 11b) are not moved discontinuously by 90 ° out of phase, but continuously out of phase by 90 °.
  • this simplification of the cycle according to the invention has a lower power density because of the less usable pressure fluctuation. This can in principle be compensated for by an increased operating frequency However, due to the disproportionately increasing hydraulic pressure losses, the efficiency is poor.
  • the water used by Malone has many advantages, but also the fundamental disadvantage that, in order to remain fluid over the entire working cycle, it must be subjected to a pre-pressure of> 100 bar. Although this can basically be achieved with the described THK machines, it requires expansion tanks and air boilers that are filled with this form.
  • thermodynamics of the THK preference is therefore given in particular to synthetic oils in which, as described, it is possible to work against atmospheric pressure, and which can be tailored in terms of viscosity, temperature stability, compressibility and other important parameters of the thermodynamics of the THK. Since the THK machines work well in the medium temperature range from approx. 100 ° C to approx. 400 ° C, and the heat input (and cooling) of the fluid is technically particularly easy to implement, the following energy sources for operating the THK are Of particular interest: solar energy including night operation through thermal storage, all biogenic fuels, waste heat in the temperature range mentioned. THK machines and combined THK refrigeration machine heat pumps are particularly suitable for cogeneration in buildings, for decentralized energy supply with sun and / or biomass and for the re-generation of (industrial) waste heat.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Fats And Perfumes (AREA)
  • Amplifiers (AREA)

Abstract

A thermodynamic force amplifying machine that causes a liquid working medium to perform useful work in a three-stroke working cycle (isochoric heating, isothermal expansion, contraction through regenerative cooling) making use of an external heat source and of an external cold source. The work performed by the auxiliary drive ( 12 ) at the displacer ( 11 ) is thereby much smaller than the one produced in the conversion system ( 18, 19 ) (force amplification). An inversely operating machine driven by an external power source acts as a heat pump/refrigerator.

Description

Thermo - Hydrodynamischer Kraftverstärker Thermo - hydrodynamic booster
Flüssigkeiten sind im Vergleich zu Gasen praktisch inkompressibel, haben eine geringere, wärmebe- dingte Volumenzunahme, wesentlich höhere spezifische Wärmekapazitäten und bieten die Möglichkeit, Wärme besser zu tauschen. Der Versuch alternativ zum Arbeitsgas Flüssigkeiten in Wärmekraftmaschinen einzusetzen, wurde Mitte der 20-ziger Jahre des vorigen Jahrhunderts von J. F. Malone aus News- castle-on-Tyne (England) unternommen.Liquids are practically incompressible compared to gases, have a smaller, heat-related increase in volume, significantly higher specific heat capacities and offer the possibility of exchanging heat better. The attempt to use liquids in heat engines as an alternative to working gas was undertaken in the mid-1920s by J. F. Malone from Newscastle-on-Tyne (England).
Er entwickelte eine der Heißgas-Stirling Maschine ähnliche regenerative Maschine, die aber statt mit Luft mit Druckwasser als Arbeitsmedium gefüllt ist. (U.S. Patent 1,487,664 vom 18. März 1924 und U.S. Patent 1,7717,161 vom 11. Juni 1929).He developed a regenerative machine similar to the hot gas Stirling machine, but which is filled with pressurized water as the working medium instead of air. (U.S. Patent 1,487,664 of March 18, 1924 and U.S. Patent 1,7717,161 of June 11, 1929).
Er konnte nachweisen, dass er bei einer Temperaturdifferenz von 305K einen Wirkungsgrad von 27% erreichte, was einem beachtlichen Realisierungsgrad von 54% des idealen Carnot Zykluses gleichkommt und im Vergleich zu den damals üblichen Dampfmaschinen etwa doppelt so hoch war.He was able to prove that he achieved an efficiency of 27% at a temperature difference of 305K, which corresponds to a remarkable degree of implementation of 54% of the ideal Carnot cycle and was about twice as high as that of the steam engines common at the time.
Der Grund für diesen guten Wirkungsgrad lag in der Tatsache begründet, dass die Maschine wie die Stirlingmaschine einen Wärmeregenerator besaß und zudem die gegenüber Gasen wesentlich besseren Wärmeübertragungseigenschaften der Flüssigkeiten nutzte. In Fig. 1 ist die Malone Maschine schematisch dargestellt. Dabei ist (1) der Arbeitszylinder, (2) der Verdrängerzylinder, (3) der Erhitzer der durch die äußere (Flammen)wärme (3a) ständig erhitzt wird, (4) der Kühler, (5) der Verdrängerkolben, der den Regenerator (2a) um 90° gegenüber dem Arbeitskolben (6) phasenverschoben von heiß nach kalt schiebt. Der mit dem Schwungrad (7) über die Pleuelstange (7a) verbundene Arbeitskolben (6) überträgt über den Hilfspleuel (8a) und den Exzenter (8) die phasenverschobene oszillierende Bewegung auf die Regeneratorstrecke (2a).The reason for this good efficiency was due to the fact that the machine, like the Stirling machine, had a heat generator and also used the heat transfer properties of the liquids, which are significantly better than gases. In Fig. 1 the Malone machine is shown schematically. Thereby (1) the working cylinder, (2) the displacement cylinder, (3) the heater which is continuously heated by the external (flame) heat (3a), (4) the cooler, (5) the displacement piston, which is the regenerator ( 2a) 90 ° out of phase with the working piston (6) from hot to cold. The working piston (6) connected to the flywheel (7) via the connecting rod (7a) transmits the phase-shifted oscillating movement to the regenerator section (2a) via the auxiliary connecting rod (8a) and the eccentric (8).
In Fig. 2 ist im PV-Diagramm sowohl ein idealer Stirling Zyklus (10), als auch der von der Malone Maschine realisierte Zyklus (9) dargestellt.In Fig. 2, both an ideal Stirling cycle (10) and the cycle (9) realized by the Malone machine are shown in the PV diagram.
Da Wasser nur unter sehr hohen Drücken von >100 bar im verlangten Arbeitstemperaturbereich flüssig bleibt, musste Malone sehr druckfeste Zylinder einsetzen. Da er außerdem auf Kurbelwellen und Arbeitskolben zur Umwandlung der thermisch in der Flüssigkeit erzeugten Druckschwankungen in rotierende Wellenenergie zurückgriff, unterwarf er die Flüssigkeit, wie bei klassischen Arbeitsmaschinen üblich, einem Arbeitszyklus, bei dem prinzipiell während der (heißen) Expansionsphase über den Ar- beitskolben und das Kurbelwellen-Schwungrad System nützliche Arbeit abgegeben wird, während bei der (kalten) Rückkompressionsphase Arbeit in das System gebracht werden muss, die aus einem Teil der Expansionsarbeit, die im Schwungrad gespeichert wurde, stammt.Since water only remains liquid at very high pressures of> 100 bar in the required working temperature range, Malone had to use very pressure-resistant cylinders. Since he also used crankshafts and working pistons to convert the pressure fluctuations thermally generated in the liquid into rotating shaft energy, he subjected the liquid to a working cycle, as is customary in classic work machines, in which, in principle, during the (hot) expansion phase over the working work and the crankshaft flywheel system are given useful work, while in the (cold) recompression phase work has to be put into the system that comes from part of the expansion work stored in the flywheel.
Da Flüssigkeiten im Vergleich zu Gasen oder Flüssig-Dampfgemischen nahezu inkompressibel sind, ist es unvermeidlich, dass durch die starre Zwangskoppelung die Arbeitskolben, Verdränger, Kurbelwelle und Schwungrad dem Fluid aufprägen, insbesondere während der Rückkompressionsphase extrem hohe Drücke erzeugt werden. Dies führt zu sehr hohen Druckwechselbelastungen und erfordert sehr schwere Schwungmassen, die ihrerseits starke dynamische Lasten auf die Lager und die Gesamtstruktur übertragen.Since liquids are almost incompressible compared to gases or liquid-vapor mixtures, it is inevitable that the rigid piston, the working piston, displacer, crankshaft and flywheel impress the fluid, especially during the recompression phase, extremely high pressures are generated. This leads to very high alternating pressure loads and requires very heavy flywheels, which in turn transmit strong dynamic loads to the bearings and the overall structure.
Damit wurden die grundsätzlichen Vorteile der Malone Maschine (gegenüber Gasen wesentlich bessere Wärmeübertragungseigenschaften, hohe Wärmekapazität und damit Leistungsdichte) durch die aus dieser Bauweise resultierenden Lebensdauer limitierenden Druckschwankungen konterkariert. Dies ist auch der Grund dafür, wa m diese Maschine trotz überlegener Thermodynamik keinen Eingang in den täglichen Gebrauch fand.The basic advantages of the Malone machine (compared to gases, significantly better heat transfer properties, high heat capacity and thus power density) were counteracted by the pressure fluctuations that limit the resulting service life. This is also the reason why this machine was not used in daily use despite superior thermodynamics.
Die Aufgabe der vorliegenden Erfindung ist es daher, die bereits von Malone erkannten grundsätzlichen Vorteile von Flüssigkeiten als thermodynamische Arbeitsmedien in einer technisch neuartigen Bauweise so zu nutzen, dass die beschriebenen negativen Aspekte nicht mehr auftauchen,The object of the present invention is therefore to use the fundamental advantages of liquids as thermodynamic working media, already recognized by Malone, in a technically novel construction in such a way that the negative aspects described no longer occur.
Die im folgendem beschriebene erfindungsgemäße Maschine wirkt als Thermo-Hydrodynamischer Kraftverstärker (THK).The machine according to the invention described below acts as a thermo-hydrodynamic power amplifier (THK).
Der THK durchläuft im PV-Diagramm (Fig. 3) einen grundsätzlich anderen Zyklus als klassische Wärmekraftmaschinen. Dabei wird die Flüssigkeit von a nach b isochor erwärmt. Der Anfangsdruck Po entspricht dabei dem Umgebungsdruck (oder einem geringfügig höheren Druck). Sobald in der Flüssigkeit der gewünschte Druck Pl erreicht ist, öffnet ein Absperrelement (17) und die Flüssigkeit expandiert, in dem sie Arbeit an einem nachgeschalteten System (Hydraulikmotor, Kompressorkolben usw.) leistet. Diese Entspannung geschieht bis bei nun größerem Volumen und höherer Temperatur gegenüber dem Anfangszustand a bei c wiederum der Anfangsdruck Po erreicht wird. Im Gegensatz zu klassischen Maschinen, bei denen das Fluid in den Anfangszustand a durch mechanische Rückkompression zurückgebracht wird, wird beim THK die Kontraktion der Flüssigkeit durch Wärmeentzug herbeigeführt. Dies hat erfindungsgemäß den großen Vorteil, dass, da sämtliche Nutzenergie während der Expansionsphase von b nach c entzogen wird, keine mechanische Energie in irgendeiner Weise (Schwungrad, Windkessel usw.) zwischengespeichert werden muss. Ferner liegt in diesem Prinzip, wie im weiteren ausgeführt wird, die erfϊndungsgemäße Möglichkeit auf einen Kurbelwellenmechanismus, mit dem von diesem ausgeübten Zwangskräften auf das Fluid, vollständig zu verzichten.In the PV diagram (Fig. 3), the THK goes through a fundamentally different cycle than classic heat engines. The liquid is heated isochorically from a to b. The initial pressure Po corresponds to the ambient pressure (or a slightly higher pressure). As soon as the desired pressure Pl is reached in the liquid, a shut-off element (17) opens and the liquid expands by working on a downstream system (hydraulic motor, compressor piston, etc.). This relaxation occurs until the initial pressure Po is again reached at a larger volume and higher temperature than the initial state a at c. In contrast to classic machines, in which the fluid is brought back to the initial state a by mechanical back compression, the contraction of the liquid is brought about by heat extraction in the THK. According to the invention, this has the great advantage that since all useful energy is withdrawn from b to c during the expansion phase, no mechanical energy has to be temporarily stored in any way (flywheel, wind boiler, etc.). This principle also lies, as explained below , the possibility according to the invention of a crankshaft mechanism, with the constraining forces exerted by it on the fluid, can be completely dispensed with.
Wird zudem während der Arbeitsphasen a → b und c — * a ein Regenerator oder Rekuperator in den Wärmetauschprozeß einbezogen und die Expansion des Fluids isotherm geführt, ist der durch die Eck- punkte a, b, c festgelegte Arbeitsprozeß mit Ausnahme von irreversiblen Verlusten im Fluid und Wärmeverlusten thermodynamisch ideal.If a regenerator or recuperator is also included in the heat exchange process during work phases a → b and c - * a and the expansion of the fluid is isothermal, the work process defined by the key points a, b, c is the exception of irreversible losses in the fluid and heat loss thermodynamically ideal.
In Fig. 4 ist die Grundfiguration eines THK in Kombination mit einem Hydraulikmotors schematisch dargestellt.4 shows the basic configuration of a THK in combination with a hydraulic motor.
Dabei ist (11) der Verdrängerkolben der von einem Linearantrieb (12) im Inneren der Druckzylinders (13) auf und ab bewegt wird. Er verdrängt das Arbeitsfluid periodisch über eine Erhitzer (14), Regenerator (15) und Kühler (16) - Strecke - hin und zurück. Als schaltbares Absperrelement (17) dient ein hydraulisches Ventil. Dieses ist zu Beginn des Zykluses (Fig. 3, Strecke a → b) gesclüossen, wenn sich der Verdrängerkolben nach unten bewegt und somit die Flüssigkeit auf die heiße Seite des Systems befördert. Bein Erreichen des gewünschten Druckes Pi im Punkte b des PV-Diagrammes öffnet das Ventil und die Flüssigkeit expandiert bei hohem Druck unter Arbeitsabgabe durch den Hydraulikmotor (18) mit angekoppeltem Schwungrad (19). Das entspannte Fluid sammelt sich anschließend in dem Sammelgefäß (20), Eine Zirkulationsleitung mit dem Rückschlagventil (21) sorgt für einen ständigen Umlauf des Fluids vom Sammelgefäß durch den Hydraulikmotor, solange sich dieser dreht. Wenn die arbeitslie- fernde Entspannung des Fluids (Punkt c im PV-Diagramm, Fig. 3) beendet ist, wird das Ventil (17) geschlossen, der Verdränger (11) bewegt sich nach oben und verdrängt das Fluid auf die kalte Seite des Systems (Strecke c → a in Fig. 3). Das sich abkühlende Fluid kontrahiert zum Anfangspunkt a des Zyklusses (Fig. 3) und saugt dabei über die Leitung (22) und das Rückschlagsventil (23) Fluid aus dem Sammelgefäß (20) nach.(11) is the displacement piston which is moved up and down by a linear drive (12) inside the pressure cylinder (13). It periodically displaces the working fluid back and forth via a heater (14), regenerator (15) and cooler (16). A hydraulic valve serves as a switchable shut-off element (17). This is closed at the beginning of the cycle (Fig. 3, section a → b) when the displacer moves down and thus transports the liquid to the hot side of the system. When the desired pressure Pi in point b of the PV diagram is reached, the valve opens and the liquid expands at high pressure with the work being carried out by the hydraulic motor (18) with the flywheel (19) coupled. The relaxed fluid then collects in the collecting vessel (20). A circulation line with the check valve (21) ensures that the fluid circulates continuously from the collecting vessel through the hydraulic motor as long as it is rotating. When the work-supply expansion of the fluid (point c in the PV diagram, FIG. 3) has ended, the valve (17) is closed, the displacer (11) moves upward and displaces the fluid on the cold side of the system (Distance c → a in Fig. 3). The cooling fluid contracts to the starting point a of the cycle (Fig. 3) and sucks in fluid via the line (22) and the check valve (23) from the collecting vessel (20).
Da der Regenerator (15) in abwechselnder Richtung vom heißen und kaltem Fluid durchströmt wird, speichert er temporär fast ohne Entropieverlust (weil Wärme und Kälte längs eines linear ansteigenden Temperaturprofiles rückgewonnen werden) Wärme und gibt diese zum richtigen Zeitpunkt wieder an das Fluid ab.Since the regenerator (15) is flowed through in alternating directions by the hot and cold fluid, it temporarily stores heat almost without loss of entropy (because heat and cold are recovered along a linearly increasing temperature profile) and releases it back to the fluid at the right time.
Bei geeigneter Wahl der Oszillationsfrequenz des Verdrängers (11) und der richtigen Dimensionierung der Strömungsquerschnitte durch die Erhitzer, Regenerator. Kühlerstrecke wird erreicht, dass der Betrag der von der expandierenden Flüssigkeit abgegebenen Arbeit um ein vielfaches höher ist, als die vonWith a suitable choice of the oscillation frequency of the displacer (11) and the correct dimensioning of the flow cross sections through the heater, regenerator. Cooling section is achieved that the amount of work given off by the expanding liquid is many times higher than that of
Verdrängerkolben geleistete Arbeit. Aus diesem Grunde und wegen ihrer Wirkungsweise nennen wir die erfindungsgemäße Maschine Thermo-Hydrodynamischer Kraftverstärker (THK).Displacement piston work done. For this reason and because of their mode of action we call them Machine according to the invention thermo-hydrodynamic power amplifier (THK).
Zum besseren Verständnis in den Figuren 4a, 4b, 4c nochmals die drei Arbeitstakte schematisch dargestellt und dem jeweiligen Abschnitt im PV-Diagramm zugerechnet. Dabei stellt —» den Fluidfluß unter Druck dar, * Druckfluid ohne Bewegung, -→ Fluidbewegung mit geringem Druck dar.For better understanding in FIGS. 4a, 4b, 4c, the three work cycles are again shown schematically and assigned to the respective section in the PV diagram. Thereby - »represents the fluid flow under pressure, * pressurized fluid without movement, - → fluid movement with low pressure.
In Fig. 4a wird das Fluid isochor komprimiert. Der Verdrängerkolben (11) angetrieben vom Linearantrieb (12) befindet sich auf seinem Weg nach unten. Das Hydraulikventil (17) ist geschlossen. Im PV- Diagramm wird die Strecke a — >• b durchfahren. Das Fluidniveau im Ausdehnungsgefäß (20) befindet sich auf seinem niedrigsten Stand.In Fig. 4a the fluid is compressed isochorically. The displacement piston (11) driven by the linear drive (12) is on its way down. The hydraulic valve (17) is closed. The route a -> • b is traveled in the PV diagram. The fluid level in the expansion vessel (20) is at its lowest level.
In Fig. 4a wird das Fluid isochor komprimiert. Der Verdrängerkolben (11) angetrieben vom Linearan- trieb (12) befindet sich auf seinem Weg nach unten. Das Hydraulikventil (17) ist geschlossen. Im PV- Diagramm wird die Strecke a → b durclifahren. Das Fluidniveau im Ausdehnungsgefäß (20 befindet sich auf seinem niedrigsten Stand.In Fig. 4a the fluid is compressed isochorically. The displacement piston (11) driven by the linear drive (12) is on its way down. The hydraulic valve (17) is closed. In the PV diagram, the route a → b is covered. The fluid level in the expansion vessel (20 is at its lowest level.
In Fig. 4b hat der Verdrängerkolben (11) den unteren Totpunkt erreicht. Der Linearantrieb (12) steht. Das Hydraulikventil (17) hat geöffnet. Im PV-Diagramm wird die Strecke b → c durchfahren. Der Hyd- raulikmotor (18) wird von der sich entspannenden Flüssigkeit angetrieben. Das Fluidniveau im Ausdehnungsgefäß (20) steigt.In Fig. 4b, the displacement piston (11) has reached bottom dead center. The linear drive (12) stands. The hydraulic valve (17) has opened. The route b → c is traveled in the PV diagram. The hydraulic motor (18) is driven by the relaxing liquid. The fluid level in the expansion tank (20) increases.
In Fig. 4c bewegt sich der Verdrängerkolben (11) durch den Linearantrieb (12) nach oben. Das Hydraulikventil (17) ist geschlossen. Das drucklose heiße Fluid wird über den Regenerator (15) und Kühler (16) auf die Anfangstemperatur rückgekühlt und erfährt dadurch eine Kontraktion. Der dadurch entstehende Unterdruck saugt Fluid über die Leitung (22) aus dem Ausdehnungsgefäß (20). Dessen Niveau sinkt bis zum tiefsten Wert. Im PV-Diagramm wird die Strecke c → a durchfahren. Damit ist wieder der Anfangszustand a des Zykluses erreicht.4c, the displacement piston (11) moves upwards through the linear drive (12). The hydraulic valve (17) is closed. The unpressurized hot fluid is cooled back to the initial temperature via the regenerator (15) and cooler (16) and thus experiences a contraction. The resulting vacuum draws fluid out of the expansion vessel (20) via the line (22). Its level drops to its lowest value. The route c → a is traveled in the PV diagram. This means that the initial state a of the cycle is reached again.
Das bisher geschilderte Grundftmktionsprinzip einer Dreitakt-THK Maschine kann auf verschiedene Weise variiert werden. Eine erfϊndungsgemäße Möglichkeit besteht darin, statt des Hydraulikventils (17) den Druckaufbau durch den Hydraulikmotor (18) selbst zu nutzen. Dieser Kommt dadurch zustande, dass das Schluckvolumen des Hydraulikmotors (18) so gewählt wird, dass es deutlich kleiner ist als der Volumenstrom des Fluids der durch die Erwärmung des Fluids auf der Strecke a —* b im PV-Diagramm entsteht. In Fig. 5 ist ein aus einem solchen THK-Prozess resultierendes PV-Diagramm dargestellt. Dabei wird erfindungsgemäß der Prozeß wiederum begonnen, wenn sich das Fluid im Druckzustand P0 befindet. Das durch Verschieben des Fluids von kalt nach heiß sich ausdehnende Medium durchströmt den Hydraulikmotor (17) unter ansteigendem Druck bis bei P'i bei b der Verdrängerkolben (11) seinen unteren Totpunkt erreicht hat. Anschließend entspannt sich das Fluid bei festgehaltenem Verdrängerkolben zum Punkt c bei P0, und wird dann anschließend durch regenerative Kühlung von c -→ a kontrahiert. Das Hydraulikventil (17) ist während des Zyklusteils a → b → c geschlossen und von c → b ge- öffnet.The basic principle of a three-stroke THK machine described so far can be varied in different ways. One possibility according to the invention is to use the pressure build-up by the hydraulic motor (18) itself instead of the hydraulic valve (17). This is due to the fact that the swallowing volume of the hydraulic motor (18) is selected so that it is significantly smaller than the volume flow of the fluid that results from the heating of the fluid on the section a - * b in the PV diagram. FIG. 5 shows a PV diagram resulting from such a THK process. The process is started again according to the invention when the fluid is in the pressure state P 0 . The medium that expands by moving the fluid from cold to hot flows through the hydraulic motor (17) under increasing pressure until at P'i at b the displacement piston (11) has reached its bottom dead center. The fluid then relaxes with the displacer piston held at point c at P 0 , and is then contracted by regenerative cooling from c - → a. The hydraulic valve (17) is closed during cycle part a → b → c and opened from c → b.
Eine solche Variante des THK-Zyklusses erreicht zwar pro Zyklus kleinere Leistungen ist aber durch einen besonders geschmeidigen, kontinuierlichen Lauf gekennzeichnet, und benötigt wegen des geringeren Maximaldruckes eine geringere Druckfestigkeit.Such a variant of the THK cycle achieves lower outputs per cycle, but is characterized by a particularly smooth, continuous run and requires less pressure resistance due to the lower maximum pressure.
Eine weitere vorteilhafte Ausgestaltungsmöglichkeit besteht in der Kombination der Absperreigenschaf- ten des Hydraulikventils (17) und des Hydraulikmotors. In Fig. 6 ist das Indikatordiagramm einer solchen THK Variante dargestellt. Ausgehend vom Anfangsdruck P0 wird das Fluid isochor (Ventil 17 ist geschlossen) auf den Zwischendruck Pi komprimiert. Von b nach b' entspannt das Fluid über den Hydraulikmotor (18) isobar (Ventil 18 ist geöffnet). Nachdem der Verdrängerkolben (11) seinen unteren Totpunkt erreicht hat, entspannt das Fluid von b' nach c (Ventil 18 ist geöffnet). Dann wird das Fluid bei geschlossenem Ventil 18 wiederum durch reversiblen Wärmeentzug von c auf den Anfangszustand a kontrahiert. Eine solche Variante des TJHK erreicht gute Zyklenleistungen und schont die Druckzylinder wegen des - im Verhältnis zur Grundvariante - geringeren Maximaldruckes.A further advantageous embodiment is the combination of the shut-off properties of the hydraulic valve (17) and the hydraulic motor. 6 shows the indicator diagram of such a THK variant. Starting from the initial pressure P 0 , the fluid is isochorically compressed (valve 17 is closed) to the intermediate pressure Pi. From b to b 'the fluid relaxes isobarically via the hydraulic motor (18) (valve 18 is open). After the displacement piston (11) has reached its bottom dead center, the fluid relaxes from b 'to c (valve 18 is open). Then, with the valve 18 closed, the fluid is again contracted from c to the initial state a by reversible heat removal. Such a variant of the TJHK achieves good cycle performance and is gentle on the pressure cylinders because of the lower maximum pressure compared to the basic variant.
Eine weitere, erfϊndungsgemäß vorteilhafte Ausgestaltung des THK besteht in der Möglichkeit, den Erhitzer (14) und den Kühler (16) immer nur während der Arbeitszyklusabschnitte in den Fluidkreislauf einzubinden, während dem ihre jeweilige Funktion benötigt wird. Dies minimiert einerseits die negativen Auswirkungen von Fluid-Totvolumen und ermöglicht anderseits, die Druckströmungsquerschnitte durch den Erhitzer und den Kühler ohne negative Auswirkungen auf den Zyklus im Hinblick auf einen geringen dynamischen Durchströmungswiderstand und optimale Wärmeübertragungseigenschaften zu gestalten. In Fig. 7 sind die entsprechenden, notwendigen By-passleitungen mit Absperrventilen und deren zeitlicher Einsatz an Hand des PV-Diagrammes schematisch dargestellt.Another advantageous embodiment of the THK according to the invention consists in the possibility of integrating the heater (14) and the cooler (16) into the fluid circuit only during the work cycle sections during which their respective function is required. On the one hand, this minimizes the negative effects of fluid dead volumes and, on the other hand, enables the pressure flow cross sections through the heater and the cooler to be designed without negative effects on the cycle with regard to a low dynamic flow resistance and optimal heat transfer properties. In Fig. 7 the corresponding, necessary by-pass lines with shut-off valves and their temporal use are shown schematically on the basis of the PV diagram.
Während das Fluid von a → b durch den Verdrängerkolben verschoben wird, das Fluid also erwärmt wird, ist es unerwünscht, über den Kühler (16) Wärme zu entziehen. Durch Schließen der Ventile 24a, 24b wird das Fluid in einem By-pass (24c) um den Kühler herumgelenkt und durchströmt anschließend den Regenerator (15) und Erhitzer (14). Bei der anschließenden Entspannung des Fluids von b → c ist wiederum die Kühlung unerwünscht (24a, 24b weiterhin geschlossen, Fluid strömt durch 24c).While the fluid is displaced from a → b through the displacement piston, that is to say the fluid is heated, it is undesirable to remove heat via the cooler (16). By closing the valves 24a, 24b, the fluid is directed around the cooler in a by-pass (24c) and then flows through the regenerator (15) and heater (14). In the subsequent expansion of the fluid from b → c, cooling is again undesirable (24a, 24b still closed, fluid flows through 24c).
Die Nachheizung durch den Erhitzer (14) ist wegen der angestrebten isothermen Entspannung von b → c erwünscht. Die Tatsache, dass von a → b → c das Fluid durch den By-pass 24c fließt, ist im PV- Diagramm gekennzeichnet. Wenn das Fluid anschließend von c -→ a reversibel abgekühlt wird und dadurch kontrahiert, ist nur die Wirkung des Kühlers (16), nicht jedoch die des Erhitzers (14) erwünscht. Deswegen wird nun der Erhitzer über die zwei Ventile 25a, 25b abgesperrt und das Fluid über den By-pass 25c direkt durch den Regenerator (15) und Kühler (16) geleitet (Ventile 24a, 24b wieder geöffnet). Damit das Fluid bei geöffneten Absperrventilen 24a, 24b bzw. 25a, 25b jeweils durch (16) und (14) strömt, sind die By-passleitungen 24c und 25c mit den Rückschlagventilen 24d und 25d versehen.The reheating by the heater (14) is due to the desired isothermal relaxation of b → c desired. The fact that the fluid flows from a → b → c through the bypass 24c is marked in the PV diagram. If the fluid is subsequently reversibly cooled from c - → a and thereby contracts, only the effect of the cooler (16), but not that of the heater (14), is desired. For this reason, the heater is now shut off via the two valves 25a, 25b and the fluid is directed via the bypass 25c directly through the regenerator (15) and cooler (16) (valves 24a, 24b opened again). The bypass lines 24c and 25c are provided with check valves 24d and 25d so that the fluid flows through (16) and (14) when the shut-off valves 24a, 24b and 25a, 25b are open.
Bisher wurden THK Maschinen mit Rotationsauskoppelung durch den Hydraulikmotor geschildert. Da die Zyklusenergie im Verlaufe der Entspannung des Arbeitsfluids stetig abnimmt, ist es nötig, dieses unstete Leistungsangebot zu „konformieren", Bei rotierenden Maschinen geschieht dies am besten durch ein entsprechendes Schwungrad (19).So far, THK machines with rotation decoupling by the hydraulic motor have been described. Since the cycle energy decreases steadily in the course of the expansion of the working fluid, it is necessary to "conform" to this unstable range of services. In the case of rotating machines, this is best done using a corresponding flywheel (19).
Die Tatsache, dass einerseits Energie nach Außen nur während der Expansionsphase abgegeben wird und anderseits aus Wirkungsgradgründen die Arbeitsfrequenz der THK-Maschine möglichst niedrig sein sollte, führt dazu, dass das Schwungrad neben der beschriebenen Konformierung des unsteten E- nergieangebotes während der Expansion auch noch relativ lange Zeiträume, während der die Maschine keine Energie abgibt, überbrücken muss. Dies führt naturgemäß zu großen Schwungrädern.The fact that on the one hand energy is only released to the outside during the expansion phase and on the other hand the working frequency of the THK machine should be as low as possible for reasons of efficiency, means that the flywheel, in addition to the described conformity of the unstable energy supply during expansion, is also relative long periods during which the machine does not release any energy must bridge. This naturally leads to large flywheels.
Deswegen besteht eine weitere erfindungsgemäße Ausgestaltung der THK-Maschine darin, diese als Mehrzylindermaschine auszuführen (Anzahl n der Zylinder > 2) und die zeitliche Ansteuerung der Linearantriebe (12) der verschiedenen Zylinder so vorzunehmen, dass die daraus resultierende Zyklen- Überlappung zu einem geglätteten Antriebsdrehmoment führt. Dies führt zu wesentlich kleineren Schwungrädern.Therefore, a further embodiment of the THK machine according to the invention is to design it as a multi-cylinder machine (number n of cylinders> 2) and to control the timing of the linear drives (12) of the various cylinders in such a way that the resulting cycle overlap to a smoothed drive torque leads. This leads to much smaller flywheels.
Erfindungsgemäß soll aber auch die rein translatorische Bewegung der sich ausdehnenden und wieder kontrahierenden Flüssigkeitssäule zum Antrieb von Subsystemen wie typischerweise: Luftkompressoren, Wärmepumpen-Kältemaschinen, -Kompressoren, Reverse-Osmosis Anlagen und ähnlichen genutzt werden.According to the invention, however, the purely translatory movement of the expanding and contracting liquid column is also used to drive subsystems such as typically: air compressors, heat pump refrigeration machines, compressors, reverse osmosis systems and the like.
In Fig. 8 ist eine solche erfindungsgemäße THK Maschine mit linerarer Kraftauskoppelung und Linear- konformator dargestellt. Da die Subsysteme in diesem Falle einen festen Arbeitskolben (statt dem bisher beschriebenen „flüssigen" Arbeitskolben) nötig machen, ist die vorteilhafte Ausgestaltung dieser Variante des erfindungsgemäßen Gegenstandes durch die Integration des Arbeitskolbens (26) in den Druckzy- linder (13) und dem sich darin auf- und abbewegendem Verdrängerkolben (11), gegeben. Das Luftpolster (27) unterhalb des Arbeitskolbens macht bei dieser Bauart das Ausdehnungsgefäß (Fig. 3, 26) unnö- tig. Der sich auch in diesem Falle periodisch während der Expansionsphase unter Kraftentfaltung nach unten bewegende Arbeitskolben wird so lange vom schaltbaren Absperrelement (29), das in diesem Falle vorteilhaft als um die Kolbenstange greifende Backenbremse ausgebildet ist, festgehalten, bis der gewünschte Höchstdruck (im PV-Indikationdiagramm Punkt b) erreicht ist. Die Kraft wird dann über den geometrisch als Parallelogramm ausgebildeten KraftkoiüOrmator (30) ausgekoppelt. Das Parallelogramm ist in seinen vier Ecken mit Drehgelenken versehen, die dazu führen, dass sich seine Form durch die aufgeprägte Bewegung ständig verändert (durch 30, 31 angedeutet). Koppelt man nun in einem Eckpunkt dessen Verlaufsachse senkrecht zur durch den Arbeitskolben vorgegebenen Achse steht, die Kolbenstange des erwünschten, mit linearer Kraft zu betreibenden Subsystemes ein, so wird die Kraft- Wirkung des Arbeitskolbens des THK, die wegen der isothermen Entspannung von b — > c assymptotisch verläuft, konformiert, d.h., über den ganzen Arbeitshub vergleichmäßigt. Da der THK nur während des Expansion mechanische Arbeit an die Außenwelt abgibt, ist der Arbeitskolben des Subsystemes über die Kolbenstange (33) nur während der Expansion kraftschlüssig verbunden, d.h., er wird vom Konformator nur „geschoben" und sitzt auf der Trennstelle (33a) lose auf ihm auf (Druck-lose Koppelung).FIG. 8 shows such a THK machine according to the invention with linear force decoupling and a linear conformer. Since the subsystems in this case require a fixed working piston (instead of the "liquid" working piston described so far), the advantageous embodiment of this variant of the object according to the invention is due to the integration of the working piston (26) in the pressure cylinder (13) and the the air cushion (27) underneath the working piston makes the expansion vessel (Fig. 3, 26) unnecessary. tig. The working piston, which in this case also periodically moves downward during the expansion phase under the application of force, is held by the switchable shut-off element (29), which in this case is advantageously designed as a shoe brake which engages around the piston rod, until the desired maximum pressure (in the PV Indication diagram point b) is reached. The force is then decoupled via the force KoiüOrmator (30), which is designed geometrically as a parallelogram. The parallelogram is provided with swivel joints in its four corners, which cause its shape to change constantly due to the imprinted movement (indicated by 30, 31). If you now couple the piston rod of the desired subsystem to be operated with linear force at a corner point whose axis is perpendicular to the axis defined by the working piston, the force-effect of the working piston of the THK, which is due to the isothermal relaxation of b -> c is asymptotic, conformal, that is, even over the entire working stroke. Since the THK only releases mechanical work to the outside world during expansion, the working piston of the subsystem is only positively connected via the piston rod (33) during expansion, ie it is only "pushed" by the conformer and sits on the separation point (33a) loose on it (pressure-less coupling).
Erfindungsgemäß kann dieser Bautyp des THK auch mit den in Fig. 5 und Fig. 6 dargestellten und im Text geschilderten Zyklusvarianten betrieben werden, sowie mit den in Fig. 7 dargestellten „By-pass" Anordnungen optimiert werden.According to the invention, this type of THK can also be operated with the cycle variants shown in FIGS. 5 and 6 and described in the text, and can be optimized with the “by-pass” arrangements shown in FIG. 7.
Da der THK eine reversible thermodynamische Maschine darstellt, besteht eine besonders vorteilhafte, erfindungsgemäße Variante in seiner Ausgestaltung als Kältemaschine- Wärmepumpe.Since the THK represents a reversible thermodynamic machine, there is a particularly advantageous variant according to the invention in its configuration as a refrigerator heat pump.
In den Figuren 9a, 9b, 9c ist eine solche THK-Maschine jeweils mit den korrespondierenden Arbeitsschritten während der drei Arbeitsphasen der antreibenden THK-Maschine und der angetriebenen THK- Kältemaschine-Wäπnepumpe, dargestellt.Such a THK machine is shown in FIGS. 9a, 9b, 9c, each with the corresponding work steps during the three work phases of the driving THK machine and the driven THK refrigerating machine heat pump.
Dabei hat die antreibende THK-Maschine grundsätzlich denselben Aufbau wie er in Fig. 8 dargestellt und im vorhergehenden Text beschrieben wird. Durch den Konformatormechanismus (30) wird durch die ebenfalls beschriebene Druck-lose Koppelung (33a) periodisch und zur Antriebsmaschine phasenverschoben der Arbeitskolben (26a) der angetriebenen Kältemaschine, -Wärmepumpe in den Zylinder (13a) hineingeschoben. Die Kältemaschine besitzt erfindungsgemäß grundsätzlich dieselben Elemente wie die Arbeitsmasclüne, die daher mit derselben Nr. und dem Index a gekennzeichnet sind (14a=Erhitzer, 15a=Regeneratior, 16a=Kühler, lla= Verdränger, 12a=Verdrängerkolbenlinearantrieb, 29a=schaltbares Absperrelement). In Fig. 9a sind im rechten oberen PV-Diagramm die phasenverschobenen Arbeitszyklen der TΗK-Arbeitsmaschine ( Linie) und der IHK-Kältemaschine (- - - - Linie) dargestellt Links daneben von Fig 9a bis Fig 9c sind nur die jeweils korrespondierenden Arbeitstakte der Arbeits- und der Kältemaschine für die drei wesentlichen Arbeitstakte dargestellt Die sich darunter befindlichen Zeichnungen geben jeweils Auskunft über Lage, Bewegungsrichtung oder Stillstand von Arbeitskolben und Verdrangerkolben beider Maschinen (26, 26a, 11,11a) und des Zustandes der schaltbaren Absperrelemente (29,29a) Bei letzteren bedeutet ≡ 0 = geschlossen, ≡ 1 = geöffnetThe driving THK machine basically has the same structure as that shown in Fig. 8 and described in the previous text. The conformer mechanism (30) pushes the working piston (26a) of the driven refrigeration machine and heat pump into the cylinder (13a) periodically and out of phase with the drive machine due to the pressure-free coupling (33a), which is also described. According to the invention, the refrigeration machine basically has the same elements as the working mask, which are therefore identified by the same number and the index a (14a = heater, 15a = regenerator, 16a = cooler, Ila = displacer, 12a = displacement piston linear drive, 29a = switchable shut-off element). In Fig. 9a, the phase-shifted work cycles of the TΗK work machine (line) and the IHK refrigeration machine (- - - - Line) shown to the left of Fig. 9a to Fig. 9c, only the corresponding work cycles of the working machine and the refrigeration machine for the three main work cycles are shown. The drawings below give information about the position, direction of movement or standstill of the working piston and displacer piston of both machines ( 26, 26a, 11, 11a) and the state of the switchable shut-off elements (29, 29a). With the latter, ≡ 0 = closed, ≡ 1 = open
Ferner kann an der Stellung des Konformators (30) und der Arbeitskolbenstangen Druck-lose Kopplung (33a) ersehen werden, ob die Arbeitsmaschine die Kältemaschine antreibt oder nicht Fluid und Kolbenbewegungsrichtungen sind durch Pfeile gekennzeichnetFurthermore, the position of the conformer (30) and the working piston rods pressure-free coupling (33a) can be seen whether the working machine drives the refrigerator or not. Fluid and piston movement directions are indicated by arrows
Wahrend der drei Arbeitsphasen geschieht folgendesThe following happens during the three work phases
Fig 9a. Arbeitsmaschine Das Fluid wird isochor von a nach b erhitzt Der Verdranger (11) bewegt sich auf den fixierten Arbeitskolben (26) zuFig. 9a. Working machine The fluid is heated isochorically from a to b. The displacer (11) moves towards the fixed working piston (26)
Kältemaschine Das Fluid wird isobar durch Verschieben des Verdrangers von a' nach c' gekühlt Der Arbeitskolben (26a) ist fixiert Die Druck-lose Kopplung (33 a) ist außer EingriffRefrigerating machine The fluid is cooled isobarically by moving the displacer from a 'to c'. The working piston (26a) is fixed. The pressure-free coupling (33 a) is disengaged
Fig 9b Arbeitsmaschine Das Fluid expandiert isotherm von b nach c Arbeitskolben (26) und Verdran- gerkolben (11) bewegen sich gemeinsam nach unten Die Druck-lose Kopplung (30) ist im Eingriff Das Absperrelement (29) ist geöffnetFig. 9b Working machine The fluid expands isothermally from b to c Working piston (26) and displacement piston (11) move down together. The pressure-free coupling (30) is engaged. The shut-off element (29) is open
Kältemaschine Der Arbeitskolben (26a) komprimiert das Fluid Der Verdrangerkolben ist im äußeren Totpunkt fixiert Das Absperrelement (29a) ist geöffnetRefrigerating machine The working piston (26a) compresses the fluid. The displacer piston is fixed in the outer dead center. The shut-off element (29a) is open
Fig 9c Arbeitsmaschme Das Fluid kontrahiert durch regenerative Abkühlung von c nach a Arbeits- und Verdrangerkolben (26, 11) bewegen sich parallel nach oben Das Absperrelement (29) ist geöffnet Die Druck-lose Kopplung (30) ist außer EingriffFig 9c Working machinery The fluid contracts through regenerative cooling from c to a. Working and displacement pistons (26, 11) move upwards in parallel. The shut-off element (29) is open. The pressure-free coupling (30) is disengaged
Kältemaschine Der Arbeitskolben (26a) ist durch das Absperrelement (29a) im unteren Totpunkt fixiert Der Verdrangerkolben schiebt das Fluid von b' nach a' (isochore Kühlung)Refrigerating machine The working piston (26a) is fixed at the bottom dead center by the shut-off element (29a). The displacer piston pushes the fluid from b 'to a' (isochoric cooling)
Die Kältemaschine-Wärmepumpe nimmt also über (16a) Umgebungswarme auf (Kuhler), komprimiert diese isotherm und gibt über (14a. Erlutzer) die Warme wieder ab Der dabei durclifahrene Dreitaktzyk- lus ist dem beschriebenen, erfindungsgemaßen Zyklus der Arbeitsmaschine prinzipiell analog, wird jedoch „umgekehrt" durchfahren und arbeitet auf tieferem Temperaturniveau Neben dem reversiblen, effizienten Zyklus ist es dabei besonders vorteilhaft, dass sämtliche Wärmetauschvorgänge von Flüssigkeit zu Flüssigkeit erfolgen können. Dies ermöglicht, im Gegensatz zu üblichen Zweiphasengemischen bei klassischen Kältemaschinen wesentlich ökonomischere und effizientere Kühler/Erhitzewärmetauscher. Erfindungsgemäß kann, analog zur By-pass Schaltung der Fig. 7 (24c, 25 c) eine solche Anordnung auch bei der Kältemaschine zum Einsatz kommen und somit das gekühlte Fluid ohne Totraumeffekte direkt durch die entsprechenden Kühlkörper strömen.The refrigeration machine heat pump therefore absorbs (16a) ambient heat (Kuhler), compresses it isothermally, and releases the heat again via (14a. User) Drive through "reverse" and works at a lower temperature level In addition to the reversible, efficient cycle, it is particularly advantageous that all heat exchange processes can take place from liquid to liquid. In contrast to the usual two-phase mixtures in classic refrigeration machines, this enables much more economical and efficient coolers / heat exchangers. According to the invention, analogous to the by-pass circuit of FIG. 7 (24c, 25c), such an arrangement can also be used in the refrigeration machine and the cooled fluid can thus flow directly through the corresponding heat sink without dead space effects.
Da die Antriebs THK-Maschine und die angetriebene THK-Kältemaschine auf verschiedenen Temperaturniveaus arbeiten, müssen die Drücke einander angepaßt werden. Dies kann erfmdungsgemäß entweder durch entsprechende Volumenverhältnisse vom Arbeitsmaschinenzylinder (13) zum Kältemaschi- nenzylinder (13a) geschehen, oder durch eine entsprechende Druckreduzierung mittels eines Stufenarbeitskolbens zwischen Konformator (30) und Kältemaschine.Since the drive THK machine and the driven THK refrigeration machine work at different temperature levels, the pressures must be matched to one another. According to the invention, this can be done either by corresponding volume ratios of the working machine cylinder (13) to the refrigerating machine cylinder (13a), or by a corresponding pressure reduction by means of a stepped working piston between the conformer (30) and the refrigerating machine.
Eine weitere, erfindungsgemäße Ausgestaltung der THK-Kältemaschine-Wärmepumpe nutzt das Grundprinzip der bekannten, nach dem Stirling Prinzip arbeitenden Vuilleumier Kältemaschine- Wärmepumpe unter Anpassung an den speziellen Zyklus der THK-Maschine. In Fig. 10 ist diese Vari- ante schematisch dargestellt.Another embodiment of the THK refrigeration machine heat pump according to the invention uses the basic principle of the known Vuilleumier refrigeration machine heat pump, which operates according to the Stirling principle, with adaptation to the special cycle of the THK machine. This variant is shown schematically in FIG.
In einem gemeinsamen, durch die gut wärmeisolierte und druckfeste Wand (34) in zwei Arbeitsbereiche getrennten Zylinder (I = „heißer" Zylinder; II = „kalter" Zylinder) befinden sich jeweils ein linear angetriebener Verdrängerkolben mit angeschlossener Erhitzer-Regenerator-Kühler-Strecke. Dabei sind die dem „heißen" Zylinder zugeordneten Elemente mit dem Index a. die dem „kalten" Zylinder zugeordne- ten Elemente mit dem Index b gekennzeichnet. Durch das zeitlich steuerbare Ventil (35) werden zum gewünschten Zeitpunkt das Fluid aus Zylinder I und Zylinder II miteinander verbundenIn a common cylinder (I = "hot" cylinder; II = "cold" cylinder) separated by the well heat-insulated and pressure-resistant wall (34) in two working areas there is a linearly driven displacement piston with connected heater-regenerator-cooler section , The elements assigned to the "hot" cylinder are identified by index a. The elements assigned to the "cold" cylinder are identified by index b. The fluid from cylinder I and cylinder II are connected to one another at the desired time by the valve (35) which can be controlled in time
Zu Beginn der Operation sind beide Zylinderhälften mit demselben Fluid bei gleichem Druck (vorteilhaft: 1 bar) gefüllt. Die Verdrängerantriebe 12a. 12b bewegen die Verdrängerkolben 11a, 11b mit um 90° verschobener Phase.At the start of the operation, both cylinder halves are filled with the same fluid at the same pressure (advantageously: 1 bar). The displacement drives 12a. 12b move the displacement pistons 11a, 11b with the phase shifted by 90 °.
Im heißen Zylinder I wird das Fluid durch Erhitzung mittels 14a isochor auf hohen Druck gebracht. Nach Erreichen dieses Druckes wird das Ventil (35) geöffnet und das Drackfluid aus Zylinder I komprimiert unter Wärmeentwicklung das Fluid im Zylinder II. Nach erfolgtem Druckausgleich bewegt sich im „heißen" Zylinder der Verdrängerkolben (Ha) nach oben, während im „kalten" Zylinder der Verdrängerkolben sich nach unten bewegt.In the hot cylinder I, the fluid is brought to high pressure by heating by means of 14a. After this pressure has been reached, the valve (35) is opened and the drain fluid from cylinder I compresses the fluid in cylinder II with the development of heat. After the pressure has been equalized, the displacement piston (Ha) moves upwards in the "hot" cylinder, while in the "cold" cylinder the displacement piston moves down.
Dabei werden sowohl im Zylinder I als auch im Zylinder II die jeweiligen Wärmeinhalte regenerativ auf die Regeneratoren 15a und 15b übertragen und für den folgenden Zyklusabschnitt zwischengespeichert. Im dritten Arbeitstakt bewegen sich (11a) und (11b) synchron nach oben. Sobald beide ihren oberen Totpunkt erreicht haben, sclύießt das Ventil (35) und der Zyklus beginnt wie beschrieben von Neuem.The respective heat contents in both cylinder I and cylinder II are regenerative the regenerators 15a and 15b are transferred and buffered for the following cycle section. In the third working cycle, (11a) and (11b) move up synchronously. As soon as both have reached their top dead center, the valve (35) closes and the cycle begins again as described.
Grundsätzlich agiert bei dieser erfmdungsgemäßen Variante der Zylinder I als regenerativer Druckpul- sator, während Zylinder II als Kältemaschine- Wärmepumpe den in Zylinder I nacht rechts herum durch- fahrenen Zyklus des THK-Pulsators nach links herum durchläuft. Dabei wird einem gewünschten Raum durch (14b) bei niedriger Temperatur Wärme entzogen (Kältemaschine) und durch (16c) auf einem mittleren Temperaturnineau (Wärmepumpe) wieder abgegeben. Bei Betrieb als Wärmepumpe oder als Kombiaggregat (simultane Erzeugung von Kälte und Wärme) ist es sinnvoll, die Wärmeströme durch (16c) und (16a) in Serie hintereinander zu schalten.Basically, in this variant according to the invention, cylinder I acts as a regenerative pressure pulsator, while cylinder II as a refrigeration machine heat pump runs through the cycle of the THK pulsator which is driven through clockwise in cylinder I to the left. Heat is extracted from a desired room by (14b) at low temperature (refrigeration machine) and released again by (16c) at a medium temperature level (heat pump). When operating as a heat pump or as a combined unit (simultaneous generation of cold and heat), it makes sense to connect the heat flows in series using (16c) and (16a).
Grundsätzlich kann die hiermit beschriebene „Vuilleumier THK" -Kältemaschine-Wärmepumpe auch ohne das Ventil (35) betrieben werden. Erfindungsgemäß wird in diesem Falle das Ventil (35) durch eine permanente, kleine Durchgangsöffnung in der Wand (34) ersetzt. In diesem Falle werden die Verdränger (11a, 11b) nicht diskontinuierlich um 90° phasenverschoben bewegt, sondern kontinuierlich um 90° phasenverschoben. Diese Vereinfachung des erfindungsgemäßen Zyklus hat jedoch, wegen der geringeren nutzbaren Druckschwankung, eine geringere Leistungsdichte. Dies kann grundsätzlich durch eine erhöhte Arbeitsfrequenz kompensiert werden, die jedoch, wegen der überproportional ansteigenden hydraulischen Druckverluste mit einem schlechteren Wirkungsgrad behaftet ist.In principle, the "Vuilleumier THK" refrigerator heat pump described here can also be operated without the valve (35). According to the invention, the valve (35) is replaced in this case by a permanent, small passage opening in the wall (34). In this case the displacers (11a, 11b) are not moved discontinuously by 90 ° out of phase, but continuously out of phase by 90 °. However, this simplification of the cycle according to the invention has a lower power density because of the less usable pressure fluctuation. This can in principle be compensated for by an increased operating frequency However, due to the disproportionately increasing hydraulic pressure losses, the efficiency is poor.
Bei der Wahl der Arbeitsfluide bietet sich eine breite Palette von Möglichkeiten an. Die wichtigsten Auswahlkriterien sind: Temperatur und Zyklenstabilität, starke thermische Volumenvergrößerang, geringe Kompressibilität, hohe Wärmekapazität, cp deutlich größer als cv, hohe Siedepunkte, niedrige Gefrierpunkte, Umweltkompatibilität und Kosten.There is a wide range of options for choosing the working fluids. The most important selection criteria are: temperature and cycle stability, strong thermal volume increase, low compressibility, high heat capacity, c p significantly larger than c v , high boiling points, low freezing points, environmental compatibility and costs.
Das, wie eingangs geschildert, von Malone benutzte Wasser weist zwar viele Vorteile auf, jedoch auch den grundsätzlichen Nachteil, dass es, um über den gesamten Arbeitszyklus flüssig zu bleiben mit >100 bar Vordruck belastet werden muss. Dies ist zwar mit den geschilderten THK Maschinen grundsätzlich realisierbar, macht allerdings Ausdehnungsbehälter und Windkessel nötig, die mit diesem Vordruck gefüllt sind.The water used by Malone, as described at the outset, has many advantages, but also the fundamental disadvantage that, in order to remain fluid over the entire working cycle, it must be subjected to a pre-pressure of> 100 bar. Although this can basically be achieved with the described THK machines, it requires expansion tanks and air boilers that are filled with this form.
Bevorzugt werden daher beim heutigen Stand der Technik insbesondere synthetische Öle, bei denen wie geschildert, gegen Atmosphärendruck gearbeitet werden kann, und die in Viskosität, Temperaturfestig- keit, Kompressibilität und anderen wichtigen Parametern der Thermodynamik des THK maßgeschneidert angepasst werden können. Da die THK Maschinen auch schon im mittleren Temperaturbereich von ca. 100°C bis ca. 400°C mit guten Wirkungsgraden arbeiten, und die Wärmeeinbringung (und Kühlung) des Fluids technisch besonders einfach zu realisieren ist, sind folgende Energiequellen zum Betrieb der THK von besonderem Interesse: Sonnenenergie inklusive des Nachtbetriebes durch thermische Speicher, alle biogenen Brenn- Stoffe, Abwärmen im angesprochenen Temperaturbereich. Besonders geeignet sind THK Maschinen und kombinierte THK-Kältemaschinen- Wärmepumpen zur Kraft- Wärme Koppelung in Gebäuden, zur dezentralen Energieversorgung mit Sonne und/oder Biomasse und zur Rückverstromung von (Industrie)- Abwärme.In the current state of the art, preference is therefore given in particular to synthetic oils in which, as described, it is possible to work against atmospheric pressure, and which can be tailored in terms of viscosity, temperature stability, compressibility and other important parameters of the thermodynamics of the THK. Since the THK machines work well in the medium temperature range from approx. 100 ° C to approx. 400 ° C, and the heat input (and cooling) of the fluid is technically particularly easy to implement, the following energy sources for operating the THK are Of particular interest: solar energy including night operation through thermal storage, all biogenic fuels, waste heat in the temperature range mentioned. THK machines and combined THK refrigeration machine heat pumps are particularly suitable for cogeneration in buildings, for decentralized energy supply with sun and / or biomass and for the re-generation of (industrial) waste heat.
Der wegen des neuartigen Zyklusses einfache und kompakte Aufbau macht ökonomische Anlagen mög- lieh. Aufgrund der hohen Energiedichte der Fluide können bei vertretbaren Anlagegewichten (stationäre Anwendungen) Arbeitsfrequenzen von deutlich unter 1 Hz gefahren werden. Dies minimiert nicht nur die Antriebsleistung der Verdrängerkolben, sondern erhöht zudem die Lebensdauer der Systeme. The simple and compact design due to the new cycle makes economic investments possible. Due to the high energy density of the fluids, working frequencies of well below 1 Hz can be achieved with reasonable system weights (stationary applications). This not only minimizes the drive power of the displacement pistons, but also increases the service life of the systems.

Claims

Patentansprüche: claims:
1. Thermo-Hydrodynamischer Kraftverstärker („THK'') dadurch gekennzeichnet, dass eine Flüssigkeit im Inneren eines starren Zylinders mittels eines Hilfskolbens periodisch durch eine Erhit- zer-Generator-Kühler oder Erhitzer-Rekuperator-Kühler Anordnung von heiß nach kalt und umgekehrt verschoben wird und dass die dadurch von der sich thermisch ebenfalls periodisch zusammenziehenden und ausdehnenden Flüssigkeitssäule ausgeübte Kraftwirkung größer als die Hilfskolbenantriebskraft ist.1. Thermo-hydrodynamic booster ("THK") characterized in that a liquid inside a rigid cylinder by means of an auxiliary piston is periodically shifted from hot to cold and vice versa by a heater-generator-cooler or heater-recuperator-cooler arrangement and that the force exerted thereby by the liquid column, which also periodically contracts and expands, is greater than the auxiliary piston driving force.
2. THK nach Ansprach 1, dadurch gekennzeichnet, dass die bei der thermischen Ausdelmung der Flüssigkeit freiwerdende Energie über geeignete technische Einrichtungen in nützliche mechanische Arbeit umgewandelt wird.2. THK according spoke 1, characterized in that the energy liberated during the thermal insulation of the liquid is converted into useful mechanical work via suitable technical devices.
3. THK nach Ansprüchen 1 und 2, dadurch gekennzeichnet, dass die sich thermisch ausdehnende Flüssigkeit periodisch durch einen Hydraulikmotor strömt und an dessen Welle Rotationsenergie erzeugt.3. THK according to claims 1 and 2, characterized in that the thermally expanding liquid periodically flows through a hydraulic motor and generates rotational energy on its shaft.
4. THK nach Ansprüchen 1 und 3, dadurch gekennzeichnet, dass dem Hydraulikmotor ein mit Atmosphärendrack oder leichtem Überdruck beaufschlagtes Ausdehnungsgefäß nachgeschaltet ist.4. THK according to claims 1 and 3, characterized in that the hydraulic motor is followed by an expansion tank acted upon with atmospheric pressure or a slight excess pressure.
5, THK nach Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass der von der expandierenden Flüssigkeitssäule erzeugte Druck zeitlich und im Betrag durch ein schaltbares Absperrelement gere- gelt werden kann.5, THK according to claims 1 to 4, characterized in that the pressure generated by the expanding liquid column can be controlled in time and in amount by a switchable shut-off element.
6. THK nach Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass der gewünschte sich einstellende Flüssigkeitsdruck entweder durch das Verhältnis des Volumenstromes der expandierenden Flüssigkeit und dem Schluckvolumen des Hydraulikmotors definiert ist, oder durch eine Kombination dieses Effektes mit dem regelbaren Absperrelement aus Ansprach 5.6. THK according to claims 1 to 5, characterized in that the desired liquid pressure is either defined by the ratio of the volume flow of the expanding liquid and the swallowing volume of the hydraulic motor, or by a combination of this effect with the controllable shut-off element from spoke 5.
7. THK nach Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass die Arbeitsabgabe des Fluids während der Expansion geschieht, dieses bis auf den Umgebungsdrack oder einen nur geringfügig darüberliegenden Druck entspannt wird, und die Rückführung des Fluids in den Anfangsbestand durch Zusammenziehen über einen reversiblen Kühlvorgang erfolgt. 7. THK according to claims 1 to 6, characterized in that the work delivery of the fluid takes place during the expansion, this is relaxed to the ambient pressure or only a slightly higher pressure, and the return of the fluid to the initial stock by contracting via a reversible cooling process he follows.
8. THK nach Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass die der Expansion- und Kontraktion unterliegende Flüssigkeit zur gleichen Zeit die Hydraulikflüssigkeit des Motors ist.8. THK according to claims 1 to 7, characterized in that the fluid subject to expansion and contraction is at the same time the hydraulic fluid of the engine.
9. THK nach Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass als Arbeits- und Hydraulikflüssigkeit verschiedene Medien eingesetzt werden, die durch ein elastisches Element voneinander ge- trennt sind.9. THK according to claims 1 to 6, characterized in that different media are used as working and hydraulic fluid, which are separated from each other by an elastic element.
10. THK nach Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass zur Minimierung der beim Verschieben des Arbeitsflüssigkeit entstehenden hydrodynamischen Reibung die Durchtrittsquerschnitte im Erhitzer, Regenerator-Rekuperator, Kühler dem Temperatur- Viskositätsverhalten der Arbeitsflüssigkeit angepasst wird.10. THK according to claims 1 to 9, characterized in that to minimize the resulting hydrodynamic friction when moving the working fluid, the passage cross-sections in the heater, regenerator-recuperator, cooler is adjusted to the temperature-viscosity behavior of the working fluid.
11. THK nach Ansprüchen 1 bis 10, dadurch gekennzeichnet, dass die oszillierende lineare Kraftentfaltung der expandierenden Flüssigkeitssäule direkt, ohne die Umwandlung in rotatorische Energie unter Zwischenschaltung geeigneter Druckkonformatoren zur Kompression von Luft, zur Druckerzeugung in reverse osmosis Anlagen, zum Betrieb von Kältekompressoren und ähnlichen, mit linearen Bewegungen arbeitenden Energiewandlern, gekoppelt wird.11. THK according to claims 1 to 10, characterized in that the oscillating linear force development of the expanding liquid column directly, without the conversion into rotational energy with the interposition of suitable pressure converters for compressing air, for generating pressure in reverse osmosis systems, for operating refrigeration compressors and the like , energy converters working with linear movements.
12. THK nach Ansprüchen 1 bis 11, dadurch gekennzeichnet, dass eine mit einem Druckkonforma- tor und einer linearen Druck-lose Koppelung ausgestattete Maschine mittels Fremdenergie betrieben wird und als Kältemaschine- Wärmepumpe arbeitet.12. THK according to claims 1 to 11, characterized in that a machine equipped with a pressure conformer and a linear pressure-less coupling is operated by means of external energy and works as a refrigerator heat pump.
13. THK nach Ansprach 12, dadurch gekennzeichnet, dass die antreibende Energie aus einer THK- Antriebsmaschine besteht.13. THK according spoke 12, characterized in that the driving energy consists of a THK drive machine.
14. THK nach Ansprüchen 1 bis 10, dadurch gekennzeichnet, dass die Kältemaschine- Wärmepumpe durch eine 1 -Zylinder- Anordnung realisiert wird, bei der eine im heißen Teil des Zylinders arbeitende THK-Maschine als Drackpulsator dient, während eine im kalten Teil des Zylinders arbeitende, den Zyklus umgekehrt durchfahrende, phasenverschoben arbeitende zweite THK-Maschine als Kältemaschine- Wärmepumpe arbeitet.14. THK according to claims 1 to 10, characterized in that the refrigerator heat pump is realized by a 1-cylinder arrangement, in which a THK machine working in the hot part of the cylinder serves as a drain pulsator, while one in the cold part of the cylinder working, the cycle reversing, phase-shifting working second THK machine works as a refrigerator heat pump.
15. THK nach Ansprächen 1 bis 10, dadurch gekennzeichnet, dass mehrere, zeitlich phasenverschobene angetriebene Zylinder zu einer Glättung der abgegebenen Leistung führen.15. THK according to claims 1 to 10, characterized in that several, phase-shifted driven cylinders lead to a smoothing of the power output.
16. THK nach Anspruch 15, dadurch gekennzeichnet, dass bei Mehrzylinderanordnungen die Regeneratoren durch Gegenstromwärmetauscher zwischen den Zylinder ersetzt werden können. 16. THK according to claim 15, characterized in that in multi-cylinder arrangements, the regenerators can be replaced by countercurrent heat exchangers between the cylinders.
17. THK dadurch gekennzeichnet, dass eine in einem Arbeitszylinder eingeschlossene Flüssigkeit mittels eines Verdrängerkolbens periodisch durch einen Wärmeregenerator zwischen einer heißen und kalten Quelle verschoben wird und der sich bei Erwärmung unter Druck aufbauende Expansionsvolumenstrom durch einen hydraulischen, nachgeschalteten Motor in mechanische Rota- tionsenergie umgesetzt wird, wobei die Flüssigkeit nach Arbeitsabgabe am Motor im Regenerator regenerativ rückgekühlt wird und sich dadurch im Volumen so verkleinert, dass sie wieder in den Arbeitszylinder passt.17. THK characterized in that a liquid enclosed in a working cylinder is periodically shifted between a hot and cold source by means of a displacement piston by a heat generator and the expansion volume flow which builds up when heated under pressure is converted into mechanical rotational energy by a hydraulic, downstream motor , whereby the liquid is regeneratively recooled in the regenerator after the engine has been submitted and the volume is reduced so that it fits back into the cylinder.
18. THK dadurch gekennzeichnet, dass eine in einem Arbeitszylinder eingeschlossene Flüssigkeit von einem sich zwischen einer heißen und kalten Quelle hin und her bewegenden Regenerator durchdrangen wird und der sich bei Erwärmung unter Druck aufbauende Expansionsvolumenstrom durch einen hydraulischen, nachgeschalteten Motor in mechanische Rotationsenergie umgesetzt wird, wobei die Flüssigkeit nach Arbeitsabgabe am Motor im Regenerator regenerativ rückgekühlt wird und sich dadurch im Volumen so verkleinert, dass sie wieder in den Arbeitszylinder passt.18. THK, characterized in that a liquid enclosed in a working cylinder is penetrated by a regenerator moving back and forth between a hot and cold source and the expansion volume flow that builds up when heated under pressure is converted into mechanical rotational energy by a hydraulic, downstream motor, the liquid is regeneratively cooled in the regenerator after the work has been carried out on the engine and is thus reduced in volume so that it fits back into the working cylinder.
19. THK dadurch gekennzeichnet, dass eine Flüssigkeit regenerativ periodisch erhitzt und dann wieder abgekühlt wird, sodass der sich bei der Erhitzung einstellende expandierende Druck- Volumenstrom in einer Arbeitsmasclüne mechanische Arbeit leistet und die bei der anschließenden Kühlung erfolgende Volumenkontraktion die Flüssigkeit an den Anfangspunkt eines thermo- dynamischen Kreisprozesses zurückführt. 19. THK characterized in that a liquid is periodically heated and then cooled again, so that the expanding pressure-volume flow that occurs during heating does mechanical work in a working machine and the volume contraction that occurs during the subsequent cooling takes the liquid to the starting point of a thermo - leads back to the dynamic cycle.
EP03752650A 2002-09-02 2003-08-20 Thermohydrodynamic power amplifier Expired - Lifetime EP1454051B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10240924 2002-09-02
DE10240924A DE10240924B4 (en) 2002-09-02 2002-09-02 Thermo-hydrodynamic power amplifier
PCT/DE2003/002810 WO2004022962A1 (en) 2002-09-02 2003-08-20 Thermohydrodynamic power amplifier

Publications (2)

Publication Number Publication Date
EP1454051A1 true EP1454051A1 (en) 2004-09-08
EP1454051B1 EP1454051B1 (en) 2004-12-29

Family

ID=31724352

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03752650A Expired - Lifetime EP1454051B1 (en) 2002-09-02 2003-08-20 Thermohydrodynamic power amplifier

Country Status (16)

Country Link
US (1) US20050268607A1 (en)
EP (1) EP1454051B1 (en)
JP (1) JP2005537433A (en)
KR (1) KR20060111356A (en)
CN (1) CN100412346C (en)
AT (1) ATE286204T1 (en)
AU (1) AU2003266179A1 (en)
BR (1) BR0314462A (en)
CA (1) CA2497603A1 (en)
DE (2) DE10240924B4 (en)
ES (1) ES2236677T3 (en)
MX (1) MXPA05002392A (en)
NO (1) NO20051185L (en)
TR (1) TR200500719T2 (en)
WO (1) WO2004022962A1 (en)
ZA (1) ZA200501785B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT5488B (en) * 2007-06-28 2008-04-25 Antanas BANEVIČIUS The device and method for converting of thermal energy
DE102008031524A1 (en) * 2008-07-03 2010-01-14 Schiessl, Siegfried Thermal engine i.e. stirling engine, for use in e.g. biogas plant, has heat discharging unit movable back and forth between cold area and hot area of cylinder, and operating unit comprising fluid and interacting with displacement piston
CN102269021B (en) * 2010-06-03 2013-11-13 韩树君 Air heat energy cycle power generating unit
WO2011159145A2 (en) * 2010-06-18 2011-12-22 Cyclo Dynamics B.V. A method of converting thermal energy into mechanical energy, and an apparatus
JP6071678B2 (en) * 2013-03-22 2017-02-01 株式会社東芝 Sealed secondary battery and manufacturing method of sealed secondary battery
US9841146B2 (en) * 2014-01-10 2017-12-12 Electro-Motive Diesel, Inc. Gas production system for producing high pressure gas
CN103925113B (en) * 2014-04-30 2015-04-08 郭远军 In-line arrangement type high-low pressure power machine and work-doing method of in-line arrangement type high-low pressure power machine
ES2579056B2 (en) * 2015-02-04 2017-03-09 Universidade Da Coruña Energy contribution system to the reliquation plant for natural gas transport ships using residual thermal energy from the propulsion system.
BR102017003822A8 (en) * 2017-02-23 2022-12-20 Associacao Paranaense Cultura Apc DIFFERENTIAL CYCLE HEAT ENGINE COMPOSED OF TWO ISOCORIC PROCESSES, FOUR ISOTHERMAL PROCESSES AND TWO ADIABTIC PROCESSES AND CONTROL PROCESS FOR THE THERMAL ENGINE THERMODYNAMIC CYCLE
BR102017008548A8 (en) * 2017-04-25 2022-12-13 Associacao Paranaense Cultura Apc DIFFERENTIAL CYCLE HEAT ENGINE COMPOSED OF FOUR ISOTHERMAL PROCESSES, FOUR POLYTROPIC PROCESSES WITH REGENERATOR AND CONTROL PROCESS FOR THE THERMAL ENGINE THERMODYNAMIC CYCLE
SI25712A (en) * 2018-09-04 2020-03-31 Gorenje Gospodinjski Aparati, D.O.O. Heat transfer method in the united structure of recuperation unit and the recuperation unit construction
CN109300646B (en) * 2018-11-27 2021-05-18 上海联影医疗科技股份有限公司 Coil structure for superconducting magnet and superconducting magnet
CN110029944B (en) * 2019-04-23 2020-11-03 西南石油大学 PDC drill bit for realizing impact rock breaking by pulse oscillation
WO2022107102A1 (en) * 2020-11-23 2022-05-27 Dharmendra Kumar Power engine
CZ309790B6 (en) * 2022-08-24 2023-10-11 Pavel Činčura A reversible heat engine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1487664A (en) * 1923-02-27 1924-03-18 Malone John Fox Jennens Heat engine
US1717161A (en) * 1923-02-28 1929-06-11 Malone John Fox Jennens Heat engine operated by the expansion of liquids
GB769368A (en) * 1955-03-30 1957-03-06 James Windrum Improvements in hot gas reciprocating engines
US2963853A (en) * 1958-08-11 1960-12-13 Cleveland Pneumatic Ind Inc Liquid cycle heat engine
US4353218A (en) * 1980-05-28 1982-10-12 The United States Of America As Represented By The United States Department Of Energy Heat pump/refrigerator using liquid working fluid
EP0043879A3 (en) * 1980-07-16 1982-08-11 Thermal Systems Limited. Reciprocating external-combustion engine and method of operating the same
US4498295A (en) * 1982-08-09 1985-02-12 Knoeoes Stellan Thermal energy transfer system and method
DE3305253A1 (en) * 1983-02-16 1984-08-16 Karlheinz Dipl.-Phys. Dr. 3300 Braunschweig Raetz Malone thermal engine
US4543793A (en) * 1983-08-31 1985-10-01 Helix Technology Corporation Electronic control of cryogenic refrigerators
JPS6179842A (en) * 1984-09-28 1986-04-23 Aisin Seiki Co Ltd Liquid type stirling engine
US4637211A (en) * 1985-08-01 1987-01-20 Dowell White Apparatus and method for converting thermal energy to mechanical energy
US5327745A (en) * 1993-09-28 1994-07-12 The United States Of America As Represented By The Secretary Of The Navy Malone-Brayton cycle engine/heat pump
US5737925A (en) * 1995-11-30 1998-04-14 Sanyo Electric Co., Ltd. Free piston Vuillermier machine
KR100233198B1 (en) * 1997-07-04 1999-12-01 윤종용 Pumping apparatus for stirring refrigerrator
US6282908B1 (en) * 1999-02-25 2001-09-04 Mark Weldon High efficiency Malone compressor
DE19959687C2 (en) * 1999-12-02 2002-01-24 Andreas Gimsa Heat engine with rotating cylinders

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004022962A1 *

Also Published As

Publication number Publication date
AU2003266179A1 (en) 2004-03-29
NO20051185L (en) 2005-06-01
BR0314462A (en) 2005-12-13
DE10240924A1 (en) 2004-03-18
DE50300228D1 (en) 2005-02-03
ES2236677T3 (en) 2005-07-16
CN100412346C (en) 2008-08-20
WO2004022962A1 (en) 2004-03-18
CA2497603A1 (en) 2004-03-18
TR200500719T2 (en) 2005-05-23
DE10240924B4 (en) 2005-07-14
JP2005537433A (en) 2005-12-08
ATE286204T1 (en) 2005-01-15
KR20060111356A (en) 2006-10-27
CN1708638A (en) 2005-12-14
EP1454051B1 (en) 2004-12-29
ZA200501785B (en) 2005-09-14
MXPA05002392A (en) 2005-10-05
US20050268607A1 (en) 2005-12-08

Similar Documents

Publication Publication Date Title
EP1454051B1 (en) Thermohydrodynamic power amplifier
DE60305982T2 (en) STIRLING-MOTORIZED HEAT PUMP WITH FLUID CONNECTION
DE1933159B2 (en) Piston machine operating according to the starting process
EP2334923A1 (en) Method and device for operating a stirling cycle process
DE10052993A1 (en) Process for converting thermal energy into mechanical energy in a thermal engine comprises passing a working medium through an expansion phase to expand the medium, and then passing
DE102009057210B4 (en) Stirling evaporator heat power plant
JP2005537433A5 (en)
DE2342103A1 (en) Hot gas engine - has cycle involving isothermal, isochoric and isobaric phases and incorporates regenerative heat exchanger
DE3500124A1 (en) Decentral supply unit operated by external heat supply for the alternative and combined generation of electrical energy, heat and cold
DE2539878C2 (en) Thermodynamic machine with closed circuit
EP3320189B1 (en) Supercritical cyclic process comprising isothermal expansion and free-piston heat engine comprising hydraulic extracting of energy for said cyclic process
EP3280900A2 (en) Membrane stirling engine
EP0796392B1 (en) Device with a drive and machine capable of being driven by the drive
DE102006028561B3 (en) Hydro-Stirling motor has two-cylinders linked by pipe with hydraulic motor power take-off
EP0178348A1 (en) Gas compressor directly driven by a heat supply
EP1509690B1 (en) Method and device for converting thermal energy into kinetic energy
DE112016002485B4 (en) EXPANSION MACHINE AND METHOD FOR PRODUCING COOLING
DE102007017663A1 (en) Thermal energy conversion arrangement, has cylinders coupled with heat pump, where one cylinder or cylinder head is supported in heat medium heated by pump and another cylinder or cylinder foot is supported in cooling medium cooled by pump
DE10051115A1 (en) Pulse-tube cooler for cooling cryogenic spacecraft applications has given phase difference between compression cylinder and expansion cylinder
DE69816446T2 (en) THERMAL MACHINE
DE3732123A1 (en) Prime mover
AT500640B1 (en) Method of converting thermal into kinetic energy involves feeding working fluid between two working spaces
DE937353C (en) Heat pump
EP3486473A1 (en) Method for using small temperature differences for operating heat engines designed for the conversion of thermal energy into mechanical energy
DE9109202U1 (en) Thermohydraulic working or heat machine operated by external heat supply

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50300228

Country of ref document: DE

Date of ref document: 20050203

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050330

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20050401066

Country of ref document: GR

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: POWERFLUID GMBH

RIN2 Information on inventor provided after grant (corrected)

Inventor name: WEBER, ECKHART

Inventor name: KLEINWAECHTER, JUERGEN

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: POWERFLUID GMBH

Free format text: KLEINWAECHTER, JUERGEN#LINDENSTRASSE 15#79400 KANDERN (DE) $ COLSMAN-FREYBERGER, CLAUS#715 NORTH BROADWAY#HASTING-ON-HUDSON, NY 10706 (US) $ WEBER, ECKHART#AM LAUFER SCHLAGTURM 6#90403 NUERNBERG (DE) -TRANSFER TO- POWERFLUID GMBH#INDUSTRIESTRASSE 8#79541 LOERRACH (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050509

NLS Nl: assignments of ep-patents

Owner name: POWERFLUID GMBH

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: POWERFLUID GMBH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2236677

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050820

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050930

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: POWERFLUID GMBH

Free format text: POWERFLUID GMBH#INDUSTRIESTRASSE 8#79541 LOERRACH (DE) -TRANSFER TO- POWERFLUID GMBH#INDUSTRIESTRASSE 8#79541 LOERRACH (DE)

BERE Be: lapsed

Owner name: *WEBER ECKHART

Effective date: 20050831

Owner name: *KLEINWACHTER JURGEN

Effective date: 20050831

Owner name: *COLSMAN-FREYBERGER CLAUS

Effective date: 20050831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080829

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20081015

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080929

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20081015

Year of fee payment: 6

Ref country code: CZ

Payment date: 20081030

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20081013

Year of fee payment: 6

Ref country code: ES

Payment date: 20080929

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080930

Year of fee payment: 6

Ref country code: SE

Payment date: 20081014

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081014

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20081017

Year of fee payment: 6

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100301

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090820

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100302

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090821