EP1453714B1 - Method and system for the detection of objects along a track - Google Patents

Method and system for the detection of objects along a track Download PDF

Info

Publication number
EP1453714B1
EP1453714B1 EP02774656A EP02774656A EP1453714B1 EP 1453714 B1 EP1453714 B1 EP 1453714B1 EP 02774656 A EP02774656 A EP 02774656A EP 02774656 A EP02774656 A EP 02774656A EP 1453714 B1 EP1453714 B1 EP 1453714B1
Authority
EP
European Patent Office
Prior art keywords
detectors
track
response signals
signals
response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02774656A
Other languages
German (de)
French (fr)
Other versions
EP1453714A1 (en
Inventor
Hanspeter Zehnder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schweiz AG
Original Assignee
Siemens Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Schweiz AG filed Critical Siemens Schweiz AG
Priority to EP02774656A priority Critical patent/EP1453714B1/en
Publication of EP1453714A1 publication Critical patent/EP1453714A1/en
Application granted granted Critical
Publication of EP1453714B1 publication Critical patent/EP1453714B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or train
    • B61L1/02Electric devices associated with track, e.g. rail contacts
    • B61L1/08Electric devices associated with track, e.g. rail contacts magnetically actuated; electrostatically actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L29/00Safety means for rail/road crossing traffic

Definitions

  • the present invention relates to a method for the detection of objects along a track according to the preamble of patent claim 1.
  • Vehicle Presence System discloses a system in which passive magnetic detectors are arranged along a railway track in the track bed in order to determine the track occupancy in the vicinity of a railroad crossing. The detection takes place via a comparison of signals which are stored in advance in the absence of objects and signals which are acquired at a time determined by the detection and with the stored signals. Although this "Vehicle Presence System” is very practical, but associated with a high circuit complexity and is greatly limited in terms of the number of usable induction coils.
  • the present invention is therefore based on the object of specifying a method for the detection of objects along a track, which can be realized with a low circuit complexity, is independent of direct and indirect weather influences and allows monitoring of a route including the immediate environment with scalable resolution.
  • FIG. 1a shows a section of the route in the overview.
  • metal detectors D 1 , D 2 , .. in freely selectable spaces, .., d 34 , d 45 , .. are arranged (not fully shown in Fig. 1a and ) enumerated.
  • These spaces result from the operational requirements of a railway administration; typical sizes for these spaces are 5 m .. 200 m, for the distance a to the track axis 3 to 6 m.
  • detectors D 1 , D 2 , .. are connected to a transmitting / receiving unit 5, wherein a detector D n is geometrically the last detector.
  • the index n stands for the maximum number of detectors, with typical values for n being in the order of 10... 100.
  • FIG. 2 shows the structure of a detector D 1 operating according to the method NMR (Nuclear Magnetic Resonance), which has a permanent magnet 10, a gradient coil 11 and a transmitting / receiving coil 14 contains.
  • the permanent magnet 10 is horseshoe-shaped, in the air gap, a water sample 12 is arranged, which is surrounded by both the gradient coil 11 and the transmitting / receiving coil 14. It is to be provided structurally that the B field generated in the transmitting / receiving coil 14 is orthogonal to the B field of the permanent magnet 10.
  • the water sample 12 consists of a glass body filled with distilled water, a typical internal volume (also called measuring volume) of the glass body is of the order of magnitude of 0.5 cm 3 .
  • the configuration of the measurement volume must be such that, on the one hand, the highest possible signal intensity is achieved - this as an advantage of a relatively large measurement volume - and, on the other hand, a large homogeneity of the permanent magnetic field must be ensured via the corresponding measurement volume.
  • the H nuclei of the water molecules H 2 O are particularly suitable for the NMR method.
  • the so-called Larmor frequency of the H-core is 42MHz / Tesla.
  • the signal intensity of the response signal S R is significantly determined by the homogeneity of the magnetic field in the air gap. Relatively large metallic objects in the immediate vicinity of the permanent magnet affect the homogeneity of the magnetic field in the air gap, which leads to a line broadening and thus almost or entirely to an extinction of the NMR signal.
  • the structure and mode of action of such a detector D 1 is referred to by the skilled person as a so-called NMR detector.
  • the individual detectors D 1 , D 2 , etc. are individually characterized by their own number of turns N 1 , N 2 , .. the gradient coil 11.
  • the gradient coils 11 of the individual detectors D 1 , D 2 , etc. are connected in parallel with each other and connected to a gradient amplifier (not shown in FIG. 1 a).
  • the gradient amplifier can be part of the transmitting / receiving unit 5.
  • the individual transmitting / receiving coils 14 are preferably connected in parallel to the transmitting / receiving unit 5; It is also a serial connection possible.
  • FIG. 3 below shows a pulse packet S P (also referred to as transmit pulse) which is emitted by the transmitting / receiving unit 5 to the detectors D 1 , D 2 , etc.
  • a rectangular signal S A is applied to the gradient coils 11 by the gradient amplifier.
  • the duration t A of this square wave signal S A is, depending on the acquisition time or observation time called t A , at about 2 s.
  • t A the acquisition time or observation time
  • a detector-specific frequency band for the response signal S R is also produced on an emitted pulse packet S P.
  • the pulse width t P must be chosen so that all hydrogen atoms in the different detectors D 1 , D 2 , etc. can be excited simultaneously. This means that the bandwidth of the pulse S P must be significantly greater than the frequency deviation between the lowest and highest measurement frequency.
  • the response signal S R of a detector D to an emitted pulse packet S P is also shown in FIG. 3 in the time domain.
  • the typical observation time (acquisition time) is 1 s, the amplitude in the range of mV.
  • the response signal S R is mapped into the frequency domain by means of a Fourier transformation.
  • the result of this mapping of the response signals S R can be seen with a simplified curve S Rf of FIG. 1b.
  • various response signals P 1 , P 2 , etc. are shown. It is assumed that in the vicinity of the detector D3 is a metallic.
  • Object 6 is located so that the magnetic field in the water sample so affected that on a transmitted pulse packet in the frequency space no or according to the scale no representable response signal P3 arises.
  • the information can be derived that the route along the track 1 is occupied and therefore no adjustment of a signal for a passage of a train may be made.
  • the inventive method provides that after installation of the aforementioned system along a TRACK IS 1 on emitted pulse packets S P into the frequency domain transformed the detectors D 1, D 2 attributable response signals P 1, P 2 in either the transmitting / receiving unit 5 or stored in an associated evaluation unit.
  • These stored response signals P 1 , P 2 , P 3 , etc. can be assigned a flat rate for all the same or individual tolerance bands.
  • the previously mentioned rectangular signal for acquisition and the pulse packet S P are emitted in a fixed time frame or as required.
  • the incoming response signals S R are transformed into the frequency domain and compared with the stored response signal P 1 , P 2 , P 3 , and so on.
  • An inequality or an inequality outside of an aforementioned tolerance band leads to the generation of a signal indicating an occupancy of the relevant track 1 or track section.
  • a signal indicating an occupancy of the relevant track 1 or track section By emitting in a fixed time frame of, for example, 5 s, it can be provided, in particular, to store a selection of the resulting response signals, for example every 10th or every 50th signal progression S RF .
  • This storage allows in particular to detect a slow change and either to generate a warning signal regarding the functionality of the system and / or by a statistical method to correct the stored response signals. It should be noted that outliers are not included in this so-called auto-calibration.
  • the above-described embodiment of the method according to the invention was primarily aimed at the detection of objects 6 outside the railway.
  • the proposed method can also be applied to the railway operation itself and the tracking of a train along a track section.
  • inventive system and method is not limited to the embodiment described above, possible further evaluation methods, in particular by means of a two-dimensional Fourier transform to eliminate runtime shifts can. This represents the more general case of the embodiment described above, in which the transit time influence is negligible.
  • the method explained above is not limited to the railway technology, but can also be used, for example, in a matrix arrangement of detectors at a distance of, for example, 0.5 m for the detection of metallic objects such as mines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measuring Arrangements Characterized By The Use Of Fluids (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

To determine if a track section (1) is covered by a wagon or foreign object (6) detectors (D1-D5) are arranged as freely selectable intervals along the track. The detectors use an NMR principle with transmitted pulse packets detected by the detectors and response signals converted into the frequency domain using a Fourier transform. An object within range of a detector alters the magnetic field such that largely no response is generated. <??>After Fourier transformation of the response signals, the response signals are assigned to the detectors. Thus the absence of a response signal can be used to indicate the precise location of a possible obstacle on the track. <??>An Independent claim is also included for a corresponding system.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Detektion von Objekten längs eines Geleises nach dem Oberbegriff des Patentanspruchs 1.The present invention relates to a method for the detection of objects along a track according to the preamble of patent claim 1.

Der Nachweis, ob ein Streckenabschnitt oder ein Gleisabschnitt von einem Eisenbahnwagen belegt ist, kann zum Beispiel mit den folgenden Mitteln vorgenommen werden:

  • i) Streckenabschnitte werden mit sogenannten Achszählern überwacht. Sowohl beim Eintritt eines Zuges in einen Streckenabschnitt wie auch beim Verlassen des betreffenden Abschnittes werden die Achsen gezählt und bei Gleichheit erfolgt eine Freimeldung dieses Streckenabschnittes.
  • ii) Speziell kürzere Gleisabschnitte wie z.B. Weichen werden mit sogenannten Gleisstromkreisen gesichert, in dem eine Schiene gegenüber der anderen Schiene elektrisch isoliert ist. Durch das Befahren eines solchen Abschnittes wird durch die Räder einer Achse ein Stromkreis geschlossen und dadurch kann ein Belegtzustand abgeleitet werden.
Evidence of whether a section of track or a section of track is occupied by a railway carriage can be made, for example, by the following means:
  • i) Track sections are monitored with so-called axle counters. Both when entering a train in a section of the route as well as when leaving the relevant section, the axes are counted and in case of equality is a free message of this section.
  • ii) Specially shorter track sections such as points are secured with so-called track circuits in which one rail is electrically insulated from the other rail. By driving on such a section, a circuit is closed by the wheels of an axle and thereby a busy condition can be derived.

Die vorstehend genannten Techniken arbeiten zuverlässig, sie sind jedoch auf die Belegung eines Geleiseabschnittes durch Eisenbahnwagen und Lokomotiven beschränkt. Ein Auto, das z.B. auf einem Bahnübergang steckengeblieben ist, kann mit den vorstehend genannten Mitteln nicht festgestellt werden. Das Verfahren mit den Gleisstromkreisen ist im Winterdienst mit Salzeinsatz z.B. im Bereich von Bahnhöfen oder Bahnübergängen Störungen unterworfen, da das auf dem Trasse befindliche Salzwasser einen relativ geringen Widerstand hat und zwischen zwei Schienen eine flächige elektrische Leitung bildet. Dieser Effekt von Fehldetektionen tritt sowohl bei einem Gleichstromkreis wie auch bei Anwendung eines Signals von einigen kHz auf. Eine Wiederholung einer Messung innerhalb von einigen Sekunden liefert keine neue Zustandsinformation.The above techniques work reliably, but they are limited to occupying a track section by railway cars and locomotives. A car that has been stuck eg on a railroad crossing, can not be determined by the means mentioned above. The procedure with the track circuits is in winter service with salt use eg in the area of stations or level crossings subject to interference, since the saltwater located on the route has a relatively low resistance and forms a two-line electrical conduction. This effect of misdetections occurs both in a DC circuit and when using a signal of several kHz. Repeating a measurement within a few seconds does not provide new state information.

In der Schrift WO 98/58829 mit der Bezeichnung "Vehicle Presence System" ist ein System offenbart, bei dem längs einer Eisenbahnstrecke im Gleisbett passive magnetische Detektoren angeordnet sind, um die Gleisbelegung in der Umgebung eines Bahnüberganges festzustellen. Die Detektion erfolgt über einen Vergleich von Signalen, die vorgängig bei Abwesenheit von Objekten gespeichert werden und von Signalen, die zu einem durch die Detektion bestimmten Zeitpunkt erfasst und mit den gespeicherten Signalen. Diese "Vehicle Presence System" ist zwar sehr zweckmässig, jedoch mit einem hohen schaltungstechnischen Aufwand verbunden und ist bezüglich der Anzahl einsetzbarer Induktionsspulen stark limitiert.The document WO 98/58829 entitled "Vehicle Presence System" discloses a system in which passive magnetic detectors are arranged along a railway track in the track bed in order to determine the track occupancy in the vicinity of a railroad crossing. The detection takes place via a comparison of signals which are stored in advance in the absence of objects and signals which are acquired at a time determined by the detection and with the stored signals. Although this "Vehicle Presence System" is very practical, but associated with a high circuit complexity and is greatly limited in terms of the number of usable induction coils.

Dokument US 5,868,360 offenbart ebenfalls ein Verfahren und ein System zur Detektion von objekten längs einer Geleises.Document US 5,868,360 also discloses a method and system for detecting objects along a track.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde ein Verfahren zur Detektion von Objekten längs eines Geleises anzugeben, das mit einem geringen schaltungstechnischen Aufwand realisierbar ist, unabhängig von direkten und indirekten Witterungseinflüssen ist und eine Ueberwachung einer Strecke einschliesslich der unmittelbaren Umgebung mit skalierbarer Auflösung erlaubt.The present invention is therefore based on the object of specifying a method for the detection of objects along a track, which can be realized with a low circuit complexity, is independent of direct and indirect weather influences and allows monitoring of a route including the immediate environment with scalable resolution.

Diese Aufgabe wird durch die im Patentanspruch 1 angegebenen Massnahmen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in weiteren Ansprüchen angegeben.This object is achieved by the measures specified in claim 1. Advantageous embodiments of the invention are specified in further claims.

Durch die erfindungsgemässe Lösung wonach
«die Detektoren nach dem nach dem Verfahren Nuclear Magnetic Resonance (NMR) arbeiten und durch die Verfahrensschritte

  • A Antwortsignale auf ein an Detektoren ausgesendetes Pulspaket werden erfasst;
  • B die erfassten Antwortsignale werden in ein Signal im Frequenzraum transformiert»;
  • C die in den Frequenzraum transformierten Antwortsignale werden mit vorgängig gespeicherten Antwortsignalen verglichen, die bei gesicherter Abwesenheit eines Objektes gemäss den Verfahrensschritten A und B gespeichert wurden, wobei eine festgestellte Ungleichheit als Vorhandensein eines Objektes bewertet wird;
ist ein Verfahren geschaffen, dass unabhängig von den Witterungseinflüssen ist und auf robuste Weise eine Erkennung von Objekten längs und in unmittelbarer Umgebung eines Geleises erlaubt. Das erfindungsgemässe Verfahren ist insoweit ein statisches Verfahren, als zweifelhaften Resultaten eine Prüfung des Geleises auf das Vorhandensein von Objekten mehrmals wiederholt werden kann, ohne dass eine Besichtigung vor Ort vorgenommen werden muss.By the inventive solution after what
«The detectors work according to the method Nuclear Magnetic Resonance (NMR) and through the process steps
  • A response signals to a pulse packet sent to detectors are detected;
  • B the detected response signals are transformed into a signal in frequency space »;
  • C the response signals transformed into the frequency domain are compared with previously stored response signals stored in the assured absence of an object according to the method steps A and B, wherein a detected inequality is evaluated as the presence of an object;
a method is provided which is independent of the weather influences and allows a robust detection of objects along and in the immediate vicinity of a track. The inventive method is insofar a static method, as dubious results, a test of the track on the presence of objects can be repeated several times without a visit must be made on site.

So können sich die folgenden Vorteile zusätzlich ergeben:

  • i) Dadurch dass
    die Detektoren längs des Geleises in frei wählbarer Sequenz positionierbar sind;
    kann das Verfahren optimal auf die mutmasslichen Gefahrenstellen beschränkt werden (Patentanspruch 2).
  • ii) Dadurch dass
    die Detektoren neben dem Geleise positionierbar sind; kann ein System zur Durchführung des erfindungsgemässen Verfahrens installiert und gewartet werden, ohne dass der Eisenbahnbetrieb deswegen unterbrochen werden muss (Patentanspruch 3).
  • iii) Dadurch dass
    im Verfahrensschritt C die in den Frequenzraum transformierten Antwortsignale den Detektoren zuordenbar ist;
    kann ein durch einen Detektor festgestelltes Objekt genau lokalisiert werden und es kann ein Interventionsdetachement genau an die betreffende Stelle der Eisenbahnstrecke dirigiert werden (Patentanspruch 6).
  • iv) Dadurch dass
    dass im Verfahrensschritt C eine Auswahl von in den Frequenzraum transformierten Antwortsignalen auf die in einem festern Zeitraster ausgesandten Pulspakte gespeichert wird;
    lässt sich eine langsam eintretende Veränderung des Systems zur Durchführung des erfindungsgemässen Verfahrens besonders gut erkennen. Dadurch ist einerseits möglich, die ursprünglich gespeicherten Antwortsignale im Frequenzraum mittels eines statistischen Verfahrens zu korrigieren und andererseits kann exakt ein Logbuch über den zustand des genannten System geführt werden (Patentanspruch 8).
This may result in the following additional benefits:
  • i) By that
    the detectors can be positioned along the track in a freely selectable sequence;
    the process can be optimally limited to the presumed danger spots (claim 2).
  • ii) By that
    the detectors are positionable next to the track; For example, a system for carrying out the method according to the invention can be installed and maintained without the railway operation having to be interrupted for that reason (claim 3).
  • iii) By that
    in method step C, the response signals transformed into the frequency domain can be assigned to the detectors;
    For example, an object detected by a detector can be precisely located and an intervention detective element can be precisely directed to the relevant point of the railway track (claim 6).
  • iv) By that
    in method step C, a selection of response signals transformed into the frequency domain is stored on the pulse packets transmitted in a fixed time grid;
    a slowly occurring change of the system for carrying out the method according to the invention can be recognized particularly well. This makes it possible, on the one hand, to correct the originally stored response signals in the frequency domain by means of a statistical method, and, on the other hand, exactly one logbook can be maintained about the state of said system (claim 8).

Die Erfindung wird nachfolgend anhand der Zeichnung beispielsweise näher erläutert. Dabei zeigen:

Figur 1a
Mit Detektoren versehener Streckenabschnitt zur Durchführung des erfindungsgemässen Verfahrens
Figur 1b
Zuordnung von Signalen nach erfolgter Transformation in den Frequenzraum;
Figur 2
Aufbau eines Detektors;
Figur 3
Darstellung von ausgesandtem Pulspaket, Signalverlauf für Gradientenspule und Antwortsignal.
The invention will be explained in more detail with reference to the drawing, for example. Showing:
FIG. 1a
Provided with detectors track section for performing the inventive method
FIG. 1b
Assignment of signals after transformation into frequency space;
FIG. 2
Structure of a detector;
FIG. 3
Representation of emitted pulse packet, gradient coil signal and response signal.

Figur 1a zeigt einen Streckenabschnitt in der Uebersicht. Parallel zu einem Geleise 1 sind in einem Abstand a von der Gleisachse 2 Metalldetektoren D1, D2, .., in freiwählbaren Zwischenräumen, .., d34, d45, .. angeordnet sind (nicht vollständig in Fig. 1a dargestellt und aufgezählt). Diese Zwischenräume ergeben sich aus den betrieblichen Erfordernissen einer Bahnverwaltung; typische Grössenordnungen für diese Zwischenräume betragen 5 m .. 200 m, für den Abstand a zur Gleisachse 3 bis 6 m. Die Metalldetektoren - im folgenden kurz Detektoren D1, D2, .. genannt, sind mit einer Sende-/Empfangseinheit 5 verbunden, wobei ein Detektor Dn geometrisch gesehen der letzte Detektor ist. Der Index n steht dabei für die maximale Anzahl Detektoren, wobei typische Werte für n in der Grössenordnung 10 .. 100 liegen.FIG. 1a shows a section of the route in the overview. Parallel to a track 1 at a distance a from the track axis 2 metal detectors D 1 , D 2 , .., in freely selectable spaces, .., d 34 , d 45 , .. are arranged (not fully shown in Fig. 1a and ) enumerated. These spaces result from the operational requirements of a railway administration; typical sizes for these spaces are 5 m .. 200 m, for the distance a to the track axis 3 to 6 m. The metal detectors - hereinafter referred to as detectors D 1 , D 2 , .., are connected to a transmitting / receiving unit 5, wherein a detector D n is geometrically the last detector. The index n stands for the maximum number of detectors, with typical values for n being in the order of 10... 100.

Figur 2 zeigt den Aufbau eines nach dem Verfahren NMR (Nuclear Magnetic Resonance) arbeitenden Detektors D1, der einen Permanentmagneten 10, eine Gradientenspule 11 und eine Sende-/Empfangsspule 14 enthält. Der Permanentmagnet 10 ist hufeisenförmig, im Luftspalt ist eine Wasserprobe 12 angeordnet, die sowohl von der Gradientenspule 11 wie auch von der Sende-/Empfangsspule 14 umgeben ist. Dabei ist konstruktiv vorzusehen, dass das in der Sende-/Empfangsspule 14 erzeugte B-Feld orthogonal zum B-Feld des Permanentmagneten 10 steht. Die Wasserprobe 12 besteht aus einem mit destilliertem Wasser gefüllten Glaskörper, ein typisches Innenvolumen (auch Messvolumen genannt) des Glaskörpers liegt in der Grössenordnung von 0.5 cm3. Die Ausgestaltung des Messvolumens muss so sein, dass einerseits eine möglichst hohe Signalintensität erreicht wird - dies als Vorteil eines relativ grossen Messvolumens - und andererseits muss über das entsprechende Messvolumen eine grosse Homogenität des Permanentmagnetfeldes gewährleistet sein. Die H-Kerne der Wassermoleküle H2O eignen sich besonders für das Verfahren NMR. Die sogenannte Larmorfrequenz des H-Kerns beträgt 42MHz/Tesla. Die Signalintensität des Antwortsignals SR wird massgeblich von der Homogenität des Magnetfeldes im Luftspalt bestimmt. Relativ grosse metallische Gegenstände in unmittelbarer Nähe des Permanentmagneten beeinflussen die Homogenität des Magnetfeldes im Luftspalt, was zu einer Linienverbreiterung und somit nahezu oder gänzlich zu einer Auslöschung des NMR-Signals führt. Die Struktur und Wirkungsweise eines solchen Detektors D1 wird vom Fachmann als sogenannter NMR-Detektor bezeichnet. Die einzelnen Detektoren D1, D2 usw. sind individuell durch eine je eigene Windungszahl N1, N2, .. der Gradientenspule 11 gekennzeichnet. Die Gradientenspulen 11 der einzelnen Detektoren D1, D2 usw. sind parallel miteinander verbunden und an einen Gradientenverstärker (nicht in der Fig. 1a eingezeichnet) angeschlossen. Der Gradientenverstärker kann dabei Teil der Sende-/Empfangseinheit 5 sein. Die einzelnen Sende-/Empfangsspulen 14 sind vorzugsweise parallel an die Sende-/Empfangseinheit 5 angeschlossen; es ist auch eine serielle Anschaltung möglich.FIG. 2 shows the structure of a detector D 1 operating according to the method NMR (Nuclear Magnetic Resonance), which has a permanent magnet 10, a gradient coil 11 and a transmitting / receiving coil 14 contains. The permanent magnet 10 is horseshoe-shaped, in the air gap, a water sample 12 is arranged, which is surrounded by both the gradient coil 11 and the transmitting / receiving coil 14. It is to be provided structurally that the B field generated in the transmitting / receiving coil 14 is orthogonal to the B field of the permanent magnet 10. The water sample 12 consists of a glass body filled with distilled water, a typical internal volume (also called measuring volume) of the glass body is of the order of magnitude of 0.5 cm 3 . The configuration of the measurement volume must be such that, on the one hand, the highest possible signal intensity is achieved - this as an advantage of a relatively large measurement volume - and, on the other hand, a large homogeneity of the permanent magnetic field must be ensured via the corresponding measurement volume. The H nuclei of the water molecules H 2 O are particularly suitable for the NMR method. The so-called Larmor frequency of the H-core is 42MHz / Tesla. The signal intensity of the response signal S R is significantly determined by the homogeneity of the magnetic field in the air gap. Relatively large metallic objects in the immediate vicinity of the permanent magnet affect the homogeneity of the magnetic field in the air gap, which leads to a line broadening and thus almost or entirely to an extinction of the NMR signal. The structure and mode of action of such a detector D 1 is referred to by the skilled person as a so-called NMR detector. The individual detectors D 1 , D 2 , etc. are individually characterized by their own number of turns N 1 , N 2 , .. the gradient coil 11. The gradient coils 11 of the individual detectors D 1 , D 2 , etc. are connected in parallel with each other and connected to a gradient amplifier (not shown in FIG. 1 a). The gradient amplifier can be part of the transmitting / receiving unit 5. The individual transmitting / receiving coils 14 are preferably connected in parallel to the transmitting / receiving unit 5; It is also a serial connection possible.

In Figur 3 unten ist ein Pulspaket SP (auch Sendepuls genannt) dargestellt, das von der Sende-/Empfangseinheit 5 zu den Detektoren D1, D2, usw. ausgesandt wird. Unmittelbar vorher wird vom Gradientenverstärker ein Rechtecksignal SA an die Gradientenspulen 11 angelegt. Die Dauer tA dieses Rechtecksignals SA liegt, je nach Akquisitionszeit oder auch Beobachtungszeit genannt tA, bei ca. 2 s. Zusammen mit der individuellen Windungszahl der Gradientenspule 11 kann für jedem Detektor D1, D2, usw. ein zum Permanentmagnetfeld individuelles Zusatzfeld überlagert werden. Dabei wird dieses Zusatzfeld auf die örtliche Position des betreffenden Detektors Dk abgestimmt. Die Abstimmung kann dabei auch in der Auswerteeinheit mit Korrekturwerten vorgenommen werden. Durch die je individuelle Windungszahl N1, N2 der Gradientenspule der längs eines Geleises 1 angeordneten Detektoren D1, D2 ergibt sich auch je ein detektorindividuelles Frequenzband für das Antwortsignal SR auf ein ausgesandtes Pulspaket SP. Die Pulsbreite tP muss so gewählt werden, dass alle Wasserstoffatome in den verschiedenen Detektoren D1, D2, usw. gleichzeitig angeregt werden können. Das bedeutet, dass die Bandbreite des Pulses SP deutlich grösser sein muss als die Frequenzabweichung zwischen der tiefsten und höchsten Messfrequenz. Nachfolgend werden typische Werte für das Pulspakt SP angegeben: Trägerfrequenz: 21 MHz (Bei B0 = 0,5 Tesla) Pulsbreite: 5 µs FIG. 3 below shows a pulse packet S P (also referred to as transmit pulse) which is emitted by the transmitting / receiving unit 5 to the detectors D 1 , D 2 , etc. Immediately before, a rectangular signal S A is applied to the gradient coils 11 by the gradient amplifier. The duration t A of this square wave signal S A is, depending on the acquisition time or observation time called t A , at about 2 s. Together with the individual number of turns of the gradient coil 11 can be superimposed for each detector D 1 , D 2 , etc. an individual to the permanent magnetic field additional field. In this case, this additional field is matched to the local position of the relevant detector D k . The tuning can also be carried out in the evaluation unit with correction values. Due to the individual winding number N 1 , N 2 of the gradient coil of the detectors D 1 , D 2 arranged along a track 1, a detector-specific frequency band for the response signal S R is also produced on an emitted pulse packet S P. The pulse width t P must be chosen so that all hydrogen atoms in the different detectors D 1 , D 2 , etc. can be excited simultaneously. This means that the bandwidth of the pulse S P must be significantly greater than the frequency deviation between the lowest and highest measurement frequency. Typical values for the pulse clock S p are given below: Carrier frequency: 21 MHz (at B 0 = 0.5 Tesla) Pulse width: 5 μs

Das Antwortsignal SR eines Detektors D auf ein ausgesandtes Pulspaket SP ist in der Fig. 3 ebenfalls im Zeitbereich dargestellt. Die typische Beobachtungszeit (Akquisitionszeit) liegt bei 1 s, die Amplitude im Bereich von mV. In der Sende-/Empfangseinheit 5 oder in einer zugeordneten Auswerteeinheit wird das Antwortsignal SR mittels einer Fouriertransformation in den Frequenzraum abgebildet. Das Ergebnis dieser Abbildung der Antwortsignale SR ist mit einem vereinfacht dargestellten Kurvenverlauf SRf der Figur 1b zu entnehmen. Dabei sind in einer gebrochenen Skala - als solche jedoch nicht dargestellt - die aufgrund der individuellen Windungszahl N1, N2, usw. verschiedenen Antwortsignale P1, P2, usw. dargestellt. Es wird angenommen, dass in der Umgebung des Detektors D3 sich ein metallisches. Objekt 6 befindet, dass das Magnetfeld bei der Wasserprobe so beeinträchtigt, dass auf ein ausgesandtes Pulspaket im Frequenzraum kein oder gemäss der Skala kein darstellbares Antwortsignal P3 entsteht. Dadurch lässt sich die Information ableiten, dass die Strecke längs des Geleises 1 belegt ist und demzufolge keine Einstellung eines Signals für eine Durchfahrt eines Zuges vorgenommen werden darf.The response signal S R of a detector D to an emitted pulse packet S P is also shown in FIG. 3 in the time domain. The typical observation time (acquisition time) is 1 s, the amplitude in the range of mV. In the transmitting / receiving unit 5 or in an associated evaluation unit, the response signal S R is mapped into the frequency domain by means of a Fourier transformation. The result of this mapping of the response signals S R can be seen with a simplified curve S Rf of FIG. 1b. In a broken scale - but not shown as such - due to the individual number of turns N 1 , N 2 , etc. various response signals P 1 , P 2 , etc. are shown. It is assumed that in the vicinity of the detector D3 is a metallic. Object 6 is located so that the magnetic field in the water sample so affected that on a transmitted pulse packet in the frequency space no or according to the scale no representable response signal P3 arises. As a result, the information can be derived that the route along the track 1 is occupied and therefore no adjustment of a signal for a passage of a train may be made.

Nach erfolgter Erläuterung der Infrastruktur sieht eine Implementation des erfindungsgemässen Verfahrens vor, dass nach erfolgter Installation des vorgenannten Systems längs eines Geleises 1 die auf ausgesandte Pulspakte SP in den Frequenzraum transformierten den Detektoren D1, D2 zuzuordnenden Antwortsignale P1, P2 entweder in der Sende-/Empfangseinheit 5 oder in einer zugeordneten Auswerteeinheit gespeichert werden. Diesen gespeicherten Antwortsignalen P1, P2, P3, usw. können dabei pauschal für alle die gleichen oder individuelle Toleranzbänder zugeordnet werden. Für die Durchführung des erfindungsgemässen Verfahrens werden das vorgängig genannte Rechtecksignal zur Akquisition sowie das Pulspaket SP in einem festen Zeitraster oder bedarfsweise ausgesandt. Die dadurch eingehenden Antwortsignale SR werden in den Frequenzraum transformiert und mit den gespeicherten Antwortsignal P1, P2, P3, usw. verglichen. Eine Ungleichheit bzw. einer Ungleichheit ausserhalb eines vorgenannten Toleranzbandes führt zur Erzeugung eines Signals, aus dem eine Belegung des betreffenden Geleises 1 oder Gleisabschnittes hervorgeht. Durch ein Aussenden in einem festen Zeitraster von z.B. 5 s kann insbesondere vorgesehen werden, eine Auswahl der entstehenden Antwortsignale zu speichern, z.B. jeder 10. oder jedes 50. Signalverlauf SRF. Diese Speicherung erlaubt insbesondere, eine langsame Veränderung zu erkennen und entweder ein Warnsignal bezüglich der Funktionstüchtigkeit des Systems zu erzeugen und/oder durch ein statistisches verfahren die gespeicherten Antwortsignale zu korrigieren. Dabei ist zu beachten, dass Ausreisser nicht in dieser sogenannten Autokalibration Eingang finden.After the explanation of the infrastructure provides an implementation of the inventive method provides that after installation of the aforementioned system along a TRACK IS 1 on emitted pulse packets S P into the frequency domain transformed the detectors D 1, D 2 attributable response signals P 1, P 2 in either the transmitting / receiving unit 5 or stored in an associated evaluation unit. These stored response signals P 1 , P 2 , P 3 , etc. can be assigned a flat rate for all the same or individual tolerance bands. For carrying out the method according to the invention, the previously mentioned rectangular signal for acquisition and the pulse packet S P are emitted in a fixed time frame or as required. The incoming response signals S R are transformed into the frequency domain and compared with the stored response signal P 1 , P 2 , P 3 , and so on. An inequality or an inequality outside of an aforementioned tolerance band leads to the generation of a signal indicating an occupancy of the relevant track 1 or track section. By emitting in a fixed time frame of, for example, 5 s, it can be provided, in particular, to store a selection of the resulting response signals, for example every 10th or every 50th signal progression S RF . This storage allows in particular to detect a slow change and either to generate a warning signal regarding the functionality of the system and / or by a statistical method to correct the stored response signals. It should be noted that outliers are not included in this so-called auto-calibration.

Die vorstehend beschriebene Ausführungsform des erfindungsgemässen Verfahrens war primär auf die Detektion von eisenbahnfremden Objekten 6 ausgerichtet. Das vorgeschlagene Verfahren kann aber auch für den Eisenbahnbetrieb selber und die Verfolgung eines Zuges längs eines Gleisabschnitts angewandt werden.The above-described embodiment of the method according to the invention was primarily aimed at the detection of objects 6 outside the railway. However, the proposed method can also be applied to the railway operation itself and the tracking of a train along a track section.

Das erfindungsgemässe System und Verfahren ist nicht auf die vorstehend beschriebene Ausführungsform beschränkt, möglich sind weitere Auswertungsverfahren, insbesondere mittels einer zweidimensionalen Fouriertransformation um Laufzeitverschiebungen eliminieren zu können. Dies stellt den allgemeineren Fall des vorstehend beschriebenen Ausführungsbeispiels dar, bei dem der Laufzeiteinfluss vernachlässigbar ist. Das vorstehend erläuterte Verfahren ist nicht auf die Eisenbahntechnik beschränkt, sondern kann z.B. in einer Matrixanordnung von Detektoren in einem Abstand von z.B. 0,5 m auch für die Detektion von metallischen Objekten wie Minen angewendet werden.The inventive system and method is not limited to the embodiment described above, possible further evaluation methods, in particular by means of a two-dimensional Fourier transform to eliminate runtime shifts can. This represents the more general case of the embodiment described above, in which the transit time influence is negligible. The method explained above is not limited to the railway technology, but can also be used, for example, in a matrix arrangement of detectors at a distance of, for example, 0.5 m for the detection of metallic objects such as mines.

Liste der verwendeten Bezugszeichen und AbkürzungenList of reference numbers and abbreviations used

11
Geleisetrack
22
Gleisachsetrack axis
55
Sende-/EmpfangseinheitTransmit / receive unit
66
Objekt, metallischObject, metallic
1010
Permanentmagnetpermanent magnet
1111
Gradientenspulegradient coil
1212
Wasserprobewater sample
1414
Sende-/EmpfangsspuleTransmitter / receiver coil
aa
Abstand der Detektoren D1, D2 von der GleisachseDistance of the detectors D 1 , D 2 from the track axis
D, D1, D2, Dk, Dn D, D 1 , D 2 , D k , D n
Detektorendetectors
d34 d 34
Abstand zwischen den Detektoren D3 und D4 Distance between the detectors D 3 and D 4
d45 d 45
Abstand zwischen den Detektoren D4 und D5 Distance between the detectors D 4 and D 5
N1, N2 N 1 , N 2
Windungszahl der Gradientenspule des Detektors D1, D2 Number of turns of the gradient coil of the detector D 1 , D 2
NMRNMR
Nuclear Magnetic ResonanceNuclear Magnetic Resonance
P1, P2,P 1 , P 2 ,
Antwortsignal des betreffenden Detektors D1, D2 im FrequenzraumResponse signal of the relevant detector D 1 , D 2 in the frequency domain
SA S A
Rechtecksignal zur AkquisitionSquare wave signal for acquisition
SP S P
Pulspaketpulse packet
SR S R
Antwortsignal eines Detektors D im ZeitbereichResponse signal of a detector D in the time domain
SRF S RF
Signalverlauf im Frequenzraum der Gesamtheit der transformierten Antwortsignale SR Waveform in the frequency domain of the totality of the transformed response signals S R

Claims (8)

  1. Method for detecting objects (6) along a track (1) using detectors (D1, D2,..) positioned along the track (1), wherein signals from said detectors (D1, D2, ..) have been stored previously in the absence of objects and signals from said detectors (D1, D2, ..) are recorded at a point in time determined by the detection and compared with the stored signals,
    characterised in that
    the detectors operate according to the Nuclear Magnetic Resonance (NMR) method and by means of the method steps
    A response signals (SR) to a pulse packet (Sp) sent out to detectors (D1, D2, ..) are recorded;
    B the recorded response signals (SR) are transformed into a signal (SRF, P1, P2, ..) in the frequency chamber;
    C the response signals (SRF, P1, P2, ..) transformed in the frequency chamber are compared with previously stored response signals which were stored in the clear absence of an object (6) according to the method steps A and B, a determined difference being judged as the presence of an object (6).
  2. Method according to claim 1,
    characterised in that
    the detectors (D1, D2, .. ) can be positioned in an entirely optional sequence (d34, d45, ..) along the track (1).
  3. Method according to claim 1 or 2,
    characterised in that
    the detectors (D1, D2, ..) can be positioned next to the track (1).
  4. Method according to one of claims 1 to 3,
    characterised in that
    each detector (D1, D2, .) has a gradient coil (11) surrounding a permanent magnet (10), a transceiver coil (14) and a water sample (12).
  5. Method according to claim 4,
    characterised in that
    each detector (D1, D2, ..) is characterised by an individual number of windings (N1, N2, ..) of the gradient coil (11).
  6. Method according to one of claims 1 to 5,
    characterised in that
    in method step C the response signals (SRF, P1, P2..) transformed in the frequency chamber can be assigned to the detectors (D1, D2, ..).
  7. Method according to one of claims 1 to 6,
    characterised in that
    in method step A pulse packets (Sp) are sent out in a fixed time-frame in order to detect a slowly occurring change.
  8. Method according to claim 7,
    characterised in that
    in method step C a selection of the response signals {SRF, P1, P2) transformed in the frequency chamber which are in response to the pulse packets (Sp) sent out in a fixed time-frame is stored.
EP02774656A 2001-12-14 2002-09-27 Method and system for the detection of objects along a track Expired - Lifetime EP1453714B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02774656A EP1453714B1 (en) 2001-12-14 2002-09-27 Method and system for the detection of objects along a track

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP01129777A EP1319570A1 (en) 2001-12-14 2001-12-14 Method and system for detection of objects along a rail
EP01129777 2001-12-14
PCT/EP2002/010838 WO2003051700A1 (en) 2001-12-14 2002-09-27 Method and system for the detection of objects along a track
EP02774656A EP1453714B1 (en) 2001-12-14 2002-09-27 Method and system for the detection of objects along a track

Publications (2)

Publication Number Publication Date
EP1453714A1 EP1453714A1 (en) 2004-09-08
EP1453714B1 true EP1453714B1 (en) 2006-11-22

Family

ID=8179537

Family Applications (2)

Application Number Title Priority Date Filing Date
EP01129777A Withdrawn EP1319570A1 (en) 2001-12-14 2001-12-14 Method and system for detection of objects along a rail
EP02774656A Expired - Lifetime EP1453714B1 (en) 2001-12-14 2002-09-27 Method and system for the detection of objects along a track

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP01129777A Withdrawn EP1319570A1 (en) 2001-12-14 2001-12-14 Method and system for detection of objects along a rail

Country Status (5)

Country Link
EP (2) EP1319570A1 (en)
AT (1) ATE345964T1 (en)
DE (1) DE50208808D1 (en)
ES (1) ES2277621T3 (en)
WO (1) WO2003051700A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102673610B (en) * 2012-05-29 2015-06-24 北京佳讯飞鸿电气股份有限公司 Railway disaster-preventing foreign body invasion-limiting monitoring system
CN104627205A (en) * 2014-12-17 2015-05-20 西南交通大学 Railway foreign matter beyond limit monitoring system based on fiber bragg grating sensor closed loop
CN111079734B (en) * 2019-12-12 2020-07-31 哈尔滨市科佳通用机电股份有限公司 Method for detecting foreign matters in triangular holes of railway wagon

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968979A (en) * 1985-04-19 1990-11-06 Omron Tateisi Electronics Co. Vehicle detecting system
GB2286248B (en) * 1991-06-07 1995-11-22 British Tech Group Detection method and apparatus
US5868360A (en) * 1997-06-25 1999-02-09 Primetech Electronics Inc. Vehicle presence detection system

Also Published As

Publication number Publication date
ATE345964T1 (en) 2006-12-15
EP1319570A1 (en) 2003-06-18
WO2003051700A1 (en) 2003-06-26
DE50208808D1 (en) 2007-01-04
EP1453714A1 (en) 2004-09-08
ES2277621T3 (en) 2007-07-16

Similar Documents

Publication Publication Date Title
EP0695947B1 (en) MR method for determining the distribution of nuclear magnetization with a surface coil arrangement
DE102014202358A1 (en) Method and device for driving a magnetic resonance imaging system
DE102011005726A1 (en) Method for adjusting at least one shim current and an associated RF center frequency in a magnetic resonance apparatus during an interleaved multilayer MR measurement of a moving examination object, magnetic resonance apparatus, computer program product and electronically readable data carrier
DE102014205004B3 (en) Method and magnetic resonance system for acquiring MR data of a slice of a volume segment within an examination subject
DE102011014855A1 (en) Method and device for detecting and classifying moving vehicles
DE102010033329A1 (en) Method for determining magnet resonance system-controlling sequence, involves carrying out optimization of multi-channel pulse train or k-area-gradient trajectory in high frequency-pulse-optimization process
DE102014206561B4 (en) Capture MR data with different echo times
DE102014214844A1 (en) Method and magnetic resonance system for acquiring MR data
DE19511835C2 (en) Pulse sequence for a magnetic resonance imaging device with a predetermined, time-constant inhomogeneity in a spatial direction and device for executing the pulse sequence
EP1453714B1 (en) Method and system for the detection of objects along a track
DE19716963A1 (en) Procedure for determining the location of a partial discharge
EP1204878B1 (en) Method for generating measurement signals in magnetic fields
DE3828718C2 (en) Magnetic resonance device
EP2524852B1 (en) Method and device for monitoring a section of a rail
EP1209481A1 (en) Method of correcting phase errors in real-time MRI
DE19502374A1 (en) MR method with inductively coupled receiver coil arrangements
EP1107015A2 (en) MR-method for generating navigator pulses
DE3632738A1 (en) METHOD FOR DETERMINING THE SPECTRAL DISTRIBUTION OF CORE MAGNETIZATION IN A LIMITED VOLUME RANGE
DE4107515C2 (en) Method for operating a magnetic resonance imaging device for generating sectional images in any position and circuit arrangement for carrying out the method
DE102017201157B4 (en) Spin echo sequence for spatially selective acquisition of MR data
DE4126169C2 (en) Method for determining optimized high-frequency pulse shapes for selective excitation
DE4423806C2 (en) Process for MR imaging with a sequence of individual measurements
EP1777532A1 (en) Method and driving apparatus for testing an antenna
EP2685581A1 (en) Electrical energy supply to a railway vehicle via a protected energy supply line
DE2433241A1 (en) Road vehicle counting device - uses source coil in centre of road and receiver coil at either side of road

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040604

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061122

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061122

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061122

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061122

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061122

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50208808

Country of ref document: DE

Date of ref document: 20070104

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070222

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070222

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070423

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2277621

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070823

BERE Be: lapsed

Owner name: SIEMENS SCHWEIZ A.G.

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070223

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061122

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: SIEMENS SCHWEIZ AG;FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070927

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20091020

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20100811

Year of fee payment: 9

Ref country code: FR

Payment date: 20101004

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100916

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20101207

Year of fee payment: 9

Ref country code: DE

Payment date: 20101119

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100928

Year of fee payment: 9

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20111020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100928

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110927

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50208808

Country of ref document: DE

Effective date: 20120403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120403

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110927

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 345964

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110927