EP1447615B1 - Pulsed sun simulator with improved homogeneity - Google Patents

Pulsed sun simulator with improved homogeneity Download PDF

Info

Publication number
EP1447615B1
EP1447615B1 EP04003125A EP04003125A EP1447615B1 EP 1447615 B1 EP1447615 B1 EP 1447615B1 EP 04003125 A EP04003125 A EP 04003125A EP 04003125 A EP04003125 A EP 04003125A EP 1447615 B1 EP1447615 B1 EP 1447615B1
Authority
EP
European Patent Office
Prior art keywords
radiation source
mirror element
sun simulator
radiation
simulator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04003125A
Other languages
German (de)
French (fr)
Other versions
EP1447615A2 (en
EP1447615A3 (en
Inventor
Klaus-Armin Ahrens
Carsten Dr. Hampe
Heinrich Preitnacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus DS GmbH
Original Assignee
Astrium GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astrium GmbH filed Critical Astrium GmbH
Publication of EP1447615A2 publication Critical patent/EP1447615A2/en
Publication of EP1447615A3 publication Critical patent/EP1447615A3/en
Application granted granted Critical
Publication of EP1447615B1 publication Critical patent/EP1447615B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/006Solar simulators, e.g. for testing photovoltaic panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/08Controlling the distribution of the light emitted by adjustment of elements by movement of the screens or filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/30Elongate light sources, e.g. fluorescent tubes curved

Definitions

  • the present invention relates to a pulsed solar simulator, especially a solar simulator, which can be used to measure solar cells such as single-junction solar cells and multi-junction solar cells.
  • Solar simulators are used to simulate natural sunlight in order to study the effects of sunlight on certain objects to be irradiated, even under laboratory conditions.
  • a special application is the investigation of the performance of solar cells.
  • Sun simulators are for example off US 4,641,227 known. There is a simulation of the sunlight realized by a suitable arrangement and filtering of two independent radiation sources and a subsequent superposition of emanating from these radiation sources radiation. As radiation sources, however, no pulsed radiation sources are used here. Concentrating parabolic mirrors are arranged at a distance around these radiation sources so that the radiation sources are in each case in the focus of the parabolic mirrors in order to focus the radiation in the direction of the target to be irradiated.
  • DE 201 03 645 describes a pulsed solar simulator with displaceable filter, wherein the spectrum of a flashlamp is adapted by suitable, slidable filter to the spectrum of the sun.
  • EP 1 139 016 describes a pulsed solar simulator, in which by means of planar mirror elements, which are arranged spaced from a pulsed radiation source, and that usually parabolic, again the radiation source is arranged in focus, whereby an improved illumination of the target to be irradiated is to be guaranteed.
  • the spectrum of the beams reflected from the mirror elements can also be filtered be suitably adapted to achieve additional irradiation of the target in a desired wavelength range.
  • a discharge lamp arrangement in which a lamp housing has a reflector extending along the lamp bulb.
  • the reflector has a metallic zone, which is designed as a Zündangeselektrode.
  • the object of the present invention is to provide an improved solar simulator arrangement, in particular with improved homogeneity. This object is achieved by the features of claim 1.
  • the mirror element is not arranged at a distance from the radiation source, but the mirror element is directly adjacent to the radiation source.
  • a radiation source with a spectral width and / or a spectral intensity distribution which largely corresponds to the spectral width and / or the spectral intensity distribution of the sunlight.
  • the mirror element is formed at least partially metallic, then a voltage can be applied to the mirror element.
  • a subassembly or a constructive subelement of the mirror element such as, for example, a frame, a holder or the mirror surface, may be partially or entirely metallic.
  • the applied voltage supports the pulsed ignition of the radiation source and thereby helps to a more homogeneous ignition of the radiation source.
  • gas-filled tubes are used as radiation sources to which an ignition voltage is applied via suitably arranged electrodes.
  • a constant voltage can be applied to the ends of the gas-filled tube.
  • the mirror element causes a reflection of radiation components of the radiation source, which are emitted in the opposite direction of the desired emission direction of the solar simulator.
  • the efficiency of the radiation source is increased, so it takes less energy overall.
  • the radiation source can thereby be operated at a lower power, with the result that the maximum of the emission spectrum migrates into the infrared range. This is just a desirable and advantageous effect, since usual solar simulators have a radiation intensity which is too low compared to the solar spectrum, especially in the infrared range.
  • the homogeneity of the radiation is advantageously improved by the reflection effect of the mirror elements in the direction of the emission direction of the solar simulator.
  • a further improvement in the homogeneity of the radiation of the solar simulator can be achieved in that the radiation source is curved in its longitudinal extent.
  • a straight extension of the radiation source such as the EP 1 139 016 provides sufficient homogeneity can not be achieved. It can be provided in particular that the radiation source is annular or helical.
  • a first development of the present invention provides that the at least one mirror element is planar. Precisely because of this, a very homogeneous illumination of the target to be irradiated can be achieved.
  • the at least one mirror element in particular the mirror surface of the mirror element, has a material or a coating which is designed such that the reflection effect of the mirror element in the infrared region is significantly higher than in the UV range.
  • a highly reflective material or a highly reflective coating is suitable, which or in the infrared range, a reflection effect greater than 60%, preferably greater than 70%, ideally greater than 90%.
  • the appropriate spectrum of the material or the coating of the mirror element, the resulting spectrum can be influenced in the desired manner, namely towards an increase in the intensity in the infrared range.
  • the at least one mirror element consists partly or entirely of gold or has a coating consisting of gold or a gold-containing alloy.
  • the at least one mirror element has a metal layer with an oxide layer, in particular a light metal, for example aluminum.
  • this metal layer can also be coated with a suitable coating as described above, which has the desired reflection effect.
  • the mirror element can also have a semiconductor layer, for example silicon, with an oxide layer, wherein the oxide layer can also be provided with a further coating, for example made of metal, in particular of aluminum.
  • the semiconductor oxide layer may in particular be formed as a thermal oxide layer, as it is produced in a thermal oxidation process. This gives a practically monocrystalline semiconductor oxide layer which has a very well-defined interface with the adjacent semiconductor material. On the oxide layer then a metal layer can be applied, for example by vapor deposition.
  • both metals such as gold and metals with oxide layers, in particular light metals and also semiconductors with oxide layers have very good reflection properties, especially in the infrared range. Especially these materials can therefore be used advantageously in the context of the present invention.
  • the homogeneity of the radiation can be increased even further by the fact that the radiation source is surrounded by a housing, which in Radiating in the wall region has a plurality of successively arranged aperture elements. These diaphragm elements intercept those radiation components of the radiation source that are not emitted directly or predominantly in the direction of the emission direction. These aperture elements may preferably additionally have a low-reflection coating coated or made of a low-reflective material to substantially prevent scattered radiation.
  • a preferred embodiment of the invention provides that the radiation source and / or the mirror element is connected via brackets with a support plate made of granite.
  • the surface of the support plate is either polished smooth or roughened microscopically to have a reduced reflection effect.
  • Such a granite plate has proven to be an ideal support plate, which has a high stability, in particular a high temperature stability, on the other hand, the required stability and insulation against the high voltages, via the brackets and conductive leads to the radiation source and / or the at least one Abut mirror element.
  • the radiation source can be designed as a xenon flash lamp. It can continue, as basically from the DE 201 03 645 be known, additional filter means are provided to affect the spectrum of the solar simulator even further in the desired manner.
  • additional filter means are provided to affect the spectrum of the solar simulator even further in the desired manner.
  • at least two filters are arranged to be displaceable substantially perpendicularly to the emission direction, the filters being designed such that they respectively suppress the same or different portions of the radiation , This results in the total spectrum now a superposition of the radiation components that have passed no filter, the radiation components that have passed the first filter and the radiation components that have passed the second filter or even more filters. If the filters are arranged so that they can be pushed over each other, there are additional radiation components that have passed first a first filter and then a second filter or even more filters.
  • the solar simulator for measuring solar cells, provision can be made for arranging solar cells to be measured in an irradiation plane, wherein additional reference solar cells can also be arranged in the irradiation plane for comparison measurements.
  • additional reference solar cells can also be arranged in the irradiation plane for comparison measurements.
  • the same radiation is applied to the reference solar cells in each case as to the solar cells to be measured.
  • the solar cells to be measured can then be embodied such that at least one first solar cell layer is arranged above a second solar cell layer, the solar cell layers having a different absorption behavior.
  • Such solar cells are also known as multi-junction solar cells.
  • the reference solar cells are then used to guarantee an unambiguous reference measurement by at least a first reference solar cell layer having an absorption behavior corresponding to the at least one first solar cell layer and by at least one second reference solar cell layer adjacent to the first reference solar cell layer whose absorption behavior of the second Solar cell layer corresponds, formed, wherein the second reference solar cell layer is preceded by a filter that corresponds to the absorption behavior of the first solar cell layer.
  • the reference solar cell layers are thus independent of each other, but they still simulate the conditions within the stacked solar cell layers, which must be measured.
  • the arrangement can also be used for the measurement of single-junction solar cells, likewise preferably with the aid of reference solar cells.
  • a solar simulator according to the present invention which has a radiation source 1 in the form of a xenon flash lamp to which directly adjoin one or more mirror elements 7.
  • a radiation source 1 in the form of a xenon flash lamp to which directly adjoin one or more mirror elements 7.
  • the mirror elements 7 abut directly on the tube body of the xenon flash lamp 1.
  • the flashlamp is helical in shape to achieve the most homogeneous possible radiation.
  • the number and shape of the mirror elements 7 can be adjusted so that as far as possible over the entire longitudinal extent of the flash lamp 1 mirror elements 7 directly abut the tube body. In Fig. 2 this is exemplified for two mirror elements 7.
  • brackets 6 such as clamp brackets with the tube body of the flashlamp 1, these brackets are preferably formed metallic.
  • the brackets 6 are to be understood here as part of the mirror elements 7.
  • the mirror elements 7 are made of aluminum and have a gold coating. But the mirror elements 7 can also be made entirely of gold. However, it can also be provided that the mirror element 7 has a metal layer with an oxide layer, for example aluminum.
  • the mirror element may also include a semiconductor layer, for example silicon an oxide layer, wherein the oxide layer may also be provided with a further coating, for example of aluminum.
  • the semiconductor oxide layer may be formed as a thermal oxide layer, as it is produced in a thermal oxidation process. On the oxide layer, the aluminum layer can then be applied by vapor deposition. The following is to be assumed by a mirror element 7 made of aluminum with a gold coating.
  • Fig. 1 the radiation source 1 together with the mirror element 7 is shown only to simplify the representation in the plane of the paper.
  • the radiation source 1 as well as the mirror element 7 is arranged in a plane perpendicular to the emission direction 10 of the solar simulator.
  • the actual arrangement of the radiation source 1 and the mirror element 7 is in Fig. 5 shown.
  • a constant voltage is applied to electrodes at the ends of the flashlamp 1, which voltage is generated by a voltage source 8.
  • This voltage is designed so that it is not sufficient to ignite the flash lamp 1, so it is below the ignition voltage.
  • a few kilovolts can be generated by the voltage source 8.
  • the constant voltage is between 600 V and 1000 V, in particular at about 800 V.
  • a high-voltage potential is applied as ignition voltage to the mirror elements 7 and / or the holders 6, as the Fig. 1 and 2 demonstrate.
  • the high-voltage potential applied to the mirror elements 7 and / or the holders 6 can be generated for example via high-voltage source 9 such as an ignition coil and is typically several tens of kilovolts, preferably between 10 kV and 20 kV, in particular about 15 kV.
  • high-voltage source 9 such as an ignition coil and is typically several tens of kilovolts, preferably between 10 kV and 20 kV, in particular about 15 kV.
  • the special type of arrangement of the mirror elements 7 immediately adjacent, ie immediately adjacent to the tube body of the flashlamp 1, improves the homogeneity of the emission, on the one hand by the reflection effect of the mirror elements 7 (see FIG Fig. 2 ), which takes place by the gold coating advantageous especially in the infrared range, on the other hand by the action of the mirror elements 7 and / or the holders 6 as high-voltage electrodes, which guarantee the homogeneity of the discharge in the flashlamp 1 during the ignition process.
  • Fig. 1 further shows that the flashlamp 1 and the mirror elements 7 are connected via brackets 11 with a granite support plate 4.
  • This carrier plate has the advantages already mentioned.
  • the arrangement is also flash lamp 1 and mirror elements 7 surrounded by a housing 2, which has a plurality of successively arranged aperture elements 3 in the wall region in the direction of the emission direction 10 of the solar simulator.
  • the housing is cylindrical, for example, then the diaphragm elements 3 are formed as successively arranged, concentric rings.
  • the present solar simulator can also according to the Fig. 4 be further developed by 10 slidable filter 5 are arranged perpendicular to the radiation direction, which can be preferably also superimposed, as shown by the dashed lines in Fig. 4 indicated.
  • Such sliding filters are basically off DE 201 03 645 known.
  • the filters 5 can suppress either the same or different proportions of the electromagnetic radiation of the flashlamp 1, as already described above.
  • the filters 5 consist for example of quartz glass, such as Herasil®.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Photovoltaic Devices (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

Die vorliegende Erfindung betrifft einen gepulsten Sonnensimulator, speziell einen Sonnensimulator, der zur Vermessung von Solarzellen wie Single-Junction-Solarzellen und Multi-Junction-Solarzellen einsetzbar ist.The present invention relates to a pulsed solar simulator, especially a solar simulator, which can be used to measure solar cells such as single-junction solar cells and multi-junction solar cells.

Sonnensimulatoren dienen dazu, das natürliche Sonnenlicht zu simulieren, um die Auswirkungen des Sonnenlichts auf bestimmte zu bestrahlende Objekte auch unter Laborbedingungen untersuchen zu können. Eine spezielle Anwendung ist die Untersuchung der Leistungsfähigkeit von Solarzellen.Solar simulators are used to simulate natural sunlight in order to study the effects of sunlight on certain objects to be irradiated, even under laboratory conditions. A special application is the investigation of the performance of solar cells.

Sonnensimulatoren sind beispielsweise aus US 4,641,227 bekannt. Dort wird durch eine geeignete Anordnung und Filterung von zwei unabhängigen Strahungsquellen und eine anschließende Überlagerung der von diesen Strahlungsquellen ausgehenden Strahlungen eine Simulation des Sonnenlichts realisiert. Als Strahlungsquellen dienen hier jedoch keine gepulsten Strahlungsquellen. Um diese Strahlungsquellen sind bündelnde Parabolspiegel mit einem Abstand so angeordnet, dass die Strahlungsquellen sich jeweils im Fokus der Parabolspiegel befinden, um die Strahlung in Richtung des zu bestrahlenden Zieles zu bündeln.Sun simulators are for example off US 4,641,227 known. There is a simulation of the sunlight realized by a suitable arrangement and filtering of two independent radiation sources and a subsequent superposition of emanating from these radiation sources radiation. As radiation sources, however, no pulsed radiation sources are used here. Concentrating parabolic mirrors are arranged at a distance around these radiation sources so that the radiation sources are in each case in the focus of the parabolic mirrors in order to focus the radiation in the direction of the target to be irradiated.

DE 201 03 645 beschreibt einen gepulsten Sonnensimulator mit verschiebbarem Filter, wobei das Spektrum einer Blitzlichtlampe durch geeignete, verschiebbare Filter an das Spektrum der Sonne angepasst wird. DE 201 03 645 describes a pulsed solar simulator with displaceable filter, wherein the spectrum of a flashlamp is adapted by suitable, slidable filter to the spectrum of the sun.

EP 1 139 016 beschreibt einen gepulsten Sonnensimulator, bei dem mit Hilfe von ebenen Spiegelelementen, die von einer gepulsten Strahlungsquelle beabstandet angeordnet sind, und zwar in der Regel parabelförmig, wobei wiederum die Strahlungsquelle im Fokus angeordnet ist, wodurch eine verbesserte Ausleuchtung des zu bestrahlenden Zieles garantiert werden soll. Das Spektrum der von den Spiegelelementen reflektierten Strahlenbündel kann auch mit Hilfe von Filtern geeignet angepasst werden, um eine zusätzliche Bestrahlung des Zieles in einem gewünschten Wellenlängenbereich zu erzielen. EP 1 139 016 describes a pulsed solar simulator, in which by means of planar mirror elements, which are arranged spaced from a pulsed radiation source, and that usually parabolic, again the radiation source is arranged in focus, whereby an improved illumination of the target to be irradiated is to be guaranteed. The spectrum of the beams reflected from the mirror elements can also be filtered be suitably adapted to achieve additional irradiation of the target in a desired wavelength range.

Aus der EP 0 822 577 A2 ist eine Entladungslampenanordnung bekannt, bei der ein Lampengehäuse einen sich längs des Lampenkolbens erstreckenden Reflektor aufweist. Der Reflektor weist eine metallische Zone auf, die als Zündhilfselektrode ausgebildet ist.From the EP 0 822 577 A2 a discharge lamp arrangement is known in which a lamp housing has a reflector extending along the lamp bulb. The reflector has a metallic zone, which is designed as a Zündhilfselektrode.

All diese Möglichkeiten aus dem Stand der Technik geben jedoch keinen Hinweis, wie eine verbesserte Homogenität der Bestrahlung des zu bestrahlenden Zieles erzielt werden kann.However, all these possibilities of the prior art give no indication as to how an improved homogeneity of the irradiation of the target to be irradiated can be achieved.

Aufgabe der vorliegenden Erfindung ist die Bereitstellung einer verbesserten Sonnensimulator-Anordnung, insbesondere mit verbesserter Homogenität. Diese Aufgabe wird gelöst durch die Merkmale des Anspruchs 1.The object of the present invention is to provide an improved solar simulator arrangement, in particular with improved homogeneity. This object is achieved by the features of claim 1.

Der erfindungsgemäße Sonnensimulator, weist folgendes auf:

  • eine gepulste Strahlungsquelle zur Erzeugung einer elektromagnetischen Strahlung,
  • mindestens ein im Bereich der Strahlungsquelle angeordneten Spiegelelement, welches Anteile der Strahlung der Strahlungsquelle im wesentlichen in Richtung der Abstrahlrichtung des Sonnensimulators reflektiert. Das Spiegelelement kann dabei insbesondere senkrecht zur Abstrahlrichtung angeordnet sein.
The solar simulator according to the invention has the following:
  • a pulsed radiation source for generating electromagnetic radiation,
  • at least one arranged in the region of the radiation source mirror element which reflects portions of the radiation of the radiation source substantially in the direction of the emission direction of the solar simulator. The mirror element can be arranged in particular perpendicular to the emission direction.

Gemäß der Erfindung ist nun vorgesehen, dass

  • das mindestens eine Spiegelelement unmittelbar an die Strahlungsquelle angrenzend angeordnet ist,
  • das mindestens eine Spiegelelement zumindest teilweise metallisch ausgebildet ist,
  • zumindest ein Teil der Zündspannung der gepulsten Strahlungsquelle an das Spiegelelement angelegt ist, und
  • die Strahlungsquelle in ihrer Längsausdehnung gekrümmt ausgebildet ist.
According to the invention, it is now provided that
  • the at least one mirror element is arranged directly adjacent to the radiation source,
  • the at least one mirror element is at least partially metallic,
  • at least a part of the ignition voltage of the pulsed radiation source is applied to the mirror element, and
  • the radiation source is formed curved in its longitudinal extent.

Im Gegensatz zum eingangs genannten Stand der Technik ist also im Fall der vorliegenden Erfindung das Spiegelelement nicht von der Strahlungsquelle beabstandet angeordnet, sondern das Spiegelelement liegt direkt an der Strahlungsquelle an. Es kann insbesondere eine Strahlungsquelle mit einer spektralen Breite und/oder einer spektralen Intensitätsverteilung verwendet werden, die weitgehend der spektralen Breite und/oder der spektralen Intensitätsverteilung des Sonnenlichts entspricht.In contrast to the aforementioned prior art, therefore, in the case of the present invention, the mirror element is not arranged at a distance from the radiation source, but the mirror element is directly adjacent to the radiation source. In particular, it is possible to use a radiation source with a spectral width and / or a spectral intensity distribution which largely corresponds to the spectral width and / or the spectral intensity distribution of the sunlight.

Wird nun wie im Fall der vorliegenden Erfindung das Spiegelelement zumindest teilweise metallisch ausgebildet, dann kann eine Spannung an das Spiegelelement angelegt werden. Es kann dabei insbesondere eine Unterbaugruppe oder ein konstruktives Unterelement des Spiegelelements wie beispielsweise ein Rahmen, eine Halterung oder die Spiegelfläche teilweise oder ganz metallisch ausgebildet sein. Die angelegte Spannung unterstützt die gepulste Zündung der Strahlungsquelle und verhilft dabei zu einer homogeneren Zündung der Strahlungsquelle. Üblicherweise werden als Strahlungsquellen gasgefüllte Röhren verwendet, an die über geeignet angeordnete Elektroden eine Zündspannung angelegt wird. Alternativ zu einer speziell für die Zündung verwendeten Zündspannung oder zusätzlich zu dieser Zündspannung kann eine konstante Spannung an die Enden der gasgefüllten Röhre angelegt werden. Bei solchen Strahlungsquellen pflanzt sich beim Zünden eine Leuchtentladung von einer Elektrode durch die Röhre zur anderen Elektrode fort. Dieser Vorgang führt zu einer inhomogenen Strahlungswirkung. Das zusätzliche Anlegen einer Spannung an das direkt an der Strahlungsquelle anliegende Spiegelelement führt zu einem deutlich schnelleren und homogeneren Zünden der Strahlungsquelle. Hierbei ist das unmittelbare Anliegen des Spiegelelements an der Strahlungsquelle entscheidend, da nur dann eine möglichst gute Wirkung beim Zünden und damit eine möglichst gute Homogenität erzielt werden kann.If now, as in the case of the present invention, the mirror element is formed at least partially metallic, then a voltage can be applied to the mirror element. In this case, in particular, a subassembly or a constructive subelement of the mirror element, such as, for example, a frame, a holder or the mirror surface, may be partially or entirely metallic. The applied voltage supports the pulsed ignition of the radiation source and thereby helps to a more homogeneous ignition of the radiation source. Usually, gas-filled tubes are used as radiation sources to which an ignition voltage is applied via suitably arranged electrodes. As an alternative to an ignition voltage used specifically for the ignition or in addition to this ignition voltage, a constant voltage can be applied to the ends of the gas-filled tube. With such radiation sources, a light discharge propagates from one electrode through the tube to the other electrode during ignition. This process leads to an inhomogeneous radiation effect. The additional application of a voltage to the directly adjacent to the radiation source mirror element leads to a much faster and more homogeneous ignition of the radiation source. Here, the immediate concerns of the mirror element at the radiation source is crucial, since only then the best possible effect when igniting and thus the best possible homogeneity can be achieved.

Zusätzlich bewirkt das Spiegelelement eine Reflexion von Strahlungsanteilen der Strahlungsquelle, die entgegengesetzt der gewünschten Abstrahlrichtung des Sonnensimulators ausgestrahlt werden. Damit wird einerseits der Wirkungsgrad der Strahlungsquelle erhöht, es wird also insgesamt weniger Energie benötigt. Außerdem kann dadurch die Strahlungsquelle mit geringerer Leistung betrieben werden, was zur Folge hat, dass das Maximum des Abstrahlungsspektrums in den Infrarot-Bereich wandert. Dies ist gerade ein erwünschter und vorteilhafter Effekt, da übliche Sonnensimulatoren gerade im Infrarot-Bereich eine im Vergleich zum Sonnenspektrum zu geringe Strahlungsintensität aufweisen. Auch wird durch die Reflexionswirkung der Spiegelelemente in Richtung der Abstrahlrichtung des Sonnensimulators die Homogenität der Abstrahlung vorteilhaft verbessert.In addition, the mirror element causes a reflection of radiation components of the radiation source, which are emitted in the opposite direction of the desired emission direction of the solar simulator. Thus, on the one hand, the efficiency of the radiation source is increased, so it takes less energy overall. In addition, the radiation source can thereby be operated at a lower power, with the result that the maximum of the emission spectrum migrates into the infrared range. This is just a desirable and advantageous effect, since usual solar simulators have a radiation intensity which is too low compared to the solar spectrum, especially in the infrared range. Also, the homogeneity of the radiation is advantageously improved by the reflection effect of the mirror elements in the direction of the emission direction of the solar simulator.

Eine weitere Verbesserung der Homogenität der Abstrahlung des Sonnensimulators kann dadurch erzielt werden, dass die Strahlungsquelle in ihrer Längsausdehnung gekrümmt ausgebildet ist. Durch eine gerade Ausdehnung der Strahlungsquelle, wie sie beispielsweise die EP 1 139 016 vorsieht, kann eine ausreichende Homogenität nicht erzielt werden. Dabei kann insbesondere vorgesehen werden, dass die Strahlungsquelle ringförmig oder schneckenförmig ausgebildet ist.A further improvement in the homogeneity of the radiation of the solar simulator can be achieved in that the radiation source is curved in its longitudinal extent. By a straight extension of the radiation source, such as the EP 1 139 016 provides sufficient homogeneity can not be achieved. It can be provided in particular that the radiation source is annular or helical.

Eine erste Weiterbildung der vorliegenden Erfindung sieht vor, dass das mindestens eine Spiegelelement planar ausgebildet ist. Gerade hierdurch kann eine sehr homogene Ausleuchtung des zu bestrahlenden Zieles erzielt werden.A first development of the present invention provides that the at least one mirror element is planar. Precisely because of this, a very homogeneous illumination of the target to be irradiated can be achieved.

Weiterhin kann vorgesehen werden, dass das mindestens eine Spiegelelement, speziell die Spiegelfläche des Spiegelelements, ein Material oder eine Beschichtung aufweist, welche bzw. welches derart ausgebildet ist, dass die Reflexionswirkung des Spiegelelements im Infrarot-Bereich deutlich höher ist als im UV-Bereich. Insbesondere ist hierfür ein hochreflektierendes Material oder eine hochreflektierende Beschichtung geeignet, welches bzw. welche im Infrarot-Bereich eine Reflexionswirkung größer als 60 %, bevorzugt größer als 70 %, idealerweise größer als 90 % aufweist. Somit kann auch durch die geeignete Wahl des Materials oder der Beschichtung des Spiegelelements das resultierende Spektrum in der gewünschten Weise beeinflusst werden, nämlich hin zu einer Verstärkung der Intensität im Infrarot-Bereich. Insbesondere kann dabei vorgesehen werden, dass das mindestens eine Spiegelelement teilweise oder ganz aus Gold besteht oder eine Beschichtung aufweist, die aus Gold oder einer goldhaltigen Legierung besteht. Es kann aber auch vorgesehen werden, dass das mindestens eine Spiegelelement eine Metallschicht mit einer Oxidschicht aufweist, insbesondere ein Leichtmetall, beispielsweise Aluminium. Es kann diese Metallschicht aber auch mit einer geeigneten Beschichtung wie vorstehend beschrieben beschichtet sein, die die gewünschte Reflexionswirkung aufweist. Alternativ kann aber auch das Spiegelelement eine Halbleiterschicht, beispielsweise Silizium, mit einer Oxidschicht aufweisen, wobei die Oxidschicht auch noch mit einer weiteren Beschichtung, beispielsweise aus Metall, insbesondere aus Aluminium, versehen sein kann. Die Halbleiter-Oxidschicht kann insbesondere als thermische Oxidschicht ausgebildet sein, wie sie in einem thermischen Oxidationsprozess erzeugt wird. Man erhält dadurch eine praktisch einkristalline Halbleiter-Oxidschicht, die eine sehr genau definierte Grenzfläche zum angrenzenden Halbleitermaterial aufweist. Auf die Oxidschicht kann dann eine Metallschicht beispielsweise durch Aufdampfen aufgebracht werden.Furthermore, it can be provided that the at least one mirror element, in particular the mirror surface of the mirror element, has a material or a coating which is designed such that the reflection effect of the mirror element in the infrared region is significantly higher than in the UV range. In particular, for this purpose, a highly reflective material or a highly reflective coating is suitable, which or in the infrared range, a reflection effect greater than 60%, preferably greater than 70%, ideally greater than 90%. Thus, the appropriate spectrum of the material or the coating of the mirror element, the resulting spectrum can be influenced in the desired manner, namely towards an increase in the intensity in the infrared range. In particular, it may be provided that the at least one mirror element consists partly or entirely of gold or has a coating consisting of gold or a gold-containing alloy. However, it can also be provided that the at least one mirror element has a metal layer with an oxide layer, in particular a light metal, for example aluminum. However, this metal layer can also be coated with a suitable coating as described above, which has the desired reflection effect. Alternatively, however, the mirror element can also have a semiconductor layer, for example silicon, with an oxide layer, wherein the oxide layer can also be provided with a further coating, for example made of metal, in particular of aluminum. The semiconductor oxide layer may in particular be formed as a thermal oxide layer, as it is produced in a thermal oxidation process. This gives a practically monocrystalline semiconductor oxide layer which has a very well-defined interface with the adjacent semiconductor material. On the oxide layer then a metal layer can be applied, for example by vapor deposition.

Es zeigt sich, dass sowohl Metalle wie Gold als auch Metalle mit Oxidschichten wie insbesondere Leichtmetalle und auch Halbleiter mit Oxidschichten sehr gute Reflexionseigenschaften gerade im Infrarot-Bereich aufweisen. Gerade diese Materialien können also im Rahmen der vorliegenden Erfindung vorteilhaft eingesetzt werden.It turns out that both metals such as gold and metals with oxide layers, in particular light metals and also semiconductors with oxide layers have very good reflection properties, especially in the infrared range. Especially these materials can therefore be used advantageously in the context of the present invention.

Die Homogenität der Abstrahlung kann sogar noch weiter dadurch erhöht werden, dass die Strahlungsquelle von einem Gehäuse umgeben wird, welches in Abstrahlrichtung im Wandbereich mehrere hintereinander angeordnete Blendenelemente aufweist. Diese Blendenelemente fangen diejenigen Strahlungsanteile der Strahlungsquelle ab, die nicht direkt oder nicht überwiegend in Richtung der Abstrahlrichtung abgestrahlt werden. Diese Blendenelemente können bevorzugt zusätzlich mit einer gering reflektierenden Beschichtung überzogen oder aus einem gering reflektierenden Material hergestellt werden, um Streustrahlung weitgehend zu unterbinden.The homogeneity of the radiation can be increased even further by the fact that the radiation source is surrounded by a housing, which in Radiating in the wall region has a plurality of successively arranged aperture elements. These diaphragm elements intercept those radiation components of the radiation source that are not emitted directly or predominantly in the direction of the emission direction. These aperture elements may preferably additionally have a low-reflection coating coated or made of a low-reflective material to substantially prevent scattered radiation.

Eine bevorzugte Weiterbildung der Erfindung sieht vor, dass die Strahlungsquelle und/oder das Spiegelelement über Halterungen mit einer Trägerplatte aus Granit verbunden ist. Die Oberfläche der Trägerplatte ist dabei entweder glatt poliert oder mikroskopisch aufgeraut, um eine verringerte Reflexionswirkung aufzuweisen. Eine solche Granitplatte hat sich als ideale Trägerplatte erwiesen, die eine hohe Stabilität, insbesondere auch eine hohe Temperaturstabilität aufweist, andererseits auch die erforderliche Stabilität und Isolationswirkung gegenüber den hohen Spannungen, die über die Halterungen und leitenden Zuführungen an der Strahlungsquelle und/oder dem mindestens einen Spiegelelement anliegen.A preferred embodiment of the invention provides that the radiation source and / or the mirror element is connected via brackets with a support plate made of granite. The surface of the support plate is either polished smooth or roughened microscopically to have a reduced reflection effect. Such a granite plate has proven to be an ideal support plate, which has a high stability, in particular a high temperature stability, on the other hand, the required stability and insulation against the high voltages, via the brackets and conductive leads to the radiation source and / or the at least one Abut mirror element.

Insbesondere kann die Strahlungsquelle als Xenon-Blitzlichtlampe ausgebildet sein. Es können weiter, wie grundsätzlich aus der DE 201 03 645 bekannt, zusätzliche Filtermittel vorgesehen werden, um das Spektrum des Sonnensimulators noch weiter in gewünschter Weise zu beeinflussen. Um das in der Bestrahlungsebene auftreffende Spektrum der Strahlung noch weiter variieren zu können, kann vorgesehen werden, dass mindestens zwei Filter im wesentlichen senkrecht zur Abstrahlrichtung verschiebbar angeordnet sind, wobei die Filter derart ausgebildet sind, dass sie jeweils entweder gleiche oder unterschiedliche Anteile der Strahlung unterdrücken. Damit ergibt sich als Gesamtspektrum nun eine Überlagerung der Strahlungsanteile, die kein Filter passiert haben, der Strahlungsanteile, die das erste Filter passiert haben und der Strahlungsanteile, die das zweite Filter oder gar noch weitere Filter passiert haben. Wenn die Filter so angeordnet sind, dass sie übereinander geschoben werden können, ergeben sich zusätzlich auch noch Strahlungsanteile, die zuerst ein erstes und dann ein zweites Filter oder gar noch weitere Filter passiert haben.In particular, the radiation source can be designed as a xenon flash lamp. It can continue, as basically from the DE 201 03 645 be known, additional filter means are provided to affect the spectrum of the solar simulator even further in the desired manner. In order to be able to vary the spectrum of the radiation incident in the irradiation plane even further, it can be provided that at least two filters are arranged to be displaceable substantially perpendicularly to the emission direction, the filters being designed such that they respectively suppress the same or different portions of the radiation , This results in the total spectrum now a superposition of the radiation components that have passed no filter, the radiation components that have passed the first filter and the radiation components that have passed the second filter or even more filters. If the filters are arranged so that they can be pushed over each other, there are additional radiation components that have passed first a first filter and then a second filter or even more filters.

Für eine spezielle Verwendung des Sonnensimulators zur Vermessung von Solarzellen kann vorgesehen werden, dass in einer Bestrahlungsebene zu vermessende Solarzellen angeordnet sind, wobei in der Bestrahlungsebene außerdem zusätzliche Referenz-Solarzellen für Vergleichsmessungen angeordnet werden können. Damit wirkt auf die Referenz-Solarzellen in jedem Fall die gleiche Strahlung wie auf die zu vermessenden Solarzellen. Es können dann beispielsweise die zu vermessenden Solarzellen derart ausgebildet sein, dass mindestens eine erste Solarzellenschicht über einer zweiten Solarzellenschicht angeordnet ist, wobei die Solarzellenschichten ein unterschiedliches Absorptionsverhalten aufweisen. Solche Solarzellen sind auch als Multi-Junction-Solarzellen bekannt. Die Referenz-Solarzellen werden dann zur Garantie einer möglichst eindeutigen Referenzmessung durch mindestens eine erste Referenz-Solarzellenschicht mit einem Absorptionsverhalten, das der mindestens einen ersten Solarzellenschicht entspricht sowie durch mindestens eine zweite, der ersten Referenz-Solarzellenschicht benachbarte Referenz-Solarzellenschicht, deren Absorptionsverhalten der zweiten Solarzellenschicht entspricht, gebildet, wobei der zweiten Referenz-Solarzellenschicht ein Filter vorgeschaltet ist, das dem Absorptionsverhalten der ersten Solarzellenschicht entspricht. Analoges gilt für mögliche weitere Solarzellenschichten. Die Referenz-Solarzellenschichten sind damit unabhängig voneinander, aber sie simulieren dennoch die Gegebenheiten innerhalb der übereinander angeordneten Solarzellenschichten, die es zu vermessen gilt. Die Anordnung kann natürlich auch zur Vermessung von Single-Junction-Solarzellen, ebenfalls bevorzugt mit Hilfe von Referenz-Solarzellen, verwendet werden.For a specific use of the solar simulator for measuring solar cells, provision can be made for arranging solar cells to be measured in an irradiation plane, wherein additional reference solar cells can also be arranged in the irradiation plane for comparison measurements. Thus, the same radiation is applied to the reference solar cells in each case as to the solar cells to be measured. For example, the solar cells to be measured can then be embodied such that at least one first solar cell layer is arranged above a second solar cell layer, the solar cell layers having a different absorption behavior. Such solar cells are also known as multi-junction solar cells. The reference solar cells are then used to guarantee an unambiguous reference measurement by at least a first reference solar cell layer having an absorption behavior corresponding to the at least one first solar cell layer and by at least one second reference solar cell layer adjacent to the first reference solar cell layer whose absorption behavior of the second Solar cell layer corresponds, formed, wherein the second reference solar cell layer is preceded by a filter that corresponds to the absorption behavior of the first solar cell layer. The same applies to possible further solar cell layers. The reference solar cell layers are thus independent of each other, but they still simulate the conditions within the stacked solar cell layers, which must be measured. Of course, the arrangement can also be used for the measurement of single-junction solar cells, likewise preferably with the aid of reference solar cells.

Ein spezielles Ausführungsbeispiel wird nachfolgend anhand der Figuren 1 bis 3 erläutert.A specific embodiment will be described below with reference to FIG FIGS. 1 to 3 explained.

Es zeigen:

Fig. 1:
Sonnensimulator nach der vorliegenden Erfindung
Fig. 2:
Vergrößerte Detaildarstellung der Strahlungsquelle des erfindungsgemäßen Sonnensimulators
Fig. 3:
Schematische Darstellung eines Querschnittes durch die Strahlungsquelle nach Fig. 2
Fig. 4:
Sonnensimulator nach Fig. 1 mit zusätzlichen, verschiebbaren Filtern
Fig. 5:
Sonnensimulator nach Fig. 1 mit korrekter Darstellung der Strahlungsquelle
Show it:
Fig. 1:
Solar simulator according to the present invention
Fig. 2:
Enlarged detailed representation of the radiation source of the solar simulator according to the invention
3:
Schematic representation of a cross section through the radiation source to Fig. 2
4:
Sun simulator after Fig. 1 with additional, sliding filters
Fig. 5:
Sun simulator after Fig. 1 with correct representation of the radiation source

In Fig. 1 ist schematisch ein Sonnensimulator nach der vorliegenden Erfindung dargestellt, der eine Strahlungsquelle 1 in Form einer Xenon-Blitzlichtlampe aufweist, an die unmittelbar ein oder mehrere Spiegelelemente 7 angrenzen. Dies ist in Fig. 2 und 3 nochmals deutlicher dargestellt. Die Spiegelelemente 7 liegen direkt an dem Röhrenkörper der Xenon-Blitzlichtlampe 1 an. Wie die Figuren zeigen, ist die Blitzlichtlampe schneckenförmig ausgebildet, um eine möglichst homogene Abstrahlung zu erzielen. Die Zahl und Form der Spiegelelemente 7 kann so angepasst werden, dass möglichst über die gesamte Längserstreckung der Blitzlichtlampe 1 Spiegelelemente 7 unmittelbar an deren Röhrenkörper anliegen. In Fig. 2 ist dies exemplarisch für zwei Spiegelelemente 7 dargestellt. Diese können insbesondere über entsprechende Halterungen 6 wie beispielsweise Klemmhalterungen mit dem Röhrenkörper der Blitzlichtlampe 1 verbunden sein, wobei diese Halterungen vorzugsweise metallisch ausgebildet sind. Die Halterungen 6 sollen hier als Teil der Spiegelelemente 7 verstanden werden. Die Spiegelelemente 7 bestehen aus Aluminium und weisen eine Gold-Beschichtung auf. Die Spiegelelemente 7 können aber auch vollständig aus Gold bestehen. Es kann aber auch vorgesehen werden, dass das Spiegelelement 7 eine Metallschicht mit einer Oxidschicht aufweist, beispielsweise Aluminium. Alternativ kann aber auch das Spiegelelement eine Halbleiterschicht, beispielsweise Silizium, mit einer Oxidschicht aufweisen, wobei die Oxidschicht auch noch mit einer weiteren Beschichtung, beispielsweise aus Aluminium, versehen sein kann. Die Halbleiter-Oxidschicht kann als thermische Oxidschicht ausgebildet sein, wie sie in einem thermischen Oxidationsprozess erzeugt wird. Auf die Oxidschicht kann dann die Aluminiumschicht durch Aufdampfen aufgebracht werden. Im folgenden soll von einem Spiegelelement 7 aus Aluminium mit einer Goldbeschichtung ausgegangen werden.In Fig. 1 schematically a solar simulator according to the present invention is shown, which has a radiation source 1 in the form of a xenon flash lamp to which directly adjoin one or more mirror elements 7. This is in FIGS. 2 and 3 again shown more clearly. The mirror elements 7 abut directly on the tube body of the xenon flash lamp 1. As the figures show, the flashlamp is helical in shape to achieve the most homogeneous possible radiation. The number and shape of the mirror elements 7 can be adjusted so that as far as possible over the entire longitudinal extent of the flash lamp 1 mirror elements 7 directly abut the tube body. In Fig. 2 this is exemplified for two mirror elements 7. These can in particular be connected via corresponding brackets 6 such as clamp brackets with the tube body of the flashlamp 1, these brackets are preferably formed metallic. The brackets 6 are to be understood here as part of the mirror elements 7. The mirror elements 7 are made of aluminum and have a gold coating. But the mirror elements 7 can also be made entirely of gold. However, it can also be provided that the mirror element 7 has a metal layer with an oxide layer, for example aluminum. Alternatively, however, the mirror element may also include a semiconductor layer, for example silicon an oxide layer, wherein the oxide layer may also be provided with a further coating, for example of aluminum. The semiconductor oxide layer may be formed as a thermal oxide layer, as it is produced in a thermal oxidation process. On the oxide layer, the aluminum layer can then be applied by vapor deposition. The following is to be assumed by a mirror element 7 made of aluminum with a gold coating.

In Fig. 1 ist die Strahlungsquelle 1 samt Spiegelelement 7 lediglich zur Vereinfachung der Darstellung in der Papierebene dargestellt. Tatsächlich ist die Strahlungsquelle 1 wie auch das Spiegelelement 7 in einer Ebene senkrecht zur Abstrahlrichtung 10 des Sonnensimulators angeordnet. Die tatsächliche Anordnung der Strahlungsquelle 1 und des Spiegelelements 7 ist in Fig. 5 dargestellt.In Fig. 1 the radiation source 1 together with the mirror element 7 is shown only to simplify the representation in the plane of the paper. In fact, the radiation source 1 as well as the mirror element 7 is arranged in a plane perpendicular to the emission direction 10 of the solar simulator. The actual arrangement of the radiation source 1 and the mirror element 7 is in Fig. 5 shown.

Wie Fig. 1 weiter zeigt, liegt an Elektroden an den Enden der Blitzlichtlampe 1 eine konstante Spannung an, die von einer Spannungsquelle 8 erzeugt wird. Diese Spannung ist so ausgelegt, dass sie nicht zum Zünden der Blitzlichtlampe 1 ausreicht, sie liegt also unter der Zündspannung. Typischerweise können durch die Spannungsquelle 8 einige Kilovolt erzeugt werden. Bevorzugt liegt die konstante Spannung zwischen 600 V und 1000 V, insbesondere bei etwa 800 V. Weiterhin wird an die Spiegelelemente 7 und/oder die Halterungen 6 ein Hochspannungspotential als Zündspannung angelegt, wie die Fig. 1 und 2 zeigen. Das an den Spiegelelementen 7 und/oder den Halterungen 6 anliegende Hochspannungspotential kann beispielsweise über Hochspannungsquelle 9 wie beispielsweise eine Zündspule erzeugt werden und beträgt typischerweise einige zehn Kilovolt, bevorzugt zwischen 10 kV und 20 kV, insbesondere etwa 15 kV. Durch diese Zündspannung kann nun eine gepulste Entladung in der Blitzlichtlampe 1 erzeugt werden. Die Zündspannung erzeugt letztlich lediglich ein elektrisches Feld im Bereich des Röhrenkörpers der Blitzlichtlampe 1, es fließt jedoch praktisch kein Strom, da die Spiegelelemente 7 und/oder die Halterungen 6 durch den Röhrenkörper der Blitzlichtlampe 1 isoliert sind.As Fig. 1 Further, a constant voltage is applied to electrodes at the ends of the flashlamp 1, which voltage is generated by a voltage source 8. This voltage is designed so that it is not sufficient to ignite the flash lamp 1, so it is below the ignition voltage. Typically, a few kilovolts can be generated by the voltage source 8. Preferably, the constant voltage is between 600 V and 1000 V, in particular at about 800 V. Furthermore, a high-voltage potential is applied as ignition voltage to the mirror elements 7 and / or the holders 6, as the Fig. 1 and 2 demonstrate. The high-voltage potential applied to the mirror elements 7 and / or the holders 6 can be generated for example via high-voltage source 9 such as an ignition coil and is typically several tens of kilovolts, preferably between 10 kV and 20 kV, in particular about 15 kV. By means of this ignition voltage, a pulsed discharge can now be generated in the flashlamp 1. The ignition voltage ultimately only generates an electric field in the region of the tube body of the flashlamp 1, it flows but virtually no power, since the mirror elements 7 and / or the holders 6 are isolated by the tube body of the flashlamp 1.

Wie bereits erläutert verbessert die spezielle Art der Anordnung der Spiegelelemente 7 unmittelbar angrenzend, also unmittelbar anliegend an den Röhrenkörper der Blitzlichtlampe 1 die Homogenität der Abstrahlung, einerseits durch die Reflexionswirkung der Spiegelelemente 7 (siehe Fig. 2), die durch die Goldbeschichtung vorteilhaft vor allem im Infrarot-Bereich stattfindet, andererseits durch die Wirkung der Spiegelelemente 7 und/oder der Halterungen 6 als Hochspannungs-Elektroden, die beim Zündvorgang die Homogenität der Entladung in der Blitzlichtlampe 1 garantieren.As already explained, the special type of arrangement of the mirror elements 7 immediately adjacent, ie immediately adjacent to the tube body of the flashlamp 1, improves the homogeneity of the emission, on the one hand by the reflection effect of the mirror elements 7 (see FIG Fig. 2 ), which takes place by the gold coating advantageous especially in the infrared range, on the other hand by the action of the mirror elements 7 and / or the holders 6 as high-voltage electrodes, which guarantee the homogeneity of the discharge in the flashlamp 1 during the ignition process.

Fig. 1 zeigt weiterhin, dass die Blitzlichtlampe 1 und die Spiegelelemente 7 über Halterungen 11 mit einer Granit-Trägerplatte 4 verbunden sind. Diese Trägerplatte weist die bereits eingangs genannten Vorteile auf. Weiterhin ist die Anordnung auch Blitzlichtlampe 1 und Spiegelelementen 7 von einem Gehäuse 2 umgeben, welches in Richtung der Abstrahlrichtung 10 des Sonnensimulators im Wandbereich mehrere nacheinander angeordnete Blendenelemente 3 aufweist. Wird das Gehäuse beispielsweise zylindrisch ausgebildet, so werden die Blendenelemente 3 als nacheinander angeordnete, konzentrische Ringe ausgebildet. Weiterhin sind zumindest die Blendenelemente 3, idealerweise aber auch der gesamte Innenbereich des Gehäuses 2, mit einer gering reflektierenden Beschichtung versehen oder aus einem gering reflektierenden Material hergestellt, also einem Material, das Streustrahlung nicht reflektiert, sondern idealerweise weitgehend absorbiert. Damit wird erreicht, dass der Sonnensimulator weitgehend wie ein schwarzer Körper bzw. wie ein Hohlraumstrahler strahlt. Fig. 1 further shows that the flashlamp 1 and the mirror elements 7 are connected via brackets 11 with a granite support plate 4. This carrier plate has the advantages already mentioned. Furthermore, the arrangement is also flash lamp 1 and mirror elements 7 surrounded by a housing 2, which has a plurality of successively arranged aperture elements 3 in the wall region in the direction of the emission direction 10 of the solar simulator. If the housing is cylindrical, for example, then the diaphragm elements 3 are formed as successively arranged, concentric rings. Furthermore, at least the diaphragm elements 3, ideally but also the entire inner region of the housing 2, provided with a low-reflective coating or made of a low-reflective material, ie a material that does not reflect scattered radiation, but ideally largely absorbed. This ensures that the solar simulator emits largely like a black body or as a cavity radiator.

Der vorliegende Sonnensimulator kann auch entsprechend der Fig. 4 weitergebildet werden, indem senkrecht zur Abstrahlungsrichtung 10 verschiebbare Filter 5 angeordnet sind, die bevorzugt auch übereinander geschoben werden können, wie durch die gestrichelten Linien in Fig. 4 angedeutet. Solche verschiebbaren Filter sind grundsätzlich aus DE 201 03 645 bekannt. Die Filter 5 können entweder gleiche oder unterschiedliche Anteile der elektromagnetischen Strahlung der Blitzlichtlampe 1 unterdrücken, wie bereits eingangs dargestellt wurde. Die Filter 5 bestehen beispielsweise aus Quarzglas, wie z.B. Herasil® .The present solar simulator can also according to the Fig. 4 be further developed by 10 slidable filter 5 are arranged perpendicular to the radiation direction, which can be preferably also superimposed, as shown by the dashed lines in Fig. 4 indicated. Such sliding filters are basically off DE 201 03 645 known. The filters 5 can suppress either the same or different proportions of the electromagnetic radiation of the flashlamp 1, as already described above. The filters 5 consist for example of quartz glass, such as Herasil®.

Claims (8)

  1. Sun simulator, having
    - a pulsed radiation source (1) for generating an electromagnetic radiation,
    - at least one mirror element (7) which is arranged in the region of the radiation source and which reflects portions of the radiation of the radiation source (1) essentially in the direction of the emission direction (10) of the sun simulator,
    characterized in that
    - the at least one mirror element (7) is arranged in a manner directly adjoining the radiation source (1),
    - the at least one mirror element (7) is embodied at least partly in metallic fashion,
    - at least part of the ignition voltage of the pulsed radiation source is applied to the mirror element (7), and
    - the radiation source (1) is embodied in curved fashion in its longitudinal extent.
  2. Sun simulator according to Claim 1, characterized in that the at least one mirror element (7) is embodied in planar fashion.
  3. Sun simulator according to Claim 1 or 2, characterized in that the at least one mirror element (7) has a highly reflective material or a highly reflective coating having a reflection effect of greater than 60%, preferably greater than 70%, ideally greater than 90%, in the infrared range.
  4. Sun simulator according to Claim 3, characterized in that the at least one mirror element (7) has a coating which is composed of gold or a gold-containing alloy or at least parts of the mirror element (7) are composed of gold.
  5. Sun simulator according to any of Claims 1 to 4, characterized in that the at least one mirror element (7) has a semiconductor layer having an oxide layer, in particular silicon, or a metal layer having an oxide layer, in particular a light metal.
  6. Sun simulator according to any of Claims 1 to 5, characterized in that the radiation source (1) is embodied in ring-shaped or helical fashion.
  7. Sun simulator according to any of Claims 1 to 6, characterized in that the radiation source (1) is surrounded by a housing (2) having, in the emission direction (10) in the wall region, a plurality of screen elements (3) arranged one behind another.
  8. Sun simulator according to any of Claims 1 to 7, characterized in that the radiation source (1) and/or the mirror element (7) are/is connected to a carrier plate (4) made of granite by means of mounts (11).
EP04003125A 2003-02-14 2004-02-12 Pulsed sun simulator with improved homogeneity Expired - Fee Related EP1447615B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10306150A DE10306150B4 (en) 2003-02-14 2003-02-14 Pulsed solar simulator with improved homogeneity
DE10306150 2003-02-14

Publications (3)

Publication Number Publication Date
EP1447615A2 EP1447615A2 (en) 2004-08-18
EP1447615A3 EP1447615A3 (en) 2007-06-27
EP1447615B1 true EP1447615B1 (en) 2009-09-09

Family

ID=32668062

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04003125A Expired - Fee Related EP1447615B1 (en) 2003-02-14 2004-02-12 Pulsed sun simulator with improved homogeneity

Country Status (3)

Country Link
US (1) US7067831B2 (en)
EP (1) EP1447615B1 (en)
DE (2) DE10306150B4 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7657147B2 (en) * 2006-03-02 2010-02-02 Solar Light Company, Inc. Sunlight simulator apparatus
US8239165B1 (en) 2007-09-28 2012-08-07 Alliance For Sustainable Energy, Llc Ultra-fast determination of quantum efficiency of a solar cell
US20090279277A1 (en) * 2008-05-09 2009-11-12 Jungwirth Douglas R Optical source assembly suitable for use as a solar simulator and associated methods
US9063006B2 (en) * 2008-05-09 2015-06-23 The Boeing Company Optical source assembly suitable for use as a solar simulator and associated methods
DE102008025644A1 (en) * 2008-05-28 2010-06-10 Astrium Gmbh Device for the indirect frequency-selective illumination of solar cells
GB0821146D0 (en) 2008-11-19 2008-12-24 Univ Denmark Tech Dtu Method of testing solar cells
CA2794766C (en) 2010-03-31 2018-09-25 Ats Automation Tooling Systems Inc. Light generator systems and methods
TWI397708B (en) * 2010-04-06 2013-06-01 Ind Tech Res Inst Solar cell measurement system and solar simulator
TW201205046A (en) * 2010-07-28 2012-02-01 Chroma Ate Inc Sunlight simulator with detection device and solar cell detection device
TWI440794B (en) 2010-09-27 2014-06-11 Ind Tech Res Inst Solar light simulator
US8439530B2 (en) 2011-02-16 2013-05-14 The Boeing Company Method and apparatus for simulating solar light
DE102011014755B4 (en) * 2011-03-22 2013-02-21 Sew-Eurodrive Gmbh & Co. Kg Exhibition device for a solar thermal system and method for operating an exhibition device for a solar thermal system
CN102252826B (en) * 2011-04-15 2012-12-12 中国科学院长春光学精密机械与物理研究所 Device and method for testing light concentration efficiency of high-parallelism and large-aperture light concentration system
CN102353884B (en) * 2011-06-29 2013-10-16 中海阳新能源电力股份有限公司 LED light source apparatus for correction and test by simulating sun movement and astronomical refraction
US8736272B2 (en) * 2011-11-30 2014-05-27 Spire Corporation Adjustable spectrum LED solar simulator system and method
US10720883B2 (en) 2017-04-24 2020-07-21 Angstrom Designs, Inc Apparatus and method for testing performance of multi-junction solar cells
US11356056B1 (en) 2020-12-23 2022-06-07 Industrial Technology Research Institute Photovoltaic mobile lab

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1948399U (en) * 1961-03-10 1966-10-27 Robert Bosch Elektronik Photok ELECTRON FLASH DISCHARGE LAMP.
DE1910505U (en) * 1963-10-04 1965-02-25 Egyesuelt Izzolampa REFLECTOR, TRIM STRIPS AND REFRIGERATING FIBER FOR ELECTRIC DISCHARGE LAMPS, IN PARTICULAR LIGHT TUBES.
US3619066A (en) 1969-03-07 1971-11-09 Bell Telephone Labor Inc Beam position and width sensing by scattering
US4641227A (en) * 1984-11-29 1987-02-03 Wacom Co., Ltd. Solar simulator
DE8528660U1 (en) * 1985-10-08 1987-03-19 Heimann Gmbh, 6200 Wiesbaden Gas discharge lamp
DE19631188A1 (en) * 1996-08-02 1998-02-05 Heraeus Kulzer Gmbh Discharge lamp arrangement
US5984484A (en) * 1997-10-31 1999-11-16 Trw Inc. Large area pulsed solar simulator
US6154034A (en) * 1998-10-20 2000-11-28 Lovelady; James N. Method and apparatus for testing photovoltaic solar cells using multiple pulsed light sources
US6548819B1 (en) * 2000-03-30 2003-04-15 Hughes Electronics Corporation Infrared enhanced pulsed solar simulator
DE20103645U1 (en) 2001-03-02 2001-05-23 Astrium Gmbh Sun simulator with sliding filter

Also Published As

Publication number Publication date
DE10306150B4 (en) 2010-08-19
DE502004010016D1 (en) 2009-10-22
US20040223325A1 (en) 2004-11-11
US7067831B2 (en) 2006-06-27
DE10306150A1 (en) 2004-09-02
EP1447615A2 (en) 2004-08-18
EP1447615A3 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
EP1447615B1 (en) Pulsed sun simulator with improved homogeneity
DE69632137T2 (en) FILAMENT FOR INFRARED RADIATION AND MANUFACTURING PROCESS
EP0258331B1 (en) Glow discharge lamp and use thereof
DE3734678C2 (en)
EP0312732A1 (en) High power radiator
EP0782871A2 (en) Body ultra-violet radiation process, its device and its use
DE60022422T2 (en) Short-arc discharge lamp
DE2530195A1 (en) HIGH POWER ARC DISCHARGE LAMP
DE3527855A1 (en) EXPOSURE METHOD FOR A SEMICONDUCTOR DISC BY MEANS OF A DISCHARGE LAMP FILLED WITH RARE GAS AND MERCURY
DE102011113681A1 (en) Lamp unit for generation of optical radiation, has discharge chamber containing filling gas, ignition source for generating plasma zone within discharge chamber and laser for providing energy to plasma zone by laser beam
CH666776A5 (en) RADIATION SOURCE FOR OPTICAL DEVICES, ESPECIALLY FOR PHOTOLITHOGRAPHIC IMAGING SYSTEMS.
DE4302465C1 (en) Appts. for producing dielectrically-hindered discharge - comprises gas-filled discharge space between two ignition voltage-admitted electrodes
EP0592794B1 (en) Apparatus for generating and emitting electromagnetic radiation
DE4306398A1 (en) Device for heating a substrate
DE4102079A1 (en) HIGH PRESSURE GAS LASER DEVICE
DE69926706T2 (en) NIEDERDRUCKQUECKSILBERDAMPFEENTLADUNGSLAMPE
DE4325718C2 (en) Lighting arrangement for light and weather fastness testers with a xenon gas discharge lamp
DE4036122A1 (en) CORON DISCHARGE LIGHT SOURCE CELL
DE1042115B (en) Water-cooled hydrogen lamp with quartz discharge vessel
DE10392422T5 (en) Short arc lamp with double concave reflectors and a transparent arc chamber
DE10133326A1 (en) Dielectric barrier discharge lamp with ignition aid
DE1589416B2 (en) SPECTRAL RADIATION SOURCE
EP2981984B1 (en) Lamp
DE102007031628B4 (en) UV radiation source
DE1294518B (en) Thermionic converter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20070912

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASTRIUM GMBH

17Q First examination report despatched

Effective date: 20071119

AKX Designation fees paid

Designated state(s): DE FR IT NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT NL

REF Corresponds to:

Ref document number: 502004010016

Country of ref document: DE

Date of ref document: 20091022

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100610

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170217

Year of fee payment: 14

Ref country code: DE

Payment date: 20170217

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004010016

Country of ref document: DE

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Free format text: FORMER OWNER: ASTRIUM GMBH, 81667 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20180216

Year of fee payment: 15

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: AIRBUS DS GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: ASTRIUM GMBH

Effective date: 20180220

Ref country code: NL

Ref legal event code: PD

Owner name: AIRBUS DEFENCE AND SPACE GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), MERGE; FORMER OWNER NAME: AIRBUS DS GMBH

Effective date: 20180220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180227

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: AIRBUS DS GMBH, DE

Effective date: 20180718

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004010016

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190212