EP1446810B1 - Method and device for the recording of objects - Google Patents

Method and device for the recording of objects Download PDF

Info

Publication number
EP1446810B1
EP1446810B1 EP02783377A EP02783377A EP1446810B1 EP 1446810 B1 EP1446810 B1 EP 1446810B1 EP 02783377 A EP02783377 A EP 02783377A EP 02783377 A EP02783377 A EP 02783377A EP 1446810 B1 EP1446810 B1 EP 1446810B1
Authority
EP
European Patent Office
Prior art keywords
aperture
ray radiation
radiation source
dimension
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02783377A
Other languages
German (de)
French (fr)
Other versions
EP1446810A1 (en
Inventor
Albert Geisser
Bruno Rudolf Kezmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tecnostore AG
Original Assignee
Tecnostore AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tecnostore AG filed Critical Tecnostore AG
Priority to EP02783377A priority Critical patent/EP1446810B1/en
Publication of EP1446810A1 publication Critical patent/EP1446810A1/en
Application granted granted Critical
Publication of EP1446810B1 publication Critical patent/EP1446810B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers

Definitions

  • the invention relates to a method according to the preamble of claim 1 and to a device according to the preamble of claim 9.
  • moving shutters for metering the amount of light
  • shutter shutter
  • the width of the aperture for varying the amount of light can be set differently.
  • diaphragms are known as collimators, which serve with constant dimensions to reduce the radiation dose produced but also according to US-A-4,773,087 be used to reduce the scattered radiation.
  • Collimators may also be adjustable to limit the irradiated area adapted to the object to be photographed. So in the US-A-4,122,350 a size-adjustable collimator for limiting the irradiated area in mammography is shown, wherein no relative movement between the object and the X-ray source takes place.
  • An adjustable collimator is known that can limit the height of the irradiated area in cephalometric panoramic exposures.
  • the width of the intersection of the cone and the plane of rotation is determined by a non-adjustable slot at the exit of the X-ray source. Perpendicular to the pivot plane, the cone of rays is limited by the height-adjustable collimator, with display bars indicating the limit in height.
  • An adjustable collimator is known which limits the irradiated area depending on the size of the film cassette used. In the recording mode shown, there is no relative movement between the object and the X-ray source. As a general rule In radiology, it is known to use collimators to confine the irradiated area and to represent the limited area for the control of the same on the object (patient) before the actual recording by means of visible light.
  • Collimators are also used to confine the X-ray radiation when using line detectors, such that only the radiation-sensitive line detector is irradiated.
  • line detectors such that only the radiation-sensitive line detector is irradiated.
  • raster screens are used to reduce stray radiation.
  • this method of reducing the stray radiation also simultaneously weakens the useful radiation, so that high doses of X-radiation must be used to produce a high-contrast image.
  • These ray patterns which are located between the object and the image, are constant in their dimensions. The recording of unwanted scattered radiation on the recording medium generally leads to a deteriorated useful signal / interference signal ratio during image acquisition and thus to a non-optimal image quality.
  • EP-A-0 223 432 For the purpose of equalizing the exposure of X-ray images, it is known to control a multiplicity of diaphragms by the patient body as a function of the attenuation of the X-radiation, with a plurality of detectors being arranged behind the patient for detecting the X-radiation intensity.
  • Out US-A-5,627,869 It is known to set the collimator in mammographic individual recordings so that the size of the X-ray cone is matched to the size of the breast compression disc and its distance from the X-ray source so that the X-ray cone covers the breast compression disc but does not extend beyond its edges. This is to reduce the scattered radiation.
  • the scattered radiation can be particularly well reduced, which increases the image quality. It has been shown in X-ray photography that the object size-dependent aperture leads to sharper images, which allow a better interpretation of the image of the object.
  • FIG. 1 shows a first embodiment in plan, in which by means of an object-dependent adjusted aperture, the scattered radiation is reduced.
  • FIG. 1 shows schematically a device 1, by means of which an object 4 is transilluminated in order to produce on a receiving means 3 an image of the object 4.
  • the device 1 is, for example, an industrial or medical X-ray system, which illuminates a technical object 4, or a patient, and generates the image on an X-ray film or an X-ray plate 3.
  • the X-ray source 2 is an X-ray tube.
  • the X-ray source 2 which is arranged in a schematically illustrated housing, generates X-rays, their cones or otherwise differently shaped outline with the boundary lines 5 in the Figure is indicated.
  • the x-ray source 2 is located, for example, in a housing 10, which is closed by the aperture 6 to the object 4 out.
  • the panel can also be arranged separately, housing independent.
  • the diaphragm 6 has an opening 9, through which a part of the X-rays can escape through the aperture from the housing 10, while the rest of the X-rays is prevented by the diaphragm 6 from exiting the housing.
  • the object is placed so that it can be detected by the entire cone of rays, as it exits from the source 2 and is indicated by the lines 5.
  • the radiation emerging from the source 2 can be limited in a known manner by an only indicated collimator 2 ';
  • the lines 5 represent the already limited radiation, which may also extend only over a part of the object 4, if only this part is to be imaged or only this part is moved relative to the beam.
  • the opening 9 of the aperture 6 shown in section is set in any case in the aperture dimension, which corresponds to the direction of movement, as a function of the size of the object 4.
  • the width b of the aperture 9 is set, which is in the direction of movement (arrow A).
  • FIG. 1 schematically represented by two sensors 8, which measure the object 4, for example, contactless by an ultrasonic measurement or an optical measurement. Sensors may also be provided which contact the object to accommodate its dimension for the aperture setting.
  • the size of the Aperture 9 determined and adjusted for example by servomotors 7, which are operated by the controller 11.
  • One in the recording situation of FIG. 1 dimension of interest is the width B of the object, which is traversed by the relative movement in the direction of an arrow A.
  • the width b of the slot-shaped aperture opening of the diaphragm 6 is set in the present example.
  • the width b of the aperture is x times smaller than the width B of the object, where x is in the range of 10 to 100,000, so that the slot width is thus 10 times to 100,000 times less than the width B of the object.
  • the diaphragm aperture can also be chosen to be proportional to the width B of the part of the object. Further, preferably, the height of the slot opening of the aperture 6 corresponding to the height of the object 4, that is, the extension perpendicular to the plane of the object 4, set.
  • the same divider can be used as in the width setting, so that the slot height is also 10 times smaller to 100,000 times smaller than the height of the object 4.
  • the object 4 is then imaged accordingly by a limited by the object size dependent aperture X-ray, in which case the object and the imaging means or the X-ray plate 3 are moved together several times along the stationary and dimmed X-ray source 2, in each case correspondingly displaced in height, so that the image is produced strip by strip.
  • the object and the imaging means or the X-ray plate 3 are moved together several times along the stationary and dimmed X-ray source 2, in each case correspondingly displaced in height, so that the image is produced strip by strip.
  • FIG. 2 schematically shows a view of the diaphragm 6, wherein this according to FIG. 1 a slit with the slot 9 is.
  • This slot 9 can be adjusted in height h and its width b by means of movable diaphragm elements 12 and 13, which are displaceable relative to one another. This is done by the in FIG. 1 indicated actuating means, which may be motor, pneumatic or hydraulic actuating means.
  • Figure 3 shows a corresponding sectional view through the aperture 6 of FIG. 2 , wherein like elements are provided with the same reference numerals.
  • the diaphragm can also be set differently in its depth t, for which purpose preferably also the depth T of the object is measured. A depth adjustment can take place in that several of the apertures are connected in series, as in FIG. 3 with a further aperture 6 'is merely indicated.
  • the use according to the invention of the diaphragm for reducing the stray radiation is possible for the entire spectrum of electromagnetic radiation.
  • the highest possible proportionality e.g. between 1: 10,000 to 1: 100,000.
  • the width of the aperture of the aperture to the micrometer range desirable.
  • the optimum ratio diaphragm: object can only be realized technically complex, e.g. just for apertures in the range of 10 to 100 microns. In this case, a lower proportionality is decreased, e.g. 1:10 or 1:50.
  • FIG. 4 shows a further embodiment of the invention, wherein like reference numerals as used in the previous figures denote like elements.
  • the aperture also shown cut is between the object 4 and the receiving means 3 arranged.
  • the object 4 and the imaging means 3 are moved past the stationary diaphragm 6 and the stationary X-ray source according to the arrows A.
  • this passing movement takes place several times with different shifted height positions of diaphragm and object.
  • the means 7, 8 and 11 are no longer shown, but are also present in the device.
  • the dimension of the diaphragm is also set here, which corresponds to the relative movement, in the present case again the width b proportional to the width of the object 4.
  • the beam 5 exits from the source 2, possibly through a collimator.
  • FIG. 5 shows a further embodiment in which in turn the same elements are provided with the same reference numerals and the means 7, 8 and 11 are not shown, but the X-ray source 2 and the diaphragm 6 according to the arrow A on the fixed object and the stationary imaging means 3 are moved past , Again, the image on the imaging means 3 line by line corresponding to the height of the slot of the diaphragm 6 can be generated.
  • FIG. 6 shows a corresponding embodiment, wherein, however, the diaphragm between the object 4 and the imaging means 3 is arranged. Also the aperture of the Figures 5 and 6 are each set in their slot width b according to the direction of the process of the diaphragm.
  • FIG. 7 shows a further embodiment in which two apertures 6 and 16 are provided with the openings 9 and 19, wherein the one aperture between the X-ray source and the object and the other diaphragm between the object and the imaging means 3 is provided.
  • the apertures are moved synchronously with the X-ray source 2 in order to scan the object line by line.
  • the aperture 9 is doing again in the width b set object-dependent, preferably this also takes place at the aperture 19th
  • a preferred application of the invention is in the medical X-ray technology and in the industrial X-ray technology for testing materials.
  • the tripod is a commercially available multistat with film cassettes or storage foils. On the tripod a panel with control is installed later.
  • the reduction of the scattered radiation can be calculated as a first approximation as a proportion, which results from the total irradiated area without aperture to the passage area of the aperture.
  • the number of passes is usually 1.
  • the time required for the linear movement in direction A depends on the size of the object and is practicable between 0.1 and 10 seconds.

Abstract

A process for taking a picture of an object (4) involves using a radiation source (2) and a recording medium e.g. a film. The object is illuminated and pictures are continuously taken by moving the object and the source relative to a screen. The screen opening (9) is dependent on the size of the object and is adjusted before or during each exposure. The source is e.g. an X-ray source.

Description

Technisches GebietTechnical area

Die Erfindung betrifft ein Verfahren gemäss Oberbegriff des Anspruchs 1 sowie eine Vorrichtung gemäss Oberbegriff des Anspruchs 9.The invention relates to a method according to the preamble of claim 1 and to a device according to the preamble of claim 9.

Stand der TechnikState of the art

In der Fototechnik sind bewegte Blenden (shutter, Verschlussblenden) zur Dosierung der Lichtmenge bekannt, wobei z.B. die Breite der Blende zur Variation der Lichtmenge verschieden eingestellt werden kann.In photographic technology, moving shutters (shutter, shutter) for metering the amount of light are known, e.g. the width of the aperture for varying the amount of light can be set differently.

In der Radiologie sind Blenden als Kollimatoren bekannt, die mit konstanten Dimensionen zur Reduktion der erzeugten Strahlendosis dienen aber auch gemäss US-A-4 773 087 zur Reduktion der Streustrahlung eingesetzt werden. Kollimatoren können ferner einstellbar sein, um das bestrahlte Gebiet, angepasst an das aufzunehmende Objekt, zu begrenzen. So wird in den US-A-4 122 350 ein grössenverstellbarer Kollimator zur Begrenzung des strahlenbeaufschlagten Gebietes in der Mammografie gezeigt, wobei keine Relativbewegung zwischen Objekt und Röntgenstrahlenquelle erfolgt. Aus US-A-4 603 427 ist ein einstellbarer Kollimator bekannt, durch den die Höhe des bestrahlten Gebietes bei cephalometrischen Panoramaaufnahmen begrenzt werden kann. Die Breite des Schnittes von Strahlenkegel und Schwenkebene wird durch einen nicht einstellbaren Schlitz am Ausgang der Röntgenstrahlenquelle bestimmt. Senkrecht zur Schwenkebene wird der Strahlenkegel durch den höheneinstellbaren Kollimator begrenzt, wobei Anzeigestäbe die Begrenzung in der Höhe anzeigen. Aus US-A-3 518 435 ist ein einstellbarer Kollimator bekannt, der das bestrahlte Gebiet in Abhängigkeit von der verwendeten Filmkassettengrösse eingrenzt. Bei der gezeigten Aufnahmeart findet keine Relativbewegung zwischen Objekt und Röntgenstrahlenquelle statt. Generell ist es in der Radiologie bekannt, Kollimatoren zur Begrenzung des bestrahlten Gebietes einzusetzen und vor der eigentlichen Aufnahme mittels sichtbaren Lichtes das begrenzte Gebiet zur Kontrolle desselben auf dem Objekt (Patienten) darzustellen. Kollimatoren werden ferner zur Eingrenzung der Röntgenstrahlung bei der Verwendung von Zeilendetektoren eingesetzt, derart, dass ausschliesslich der strahlenempfindliche Zeilendetektor bestrahlt wird. Ebenfalls werden in der klassischen fotografischen Radiologie Strahlenraster verwendet, um die Streustrahlung zu reduzieren. Diese Methode zur Reduzierung der Streustrahlung schwächt jedoch auch gleichzeitig die Nutzstrahlung, so dass zur Erzeugung eines kontrastreichen Abbildes hohe Dosen an Röntgenstrahlung eingesetzt werden müssen. Diese Strahlenraster, die sich zwischen dem Objekt und der Abbildung befinden, sind in ihren Dimensionen konstant. Die Aufnahme von unerwünschter Streustrahlung auf dem Aufnahmemittel führt generell bei der Bildaufnahme zu einem verschlechterten Nutzsignal/Störsignalverhältnis und damit zu nicht optimaler Bildqualität. Aus EP-A-0 223 432 ist es bekannt, zur Egalisierung der Belichtung von Röntgenbildern eine Vielzahl von Blenden abhängig von der Abschwächung der Röntgenstrahlung durch den Patientenkörper zu steuern, wobei dazu hinter dem Patienten eine Vielzahl von Detektoren angeordnet sind, die die Röntgenstrahlungsintensität erfassen. Aus US-A-5 627 869 ist es bekannt, bei mammographischen Einzelaufnahmen den Kollimator so einzustellen, dass der Röntgenstrahlenkegel in seiner Grösse auf die Grösse der Brustkompressionsscheibe und deren Abstand von der Röntgenstrahlenquelle angepasst ist, so dass der Röntgenstrahlenkegel zwar die Brustkompressionsscheibe abdeckt, sich aber nicht über deren Ränder hinaus erstreckt. Damit soll die Streustrahlung reduziert werden.In radiology, diaphragms are known as collimators, which serve with constant dimensions to reduce the radiation dose produced but also according to US-A-4,773,087 be used to reduce the scattered radiation. Collimators may also be adjustable to limit the irradiated area adapted to the object to be photographed. So in the US-A-4,122,350 a size-adjustable collimator for limiting the irradiated area in mammography is shown, wherein no relative movement between the object and the X-ray source takes place. Out U.S.-A-4,603,427 An adjustable collimator is known that can limit the height of the irradiated area in cephalometric panoramic exposures. The width of the intersection of the cone and the plane of rotation is determined by a non-adjustable slot at the exit of the X-ray source. Perpendicular to the pivot plane, the cone of rays is limited by the height-adjustable collimator, with display bars indicating the limit in height. Out US-A-3,518,435 An adjustable collimator is known which limits the irradiated area depending on the size of the film cassette used. In the recording mode shown, there is no relative movement between the object and the X-ray source. As a general rule In radiology, it is known to use collimators to confine the irradiated area and to represent the limited area for the control of the same on the object (patient) before the actual recording by means of visible light. Collimators are also used to confine the X-ray radiation when using line detectors, such that only the radiation-sensitive line detector is irradiated. Also, in classical photographic radiology, raster screens are used to reduce stray radiation. However, this method of reducing the stray radiation also simultaneously weakens the useful radiation, so that high doses of X-radiation must be used to produce a high-contrast image. These ray patterns, which are located between the object and the image, are constant in their dimensions. The recording of unwanted scattered radiation on the recording medium generally leads to a deteriorated useful signal / interference signal ratio during image acquisition and thus to a non-optimal image quality. Out EP-A-0 223 432 For the purpose of equalizing the exposure of X-ray images, it is known to control a multiplicity of diaphragms by the patient body as a function of the attenuation of the X-radiation, with a plurality of detectors being arranged behind the patient for detecting the X-radiation intensity. Out US-A-5,627,869 It is known to set the collimator in mammographic individual recordings so that the size of the X-ray cone is matched to the size of the breast compression disc and its distance from the X-ray source so that the X-ray cone covers the breast compression disc but does not extend beyond its edges. This is to reduce the scattered radiation.

Darstellung der ErfindungPresentation of the invention

Es ist Aufgabe der vorliegenden Erfindung die Bildqualität zu verbessern.It is an object of the present invention to improve the image quality.

Bei einem Verfahren der eingangs genannten Art wird dies durch die kennzeichnenden Merkmale des Anspruchs 1 erreicht. Bei einer Vorrichtung der eingangs genannten Art durch die kennzeichnenden Merkmale des Anspruchs 9.In a method of the type mentioned, this is achieved by the characterizing features of claim 1. In a device of the type mentioned by the characterizing features of claim 9.

Dadurch, dass eine Blende mit objektgrössenabhängiger Blendenöffnung eingesetzt wird kann die Streustrahlung besonders gut verringert werden, was die Bildqualität erhöht. Es hat sich bei der Röntgenfotografie gezeigt, dass die objektgrössenabhängige Blende zu schärferen Aufnahmen führt, die eine bessere Interpretation des Bildes des Objektes erlauben.The fact that a screen with object size-dependent aperture is used, the scattered radiation can be particularly well reduced, which increases the image quality. It has been shown in X-ray photography that the object size-dependent aperture leads to sharper images, which allow a better interpretation of the image of the object.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Im Folgenden werden Ausführungsbeispiele der Erfindung anhand der Beschreibung und der Zeichnungen näher erläutert. Dabei zeigt

  • Figur 1 eine schematische Ansicht des erfindungsgemässen Vorgehens bzw. einer Vorrichtung zum Durchleuchten eines Gegenstandes;
  • Figur 2 schematisch eine Draufsicht auf die Blende von Figur 1;
  • Figur 3 eine Schnittansicht entlang der Linie A-A von Figur 2 sowie eine Variante der Blende;
  • Figur 4 eine schematische Ansicht einer Abwandlung des Vorgehens bzw. der Vorrichtung von Figur 1;
  • Figur 5 eine weitere Ausführungsform;
  • Figur 6 eine weitere Ausführungsform der Vorrichtung; und
  • Figur 7 eine Ausführungsform mit zwei Blenden.
Embodiments of the invention are explained in more detail below with reference to the description and the drawings. It shows
  • FIG. 1 a schematic view of the inventive approach or a device for scanning an object;
  • FIG. 2 schematically a plan view of the diaphragm of FIG. 1 ;
  • FIG. 3 a sectional view taken along the line AA of FIG. 2 as well as a variant of the aperture;
  • FIG. 4 a schematic view of a modification of the procedure or the device of FIG. 1 ;
  • FIG. 5 another embodiment;
  • FIG. 6 a further embodiment of the device; and
  • FIG. 7 an embodiment with two panels.

Bester Weg zur Ausführung der ErfindungBest way to carry out the invention

Streustrahlung, die z.B. bei Abbildung von Objekten durch Lichtstrahlen oder Röntgenstrahlen immer entsteht, ist auf dem Bild kontrastmindernd da sie die gewünschte optimale Konturschärfe des Objektes verringert. Streustrahlung bildet sich bei der Abbildung von Objekten durch ojektbezogene Reflektionen oder durch ionisierende Strahlung, die das Objekt durchdringt. Entsprechend entstehende unscharfe Konturen sind die Ursache für einen schlechteren Kontrast der Abbildung des Objektes und können bei der Auswertung der Abbildung zu unschlüssigen Folgerungen führen, da mangels Aussagekraft der Abbildung eine gesicherte Aussage über das Objekt verunmöglicht wird. Figur 1 zeigt nun eine erste Ausführungsform im Grundriss, bei welcher mittels einer objektabhängig eingestellten Blende die Streustrahlung vermindert wird. Objektabhängig eingestellt heisst dabei, dass die Objektgrösse, eigentlich das Objektvolumen, aber in vereinfachter Weise auch nur die der Strahlung zugewandte Fläche des Objektes, oder sogar nur eine Dimension dieser Fläche, berücksichtigt wird, um die Blende, die nur einen Teil der Strahlung passieren lässt, die von der Quelle in Richtung des Objektes gesandt wird (ohne oder mit Kollimator) proportional zu dieser Objektgrösse einzustellen. Die Figur 1 zeigt dabei schematisch eine Vorrichtung 1, mittels welcher ein Objekt 4 durchleuchtet wird, um auf einem Aufnahmemittel 3 eine Abbildung des Objektes 4 zu erzeugen. Die Vorrichtung 1 ist dabei z.B. eine industrielle oder medizinische Röntgenanlage, die ein technisches Objekt 4, oder einen Patienten, durchleuchtet und das Abbild auf einem Röntgenfilm oder einer Röntgenplatte 3 erzeugt. Dementsprechend ist die Röntgenstrahlenquelle 2 eine Röntgenröhre. Für das Objekt ist ein an sich bekannter, nur mit zwei Linien seitlich des Objektes angedeuteter Objektträger 4' vorgesehen. Die in einem schematisch dargestellten Gehäuse angeordnete Röntgenquelle 2 erzeugt Röntgenstrahlen, deren Kegel oder allenfalls anders geformter Umriss mit den Begrenzungslinien 5 in der Figur angedeutet ist. Die Röntgenstrahlenquelle 2 befindet sich dabei z.B. in einem Gehäuse 10, welches durch die Blende 6 zum Objekt 4 hin abgeschlossen ist. Die Blende kann aber auch separat, gehäuseunabhängig angeordnet sein. Die Blende 6 weist eine Öffnung 9 auf, durch welche entsprechend ein Teil der Röntgenstrahlen durch die Blendenöffnung hindurch aus dem Gehäuse 10 austreten kann, während der Rest der Röntgenstrahlen durch die Blende 6 am Austreten aus dem Gehäuse gehindert wird. Im gezeigten Beispiel ist das Objekt so plaziert, dass es vom gesamten Strahlenkegel erfasst werden kann, wie er aus der Quelle 2 austritt und durch die Linien 5 angedeutet ist. Die aus der Quelle 2 austretende Strahlung kann auf bekannte Weise durch einen nur angedeuteten Kollimator 2' begrenzt sein; in diesem Fall stellen die Linien 5 die bereits begrenzte Strahlung dar, die sich auch nur über einen Teil des Objektes 4 erstrecken kann, wenn nur dieser Teil abgebildet werden soll bzw. nur dieser Teil relativ zum Strahl bewegt wird. Bei der Anordnung von Figur 1 ist angenommen, dass das Gehäuse 10 mit der Quelle 2 und der Blende 6 stationär ist, während das Objekt 4 sowie das Aufnahmemittel 3 in Pfeilrichtung A zwischen der Blende 6 und dem Aufnahmemittel 3 vorbei bewegt wird. Die Öffnung 9 der geschnitten dargestellten Blende 6 wird dabei in Abhängigkeit von der Grösse des Objektes 4 jedenfalls in der Blendendimension eingestellt, die der Bewegungsrichtung entspricht. Vorliegend wird die Breite b der Blendenöffnung 9 eingestellt, die in Richtung der Bewegung (Pfeil A) liegt. Dies ist in der Figur 1 schematisch durch zwei Sensoren 8 dargestellt, welche das Objekt 4 vermessen, z.B. berührungslos durch eine Ultraschallmessung oder eine optische Messung. Es können auch Sensoren vorgesehen sein, welche das Objekt berühren, um dessen Dimension für die Blendeneinstellung aufzunehmen. Diese Vermessung erfolgt vorzugsweise vor der Bildaufnahme in einem separaten Schritt. Entsprechend den Messwerten wird durch eine Steuereinrichtung 11 die Grösse der Blendenöffnung 9 bestimmt und z.B. durch Stellmotoren 7 eingestellt, welche von der Steuereinrichtung 11 bedient werden. Eine bei der Aufnahmesituation von Figur 1 interessierende Dimension ist die Breite B des Objektes, die durch die Relativbewegung in Richtung eines Pfeiles A abgefahren wird. Entsprechend dieser Breite B wird die ' Breite b der im vorliegenden Beispiel schlitzförmigen Blendenöffnung der Blende 6 eingestellt. Die Breite b der Blendenöffnung wird dabei x-mal kleiner gewählt als die Breite B des Objektes, wobei x im Bereich von 10 bis 100'000 liegt, so dass die Schlitzbreite also 10mal bis 100'000mal geringer ist als die Breite B des Objektes. Bei einem bereits durch Kollimation begrenzten Strahl oder anders plaziertem Objekt, bei dem nur ein Teil abgebildet wird, kann die Blendenöffnung auch proportional zur Breite B des Teiles des Objektes gewählt werden. Weiter wird vorzugsweise auch die Höhe der Schlitzöffnung der Blende 6 entsprechend der Höhe des Objektes 4, also der Ausdehnung senkrecht zur Zeichnungsebene des Objektes 4, eingestellt. Hierzu kann z.B. derselbe Teiler verwendet werden, wie bei der Breiteneinstellung, so dass die Schlitzhöhe ebenfalls 10mal kleiner bis 100'000mal kleiner ist als die Höhe des Objektes 4. Das Objekt 4 wird dann entsprechend durch einen von der objektgrössenabhängig eingestellten Blende eingeschränkten Röntgenstrahl abgebildet, wobei dazu das Objekt und das Abbildungsmittel bzw. die Röntgenplatte 3 zusammen mehrmals an der ruhenden und abgeblendeten Röntgenstrahlenquelle 2 entlang verfahren werden, jeweils entsprechend höhenmässig verschoben, so dass das Abbild Streifen für Streifen erzeugt wird. Wie gesagt, hat sich gezeigt, dass durch die entsprechende objektgrössen-proportionale Einstellung der Blende 6 eine besonders gute Reduktion der Streustrahlung und damit eine Erhöhung der Abbildungsqualität erzielbar ist.Scattering, which always occurs, for example, when imaging objects by light rays or X-rays, reduces the contrast on the image as it reduces the desired optimum contour sharpness of the object. Scattered radiation is formed when imaging objects through object-related reflections or through ionizing radiation that penetrates the object. Resulting blurred contours are the cause of a poorer contrast of the image of the object and can lead to indecipherable conclusions in the evaluation of the image, since the lack of explanatory power of the image a secure statement about the object is impossible. FIG. 1 shows a first embodiment in plan, in which by means of an object-dependent adjusted aperture, the scattered radiation is reduced. Set object-dependent means that the object size, actually the object volume, but in a simplified manner only the surface of the object facing the radiation, or even only one dimension of this surface, is taken into account, around the diaphragm, which allows only a portion of the radiation to pass , which is sent by the source in the direction of the object (with or without collimator) proportional to this object size. The FIG. 1 shows schematically a device 1, by means of which an object 4 is transilluminated in order to produce on a receiving means 3 an image of the object 4. In this case, the device 1 is, for example, an industrial or medical X-ray system, which illuminates a technical object 4, or a patient, and generates the image on an X-ray film or an X-ray plate 3. Accordingly, the X-ray source 2 is an X-ray tube. For the object, a per se known, only with two lines laterally of the object indicated slide 4 'is provided. The X-ray source 2, which is arranged in a schematically illustrated housing, generates X-rays, their cones or otherwise differently shaped outline with the boundary lines 5 in the Figure is indicated. The x-ray source 2 is located, for example, in a housing 10, which is closed by the aperture 6 to the object 4 out. The panel can also be arranged separately, housing independent. The diaphragm 6 has an opening 9, through which a part of the X-rays can escape through the aperture from the housing 10, while the rest of the X-rays is prevented by the diaphragm 6 from exiting the housing. In the example shown, the object is placed so that it can be detected by the entire cone of rays, as it exits from the source 2 and is indicated by the lines 5. The radiation emerging from the source 2 can be limited in a known manner by an only indicated collimator 2 '; In this case, the lines 5 represent the already limited radiation, which may also extend only over a part of the object 4, if only this part is to be imaged or only this part is moved relative to the beam. In the arrangement of Figure 1 it is assumed that the housing 10 with the source 2 and the diaphragm 6 is stationary, while the object 4 and the receiving means 3 in the direction of arrow A between the diaphragm 6 and the receiving means 3 is moved past. In this case, the opening 9 of the aperture 6 shown in section is set in any case in the aperture dimension, which corresponds to the direction of movement, as a function of the size of the object 4. In the present case, the width b of the aperture 9 is set, which is in the direction of movement (arrow A). This is in the FIG. 1 schematically represented by two sensors 8, which measure the object 4, for example, contactless by an ultrasonic measurement or an optical measurement. Sensors may also be provided which contact the object to accommodate its dimension for the aperture setting. This measurement is preferably carried out before the image acquisition in a separate step. According to the measured values, the size of the Aperture 9 determined and adjusted for example by servomotors 7, which are operated by the controller 11. One in the recording situation of FIG. 1 dimension of interest is the width B of the object, which is traversed by the relative movement in the direction of an arrow A. Corresponding to this width B, the width b of the slot-shaped aperture opening of the diaphragm 6 is set in the present example. The width b of the aperture is x times smaller than the width B of the object, where x is in the range of 10 to 100,000, so that the slot width is thus 10 times to 100,000 times less than the width B of the object. In the case of a beam which has already been limited by collimation or otherwise placed, in which only a part is imaged, the diaphragm aperture can also be chosen to be proportional to the width B of the part of the object. Further, preferably, the height of the slot opening of the aperture 6 corresponding to the height of the object 4, that is, the extension perpendicular to the plane of the object 4, set. For this example, the same divider can be used as in the width setting, so that the slot height is also 10 times smaller to 100,000 times smaller than the height of the object 4. The object 4 is then imaged accordingly by a limited by the object size dependent aperture X-ray, in which case the object and the imaging means or the X-ray plate 3 are moved together several times along the stationary and dimmed X-ray source 2, in each case correspondingly displaced in height, so that the image is produced strip by strip. As I said, it has been shown that a particularly good reduction of the scattered radiation and thus an increase in the image quality can be achieved by the appropriate object-size-proportional adjustment of the diaphragm 6.

Figur 2 zeigt schematisch eine Ansicht der Blende 6, wobei diese gemäss Figur 1 eine Schlitzblende mit dem Schlitz 9 ist. Dieser Schlitz 9 kann durch bewegliche Blendenelemente 12 und 13, welche zueinander verschiebbar sind, in seiner Höhe h und seiner Breite b eingestellt werden. Dies erfolgt durch die in Figur 1 angedeuteten Betätigungsmittel, welche motorische, pneumatische oder hydraulische Betätigungsmittel sein können. Figur 3 zeigt entsprechend eine Schnittdarstellung durch die Blende 6 von Figur 2, wobei gleiche Elemente mit gleichen Bezugszeichen versehen sind. Die Blende kann auch in ihrer Tiefe t verschieden einstellbar sein, wozu dadurch vorzugsweise auch die Tiefe T des Objektes gemessen wird. Eine Tiefeneinstellung kann dabei dadurch erfolgen, dass mehrere der Blenden hintereinander geschaltet sind, wie dies in Figur 3 mit einer weiteren Blende 6' lediglich angedeutet ist. FIG. 2 schematically shows a view of the diaphragm 6, wherein this according to FIG. 1 a slit with the slot 9 is. This slot 9 can be adjusted in height h and its width b by means of movable diaphragm elements 12 and 13, which are displaceable relative to one another. This is done by the in FIG. 1 indicated actuating means, which may be motor, pneumatic or hydraulic actuating means. Figure 3 shows a corresponding sectional view through the aperture 6 of FIG. 2 , wherein like elements are provided with the same reference numerals. The diaphragm can also be set differently in its depth t, for which purpose preferably also the depth T of the object is measured. A depth adjustment can take place in that several of the apertures are connected in series, as in FIG. 3 with a further aperture 6 'is merely indicated.

Die erfindungsgemässe Anwendung der Blende zur Reduktion der Streustrahlung ist für das ganze Spektrum der elektromagnetischen Strahlung möglich. Je kleiner das abzubildende Objekt ist, um so kleiner sollte die Blende ausgeführt sein, wobei das Verhältnis der Proportionen (Blende zu Objekt) wie gesagt von 1:10 bis 1: 100'000 betragen kann. Um eine möglichst gute Streustrahlungsreduktion zu erreichen, wird eine möglichst hohe Proportionalität, z.B. zwischen 1:10'000 bis 1:100'000 bevorzugt. Dabei ist z.B. die Breite der Öffnung der Blende bis in den Mikrometerbereich erstrebenswert. Vor allem bei sehr kleinen Objekten, z.B. kleiner als 1 mm, kann das optimale Verhältnis Blende:Objekt aber nur technisch aufwändig realisiert werden, z.B. eben für Blendenöffnungen im Bereich von 10 bis 100 Mikrometern. In diesem Fall wird zu einer geringeren Proportionalität zurückgegangen, z.B. 1:10 oder 1:50.The use according to the invention of the diaphragm for reducing the stray radiation is possible for the entire spectrum of electromagnetic radiation. The smaller the object to be imaged, the smaller the aperture should be, whereby the ratio of proportions (aperture to object) can be from 1:10 to 1: 100,000. In order to achieve the best possible scattered radiation reduction, the highest possible proportionality, e.g. between 1: 10,000 to 1: 100,000. In this case, e.g. the width of the aperture of the aperture to the micrometer range desirable. Especially for very small objects, e.g. smaller than 1 mm, the optimum ratio diaphragm: object can only be realized technically complex, e.g. just for apertures in the range of 10 to 100 microns. In this case, a lower proportionality is decreased, e.g. 1:10 or 1:50.

Figur 4 zeigt eine weitere Ausführungsform der Erfindung, wobei gleiche Bezugsziffern wie in den bisherigen Figuren verwendet gleiche Elemente bezeichnen. Bei dieser Ausführungsform ist die ebenfalls geschnitten gezeigte Blende zwischen dem Objekt 4 und dem Aufnahmemittel 3 angeordnet. Dabei werden wiederum das Objekt 4 und das Abbildungsmittel 3 an der ruhenden Blende 6 und der ruhenden Röntgenstrahlenquelle entsprechend den Pfeilen A vorbeibewegt. Entsprechend der Höhe h des Schlitzes und der mehrfach grösseren Höhe des Objektes 4 erfolgt diese Vorbeibewegung mehrfach mit verschiedenen verschobenen Höhenpositionen von Blende und Objekt. Zur Vereinfachung der Figur sind die Mittel 7, 8 und 11 nicht mehr dargestellt, sind aber bei der Vorrichtung ebenfalls vorhanden. Erfindungsgemäss ist jedenfalls auch hier die Dimension der Blende eingestellt, die der Relativbewegung entspricht, vorliegend wieder die Breite b proportional zur Breite des Objektes 4. Der Strahl 5 tritt aus der Quelle 2 aus, allenfalls durch einen Kollimator. FIG. 4 shows a further embodiment of the invention, wherein like reference numerals as used in the previous figures denote like elements. In this embodiment, the aperture also shown cut is between the object 4 and the receiving means 3 arranged. Again, the object 4 and the imaging means 3 are moved past the stationary diaphragm 6 and the stationary X-ray source according to the arrows A. Corresponding to the height h of the slot and the multiple greater height of the object 4, this passing movement takes place several times with different shifted height positions of diaphragm and object. To simplify the figure, the means 7, 8 and 11 are no longer shown, but are also present in the device. In any case, according to the invention, the dimension of the diaphragm is also set here, which corresponds to the relative movement, in the present case again the width b proportional to the width of the object 4. The beam 5 exits from the source 2, possibly through a collimator.

Figur 5 zeigt eine weitere Ausführungsform, bei welcher wiederum gleiche Elemente mit gleichen Bezugszeichen versehen sind und die Mittel 7, 8 und 11 nicht dargestellt sind, wobei aber die Röntgenstrahlenquelle 2 und die Blende 6 entsprechend dem Pfeil A am feststehenden Objekt und am feststehenden Abbildungsmittel 3 vorbeibewegt werden. Auch hier kann das Bild auf dem Abbildungsmittel 3 Zeile für Zeile entsprechend der Höhe des Schlitzes der Blende 6 erzeugt werden. Figur 6 zeigt eine entsprechende Ausführungsform, wobei indes die Blende zwischen dem Objekt 4 und dem Abbildungsmittel 3 angeordnet ist. Auch die Blenden der Figuren 5 und 6 sind jeweils in ihrer Schlitzbreite b entsprechend der Richtung des Verfahrens der Blende eingestellt. FIG. 5 shows a further embodiment in which in turn the same elements are provided with the same reference numerals and the means 7, 8 and 11 are not shown, but the X-ray source 2 and the diaphragm 6 according to the arrow A on the fixed object and the stationary imaging means 3 are moved past , Again, the image on the imaging means 3 line by line corresponding to the height of the slot of the diaphragm 6 can be generated. FIG. 6 shows a corresponding embodiment, wherein, however, the diaphragm between the object 4 and the imaging means 3 is arranged. Also the aperture of the Figures 5 and 6 are each set in their slot width b according to the direction of the process of the diaphragm.

Figur 7 zeigt eine weitere Ausführungsform, bei welcher zwei Blenden 6 und 16 mit den Öffnungen 9 und 19 vorgesehen sind, wobei die eine Blende zwischen der Röntgenstrahlenquelle und dem Objekt und die andere Blende zwischen dem Objekt und dem Abbildungsmittel 3 vorgesehen ist. Die Blenden werden dabei synchron mit der Röntgenstrahlenquelle 2 bewegt, um das Objekt Zeile für Zeile abzutasten. Die Blendenöffnung 9 wird dabei wieder in deren Breite b objektabhängig eingestellt, vorzugsweise erfolgt dies auch bei der Blendenöffnung 19. FIG. 7 shows a further embodiment in which two apertures 6 and 16 are provided with the openings 9 and 19, wherein the one aperture between the X-ray source and the object and the other diaphragm between the object and the imaging means 3 is provided. The apertures are moved synchronously with the X-ray source 2 in order to scan the object line by line. The aperture 9 is doing again in the width b set object-dependent, preferably this also takes place at the aperture 19th

Eine bevorzugte Anwendung der Erfindung liegt in der medizinischen Röntgentechnik und in der industriellen Röntgentechnik zur Prüfung von Materialien.A preferred application of the invention is in the medical X-ray technology and in the industrial X-ray technology for testing materials.

Im Folgenden werden Beispiele für Röntgenaufnahmen mit der objektabhängig verstellbaren Blende gegeben.The following are examples of X-rays with the object-dependent adjustable aperture.

BeispieleExamples 1. Als Beispiel eines Aufbaues gemäss Figur 1:1. As an example of a structure according to FIG. 1:

Als Stativ dient ein handelsübliches Multistat mit Filmkassetten oder Speicherfolien. Am Stativ wird nachträglich eine Blende mit Steuerung eingebaut. Die Reduktion der Streustrahlung kann so in erster Näherung als Proportion berechnet werden, die sich aus der gesamten Bestrahlten Fläche ohne Blende zu der Durchlassfläche der Blende ergibt.The tripod is a commercially available multistat with film cassettes or storage foils. On the tripod a panel with control is installed later. The reduction of the scattered radiation can be calculated as a first approximation as a proportion, which results from the total irradiated area without aperture to the passage area of the aperture.

Rechenbeispiel ICalculation example I

Bestrahlte Fläche ohne Blende:Irradiated area without aperture: 350 mm x 430 mm = 150 500 mm2350 mm x 430 mm = 150 500 mm2 Durchlassfläche der Blende:Passage area of the aperture: 350 mm x 1 mm = 350 mm2350 mm x 1 mm = 350 mm2 Verhältnis zur Blende:Ratio to the aperture: 430:1 oder 0,2325 %430: 1 or 0.2325%

Ohne Blende entstehen 100 % Streustrahlung; mit Blende erreicht man eine Reduktion der Streustrahlung um 100 % -0,2325 % = 99,7675 %.Without aperture, 100% scattered radiation is produced; With Aperture a reduction of the scattered radiation by 100% -0.2325% = 99.7675% can be achieved.

Rechenbeispiel IICalculation Example II

Durchlassfläche der Blende:Passage area of the aperture: 175 mm x 0,01 mm = 1,75 mm2175 mm x 0.01 mm = 1.75 mm2 Verhältnis Fläche der Blende:Ratio area of the aperture: 86 000:1 oder 0,001163 %86,000: 1 or 0,001163%

Mit dieser Blende reduziert sich die Streustrahlung um 100 % -0,001163 % = 99,9987 %.With this aperture, the scattered radiation is reduced by 100% -0.001163% = 99.9987%.

2. Anzahl Durchläufe und Zeitbedarf:2. Number of passes and time required:

Die Anzahl Durchläufe ist in der Regel 1.The number of passes is usually 1.

Der Zeitbedarf für die lineare Bewegung in Richtung A ist abhängig von der Grösse des Objektes und beträgt praktikabel zwischen 0,1 und 10 Sekunden.The time required for the linear movement in direction A depends on the size of the object and is practicable between 0.1 and 10 seconds.

Claims (13)

  1. Method for the recording of an object (4) by imaging by means of an X-ray radiation source (2) onto a recording means (3), particularly a film, wherein the object is roentgenised and is recorded continuously or discontinuously section by section during the recording, by means of at least one aperture (6) and a relative movement of the object on the one hand and aperture and recording means and optionally X-ray radiation source on the other hand, wherein the size of the aperture opening (9, 19) is adjusted depending on the object size in at least the dimension of the aperture opening lying in the direction of the relative movement, characterized in that the object volume or the surface of the object facing the X-ray radiation or only a dimension of this surface is taken into account as object size, and in that the object size is detected by means of a detection installation having mechanical and/or optical sensors or ultrasonic sensors (8) for the detection of the object volume or of at least one object dimension, wherein the aperture opening (9, 19) is particularly adjusted before or during each recording.
  2. Method according to claim 1, characterized in that the X-rays (5) are limited in front of the aperture by means of at least one collimator (2').
  3. Method according to one of the claims 1 or 2, characterized in that the object (4) and the recording means (3) are passed by the stationary X-ray radiation source (2) and the stationary aperture (6), wherein the aperture (6) is arranged between the X-ray radiation source (2) and the object (4) or wherein the aperture (6) is arranged between the object (4) and the recording means.
  4. Method according to one of the claims 1 or 2, characterized in that the X-ray radiation source (2) and the aperture (6) are passed by the stationary object (4) and the stationary recording means (3), wherein the aperture (6) is arranged between the X-ray radiation source (2) and the object (4) or wherein the aperture (6) is arranged between the object (4) and the recording means (3), or wherein a first aperture (6) is arranged between the radiation source (3) and the object (4) and a second aperture (16) between the object (4) and the recoding means (3).
  5. Method according to one of the claims 1 to 4, characterized in that the relative movement occurs in the direction of the width B of the object and the width b of the aperture opening is adjusted depending on the object size and optionally the height h of the aperture opening is additionally adjusted.
  6. Method according to one of the claims 1 to 4, characterized in that the relative movement occurs in the direction of the height of the object and the height h of the aperture opening is adjusted depending on the object height.
  7. Method according to one of the claims 5 or 6, characterized in that the thickness t of the aperture is additionally adjusted, particularly depending on the object thickness T.
  8. Method according to one of the claims 1 to 7, characterized in that the aperture opening dimension is adjusted in a range of 1:10 to 1:100000 with respect to the object dimension, preferably in a range of 1:100 to 1:100000, further preferred in a range of 1:1000 to 1:100000 and further preferred in a range of 1:10000 to 1:100000.
  9. Device for the recording of an object onto recording means (3) by means of an X-ray radiation source (2), wherein the device comprises at least an aperture (6) and movement means for the relative movement between the aperture (6) and the object (4), and wherein an adjustment installation (7, 11) is provided for the adjustment of at least one aperture opening dimension and a detection installation (8, 11) is provided for detecting at least one object dimension and wherein the adjustment installation is connected to the detection installation in such a way that at least an aperture opening dimension is adjustable depending on the at least one detected object dimension, wherein the at least one adjustable aperture opening dimension is adjustable in the direction of the relative movement, characterized in that the object volume or the surface of the object facing the X-ray radiation or only a dimension of this surface can be taken into account as object size, and in that the detection installation has mechanical and/or optical sensors or ultrasonic sensors (8) for the detection of the object volume or of at least one object dimension.
  10. Device according to claim 9, characterized in that it comprises an X-ray radiation source (2), the ray of which is limited by means of at least one collimator (2').
  11. Device according to claim 9 or 10, characterized in that it comprises an object carrier (4') and in that the object carrier on the one hand and the aperture (6) on the other hand are movable relatively to each other by means of the movement means (7, 11).
  12. Device according to claim 11, characterized in that the X-ray radiation source (2) and the aperture (6) are secured to the device, and in that for this, the object carrier (4') and the recording means (3) are movably arranged for the performance of the relative movement, wherein the aperture (6) is arranged between the X-ray radiation source (2) and the object carrier (4'), or wherein the aperture (6) is arranged between the object carrier and the recording means (3).
  13. Device according to claim 11, characterized in that the object carrier and the recording means (3) are secured to the device and in that for this, the X-ray radiation source (2) and the aperture (6) are movably arranged for the performance of the relative movement, wherein the aperture (6) is arranged between the X-ray radiation source (2) and the object carrier or wherein the aperture (6) is arranged between the object carrier and the recording means (3) or wherein a first aperture (6) is arranged between the X-ray radiation source (2) and the object carrier and a second aperture (16) which is motion-coupled with the first aperture is arranged between the object carrier and the recording means.
EP02783377A 2001-11-22 2002-11-15 Method and device for the recording of objects Expired - Lifetime EP1446810B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02783377A EP1446810B1 (en) 2001-11-22 2002-11-15 Method and device for the recording of objects

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP01127371A EP1315177A1 (en) 2001-11-22 2001-11-22 Method and device for object imaging
EP01127371 2001-11-22
EP02783377A EP1446810B1 (en) 2001-11-22 2002-11-15 Method and device for the recording of objects
PCT/IB2002/004765 WO2003044807A1 (en) 2001-11-22 2002-11-15 Method and device for the recording of objects

Publications (2)

Publication Number Publication Date
EP1446810A1 EP1446810A1 (en) 2004-08-18
EP1446810B1 true EP1446810B1 (en) 2010-09-01

Family

ID=8179271

Family Applications (2)

Application Number Title Priority Date Filing Date
EP01127371A Withdrawn EP1315177A1 (en) 2001-11-22 2001-11-22 Method and device for object imaging
EP02783377A Expired - Lifetime EP1446810B1 (en) 2001-11-22 2002-11-15 Method and device for the recording of objects

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP01127371A Withdrawn EP1315177A1 (en) 2001-11-22 2001-11-22 Method and device for object imaging

Country Status (6)

Country Link
US (1) US7372945B2 (en)
EP (2) EP1315177A1 (en)
AT (1) ATE479994T1 (en)
AU (1) AU2002347443A1 (en)
DE (1) DE50214635D1 (en)
WO (1) WO2003044807A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9566040B2 (en) * 2014-05-14 2017-02-14 Swissray Asia Healthcare Co., Ltd. Automatic collimator adjustment device with depth camera and method for medical treatment equipment

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3518435A (en) * 1967-11-24 1970-06-30 Philips Corp Automatic x-radiation collimating apparatus responsive to film cassette size
SU591239A1 (en) * 1976-01-24 1978-02-05 Куйбышевский Ордена Трудового Красного Знамени Авиационный Институт Им. Академика С.П.Королева Ultrasonic collimator
US4122350A (en) * 1977-11-21 1978-10-24 Julius Lipthay Adjustable collimator for mammography
US4603427A (en) * 1983-12-16 1986-07-29 Alpern Michael C Collimator in a panoramic dental X-ray apparatus
DE3500812A1 (en) 1985-01-11 1986-07-17 Siemens AG, 1000 Berlin und 8000 München X-RAY DIAGNOSTIC DEVICE WITH SEMI-TRANSPARENT PANEL
CA1244971A (en) * 1985-11-14 1988-11-15 Shih-Ping Wang X-ray radiography method and system
DE4210120C1 (en) * 1992-03-27 1993-08-05 Siemens Ag, 8000 Muenchen, De X=ray appts. for peripheral angiography - calculates relative positioning of appts. and patient support using data derived from patient
US5244136A (en) * 1992-04-03 1993-09-14 Vincent Collaso Expandable water-proof pouch
US5224136A (en) 1992-06-30 1993-06-29 General Electric Company Helical scanning computed tomography apparatus with constrained tracking of the x-ray source
US5627869A (en) * 1995-11-22 1997-05-06 Thermotrex Corporation Mammography apparatus with proportional collimation
US5818902A (en) * 1996-03-01 1998-10-06 Elekta Ab Intensity modulated arc therapy with dynamic multi-leaf collimation
US6502984B2 (en) * 1997-01-17 2003-01-07 Canon Kabushiki Kaisha Radiographic apparatus
US6055295A (en) * 1998-01-29 2000-04-25 Siemens Corporate Research, Inc. Method and apparatus for automatic collimation in x-ray peripheral imaging
US6496557B2 (en) * 2000-02-09 2002-12-17 Hologic, Inc. Two-dimensional slot x-ray bone densitometry, radiography and tomography
DE102005006895B4 (en) * 2005-02-15 2010-11-18 Siemens Ag X-ray diagnostic device and method for its regulation

Also Published As

Publication number Publication date
DE50214635D1 (en) 2010-10-14
EP1315177A1 (en) 2003-05-28
EP1446810A1 (en) 2004-08-18
WO2003044807A1 (en) 2003-05-30
US7372945B2 (en) 2008-05-13
US20050008122A1 (en) 2005-01-13
AU2002347443A1 (en) 2003-06-10
ATE479994T1 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
DE2732073C2 (en) Computed tomograph
DE602004012080T2 (en) IDENTIFYING IONIZING RADIATION TO DUAL ENERGY SCANNING BASIS
DE19527518B4 (en) X-ray tube current modulation during computed tomography scanning
DE102008049708B4 (en) Aperture and diaphragm device for the targeted influence of X-radiation
DE60204764T2 (en) METHOD AND DEVICE FOR MEASURING THE POSITION, FORM, SIZE AND INTENSITY DISTRIBUTION OF AN EFFECTIVE X-RAY FILM FOCUS
DE112006003039T5 (en) Method and arrangement for X-ray imaging
DE2741958C2 (en)
DE10228154A1 (en) Digital x-ray imaging device with raster function
DE69938096T2 (en) Beam scattering measuring device with detection of the continuous beam energy
DE2720840A1 (en) COLLIMATOR FOR REDUCING RADIATION EXPOSURE AND IMPROVING THE RESOLUTION OF RADIATION DIAGNOSTIC SHEET DISPLAYS
DE19651722A1 (en) Automatic exposure setting method for panorama or tomographic radiography device
DE3928282A1 (en) X-RAY RECEIVING DEVICE
DE2744226C2 (en) Layering device for the production of transverse layer images
CH616581A5 (en)
DE2548531C2 (en)
DE10320862B4 (en) Method for automatically adjusting a diaphragm, as well as X-ray system
DE2831311C2 (en) Device for determining internal body structures by means of scattered radiation
CH630176A5 (en) Method of producing a tomogram and device for tomographically investigating an object
DE10164245A1 (en) Gap compensating method in multi-plate volumetric CT scanners and associated apparatus
EP1446810B1 (en) Method and device for the recording of objects
DE2623965C3 (en) Computer tomograph
DE2832271A1 (en) ROENTGEN DIAGNOSTIC DEVICE FOR THE PRODUCTION OF TRANSVERSAL SLAT IMAGES
DE102007020642A1 (en) X-ray device and sensor unit for an X-ray device
DE3121324A1 (en) TOMOSYNTHESIS DEVICE
DE10127267B4 (en) Medical imaging X-ray machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040517

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TECNOSTORE AG

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GEISSER, ALBERT

Inventor name: KEZMANN, BRUNO RUDOLF

17Q First examination report despatched

Effective date: 20071122

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. AG PATENT- UND MARKENANWAELTE VSP

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50214635

Country of ref document: DE

Date of ref document: 20101014

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20101104

Year of fee payment: 9

Ref country code: DE

Payment date: 20101119

Year of fee payment: 9

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101202

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

BERE Be: lapsed

Owner name: TECNOSTORE A.G.

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110103

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101212

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110606

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50214635

Country of ref document: DE

Effective date: 20110606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 479994

Country of ref document: AT

Kind code of ref document: T

Effective date: 20101115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101115

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50214635

Country of ref document: DE

Effective date: 20120601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201