EP1446464B1 - Additives for sulfur-poor mineral oil distillates comprising an ester of an alkoxylated polyol and an alkylphenol-aldehye resin - Google Patents

Additives for sulfur-poor mineral oil distillates comprising an ester of an alkoxylated polyol and an alkylphenol-aldehye resin Download PDF

Info

Publication number
EP1446464B1
EP1446464B1 EP02802985A EP02802985A EP1446464B1 EP 1446464 B1 EP1446464 B1 EP 1446464B1 EP 02802985 A EP02802985 A EP 02802985A EP 02802985 A EP02802985 A EP 02802985A EP 1446464 B1 EP1446464 B1 EP 1446464B1
Authority
EP
European Patent Office
Prior art keywords
und
mol
ppm
oder
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02802985A
Other languages
German (de)
French (fr)
Other versions
EP1446464A2 (en
Inventor
Matthias Krull
Martina Hess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
clariant Produkte Deutschland GmbH
Original Assignee
Clariant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7705616&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1446464(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Clariant GmbH filed Critical Clariant GmbH
Publication of EP1446464A2 publication Critical patent/EP1446464A2/en
Application granted granted Critical
Publication of EP1446464B1 publication Critical patent/EP1446464B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1616Hydrocarbons fractions, e.g. lubricants, solvents, naphta, bitumen, tars, terpentine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • C10L1/191Esters ester radical containing compounds; ester ethers; carbonic acid esters of di- or polyhydroxyalcohols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/197Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
    • C10L1/1973Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1981Condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1985Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid polyethers, e.g. di- polygylcols and derivatives; ethers - esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/221Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/224Amides; Imides carboxylic acid amides, imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2364Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amide and/or imide groups

Definitions

  • the invention relates to additives for low-sulfur mineral oil distillates with improved cold flowability and paraffin dispersion comprising an ester an alkoxylated polyol and an alkylphenol-aldehyde resin, additized Fuel oils and the use of the additive.
  • Crude oils and middle distillates obtained by the distillation of crude oils such as gas oil, Diesel oil or fuel oil contain different depending on the origin of the crude oils Amounts of n-paraffins which, when the temperature is lower than crystallize platelet-shaped crystals and partially with the inclusion of oil agglomerate.
  • this crystallization and agglomeration it comes to a Deterioration of the flow properties of the oils or distillates, whereby at Extraction, transport, storage and / or use of mineral oils and Mineral oil distillates may occur disorders.
  • the crystallization phenomenon can be especially prevalent in winter Deposits on the pipe walls, in individual cases, e.g. at standstill one Pipeline, even lead to their complete constipation.
  • Typical flow improvers for crude oils and middle distillates are co-and Terpolymers of ethylene with carboxylic esters of vinyl alcohol.
  • Another object of flow improver additives is the dispersion of the Paraffin crystals, i. the delay or prevention of sedimentation of the Paraffin crystals and thus the formation of a paraffin-rich layer on the ground from storage containers.
  • EP-A-0 061 895 discloses cold flow improvers for mineral oil distillates containing esters, ethers or mixtures thereof.
  • the esters / ethers contain two linear saturated C 10 to C 30 alkyl groups and one polyoxyalkylene group at 200 to 5000 g / mol.
  • EP 0 973 848 and EP 0 973 850 disclose mixtures of esters alkoxylated Alcohols with more than 10 C atoms and fatty acids with 10 - 40 C atoms in Combination with ethylene copolymers as flow improvers.
  • EP-A-0 935 645 discloses alkylphenol-aldehyde resins as lubricating additives Addition in low-sulfur middle distillates.
  • EP-A-0857776 and EP 1088045 disclose methods for improving the Flowability of paraffin-containing mineral oils and mineral oil distillates Addition of ethylene copolymers and alkylphenol-aldehyde resins as well optionally further, nitrogen-containing paraffin dispersants.
  • an additive in addition to alkylphenol-aldehyde resins also contains certain esters of alkoxylated polyols, a represents particularly good cold flow improver for low-sulfur fuel oils.
  • the invention thus provides additives for middle distillates with a maximum 0.05% by weight of sulfur content, containing at least one fatty acid ester alkoxylated polyols having at least 3 OH groups (A) and at least one Alkylphenol-aldehyde resin (C).
  • Another object of the invention are middle distillates with maximum 0.05% by weight of sulfur containing an additive containing at least one Fatty acid esters of alkoxylated polyols having at least 3 OH groups (A) and contains at least one alkylphenol-aldehyde resin (C).
  • Another object of the invention is the use of an additive, containing at least one fatty acid ester of alkoxylated polyols with at least 3 OH groups (A) and at least one alkylphenol-aldehyde resin (C), for Improvement of cold flow properties and paraffin dispersion of Middle distillates with a maximum of 0.05 wt .-% sulfur content.
  • Another object of the invention is a method for improving the Cold flow properties of middle distillates with a maximum of 0.05% by weight Sulfur content by adding to the middle distillates an additive containing at least one fatty acid ester of alkoxylated polyols having at least 3 OH groups (A) and at least one alkylphenol-aldehyde resin (C).
  • the esters (A) are derived from polyols having 3 or more OH groups, in particular of glycerol, trimethylolpropane, pentaerythritol and the like condensation-accessible oligomers having from 2 to 10 monomer units, such as e.g. Polyglycerol.
  • the polyols are generally containing from 1 to 100 mol of alkylene oxide, preferably 3 to 70, in particular 5 to 50 moles of alkylene oxide per mole of polyol implemented.
  • Preferred alkylene oxides are ethylene oxide, propylene oxide and Butylene oxide.
  • the alkoxylation is carried out by known methods.
  • the fatty acids which are suitable for the esterification of the alkoxylated polyols preferably 8 to 50, in particular 12 to 30, especially 16 to 26 C-atoms.
  • Suitable fatty acids are, for example, lauric, tridecane, myristic, Pentadecane, palmitic, margarine, stearic, isostearic, arachinic and behenic acid, Oil and erucic acid, palmitoleic, myristolein, ricinoleic acid, and natural Fats and oils derived fatty acid mixtures.
  • Bevorzgte Fatty acid mixtures contain more than 50% fatty acids with at least 20 C atoms.
  • esterification can also be based on reactive Derivatives of fatty acids such as esters with lower alcohols (e.g., methyl or Ethyl ester) or anhydrides.
  • polybasic carboxylic acids dimer fatty acids, alkenylsuccinic acids and aromatic polycarboxylic acids and derivatives thereof such as anhydrides and C 1 - to C 5 -esters.
  • Alkenylsuccinic acid and its derivatives with alkyl radicals having 8 to 200, in particular 10 to 50, carbon atoms are preferred.
  • Examples are dodecenyl, octadecenyl and poly (isobutenyl) succinic anhydride.
  • the polybasic carboxylic acids are preferably used here to lower levels of up to 30 mol%, preferably 1 to 20 mol%, in particular 2 to 10 mol%.
  • Ester and fatty acid are used for esterification based on the content Hydroxyl groups on the one hand and carboxyl groups on the other hand in the ratio 1.5: 1 to 1: 1.5 used, preferably 1.1: 1 to 1: 1.1, in particular equimolar.
  • the paraffin-dispersing effect is particularly pronounced when with a Acid excess of up to 20 mol%, especially up to 10 mol%, in particular to to 5 mol% is worked.
  • the esterification is carried out by conventional methods. Has proven particularly useful the implementation of Polyolalkoxilat with fatty acid, optionally in the presence of catalysts such as para-toluenesulfonic acid, C 2 - to C 50 -alkylbenzenesulfonic acids, methanesulfonic acid or acidic ion exchangers.
  • catalysts such as para-toluenesulfonic acid, C 2 - to C 50 -alkylbenzenesulfonic acids, methanesulfonic acid or acidic ion exchangers.
  • the separation of the water of reaction can be carried out by distillation by direct condensation or preferably by azeotropic distillation in the presence of organic solvents, in particular aromatic solvents such as toluene, xylene or higher boiling mixtures such as ®Shellsol A, Shellsol B, Shellsol AB or Solvent Naphtha.
  • the esterification is preferably carried out completely, ie for the esterification 1.0 to 1.5 moles of fatty acid are used per mole of hydroxyl groups.
  • the acid number of the esters is generally below 15 mg KOH / g, preferably below 10 mg KOH / g, especially below 5 mg KOH / g.
  • alkylphenol-aldehyde resins (C) contained in the additive according to the invention are known in principle and, for example, in Römpp Chemie Lexikon, 9th edition, Thieme Verlag 1988-92, Volume 4, p 3351 et seq described.
  • the alkyl radicals of the o- or p-alkylphenols have 1 to 50, preferably 4 to 20, in particular 6 to 12 Carbon atoms; it is preferably n-, iso- and tert-butyl, n- and iso-pentyl, n- and iso-hexyl, n- and iso-octyl, n- and iso-nonyl, n- and iso-decyl, n- and iso-dodecyl as well as tetrapropenyl, pentapropenyl and polyisobutenyl.
  • the Alkylphenol-aldehyde resin may also contain up to 50 mole% phenol units.
  • alkylphenol-aldehyde resin the same or different alkylphenols be used.
  • the aliphatic aldehyde in the alkylphenol-aldehyde resin has 1-10, preferably 1-4, carbon atoms and may have other functional groups as carry aldehyde or carboxyl groups. It is preferably formaldehyde.
  • the Molecular weight of the alkylphenol-aldehyde resins is 400-10,000, preferably 400 - 5000 g / mol. The prerequisite here is that the resins are oil-soluble.
  • the preparation of the alkylphenol-aldehyde resins is carried out in a known manner basic catalysis, resulting in resol-type condensation products, or by acid catalysis to produce novolac-type condensation products.
  • the condensates obtained according to both types are for the invention Compositions suitable.
  • the condensation is in the presence of acid catalysts.
  • alkylphenol-aldehyde resins are a bifunctional o- or p-alkylphenol having 1 to 50 carbon atoms, preferably 4 to 20, in particular 6 to 12 C atoms per alkyl group, or mixtures thereof and an aliphatic one Aldehyde having 1 to 10 carbon atoms reacted with each other, wherein per mol Alkylphenol compound about 0.5 to 2 mol, preferably 0.7 to 1.3 mol and In particular, equimolar amounts of aldehyde can be used.
  • Suitable alkylphenols are, in particular, C 4 -C 50 -alkylphenols, for example o- or p-cresol, n-, sec- and tert-butylphenol, n- and i-pentylphenol, n- and isohexylphenol, n- and - iso-octylphenol, n- and iso-nonylphenol, n- and iso-decylphenol, n- and iso-dodecylphenol, tetradecylphenol, hexadecylphenol, octadecylphenol, eicosylphenol, tripropenylphenol, tetrapropenylphenol and polyis (isobutenyl) phenol.
  • C 4 -C 50 -alkylphenols for example o- or p-cresol, n-, sec- and tert-butylphenol, n- and i-p
  • the alkylphenols are preferably para-substituted. They are preferably too at most 7 mol%, in particular at most 3 mol% with more than one Substituted alkyl group.
  • aldehydes are formaldehyde, acetaldehyde, butyraldehyde and glutaraldehyde, preferred is formaldehyde.
  • the formaldehyde may be in the form of paraformaldehyde or in the form of a preferably 20 to 40% strength by weight aqueous formalin solution are used. Corresponding amounts of trioxane can also be used.
  • alkylphenol and aldehyde is usually carried out in the presence of alkaline catalysts, for example alkali metal hydroxides or alkylamines, or of acidic catalysts, for example inorganic or organic Acids, such as hydrochloric acid, sulfuric acid, phosphoric acid, sulfonic acid, Sulfamido acids or haloacetic acids, and in the presence of one with water an azeotrope-forming organic solvent, for example toluene, xylene, higher aromatics or mixtures thereof.
  • the reaction mixture is on a Temperature of 90 to 200 ° C, preferably 100 - 160 ° C heated, the Resulting water of reaction during the reaction by azeotropic Distillation is removed.
  • Solvents that are in the conditions of Condensation does not cleave protons after the condensation reaction stay in the products.
  • the resins can be used directly or after neutralization of the Catalyst can be used, optionally after further dilution of Solution with aliphatic and / or aromatic hydrocarbons or Hydrocarbon mixtures, e.g. Gasoline fractions, kerosene, decane, Pentadecane, toluene, xylene, ethylbenzene or solvents such as ®Solvent Naphtha, ®Shellsol AB, ® Solvesso 150, ® Solvesso 200, ®Exxsol, ®ISOPAR- and ®Shellsol D types.
  • aliphatic and / or aromatic hydrocarbons or Hydrocarbon mixtures e.g. Gasoline fractions, kerosene, decane, Pentadecane, toluene, xylene, ethyl
  • the alkylphenol resins can then optionally by reaction with 1 to 10, especially 1 to 5 moles of alkylene oxide such as ethylene oxide, propylene oxide or Butylene oxide per phenolic OH group are alkoxylated.
  • the additives or fuel oils according to the invention are added.
  • preferred embodiments are also fuel oils according to the invention, the ethylene copolymers (B), Paraffin dispersants (D) and / or comb polymers contain, and the use of additives according to the invention, which ethylene copolymers (B), Paraffin dispersants (D) and / or comb polymers contain, and the appropriate procedures.
  • Copolymer B) is preferably an ethylene copolymer having an ethylene content of 60 to 90 mol% and a comonomer content of 10 to 40 mol%, preferably 12 to 18 mol%.
  • Suitable comonomers are vinyl esters of aliphatic carboxylic acids having 2 to 15 carbon atoms.
  • Preferred vinyl esters for copolymer B) are vinyl acetate, vinyl propionate, vinyl hexanoate, vinyl octanoate, vinyl 2-ethylhexanoate, vinyl laurate and vinyl esters of neocarboxylic acids, here in particular neononan, neodecane and neoundecanoic acid.
  • an ethylene-vinyl acetate copolymer particularly preferred are an ethylene-vinyl acetate copolymer, an ethylene-vinyl propionate copolymer, an ethylene-vinyl acetate-vinyl octanoate terpolymer, an ethylene-vinyl acetate-vinyl-2-ethylhexyl terpolymer, an ethylene-vinyl acetate-neononanoic acid vinyl ester terpolymer, or an ethylene -Vinylacetat-neodecanoate terpolymer.
  • Preferred acrylic acid esters are acrylic esters having alcohol radicals of from 1 to 20, in particular from 2 to 12 and especially from 4 to 8 carbon atoms, such as, for example, methyl acrylate, ethyl acrylate and 2-ethylhexyl acrylate.
  • the copolymers may contain up to 5% by weight of other comonomers.
  • Such comonomers may be, for example, vinyl esters, vinyl ethers, alkyl acrylates, alkyl methacrylates having C 1 to C 20 alkyl radicals, isobutylene and olefins.
  • Preferred as higher olefins are hexene, isobutylene, octene and / or diisobutylene.
  • Suitable comonomers are olefins such as propene, hexene, butene, isobutene, diisobutylene, 4-methylpentene-1 and norbornene. Particularly preferred are ethylene-vinyl acetate-diisobutylene and ethylene-vinyl acetate-4-methylpentene-1 terpolymers.
  • the copolymers have melt viscosities at 140 ° C of 20 to 10,000 mPas, in particular from 30 to 5000 mPas, especially from 50 to 2000 mPas.
  • the copolymers (B) are prepared by the usual copolymerization methods such as for example suspension polymerization, solvent polymerization, Gas phase polymerization or high-pressure mass polymerization produced. Preference is given to the high-pressure mass polymerization at pressures of preferably 50 to 400, in particular 100 to 300 MPa and temperatures of preferably 50 to 350, in particular 100 to 250 ° C.
  • the reaction of Monomers Are Generated by Radical Initiators (Radical Chain Starters) initiated. This class of substance includes e.g.
  • Oxygen, hydroperoxides, Peroxides and azo compounds such as cumene hydroperoxide, t-butyl hydroperoxide, Dilauroyl peroxide, dibenzoyl peroxide, bis (2-ethylhexyl) peroxide carbonate, t-butyl perpivalate, t-butyl permalate, t-butyl perbenzoate, dicumyl peroxide, t-butyl cumyl peroxide, Di (t-butyl) peroxide, 2,2'-azobis (2-methylpropanonitrile), 2,2'-azobis (2-methylbutyronitrile).
  • the initiators are used individually or as a mixture of two or more substances in amounts of from 0.01 to 20% by weight, preferably 0.05 to 10 wt .-%, based on the monomer mixture, used.
  • High pressure bulk polymerization is used in known high pressure reactors, e.g. Autoclaves or tube reactors, discontinuous or continuous, Tube reactors have proven particularly useful.
  • Solvents such as aliphatic and / or aromatic hydrocarbons or hydrocarbon mixtures, Benzene or toluene may be included in the reaction mixture.
  • the solvent-free operation is the mixture of the monomers, the initiator and, if used, the moderator, a tubular reactor via the reactor inlet as well supplied via one or more side branches.
  • the Monomer streams may be composed differently (EP-A-0 271 738).
  • Paraffin dispersants, resins or comb polymers are each 1:10 to 20: 1, preferably 1: 1 to 10: 1.
  • the additive components of the invention may be mineral oils or Mineral oil distillates are added separately or in mixture.
  • the solution or dispersion generally contains 5-90, preferably 5-75 wt .-% of Additive or additive mixture.
  • Suitable solvents or dispersants are aliphatic and / or aromatic hydrocarbons or hydrocarbon mixtures, e.g. Benzine fractions, kerosene, decane, pentadecane, toluene, xylene, ethylbenzene or commercial solvent mixtures such as Solvent Naphtha, ®Shellsol AB, ® Solvesso 150, ® Solvesso 200, ®Exxsol, ®ISOPAR and ®Shellsol D grades.
  • polar solubilizers such as 2-ethylhexanol, Decanol, iso-decanol or iso-tridecanol.
  • Mineral oils or mineral oil distillates contain from 0.001 to 2, preferably from 0.005 to 0.5 wt .-% of the additives, based on the mineral oil or mineral oil distillate.
  • the additives according to the invention are particularly suitable, the Cold flow properties of animal, vegetable or mineral oils improve. At the same time they improve below the cloud point Dispersion of the precipitated paraffins. They are for use in Middle distillates particularly well suited. As middle distillates one calls in particular those mineral oils obtained by distillation of crude oil and boiling in the range of 120 to 450 ° C, for example, kerosene, jet fuel, Diesel and heating oil. Preferably, the additives of the invention in low-sulfur middle distillates used 350 ppm sulfur and less, more preferably less than 200 ppm sulfur and especially less contain as 50 ppm of sulfur.
  • the additives of the invention are furthermore preferably used in such middle distillates, the 95% distillation points below 365 ° C, especially 350 ° C and in special cases below 330 ° C and in addition to high levels of paraffins having 18 to 24 carbon atoms only small amounts of paraffins with chain lengths of 24 and more carbon atoms contain. They can also be used as components in lubricating oils become.
  • the mineral oils or mineral oil distillates may also be other common Additives such as dewaxing aids, corrosion inhibitors, Antioxidants, lubricity additives, sludge inhibitors, cetane improvers, Detergent additives, dehazers, conductivity improvers or dyes.
  • Additives such as dewaxing aids, corrosion inhibitors, Antioxidants, lubricity additives, sludge inhibitors, cetane improvers, Detergent additives, dehazers, conductivity improvers or dyes.
  • esters A were used as a 50% solution in aromatic solvent (EO stands for ethylene oxide, PO stands for propylene oxide): Table 1: Characterization of the esters used (constituent A) Main components of fatty acids acid number OH number additive polyol alkoxylation C 18 C 20 C 22 [mg KOH / g] [mg KOH / g] A1 glycerin 22 mol EO 2 7 88 7 13 A2 glycerin 22 mol EO 95% 5 4 A3 glycerin 22 mol EO 37 10 48 1 2 A4 glycerin 16 mol PO 37 10 48 7 9 A5 glycerin 16 mol PO 2 7 88 5 7 A6 glycerin 24 mol PO 37 10 48 8th 11 A7 glycerin 10 mol EO 2 7 88 7 9 A8 glycerin 30 mol EO 2 7 88 2 4 A9 glycerin 40 mol EO 2 7 88 12 10 A10 g
  • the additives are used to improve handling as 50% solutions used in solvent naphtha or kerosene.
  • the boiling characteristics are determined according to ASTM D-86, the CFPP value according to EN 116 and the determination of the cloud point according to ISO 3015. Characteristics of the test oils Test oil 1 Test oil 2 Test oil 3 Test oil 4 Start of boiling [° C] 169 200 174 241 20% [° C] 211 251 209 256 90% [° C] 327 342 327 321 95% [° C] 344 354 345 341 Cloud Point [° C] -9.0 -4.2 -6.7 -8.2 CFPP [° C] -10 -6 -8th -10 sulfur content 33 ppm 35 ppm 210 ppm 45 ppm
  • Table 4 describes the superior efficiency of the inventive additives in comparison with the prior art together with ethylene copolymers for mineral oils and mineral oil distillates by means of the CFPP test (Cold Filter Plugging Test according to EN 116).
  • the paraffin dispersion in middle distillates was determined in the short sediment test as follows: 150 ml of the middle distillates added with the additive components indicated in the table were cooled to -13 ° C. in a cold cabinet at -2 ° C./hour in 200 ml graduated cylinders and stored at this temperature for 16 hours. Subsequently, the volume and appearance of both the sedimented paraffin phase and the overlying oil phase were determined and assessed visually.
  • a small amount of sediment with simultaneously homogeneous turbid oil phase or a large sediment volume with a clear oil phase show a good paraffin dispersion.
  • the lower 20% by volume were isolated and the cloud point was determined according to ISO 3015. Only a small deviation of the cloud point of the lower phase (CP KS ) from the blank value of the oil shows a good paraffin dispersion.
  • CFPP activity in test oil 1 The CFPP activity of the esters A according to the invention was measured in combination with equal amounts of C and D in test oil 1 as follows: A C D B3 in ppm 50 75 100 example 1 50 ppm A1 50 ppm C1 50 ppm D2 -29 -31 -30 Example 2 50 ppm A11 50 ppm C2 50 ppm D1 -27 -30 -30 Example 3 50 ppm A7 50 ppm C1 50 ppm D2 -17 -28 -29 Example 4 50 ppm A12 50 ppm C1 50 ppm D2 -19 -31 -29 Example 5 50 ppm A8 50 ppm C1 50 ppm D2 -21 -29 -29 Example 6 50 ppm A9 50 ppm C1 50 ppm D2 -18 -24 -29 Example 7 50 ppm A2 50 ppm C1 50 ppm D2 -26 -29 -28 Example 8 50 ppm A
  • Test oil 3 (CP -6.7 ° C) A C Sediment [vol.%] Appearance oil phase CFPP [° C] CP KS [° C]
  • Example 21 100 ppm A1 50 ppm C1 0 cloudy -23 -5.9
  • Example 22 100 ppm A1 50 ppm C2 7 cloudy -24 -3.3
  • Example 23 100 ppm A2 50 ppm C2 10 cloudy -21 -2.4
  • Example 24 100 ppm A1 50 ppm C3 20 cloudy -21 -0.8
  • Example 25 50 ppm A2 100 ppm C1 20 cloudy -26 -1.4
  • Example 26 100 ppm A3 50 ppm C1 10 cloudy -28 -1.4
  • Example 27 50 ppm A3 100 ppm C1 0 cloudy -28 -5.3
  • Example 28 100 ppm A4 100 ppm C1 7 cloudy -21 -3.6
  • Example 29 50 ppm A4 100
  • Test oil 4 (CP -8,2 ° C) A C Sediment [vol.%] Appearance oil phase CFPP [° C] CP KS [° C]
  • Example 40 100 ppm A1 100 ppm C1 0 cloudy -24 -6.3
  • Example 41 100 ppm A1 100 ppm C1 0 cloudy -24 -7.5
  • Example 42 50 ppm A3 100 ppm C1 0 cloudy -24 -5.4
  • Example 43 50 ppm A3 100 ppm C1 0 cloudy -28 -5.3
  • Example 44 100 ppm A5 50 ppm C1 50 cloudy -23 -3.3
  • Example 45 100 ppm A5 100 ppm C1 0 cloudy -23 -5.5
  • Example 46 50 ppm A5 100 ppm C1 70 cloudy -24 -4.3
  • Example 47 100 ppm A14 50 ppm C1 16 clear -18 -1.1
  • Example 48 150 ppm A1

Description

Die Erfindung betrifft Additive für schwefelarme Mineralöldestillate mit verbesserter Kaltfließfähigkeit und Paraffindispergierung, umfassend einen Ester eines alkoxylierten Polyols und ein Alkylphenol-Aldehydharz, additivierte Brennstofföle und die Verwendung des Additivs.The invention relates to additives for low-sulfur mineral oil distillates with improved cold flowability and paraffin dispersion comprising an ester an alkoxylated polyol and an alkylphenol-aldehyde resin, additized Fuel oils and the use of the additive.

Im Zuge der abnehmenden Erdölreserven werden bei ständig steigendem Energiebedarf immer problematischere Rohöle gefördert und verarbeitet. Darüberhinaus werden die Anforderungen an die daraus hergestellten Brennstofföle wie Diesel und Heizöl nicht zuletzt durch legislative Vorgaben immer anspruchsvoller. Beispiele dafür sind die Absenkung des Schwefelgehaltes, die Begrenzung des Siedeendes sowie des Aromatengehaltes von Mitteldestillaten, die die Raffinerien zu ständiger Anpassung der Verarbeitungstechnologie zwingen. Dies führt in Mitteldestillaten in vielen Fällen zu einem erhöhten Anteil an Paraffinen speziell im Kettenlängenbereich von C18 bis C24, was wiederum einen negativen Einfluß auf die Kaltfließeigenschaften dieser Brennstofföle hat.In the course of the decreasing oil reserves ever more problematic crude oils are produced and processed with constantly increasing energy demand. In addition, the requirements for the fuel oils produced from such as diesel and heating oil are becoming increasingly demanding, not least due to legislative requirements. Examples are the reduction of sulfur content, the limitation of the boiling point and the aromatics content of middle distillates, which force the refineries to constantly adapt the processing technology. In many cases, this leads to an increased proportion of paraffins in middle distillates, especially in the chain length range from C 18 to C 24 , which in turn has a negative influence on the cold flow properties of these fuel oils.

Rohöle und durch Destillation von Rohölen gewonnene Mitteldestillate wie Gasöl, Dieselöl oder Heizöl enthalten je nach Herkunft der Rohöle unterschiedliche Mengen an n-Paraffinen, die bei Erniedrigung der Temperatur als plättchenförmige Kristalle auskristallisieren und teilweise unter Einschluß von Öl agglomerieren. Durch diese Kristallisation und Agglomeration kommt es zu einer Verschlechterung der Fließeigenschaften der Öle bzw. Destillate, wodurch bei Gewinnung, Transport, Lagerung und/oder Einsatz der Mineralöle und Mineralöldestillate Störungen auftreten können. Beim Transport von Mineralölen durch Rohrleitungen kann das Kristallisationsphänomen vor allem im Winter zu Ablagerungen an den Rohrwänden, in Einzelfällen, z.B. bei Stillstand einer Pipeline, sogar zu deren völliger Verstopfung führen. Bei der Lagerung und Weiterverarbeitung der Mineralöle kann es ferner im Winter erforderlich sein, die Mineralöle in beheizten Tanks zu lagern. Bei Mineralöldestillaten kommt es als Folge der Kristallisation gegebenenfalls zu Verstopfungen der Filter in Dieselmotoren und Feuerungsanlagen, wodurch eine sichere Dosierung der Brennstoffe verhindert wird und unter Umständen eine völlige Unterbrechung der Kraftstoff- bzw. Heizmittelzufuhr eintritt.Crude oils and middle distillates obtained by the distillation of crude oils, such as gas oil, Diesel oil or fuel oil contain different depending on the origin of the crude oils Amounts of n-paraffins which, when the temperature is lower than crystallize platelet-shaped crystals and partially with the inclusion of oil agglomerate. Through this crystallization and agglomeration, it comes to a Deterioration of the flow properties of the oils or distillates, whereby at Extraction, transport, storage and / or use of mineral oils and Mineral oil distillates may occur disorders. When transporting mineral oils through pipelines, the crystallization phenomenon can be especially prevalent in winter Deposits on the pipe walls, in individual cases, e.g. at standstill one Pipeline, even lead to their complete constipation. In storage and Further processing of mineral oils may also be required in winter, the Store mineral oils in heated tanks. For mineral oil distillates it comes as Consequence of the crystallization if necessary to blockages of the filters in Diesel engines and firing systems, ensuring a safe dosage of Fuel is prevented and may cause a total disruption of Fuel or Heizmittelzufuhr occurs.

Neben den klassischen Methoden zur Beseitigung der auskristallisierten Paraffine (thermisch, mechanisch oder mit Lösungsmitteln), die sich lediglich auf die Entfernung der bereits gebildeten Ausfällungen beziehen, wurden in den letzten Jahren chemische Additive (sogenannte Fließverbesserer) entwickelt. Diese bewirken durch physikalisches Zusammenwirken mit den ausfallenden Paraffinkristallen, daß deren Form, Größe und Adhäsionseigenschaften modifiziert werden. Die Additive wirken dabei als zusätzliche Kristallkeime und kristallisieren teilweise mit den Paraffinen aus, wodurch eine größere Anzahl kleinerer Paraffinkristalle mit veränderter Kristallform entsteht. Die modifizierten Paraffinkristalle neigen weniger zur Agglomeration, so daß sich die mit diesen Additiven versetzten Öle noch bei Temperaturen pumpen bzw. verarbeiten lassen, die oft mehr als 20°C tiefer liegen als bei nicht additivierten Ölen.In addition to the classic methods for removing the crystallized paraffins (thermally, mechanically or with solvents), which are limited to the Removal of already formed precipitates have been in the last few years Developed chemical additives (so-called flow improvers). These cause by physical interaction with the failing Paraffin crystals that their shape, size and adhesion properties be modified. The additives act as additional nuclei and partially crystallize with the paraffins, creating a larger number smaller paraffin crystals with altered crystal form arises. The modified Paraffin crystals are less prone to agglomeration, so that with these Additive staggered oils can be pumped or processed at temperatures, which are often more than 20 ° C lower than non-additized oils.

Typische Fließverbesserer für Rohöle und Mitteldestillate sind Co- und Terpolymere des Ethylens mit Carbonsäureestem des Vinylalkohols.Typical flow improvers for crude oils and middle distillates are co-and Terpolymers of ethylene with carboxylic esters of vinyl alcohol.

Ein weitere Aufgabe von Fließverbessereradditiven ist die Dispergierung der Paraffinkristalle, d.h. die Verzögerung bzw. Verhinderung der Sedimentation der Paraffinkristalle und damit der Bildung einer paraffinreichen Schicht am Boden von Lagerbehältem.Another object of flow improver additives is the dispersion of the Paraffin crystals, i. the delay or prevention of sedimentation of the Paraffin crystals and thus the formation of a paraffin-rich layer on the ground from storage containers.

Im Stand der Technik sind weiterhin bestimmte Poly(oxyalkylen)-Verbindungen sowie Alkylphenolharze bekannt, die Mitteldestillaten als Additive zugesetzt werden.In the prior art are still certain poly (oxyalkylene) compounds and alkylphenol resins known, the middle distillates added as additives become.

EP-A-0 061 895 offenbart Kaltfließverbesserer für Mineralöldestillate, welche Ester, Ether oder deren Mischungen enthalten. Die Ester/Ether enthalten zwei lineare gesättigte C10- bis C30-Alkylgruppen und eine Polyoxyalkylengruppe mit 200 bis 5000 g/mol.EP-A-0 061 895 discloses cold flow improvers for mineral oil distillates containing esters, ethers or mixtures thereof. The esters / ethers contain two linear saturated C 10 to C 30 alkyl groups and one polyoxyalkylene group at 200 to 5000 g / mol.

EP-0 973 848 und EP-0 973 850 offenbaren Mischungen aus Estern alkoxilierter Alkohole mit mehr als 10 C-Atomen und Fettsäuren mit 10 - 40 C-Atomen in Kombination mit Ethylen-Copolymeren als Fließverbesserer.EP 0 973 848 and EP 0 973 850 disclose mixtures of esters alkoxylated Alcohols with more than 10 C atoms and fatty acids with 10 - 40 C atoms in Combination with ethylene copolymers as flow improvers.

EP-A-0 935 645 offenbart Alkylphenol-Aldehydharze als schmierverbessemden Zusatz in schwefelarmen Mitteldestillaten.EP-A-0 935 645 discloses alkylphenol-aldehyde resins as lubricating additives Addition in low-sulfur middle distillates.

EP-A-0857776 und EP 1088045 offenbaren Verfahren zur Verbesserung der Fliessfähigkeit von paraffinhaltigen Mineralölen und Mineralöldestillaten durch Zugabe von Ethylen-Copolymeren und Alkylphenol-Aldehyd-Harzen sowie gegebenenfalls weiteren, stickstoffhaltigen Paraffindispergatoren.EP-A-0857776 and EP 1088045 disclose methods for improving the Flowability of paraffin-containing mineral oils and mineral oil distillates Addition of ethylene copolymers and alkylphenol-aldehyde resins as well optionally further, nitrogen-containing paraffin dispersants.

Die oben beschriebene fließverbessernde und/oder paraffindispergierende Wirkung der bekannten Paraffin-Dispergatoren ist nicht immer ausreichend, so daß sich bei Abkühlung der Öle teilweise große Paraffinkristalle bilden, die zu Filterverstopfungen führen und auf Grund ihrer höheren Dichte im Laufe der Zeit sedimentieren und somit zur Bildung einer paraffinreichen Schicht am Boden von Lagerbehältem führen. Probleme treten vor allem bei der Additivierung von paraffinreichen und eng geschnittenen Destillationsschnitten mit Siedebereichen von 20 - 90 Vol-% kleiner 120°C, insbesondere kleiner 100°C auf. Besonders problematisch ist die Situation bei schwefelarmen Winterqualitäten mit Cloud Points unterhalb -5°C; hier läßt sich durch den Zusatz bekannter Additive oftmals keine ausreichende Paraffin-Dispergierung erzielen.The above-described flow-improving and / or paraffin-dispersing Effect of the known paraffin dispersants is not always sufficient, so that on cooling of the oils sometimes form large paraffin crystals, the Filter blockages lead and due to their higher density over time sediment and thus to form a paraffin-rich layer at the bottom of Store containers. Problems occur especially in the additivation of Paraffin-rich and narrow-cut distillation sections with boiling ranges from 20 to 90 vol% less than 120 ° C, especially less than 100 ° C on. Especially The situation is problematic for low-sulfur winter qualities with Cloud Points below -5 ° C; Here can be often by the addition of known additives do not achieve sufficient paraffin dispersion.

Es bestand daher die Aufgabe, die Fließfähigkeit, und insbesondere die Paraffindispergierung bei Mineralölen bzw. Mineralöldestillaten durch den Zusatz geeigneter Additive zu verbessern. It was therefore the object of the flowability, and in particular the Paraffin dispersion in mineral oils or mineral oil distillates by the addition to improve suitable additives.

Überraschend wurde nun gefunden, dass ein Additiv, das neben Alkylphenol-Aldehydharzen auch bestimmte Ester alkoxilierter Polyole enthält, einen besonders guten Kaltfließverbesserer für schwefelarme Brennstofföle darstellt.Surprisingly, it has now been found that an additive, in addition to alkylphenol-aldehyde resins also contains certain esters of alkoxylated polyols, a represents particularly good cold flow improver for low-sulfur fuel oils.

Gegenstand der Erfindung sind somit Additive für Mitteldestillate mit maximal 0,05 Gew.-% Schwefelgehalt, enthaltend mindestens einen Fettsäureester alkoxilierter Polyole mit mindestens 3 OH-Gruppen (A) und mindestens ein Alkylphenol-Aldehydharz (C).The invention thus provides additives for middle distillates with a maximum 0.05% by weight of sulfur content, containing at least one fatty acid ester alkoxylated polyols having at least 3 OH groups (A) and at least one Alkylphenol-aldehyde resin (C).

Ein weiterer Gegenstand der Erfindung sind Mitteldestillate mit maximal 0,05 Gew.-% Schwefelgehalt, die ein Additiv enthalten, welches mindestens einen Fettsäureester alkoxilierter Polyole mit mindestens 3 OH-Gruppen (A) und mindestens ein Alkylphenol-Aldehydharz (C) enthält.Another object of the invention are middle distillates with maximum 0.05% by weight of sulfur containing an additive containing at least one Fatty acid esters of alkoxylated polyols having at least 3 OH groups (A) and contains at least one alkylphenol-aldehyde resin (C).

Ein weiterer Gegenstand der Erfindung ist die Verwendung eines Additivs, enthaltend mindestens einen Fettsäureester alkoxilierter Polyole mit mindestens 3 OH-Gruppen (A) und mindestens ein Alkylphenol-Aldehydharz (C), zur Verbesserung der Kaltfließeigenschaften und Paraffindispergierung von Mitteldestillaten mit maximal 0,05 Gew.-% Schwefelgehalt.Another object of the invention is the use of an additive, containing at least one fatty acid ester of alkoxylated polyols with at least 3 OH groups (A) and at least one alkylphenol-aldehyde resin (C), for Improvement of cold flow properties and paraffin dispersion of Middle distillates with a maximum of 0.05 wt .-% sulfur content.

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Verbesserung der Kaltfließeigenschaften von Mitteldestillaten mit maximal 0,05 Gew.-% Schwefelgehalt, indem man den Mitteldestillaten ein Additiv, enthaltend mindestens einen Fettsäureester alkoxilierter Polyole mit mindestens 3 OH-Gruppen (A) und mindestens ein Alkylphenol-Aldehydharz (C), zusetzt.Another object of the invention is a method for improving the Cold flow properties of middle distillates with a maximum of 0.05% by weight Sulfur content by adding to the middle distillates an additive containing at least one fatty acid ester of alkoxylated polyols having at least 3 OH groups (A) and at least one alkylphenol-aldehyde resin (C).

Die Ester (A) leiten sich von Polyolen mit 3 oder mehr OH-Gruppen ab, insbesondere von Glycerin, Trimethylolpropan, Pentaerythrit sowie den daraus durch Kondensation zugänglichen Oligomeren mit 2 bis 10 Monomereinheiten wie z.B. Polyglycerin. Die Polyole sind im allgemeinen mit 1 bis 100 mol Alkylenoxid, bevorzugt 3 bis 70, insbesondere 5 bis 50 mol Alkylenoxid pro mol Polyol umgesetzt. Bevorzugte Alkylenoxide sind Ethylenoxid, Propylenoxid und Butylenoxid. Die Alkoxylierung erfolgt nach bekannten Verfahren. The esters (A) are derived from polyols having 3 or more OH groups, in particular of glycerol, trimethylolpropane, pentaerythritol and the like condensation-accessible oligomers having from 2 to 10 monomer units, such as e.g. Polyglycerol. The polyols are generally containing from 1 to 100 mol of alkylene oxide, preferably 3 to 70, in particular 5 to 50 moles of alkylene oxide per mole of polyol implemented. Preferred alkylene oxides are ethylene oxide, propylene oxide and Butylene oxide. The alkoxylation is carried out by known methods.

Die für die Veresterung der alkoxylierten Polyole geeigneten Fettsäuren haben vorzugsweise 8 bis 50, insbesondere 12 bis 30, speziell 16 bis 26 C-Atome. Geeignete Fettsäuren sind beispielsweise Laurin-, Tridecan-, Myristin-, Pentadecan-, Palmitin-, Margarin-, Stearin-, Isostearin-, Arachin- und Behensäure, Öl- und Erucasäure, Palmitolein-, Myristolein, Ricinolsäure, sowie aus natürlichen Fetten und Ölen gewonnene Fettsäuremischungen. Bevorzgte Fettsäuremischungen enthalten mehr als 50 % Fettsäuren mit mindestens 20 C-Atomen. Bevorzugt enthalten weniger als 50 % der zur Veresterung verwendeten Fettsäuren Doppelbindungen, insbesondere weniger als 10 %; speziell sind sie weitestgehend gesättigt. Unter weitestgehend gesättigt soll hier eine lodzahl der verwendeten Fettsäure von bis zu 5 g I pro 100 g Fettsäure verstanden werden. Die Veresterung kann auch ausgehend von reaktiven Derivaten der Fettsäuren wie Estern mit niederen Alkoholen (z.B. Methyl- oder Ethylester) oder Anhydriden erfolgen.The fatty acids which are suitable for the esterification of the alkoxylated polyols preferably 8 to 50, in particular 12 to 30, especially 16 to 26 C-atoms. Suitable fatty acids are, for example, lauric, tridecane, myristic, Pentadecane, palmitic, margarine, stearic, isostearic, arachinic and behenic acid, Oil and erucic acid, palmitoleic, myristolein, ricinoleic acid, and natural Fats and oils derived fatty acid mixtures. Bevorzgte Fatty acid mixtures contain more than 50% fatty acids with at least 20 C atoms. Preferably, less than 50% of those for esterification used fatty acids double bonds, in particular less than 10%; specifically, they are largely saturated. Under largely saturated should here an iodine value of the fatty acid used of up to 5 g of I per 100 g of fatty acid be understood. The esterification can also be based on reactive Derivatives of fatty acids such as esters with lower alcohols (e.g., methyl or Ethyl ester) or anhydrides.

Zur Veresterung der alkoxylierten Polyole können auch Gemische obiger Fettsäuren mit fettlöslichen, mehrwertigen Carbonsäuren eingesetzt werden. Beispiele für geeignete mehrwertige Carbonsäuren sind Dimerfettsäuren, Alkenylbernsteinsäuren und aromatische Polycarbonsäuren sowie deren Derivate wie Anhydride und C1- bis C5-Ester. Bevorzugt sind Alkenylbernsteinsäure und deren Derivate mit Alkylresten mit 8 bis 200, insbesondere 10 bis 50 C-Atomen. Beispiele sind Dodecenyl-, Octadecenyl- und Poly(isobutenyl)-bernsteinsäureanhydrid. Bevorzugt werden die mehrwertigen Carbonsäuren dabei zu untergeordneten Anteilen von bis zu 30 mol-%, bevorzugt 1 bis 20 mol-%, insbesondere 2 bis 10 mol-% eingesetzt.For the esterification of the alkoxylated polyols, it is also possible to use mixtures of the above fatty acids with fat-soluble, polybasic carboxylic acids. Examples of suitable polybasic carboxylic acids are dimer fatty acids, alkenylsuccinic acids and aromatic polycarboxylic acids and derivatives thereof such as anhydrides and C 1 - to C 5 -esters. Alkenylsuccinic acid and its derivatives with alkyl radicals having 8 to 200, in particular 10 to 50, carbon atoms are preferred. Examples are dodecenyl, octadecenyl and poly (isobutenyl) succinic anhydride. The polybasic carboxylic acids are preferably used here to lower levels of up to 30 mol%, preferably 1 to 20 mol%, in particular 2 to 10 mol%.

Ester und Fettsäure werden für die Veresterung bezogen auf den Gehalt an Hydroxylgruppen einerseits und Carboxylgruppen andererseits im Verhältnis 1,5 : 1 bis 1 : 1,5 eingesetzt, bevorzugt 1,1 :1 bis 1 : 1,1, insbesondere equimolar. Die paraffindispergierende Wirkung ist besonders ausgeprägt, wenn mit einem Säureüberschuß von bis zu 20 mol-%, speziell bis zu 10 mol-%, insbesondere bis zu 5 mol-% gearbeitet wird. Ester and fatty acid are used for esterification based on the content Hydroxyl groups on the one hand and carboxyl groups on the other hand in the ratio 1.5: 1 to 1: 1.5 used, preferably 1.1: 1 to 1: 1.1, in particular equimolar. The paraffin-dispersing effect is particularly pronounced when with a Acid excess of up to 20 mol%, especially up to 10 mol%, in particular to to 5 mol% is worked.

Die Veresterung wird nach üblichen Verfahren durchgeführt. Besonders bewährt hat sich die Umsetzung von Polyolalkoxilat mit Fettsäure, gegebenenfalls in Gegenwart von Katalysatoren wie z.B. para-Toluolsulfonsäure, C2- bis C50-Alkylbenzolsulfonsäuren, Methansulfonsäure oder sauren Ionenaustauschern. Die Abtrennung des Reaktionswassers kann destillativ durch Direktkondensation oder bevorzugt mittels azeotroper Destillation in Anwesenheit organischer Lösemittel, insbesondere aromatischer Lösemittel wie Toluol, Xylol oder auch höher siedender Gemische wie ®Shellsol A, Shellsol B, Shellsol AB oder Solvent Naphtha erfolgen. Die Veresterung erfolgt bevorzugt vollständig, d.h. für die Veresterung werden 1,0 bis 1,5 mol Fettsäure pro mol Hydroxylgruppen eingesetzt. Die Säurezahl der Ester liegt im Allgemeinen unter 15 mg KOH/g, bevorzugt unter 10 mg KOH/g speziell unter 5 mg KOH/g.The esterification is carried out by conventional methods. Has proven particularly useful the implementation of Polyolalkoxilat with fatty acid, optionally in the presence of catalysts such as para-toluenesulfonic acid, C 2 - to C 50 -alkylbenzenesulfonic acids, methanesulfonic acid or acidic ion exchangers. The separation of the water of reaction can be carried out by distillation by direct condensation or preferably by azeotropic distillation in the presence of organic solvents, in particular aromatic solvents such as toluene, xylene or higher boiling mixtures such as ®Shellsol A, Shellsol B, Shellsol AB or Solvent Naphtha. The esterification is preferably carried out completely, ie for the esterification 1.0 to 1.5 moles of fatty acid are used per mole of hydroxyl groups. The acid number of the esters is generally below 15 mg KOH / g, preferably below 10 mg KOH / g, especially below 5 mg KOH / g.

Die im erfindungsgemäßen Additiv enthaltenen Alkylphenol-Aldehyd-Harze (C) sind prinzipiell bekannt und beispielsweise im Römpp Chemie Lexikon, 9. Auflage, Thieme Verlag 1988-92, Band 4, S. 3351 ff. beschrieben. Die Alkylreste des o- oder p-Alkylphenols besitzen 1 - 50, bevorzugt 4 - 20, insbesondere 6 - 12 Kohlenstoffatome; bevorzugt handelt es sich um n-, iso- und tert.-Butyl, n- und iso-Pentyl, n- und iso-Hexyl, n- und iso-Octyl, n- und iso-Nonyl, n- und iso-Decyl, n- und iso-Dodecyl sowie Tetrapropenyl, Pentapropenyl und Polyisobutenyl. Das Alkylphenol-Aldehyd-Harz kann auch bis zu 50 mol-% Phenoleinheiten enthalten. Für das Alkylphenol-Aldehydharz können gleiche oder verschiedene Alkylphenole verwendet werden. Der aliphatische Aldehyd im Alkylphenol-Aldehyd-Harz besitzt 1 - 10, bevorzugt 1 - 4 Kohlenstoffatome und kann weitere funktionelle Gruppen wie Aldehyd- oder Carboxylgruppen tragen. Bevorzugt ist er Formaldehyd. Das Molekulargewicht der Alkylphenol-Aldehyd-Harze beträgt 400 - 10.000, bevorzugt 400 - 5000 g/mol. Voraussetzung ist hierbei, dass die Harze öllöslich sind.The alkylphenol-aldehyde resins (C) contained in the additive according to the invention are known in principle and, for example, in Römpp Chemie Lexikon, 9th edition, Thieme Verlag 1988-92, Volume 4, p 3351 et seq described. The alkyl radicals of the o- or p-alkylphenols have 1 to 50, preferably 4 to 20, in particular 6 to 12 Carbon atoms; it is preferably n-, iso- and tert-butyl, n- and iso-pentyl, n- and iso-hexyl, n- and iso-octyl, n- and iso-nonyl, n- and iso-decyl, n- and iso-dodecyl as well as tetrapropenyl, pentapropenyl and polyisobutenyl. The Alkylphenol-aldehyde resin may also contain up to 50 mole% phenol units. For the alkylphenol-aldehyde resin, the same or different alkylphenols be used. The aliphatic aldehyde in the alkylphenol-aldehyde resin has 1-10, preferably 1-4, carbon atoms and may have other functional groups as carry aldehyde or carboxyl groups. It is preferably formaldehyde. The Molecular weight of the alkylphenol-aldehyde resins is 400-10,000, preferably 400 - 5000 g / mol. The prerequisite here is that the resins are oil-soluble.

Die Herstellung der Alkylphenol-Aldehyd-Harze erfolgt in bekannter Weise durch basische Katalyse, wobei Kondensationsprodukte vom Resoltyp entstehen, oder durch saure Katalyse, wobei Kondensationsprodukte vom Novolaktyp entstehen.The preparation of the alkylphenol-aldehyde resins is carried out in a known manner basic catalysis, resulting in resol-type condensation products, or by acid catalysis to produce novolac-type condensation products.

Die nach beiden Arten gewonnenen Kondensate sind für die erfindungsgemäßen Zusammensetzungen geeignet. Bevorzugt ist die Kondensation in Gegenwart von sauren Katalysatoren.The condensates obtained according to both types are for the invention Compositions suitable. Preferably, the condensation is in the presence of acid catalysts.

Zur Herstellung der Alkylphenol-Aldehyd-Harze werden ein bifunktionelles o- oder p-Alkylphenol mit 1 bis 50 C-Atomen, vorzugsweise 4 bis 20, insbesondere 6 bis 12 C-Atomen je Alkylgruppe, oder Gemische hiervon und ein aliphatischer Aldehyd mit 1 bis 10 C-Atomen miteinander umgesetzt, wobei pro mol Alkylphenolverbindung etwa 0,5 - 2 mol, vorzugsweise 0,7 - 1,3 mol und insbesondere äquimolare Mengen Aldehyd eingesetzt werden.For the preparation of the alkylphenol-aldehyde resins are a bifunctional o- or p-alkylphenol having 1 to 50 carbon atoms, preferably 4 to 20, in particular 6 to 12 C atoms per alkyl group, or mixtures thereof and an aliphatic one Aldehyde having 1 to 10 carbon atoms reacted with each other, wherein per mol Alkylphenol compound about 0.5 to 2 mol, preferably 0.7 to 1.3 mol and In particular, equimolar amounts of aldehyde can be used.

Geeignete Alkylphenole sind insbesondere C4- bis C50-Alkylphenole wie beispielsweise o- oder p-Kresol, n-, sek.- und tert.-Butylphenol, n- und i-Pentylphenol, n- und iso-Hexylphenol, n- und iso-Octylphenol, n- und iso-Nonylphenol, n- und iso-Decylphenol, n- und iso-Dodecylphenol, Tetradecylphenol, Hexadecylphenol, Octadecylphenol, Eicosylphenol, Tripropenylphenol, Tetrapropenylphenol und Polyi(isobutenyl)phenol.Suitable alkylphenols are, in particular, C 4 -C 50 -alkylphenols, for example o- or p-cresol, n-, sec- and tert-butylphenol, n- and i-pentylphenol, n- and isohexylphenol, n- and - iso-octylphenol, n- and iso-nonylphenol, n- and iso-decylphenol, n- and iso-dodecylphenol, tetradecylphenol, hexadecylphenol, octadecylphenol, eicosylphenol, tripropenylphenol, tetrapropenylphenol and polyis (isobutenyl) phenol.

Die Alkylphenole sind vorzugsweise para-substituiert. Sie sind vorzugsweise zu höchstens 7 mol-%, insbesondere zu höchstens 3 mol-% mit mehr als einer Alkylgruppe substituiert.The alkylphenols are preferably para-substituted. They are preferably too at most 7 mol%, in particular at most 3 mol% with more than one Substituted alkyl group.

Besonders geeignete Aldehyde sind Formaldehyd, Acetaldehyd, Butyraldehyd und Glutaraldehyd, bevorzugt ist Formaldehyd.Particularly suitable aldehydes are formaldehyde, acetaldehyde, butyraldehyde and glutaraldehyde, preferred is formaldehyde.

Der Formaldehyd kann in Form von Paraformaldehyd oder in Form einer vorzugsweise 20 - 40 gew.-%igen wäßrigen Formalinlösung eingesetzt werden. Es können auch entsprechende Mengen an Trioxan verwendet werden.The formaldehyde may be in the form of paraformaldehyde or in the form of a preferably 20 to 40% strength by weight aqueous formalin solution are used. Corresponding amounts of trioxane can also be used.

Die Umsetzung von Alkylphenol und Aldehyd erfolgt üblicherweise in Gegenwart von alkalischen Katalysatoren, beispielsweise Alkalihydroxiden oder Alkylaminen, oder von sauren Katalysatoren, beispielsweise anorganischen oder organischen Säuren, wie Salzsäure, Schwefelsäure, Phosphorsäure, Sulfonsäure, Sulfamidosäuren oder Halogenessigsäuren, und in Gegenwart eines mit Wasser ein Azeotrop bildenden organischen Lösungsmittels, beispielsweise Toluol, Xylol, höheren Aromaten oder Gemischen hiervon. Das Reaktionsgemisch wird auf eine Temperatur von 90 bis 200°C, bevorzugt 100 - 160°C erhitzt, wobei das entstehende Reaktionswasser während der Umsetzung durch azeotrope Destillation entfernt wird. Lösungsmittel, die unter den Bedingungen der Kondensation keine Protonen abspalten, können nach der Kondensationsreaktion in den Produkten bleiben. Die Harze können direkt oder nach Neutralisation des Katalysators eingesetzt werden, gegebenenfalls nach weiterer Verdünnung der Lösung mit aliphatischen und/oder aromatischen Kohlenwasserstoffen oder Kohlenwasserstoffgemischen, z.B. Benzinfraktionen, Kerosin, Decan, Pentadecan, Toluol, Xylol, Ethylbenzol oder Lösungsmitteln wie ®Solvent Naphtha, ®Shellsol AB, ®Solvesso 150, ®Solvesso 200, ®Exxsol, ®ISOPAR- und ®Shellsol D-Typen.The reaction of alkylphenol and aldehyde is usually carried out in the presence of alkaline catalysts, for example alkali metal hydroxides or alkylamines, or of acidic catalysts, for example inorganic or organic Acids, such as hydrochloric acid, sulfuric acid, phosphoric acid, sulfonic acid, Sulfamido acids or haloacetic acids, and in the presence of one with water an azeotrope-forming organic solvent, for example toluene, xylene, higher aromatics or mixtures thereof. The reaction mixture is on a Temperature of 90 to 200 ° C, preferably 100 - 160 ° C heated, the Resulting water of reaction during the reaction by azeotropic Distillation is removed. Solvents that are in the conditions of Condensation does not cleave protons after the condensation reaction stay in the products. The resins can be used directly or after neutralization of the Catalyst can be used, optionally after further dilution of Solution with aliphatic and / or aromatic hydrocarbons or Hydrocarbon mixtures, e.g. Gasoline fractions, kerosene, decane, Pentadecane, toluene, xylene, ethylbenzene or solvents such as ®Solvent Naphtha, ®Shellsol AB, ® Solvesso 150, ® Solvesso 200, ®Exxsol, ®ISOPAR- and ®Shellsol D types.

Die Alkylphenolharze können anschließend gegebenenfalls durch Umsetzung mit 1 bis 10, speziell 1 bis 5 mol Alkylenoxid wie Ethylenoxid, Propylenoxid oder Butylenoxid pro phenolischer OH-Gruppe alkoxiliert werden.The alkylphenol resins can then optionally by reaction with 1 to 10, especially 1 to 5 moles of alkylene oxide such as ethylene oxide, propylene oxide or Butylene oxide per phenolic OH group are alkoxylated.

In einer bevorzugten Ausführungsform der Erfindung können den erfindungsgemäßen Additiven bzw. Brennstoffölen, die die Bestandteile (A) und (C) enthalten, noch Ethylencopolymere (B), Paraffindispergatoren (D) und/oder Kammpolymere zugesetzt werden. Bevorzugte Ausführungsformen sind folglich auch erfindungsgemäße Brennstofföle, die Ethylencopolymere (B), Paraffindispergatoren (D) und/oder Kammpolymere enthalten, sowie die erfindungsgemäße Verwendung von Additiven, welche Ethylencopolymere (B), Paraffindispergatoren (D) und/oder Kammpolymere enthalten, und das entsprechende Verfahren.In a preferred embodiment of the invention, the additives or fuel oils according to the invention, the components (A) and (C), nor ethylene copolymers (B), paraffin dispersants (D) and / or Comb polymers are added. Accordingly, preferred embodiments are also fuel oils according to the invention, the ethylene copolymers (B), Paraffin dispersants (D) and / or comb polymers contain, and the use of additives according to the invention, which ethylene copolymers (B), Paraffin dispersants (D) and / or comb polymers contain, and the appropriate procedures.

Copolymer B) ist vorzugsweise ein Ethylen-Copolymerisat mit einem Ethylengehalt von 60 bis 90 mol-% und einem Comonomergehalt von 10 bis 40 mol-%, bevorzugt 12 bis 18 mol-%. Geeignete Comonomere sind Vinylester aliphatischer Carbonsäuren mit 2 bis 15 C-Atomen. Bevorzugte Vinylester für Copolymer B) sind Vinylacetat, Vinylpropionat, Vinylhexanoat, Vinyloctanoat, Vinyl-2-ethylhexanoat, Vinyllaurat und Vinylester von Neocarbonsäuren, hier insbesondere von Neononan-, Neodecan- und Neoundecansäure. insbesondere bevorzugt sind ein Ethylen-Vinylacetat-Copolymer, ein Ethylen-Vinylpropionat-Copolymer, ein Ethylen-Vinylacetat-Vinyloctanoat-Terpolymer, ein Ethylen-Vinylacetat-Vinyl-2-ethylhexyl-Terpolymer, ein Ethylen-Vinylacetat-Neononansäurevinylester-Terpolymer oder ein Ethylen-Vinylacetat-Neodecansäurevinylester-Terpolymer. Bevorzugte Acrylsäureester sind Acrylsäureester mit Alkoholresten von 1 bis 20, insbesondere von 2 bis 12 und speziell von 4 bis 8 Kohlenstoffatomen, wie beispielsweise Methylacrylat, Ethylacrylat und 2-Ethylhexylacrylat. Die Copolymere können bis zu 5 Gew.-% weiterer Comonomere enthalten. Solche Comonomere können beispielsweise Vinylester, Vinylether, Acrylsäurealkylester, Methacrylsäurealkylester mit C1- bis C20-Alkylresten, Isobutylen und Olefine sein. Bevorzugt als höhere Olefine sind Hexen, Isobutylen, Octen und/oder Diisobutylen. Weitere geeignete Comonomere sind Olefine wie Propen, Hexen, Buten, Isobuten, Diisobutylen, 4-Methylpenten-1 und Norbornen. Besonders bevorzugt sind Ethylen-Vinylacetat-Diisobutylen und Ethylen-Vinylacetat-4-Methylpenten-1-Terpolymerisate.Copolymer B) is preferably an ethylene copolymer having an ethylene content of 60 to 90 mol% and a comonomer content of 10 to 40 mol%, preferably 12 to 18 mol%. Suitable comonomers are vinyl esters of aliphatic carboxylic acids having 2 to 15 carbon atoms. Preferred vinyl esters for copolymer B) are vinyl acetate, vinyl propionate, vinyl hexanoate, vinyl octanoate, vinyl 2-ethylhexanoate, vinyl laurate and vinyl esters of neocarboxylic acids, here in particular neononan, neodecane and neoundecanoic acid. particularly preferred are an ethylene-vinyl acetate copolymer, an ethylene-vinyl propionate copolymer, an ethylene-vinyl acetate-vinyl octanoate terpolymer, an ethylene-vinyl acetate-vinyl-2-ethylhexyl terpolymer, an ethylene-vinyl acetate-neononanoic acid vinyl ester terpolymer, or an ethylene -Vinylacetat-neodecanoate terpolymer. Preferred acrylic acid esters are acrylic esters having alcohol radicals of from 1 to 20, in particular from 2 to 12 and especially from 4 to 8 carbon atoms, such as, for example, methyl acrylate, ethyl acrylate and 2-ethylhexyl acrylate. The copolymers may contain up to 5% by weight of other comonomers. Such comonomers may be, for example, vinyl esters, vinyl ethers, alkyl acrylates, alkyl methacrylates having C 1 to C 20 alkyl radicals, isobutylene and olefins. Preferred as higher olefins are hexene, isobutylene, octene and / or diisobutylene. Other suitable comonomers are olefins such as propene, hexene, butene, isobutene, diisobutylene, 4-methylpentene-1 and norbornene. Particularly preferred are ethylene-vinyl acetate-diisobutylene and ethylene-vinyl acetate-4-methylpentene-1 terpolymers.

Vorzugsweise haben die Copolymere Schmelzviskositäten bei 140°C von 20 bis 10.000 mPas, insbesondere von 30 bis 5000 mPas, speziell von 50 bis 2000 mPas.Preferably, the copolymers have melt viscosities at 140 ° C of 20 to 10,000 mPas, in particular from 30 to 5000 mPas, especially from 50 to 2000 mPas.

Die Copolymere (B) sind durch die üblichen Copolymerisationsverfahren wie beispielsweise Suspensionspolymerisation, Lösungsmittelpolymerisation, Gasphasenpolymerisation oder Hochdruckmassepolymerisation herstellbar. Bevorzugt ist dabei die Hochdruckmassepolymerisation bei Drucken von vorzugsweise 50 bis 400, insbesondere 100 bis 300 MPa und Temperaturen von vorzugsweise 50 bis 350, insbesondere 100 bis 250°C. Die Reaktion der Monomeren wird durch Radikale bildende Initiatoren (Radikalkettenstarter) eingeleitet. Zu dieser Substanzklasse gehören z.B. Sauerstoff, Hydroperoxide, Peroxide und Azoverbindungen wie Cumolhydroperoxid, t-Butylhydroperoxid, Dilauroylperoxid, Dibenzoylperoxid, Bis(2-ethylhexyl)peroxid-carbonat, t-Butylperpivalat, t-Butylpermaleinat, t-Butylperbenzoat, Dicumylperoxid, t-Butylcumylperoxid, Di-(t-butyl)peroxid, 2,2'-Azo-bis(2-methylpropanonitril), 2,2'-Azo-bis(2-methylbutyronitril). Die Initiatoren werden einzeln oder als Gemisch aus zwei oder mehr Substanzen in Mengen von 0,01 bis 20 Gew.-%, vorzugsweise 0,05 bis 10 Gew.-%, bezogen auf das Monomerengemisch, eingesetzt.The copolymers (B) are prepared by the usual copolymerization methods such as for example suspension polymerization, solvent polymerization, Gas phase polymerization or high-pressure mass polymerization produced. Preference is given to the high-pressure mass polymerization at pressures of preferably 50 to 400, in particular 100 to 300 MPa and temperatures of preferably 50 to 350, in particular 100 to 250 ° C. The reaction of Monomers Are Generated by Radical Initiators (Radical Chain Starters) initiated. This class of substance includes e.g. Oxygen, hydroperoxides, Peroxides and azo compounds such as cumene hydroperoxide, t-butyl hydroperoxide, Dilauroyl peroxide, dibenzoyl peroxide, bis (2-ethylhexyl) peroxide carbonate, t-butyl perpivalate, t-butyl permalate, t-butyl perbenzoate, dicumyl peroxide, t-butyl cumyl peroxide, Di (t-butyl) peroxide, 2,2'-azobis (2-methylpropanonitrile), 2,2'-azobis (2-methylbutyronitrile). The initiators are used individually or as a mixture of two or more substances in amounts of from 0.01 to 20% by weight, preferably 0.05 to 10 wt .-%, based on the monomer mixture, used.

Die Hochdruckmassepolymerisation wird in bekannten Hochdruckreaktoren, z.B. Autoklaven oder Rohrreaktoren, diskontinuierlich oder kontinuierlich durchgeführt, besonders bewährt haben sich Rohrreaktoren. Lösungsmittel wie aliphatische und/oder aromatische Kohlenwasserstoffe oder Kohlenwasserstoffgemische, Benzol oder Toluol, können im Reaktionsgemisch enthalten sein. Bevorzugt ist die lösungsmittelfreie Arbeitsweise. In einer bevorzugten Ausführungsform der Polymerisation wird das Gemisch aus den Monomeren, dem Initiator und, sofern eingesetzt, dem Moderator, einem Rohrreaktor über den Reaktoreingang sowie über einen oder mehrere Seitenäste zugeführt. Hierbei können die Monomerenströme unterschiedlich zusammengesetzt sein (EP-A-0 271 738).High pressure bulk polymerization is used in known high pressure reactors, e.g. Autoclaves or tube reactors, discontinuous or continuous, Tube reactors have proven particularly useful. Solvents such as aliphatic and / or aromatic hydrocarbons or hydrocarbon mixtures, Benzene or toluene may be included in the reaction mixture. Preferably, the solvent-free operation. In a preferred embodiment of Polymerization is the mixture of the monomers, the initiator and, if used, the moderator, a tubular reactor via the reactor inlet as well supplied via one or more side branches. Here, the Monomer streams may be composed differently (EP-A-0 271 738).

Als geeignete Co- bzw. Terpolymere sind beispielsweise zu nennen:

  • Ethylen-Vinylacetat-Copolymere mit 10 - 40 Gew.-% Vinylacetat und 60 - 90 Gew.-% Ethylen;
  • die aus DE-A-34 43 475 bekannten Ethylen-Vinylacetat-Hexen-Terpolymere;
  • die in EP-B-0 203 554 beschriebenen Ethylen-Vinylacetat-Diisobutylen-Terpolymere;
  • die aus EP-B-0 254 284 bekannte Mischung aus einem Ethylen-Vinylacetat-Diisobutylen-Terpolymerisat und einem Ethylen/Vinylacetat-Copolymer;
  • die in EP-B-0 405 270 offenbarten Mischungen aus einem Ethylen-Vinylacetat-Copolymer und einem Ethylen-Vinylacetat-N-Vinylpyrrolidon-Terpolymerisat;
  • die in EP-B-0 463 518 beschriebenen Ethylen/Vinylacetat/iso-Butylvinylether-Terpolymere;
  • die in EP-B-0 491 225 offenbarten Mischpolymerisate des Ethylens mit Alkylcarbonsäurevinylestern;
  • die aus EP-B-0 493 769 bekannten Ethylen/Vinylacetat/ Neononansäurevinylester bzw. Neodecansäurevinylester-Terpolymere, die außer Ethylen 10 - 35 Gew.-% Vinylacetat und 1 - 25 Gew.-% der jeweiligen Neoverbindung enthalten; die in DE-A-196 20 118 beschriebenen Terpolymere aus Ethylen, dem Vinylester einer oder mehrerer aliphatischer C2- bis C20-Monocarbonsäuren und 4-Methylpenten-1;
  • die in DE-A-196 20 119 offenbarten Terpolymere aus Ethylen, dem Vinylester einer oder mehrerer aliphatischer C2- bis C20-Monocarbonsäuren und Bicyclo[2.2.1]hept-2-en.
  • Suitable copolymers or terpolymers include, for example:
  • Ethylene-vinyl acetate copolymers with 10-40% by weight of vinyl acetate and 60-90% by weight of ethylene;
  • the ethylene-vinyl acetate-hexene terpolymers known from DE-A-34 43 475;
  • the ethylene-vinyl acetate-diisobutylene terpolymers described in EP-B-0 203 554;
  • the mixture known from EP-B-0 254 284 comprising an ethylene-vinyl acetate-diisobutylene terpolymer and an ethylene / vinyl acetate copolymer;
  • the blends disclosed in EP-B-0 405 270 of an ethylene-vinyl acetate copolymer and an ethylene-vinyl acetate-N-vinylpyrrolidone terpolymer;
  • the ethylene / vinyl acetate / iso-butyl vinyl ether terpolymers described in EP-B-0 463 518;
  • the copolymers of ethylene with alkylcarboxylic acid vinyl esters disclosed in EP-B-0 491 225;
  • the ethylene / vinyl acetate / vinyl neononanoate or vinyl neodecanoate terpolymers known from EP-B-0 493 769, which contain, in addition to ethylene, 10-35% by weight of vinyl acetate and 1-25% by weight of the respective neo compound; the terpolymers of ethylene, the vinyl ester of one or more aliphatic C 2 to C 20 monocarboxylic acids and 4-methylpentene-1 described in DE-A-196 20 118;
  • the terpolymers disclosed in DE-A-196 20 119 of ethylene, the vinyl ester of one or more aliphatic C 2 to C 20 monocarboxylic acids and bicyclo [2.2.1] hept-2-ene.
  • Bei den polaren stickstoffhaltigen Paraffindispergatoren (D) handelt es sich um niedermolekulare oder polymere, öllösliche Stickstoffverbindungen, z.B. Aminsalze, Imide und/oder Amide, die durch Reaktion aliphatischer oder aromatischer Amine, vorzugsweise langkettiger aliphatischer Amine, mit aliphatischen oder aromatischen Mono-, Di-, Tri- oder Tetracarbonsäuren oder deren Anhydriden erhalten werden. Besonders bevorzugte Paraffindispergatoren enthalten Umsetzungsprodukte sekundärer Fettamine mit 8 bis 36 C-Atomen, insbesondere Dicocosfettamin, Ditalgfettamin und Distearylamin. Andere Paraffindispergatoren sind Copolymere des Maleinsäureanhydrids und α,β-ungesättigten Verbindungen, die gegebenenfalls mit primären Monoalkylaminen und/oder aliphatischen Alkoholen umgesetzt werden können, die Umsetzungsprodukte von Alkenylspirobislactonen mit Aminen und Umsetzungsprodukte von Terpolymerisaten auf Basis α,β-ungesättigter Dicarbonsäureanhydride, α,β-ungesättigter Verbindungen und Polyoxyalkylenether niederer ungesättigter Alkohole. Im folgenden werden einige geeignete Paraffindispergatoren (D) aufgeführt. Die nachfolgend genannten Paraffindispergatoren (D) werden zum Teil durch Reaktion von Verbindungen, die eine Acylgruppe enthalten, mit einem Amin hergestellt. Bei diesem Amin handelt es sich um eine Verbindung der Formel NR6R7R8, worin R6, R7 und R8 gleich oder verschieden sein können, und wenigstens eine dieser Gruppen für C8-C36-Alkyl, C6-C36-Cycloalkyl, C8-C36-Alkenyl, insbesondere C12-C24-Alkyl, C12-C24-Alkenyl oder Cyclohexyl steht, und die übrigen Gruppen entweder Wasserstoff, C1-C36-Alkyl, C2-C36-Alkenyl, Cyclohexyl, oder eine Gruppe der Formeln -(A-O)x-E oder -(CH2)n-NYZ bedeuten, worin A für eine Ethylen- oder Propylengruppe steht, x eine Zahl von 1 bis 50, E = H, C1-C30-Alkyl, C5-C12-Cycloalkyl oder C6-C30-Aryl, und n 2, 3 oder 4 bedeuten, und Y und Z unabhängig voneinander H, C1-C30-Alkyl oder -(A-O)x bedeuten. Unter Acylgruppe wird hier eine funktionelle Gruppe folgender Formel verstanden: > C = O

  • 1. Umsetzungsprodukte von Alkenylspirobislactonen der Formel
    Figure 00120001
    wobei R jeweils C8-C200-Alkenyl bedeutet, mit Aminen der Formel NR6R7R8. Geeignete Umsetzungsprodukte sind in EP-A-0 413 279 aufgeführt. Je nach Reaktionsbedingung erhält man bei der Umsetzung von Verbindungen der Formel mit den Aminen Amide oder Amid-Ammoniumsalze.
  • 2. Amide bzw. Ammoniumsalze von Aminoalkylenpolycarbonsäuren mit sekundären Aminen der Formeln
    Figure 00130001
    Figure 00130002
    in denen
    R10 einen geradkettigen oder verzweigten Alkylenrest mit 2 bis 6 Kohlenstoffatomen oder den Rest der Formel
    Figure 00130003
    in der R6 und R7 insbesondere Alkylreste mit 10 bis 30, bevorzugt 14 bis 24 C-Atomen bedeuten, wobei die Amidstrukturen auch zum Teil oder vollständig n Form der Ammoniumsalzstruktur der Formel
    Figure 00130004
    vorliegen können. Die Amide bzw. Amid-Ammoniumsalze bzw. Ammoniumsalze z.B. der Nitrilotriessigsäure, der Ethylendiamintetraessigsäure oder der Propylen-1,2-diamintetraessigsäure werden durch Umsetzung der Säuren mit 0,5 bis 1,5 Mol Amin, bevorzugt 0,8 bis 1,2 Mol Amin pro Carboxylgruppe erhalten. Die Umsetzungstemperaturen betragen etwa 80 bis 200°C, wobei zur Herstellung der Amide eine kontinuierliche Entfernung des entstandenen Reaktionswasser erfolgt. Die Umsetzung muß jedoch nicht vollständig zum Amid geführt werden, vielmehr können 0 bis 100 Mol-% des eingesetzten Amins in Form des Ammoniumsalzes vorliegen. Unter analogen Bedingungen können auch die unter B1) genannten Verbindungen hergestellt werden.Als Amine der Formel
    Figure 00140001
    kommen insbesondere Dialkylamine in Betracht, in denen R6, R7 einen geradkettigen Alkylrest mit 10 bis 30 Kohlenstoffatomen, vorzugsweise 14 bis 24 Kohlenstoffatomen, bedeutet. Im einzelnen seien Dioleylamin, Dipalmitinamin, Dikokosfettamin und Dibehenylamin und vorzugsweise Ditalgfettamin genannt.
  • 3. Quartäre Ammoniumsalze der Formel +NR6R7R8R11 X- wobei R6, R7, R8 die oben gegebene Bedeutung haben und R11 für C1-C30-Alkyl, bevorzugt C1-C22-Alkyl, C1-C30-Alkenyl, bevorzugt C1-C22-Alkenyl, Benzyl oder einen Rest der Formel -(CH2-CH2-O)n-R12 steht, wobei R12 Wasserstoff oder ein Fettsäurerest der Formel C(O)-R13 ist, mit R13 = C6-C40-Alkenyl, n eine Zahl von 1 bis 30 und X für Halogen, bevorzugt Chlor, oder ein Methosulfat steht. Beispielhaft für derartige quartäre Ammoniumsalze seien genannt: Dihexadecyl-dimethylammoniumchlorid, Distearyldimethylammoniumchlorid, Quaternisierungsprodukte von Estern des Di- und Triethanolamins mit langkettigen Fettsäuren (Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Behensäure, Ölsäure und Fettsäuremischungen, wie Cocosfettsäure, Talgfettsäure, hydrierte Talgfettsäure, Tallölfettsäure), wie N-Methyltriethanolammoniumdistearylester-chlorid, N-Methyltriethanolammoniumdistearylestermethosulfat, N,N-Dimethyl-diethanolammoniumdistearylesterchlorid, N-Methyltriethanolammonium-dioleylester-chlorid, N-Methyltriethanolammoniumtrilaurylestermethosulfat, N-Methyltriethanolammoniumtristearylestermethosulfat und deren Mischungen.
  • 4. Verbindungen der Formel
    Figure 00150001
    in denen R14 für CONR6R7 oder CO2 - +H2NR6R7 steht,
    R15 und R16 für H, CONR17 2, CO2R17 oder OCOR17, -OR17, -R17 oder - NCOR17 stehen, und
    R17 Alkyl, Alkoxyalkyl oder Polyalkoxyalkyl ist und mindestens 10 Kohlenstoffatome aufweist. Bevorzugte Carbonsäuren bzw. Säurederivate sind Phthalsäure(anhydrid), Trimellit, Pyromellitsäure(dianhydrid), Isophthalsäure, Terephthalsäure, Cyclohexan-dicarbonsäure(anhydrid), Maleinsäure(anhydrid), Alkenylbernsteinsäure(anhydrid). Die Formulierung (anhydrid) bedeutet, dass auch die Anhydride der genannten Säuren bevorzugte Säurederivate sind.
    Wenn die Verbindungen obiger Formel Amide oder Aminsalze sind, sind sie vorzugsweise von einem sekundären Amin, das eine Wasserstoff und Kohlenstoff enthaltende Gruppe mit mindestens 10 Kohlenstoffatomen enthält, erhalten.Es ist bevorzugt, dass R17 10 bis 30, insbesondere 10 bis 22, z.B. 14 bis 20 Kohlenstoffatome enthält und vorzugsweise geradkettig oder an der 1- oder 2-Position verzweigt ist. Die anderen Wasserstoff und Kohlenstoff enthaltenden Gruppen können kürzer sein, z.B. weniger als 6 Kohlenstoffatome enthalten, oder können, falls gewünscht, mindestens 10 Kohlenstoffatome aufweisen. Geeignete Alkylgruppen schließen Methyl, Ethyl, Propyl, Hexyl, Decyl, Dodecyl, Tetradecyl, Eicosyl und Docosyl (Behenyl) ein.Des weiteren sind Polymere geeignet, die mindestens eine Amid- oder Ammoniumgruppe direkt an das Gerüst des Polymers gebunden enthalten, wobei die Amid- oder Ammoniumgruppe mindestens eine Alkylgruppe von mindestens 8 C-Atomen am Stickstoffatom trägt. Derartige Polymere können auf verschiedene Arten hergestellt werden. Eine Art ist, ein Polymer zu verwenden, das mehrere Carbonsäure oder -Anhydridgruppen enthält, und dieses Polymer mit einem Amin der Formel NHR6R7 umzusetzen, um das gewünschte Polymer zu erhalten.Als Polymere sind dazu allgemein Copolymere aus ungesättigten Estern wie C1-C40-Alkyl(meth)acrylaten, Fumarsäuredi(C1-C40-alkylestern), C1-C40-Alkylvinylethem, C1-C40-Alkylvinylestern oder C2-C40-Olefinen (linear, verzweigt, aromatisch) mit ungesättigten Carbonsäuren bzw. deren reaktiven Derivaten, wie z.B. Carbonsäureanhydriden (Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure, Tetrahydrophthalsäure, Citraconsäure, bevorzugt Maleinsäureanhydrid) geeignet. Carbonsäuren werden vorzugsweise mit 0,1 bis 1,5 mol, insbesondere 0,5 bis 1,2 mol Amin pro Säuregruppe, Carbonsäureanhydride vorzugsweise mit 0,1 bis 2,5, insbesondere 0,5 bis 2,2 mol Amin pro Säureanhydridgruppe umgesetzt, wobei je nach Reaktionsbedingungen Amide, Ammoniumsalze, Amid-Ammoniumsalze oder Imide entstehen. So ergeben Copolymere, die ungesättigte Carbonsäureanhydride enthalten, bei der Umsetzung mit einem sekundären Amin auf Grund der Reaktion mit der Anhydridgruppe zur Hälfte Amid und zur Hälfte Aminsalze. Durch Erhitzen kann unter Bildung des Diamids Wasser abgespalten werden.Besonders geeignete Beispiele amidgruppenhaltiger Polymere zur erfindungsgemäßen Verwendung sind:
  • 5. Copolymere (a) eines Dialkylfumarats, -maleats, -citraconats oder -itaconats mit Maleinsäureanhydrid, oder (b) von Vinylestern, z.B. Vinylacetat oder Vinylstearat mit Maleinsäureanhydrid, oder (c) eines Dialkylfumarats, -maleats, -citraconats oder -itaconats mit Maleinsäureanhydrid und Vinylacetat. Besonders geeignete Beispiele für diese Polymere sind Copolymere von Didodecylfumarat, Vinylacetat und Maleinsäureanhydrid; Ditetradecylfumarat, Vinylacetat und Maleinsäureanhydrid; Dihexadecylfumarat, Vinylacetat und Maleinsäureanhydrid; oder den entsprechenden Copolymeren, bei denen anstelle des Fumarats das Itaconat verwendet wird.In den oben genannten Beispielen geeigneter Polymere wird das gewünschte Amid durch Umsetzung des Polymers, das Anhydridgruppen enthält, mit einem sekundären Amin der Formel HNR6R7 (gegebenenfalls außerdem mit einem Alkohol, wenn ein Esteramid gebildet wird) erhalten. Wenn Polymere, die eine Anhydridgruppe enthalten, umgesetzt werden, werden die resultierenden Aminogruppen Ammoniumsalze und Amide sein. Solche Polymere können verwendet werden, mit der Maßgabe, dass sie mindestens zwei Amidgruppen enthalten.
    Es ist wesentlich, dass das Polymer, das mindestens zwei Amidgruppen enthält, mindestens eine Alkylgruppe mit mindestens 10 Kohlenstoffatomen enthält. Diese langkettige Gruppe, die eine geradkettige oder verzweigte Alkylgruppe sein kann, kann über das Stickstoffatom der Amidgruppe gebunden vorliegen.Die dafür geeigneten Amine können durch die Formel R6R7NH und die Polyamine durch R6NH[R19NH]xR7 wiedergegeben werden, wobei R19 eine zweiwertige Kohlenwasserstoffgruppe, vorzugsweise eine Alkylen- oder kohlenwasserstoffsubstituierte Alkylengruppe, und x eine ganze Zahl, vorzugsweise zwischen 1 und 30 ist. Vorzugsweise enthalten einer der beiden oder beide Reste R6 und R7 mindestens 10 Kohlenstoffatome, beispielsweise 10 bis 20 Kohlenstoffatome, zum Beispiel Dodecyl, Tetradecyl, Hexadecyl oder Octadecyl.Beispiele geeigneter sekundärer Amine sind Dioctylamin und solche, die Alkylgruppen mit mindestens 10 Kohlenstoffatomen enthalten, beispielsweise Didecylamin, Didodecylamin, Dicocosamin (d.h. gemischte C12-C14-Amine), Dioctadecylamin, Hexadecyloctadecylamin, Di-(hydriertes Talg)-Amin (annähernd 4 Gew.-% n-C14-Alkyl, 30 Gew.-% n-C10-Alkyl, 60 Gew.-% n-C18-Alkyl, der Rest ist ungesättigt).Beispiele geeigneter Polyamine sind N-Octadecylpropandiamin, N,N'-Dioctadecylpropandiamin, N-Tetradecylbutandiamin und N,N'-Dihexadecylhexandiamin. N-Cocospropylendiamin (C12/C14-Alkylpropylen-diamin), N-Talgpropylendiamin (C16/C18-Alkylpropylendiamin).Die amidhaltigen Polymere haben üblicherweise ein durchschnittliches Molekulargewicht (Zahlenmittel) von 1000 bis 500 000, zum Beispiel 10 000 bis 100 000.
  • 6. Copolymere des Styrols, seiner Derivate oder aliphatischer Olefine mit 2 bis 40 C-Atomen, bevorzugt mit 6 bis 20 C-Atomen und olefinisch ungesättigten Carbonsäuren oder Carbonsäureanhydriden, die mit Aminen der Formel HNR6R7 umgesetzt sind. Die Umsetzung kann vor oder nach der Polymerisation vorgenommen werden. Im einzelnen leiten sich die Struktureinheiten der Copolymere von z.B. Maleinsäure, Fumarsäure, Tetrahydrophthalsäure, Citraconsäure, bevorzugt Maleinsäureanhydrid ab. Sie können sowohl in Form ihrer Homopolymeren als auch der Copolymeren eingesetzt werden. Als Comonomere sind geeignet: Styrol und Alkylstyrole, geradkettige und verzweigte Olefine mit 2 bis 40 Kohlenstoffatomen, sowie deren Mischungen untereinander. Beispielsweise seien genannt: Styrol, α-Methylstyrol, Dimethylstyrol, α-Ethylstyrol, Diethylstyrol, i-Propylstyrol, tert.-Butylstyrol, Ethylen, Propylen, n-Butylen, Diisobutylen, Decen, Dodecen, Tetradecen, Hexadecen, Octadecen. Bevorzugt sind Styrol und Isobuten, besonders bevorzugt ist Styrol.Als Polymere seien beispielsweise im einzelnen genannt: Polymaleinsäure, ein molares, alternierend aufgebautes Styrol/Maleinsäure-Copolymer, statistisch aufgebaute Styrol/Maleinsäure-Copolymere im Verhältnis 10:90 und ein alternierendes Copolymer aus Maleinsäure und i-Buten. Die molaren Massen der Polymeren betragen im allgemeinen 500 g/mol bis 20 000 g/mol, bevorzugt 700 bis 2000 g/mol.Die Umsetzung der Polymeren oder Copolymeren mit den Aminen erfolgt bei Temperaturen von 50 bis 200°C im Verlauf von 0,3 bis 30 Stunden. Das Amin wird dabei in Mengen von ungefähr einem Mol pro Mol einpolymerisiertem Dicarbonsäureanhydrid, d.i. ca.0,9 bis 1,1 Mol/Mol, angewandt. Die Verwendung größerer oder geringerer Mengen ist möglich, bringt aber keinen Vorteil. Werden größere Mengen als ein Mol angewandt, erhält man zum Teil Ammoniumsalze, da die Bildung einer zweiten Amidgruppierung höhere Temperaturen, längere Verweilzeiten und Wasserauskreisen erfordert. Werden geringere Mengen als ein Mol angewandt, findet keine vollständige Umsetzung zum Monoamid statt und man erhält eine dementsprechend verringerte Wirkung.Anstelle der nachträglichen Umsetzung der Carboxylgruppen in Form des Dicarbonsäureanhydrids mit Aminen zu den entsprechenden Amiden kann es manchmal von Vorteil sein, die Monoamide der Monomeren herzustellen und dann bei der Polymerisation direkt einzupolymerisieren. Meist ist das jedoch technisch viel aufwendiger, da sich die Amine an die Doppelbindung der monomeren Mono- und Dicarbonsäure anlagern können und dann keine Copolymerisation mehr möglich ist.
  • 7. Copolymere, bestehend aus 10 bis 95 Mol-% eines oder mehrerer Alkylacrylate oder Alkylmethacrylate mit C1-C26-Alkylketten und aus 5 bis 90 Mol-% einer oder mehrerer ethylenisch ungesättigter Dicarbonsäuren oder deren Anhydriden, wobei das Copolymere weitgehend mit einem oder mehreren primären oder sekundären Aminen zum Monoamid oder Amid/Ammoniumsalz der Dicarbonsäure umgesetzt ist. Die Copolymeren bestehen zu 10 bis 95 Mol-%, bevorzugt zu 40 bis 95 Mol-% und besonders bevorzugt zu 60 bis 90 Mol-% aus Alkyl(meth)acrylaten und zu 5 bis 90 Mol-%, bevorzugt zu 5 bis 60 Mol-% und besonders bevorzugt zu 10 bis 40 Mol-% aus den olefinisch ungesättigten Dicarbonsäurederivaten. Die Alkylgruppen der Alkyl(meth)acrylate enthalten aus 1 bis 26, bevorzugt 4 bis 22 und besonders bevorzugt 8 bis 18 Kohlenstoffatome. Sie sind bevorzugt geradkettig und unverzweigt. Es können jedoch auch bis zu 20 Gew.-% cyclische und/oder verzweigte Anteile enthalten sein.Beispiele für besonders bevorzugte Alkyl(meth)acrylate sind n-Octyl(meth)acrylat, n-Decyl(meth)acrylat, n-Dodecyl(meth)acrylat, n-Tetradecyl(meth)acrylat, n-Hexadecyl(meth)acrylat und n-Octadecyl(meth)acrylat sowie Mischungen davon.Beispiele ethylenisch ungesättigter Dicarbonsäuren sind Maleinsäure, Tetrahydrophthalsäure, Citraconsäure und Itaconsäure bzw. deren Anhydride sowie Fumarsäure. Bevorzugt ist Maleinsäureanhydrid.Als Amine kommen Verbindungen der Formel HNR6R7 in Betracht.In der Regel ist es von Vorteil, die Dicarbonsäuren in Form der Anhydride, soweit verfügbar, bei der Copolymerisation einzusetzen, z.B. Maleinsäureanhydrid, Itaconsäureanhydrid, Citraconsäureanhydrid und Tetrahydrophthalsäureanhydrid, da die Anhydride in der Regel besser mit den (Meth)acrylaten copolymerisieren. Die Anhydridgruppen der Copolymeren können dann direkt mit den Aminen umgesetzt werden.Die Umsetzung der Polymeren mit den Aminen erfolgt bei Temperaturen von 50 bis 200°C im Verlauf von 0,3 bis 30 Stunden. Das Amin wird dabei in Mengen von ungefähr einem bis zwei Mol pro Mol einpolymerisiertem Dicarbonsäureanhydrid, d.i. ca. 0,9 bis 2,1 Mol/Mol angewandt. Die Verwendung größerer oder geringerer Mengen ist möglich, bringt aber keinen Vorteil. Werden größere Mengen als zwei Mol angewandt, liegt freies Amin vor. Werden geringere Mengen als ein Mol angewandt, findet keine vollständige Umsetzung zum Monoamid statt und man erhält eine dementsprechend verringerte Wirkung.In einigen Fällen kann es von Vorteil sein, wenn die Amid/Ammoniumsalzstruktur aus zwei unterschiedlichen Aminen aufgebaut wird. So kann beispielsweise ein Copolymer aus Laurylacrylat und Maleinsäureanhydrid zuerst mit einem sekundären Amin, wie hydriertem Ditalgfettamin zum Amid umgesetzt werden, wonach die aus dem Anhydrid stammende freie Carboxylgruppe mit einem anderen Amin, z.B. 2-Ethylhexylamin zum Ammoniumsalz neutralisiert wird. Genauso ist die umgekehrte Vorgehensweise denkbar: Zuerst wird mit Ethylhexylamin zum Monoamid, dann mit Ditalgfettamin zum Ammoniumsalz umgesetzt. Vorzugsweise wird dabei mindestens ein Amin verwendet, welches mindestens eine geradkettige, unverzweigte Alkylgruppe mit mehr als 16 Kohlenstoffatomen besitzt. Es ist dabei nicht erheblich, ob dieses Amin am Aufbau der Amidstruktur oder als Ammoniumsalz der Dicarbonsäure vorliegt.Anstelle der nachträglichen Umsetzung der Carboxylgruppen bzw. des Dicarbonsäureanhydrids mit Aminen zu den entsprechenden Amiden oder Amid/Ammoniumsalzen, kann es manchmal von Vorteil sein, die Monoamide bzw. Amid/Ammoniumsalze der Monomeren herzustellen und dann bei der Polymerisation direkt einzupolymerisieren. Meist ist das jedoch technisch viel aufwendiger, da sich die Amine an die Doppelbindung der monomeren Dicarbonsäure anlagern können und dann keine Copolymerisation mehr möglich ist.
  • 8. Terpolymere auf Basis von α,β-ungesättigten Dicarbonsäureanhydriden, α,β-ungesättigten Verbindungen und Polyoxyalkylenethern von niederen, ungesättigten Alkoholen, die dadurch gekennzeichnet sind, dass sie 20 - 80, bevorzugt 40 - 60 Mol-% an bivalenten Struktureinheiten der Formeln 1 und/oder 3, sowie gegebenenfalls 2 enthalten, wobei die Struktureinheiten 2 von nicht umgesetzten Anhydridresten stammen,
    Figure 00220001
    Figure 00230001
    Figure 00230002
    wobei
    R22 und R23 unabhängig voneinander Wasserstoff oder Methyl,
    a, b gleich Null oder Eins und a + b gleich Eins,
    R24 und R25 gleich oder verschieden sind und für die Gruppen -NHR6, N(R6)2 und/oder -OR27 stehen, und R27 für ein Kation der Formel H2N(R6)2 oder H3NR6 steht,
    19 - 80 Mol-%, bevorzugt 39-60 Mol-% an bivalenten Struktureinheiten der Formel 4
    Figure 00230003
    worin
    R28 Wasserstoff oder C1-C4-Alkyl und
    R29 C6-C60-Alkyl oder C6-C18-Aryl bedeuten und
    1 - 30 Mol-%, bevorzugt 1 - 20 Mol-% an bivalenten Struktureinheiten der Formel 5
    Figure 00240001
    worin
    R30 Wasserstoff oder Methyl,
    R31 Wasserstoff oder C1-C4-Alkyl,
    R33 C1-C4-Alkylen,
    m eine Zahl von 1 bis 100,
    R32 C1-C24-Alkyl, C5-C20-Cycloalkyl, C6-C18-Aryl oder -C(O)-R34, wobei
    R34 C1-C40-Alkyl, C5-C10-Cycloalkyl oder C6-C18-Aryl,
    enthalten. Die vorgenannten Alkyl-, Cycloalkyl- und Arylreste können gegebenenfalls substituiert sein. Geeignete Substituenten der Alkyl- und Arylreste sind beispielsweise (C1-C6)-Alkyl, Halogene, wie Fluor, Chlor, Brom und Jod, bevorzugt Chlor und (C1-C6)-Alkoxy.Alkyl steht hier für einen geradkettigen oder verzweigten Kohlenwasserstoffrest. Im einzelnen seien genannt: n-Butyl, tert.-Butyl, n-Hexyl, n-Octyl, Decyl, Dodecyl, Tetradecyl, Hexadecyl, Octadecyl, Dodecenyl, Tetrapropenyl, Tetradecenyl, Pentapropenyl, Hexadecenyl, Octadecenyl und Eicosanyl oder Mischungen, wie Cocosalkyl, Talgfettalkyl und Behenyl.Cycloalkyl steht hier für einen cyclischen aliphatischen Rest mit 5 - 20 Kohlenstoffatomen. Bevorzugte Cycloalkylreste sind Cyclopentyl und Cyclohexyl. Aryl steht hier für einen gegebenenfalls substituiertes aromatisches Ringsystem mit 6 bis 18 Kohlenstoffatomen.Die Terpolymere bestehen aus den bivalenten Struktureinheiten der Formeln 1 und 3 sowie 4 und 5 und ggf. 2. Sie enthalten lediglich noch in an sich bekannter Weise die bei der Polymerisation durch Initiierung, Inhibierung und Kettenabbruch entstandenen Endgruppen.Im einzelnen leiten sich Struktureinheiten der Formeln 1 bis 3 von α,β-ungesättigten Dicarbonsäureanhydriden der Formeln 6 und 7
    Figure 00250001
    Figure 00250002
    wie Maleinsäureanhydrid, Itaconsäureanhydrid, Citraconsäureanhydrid, bevorzugt Maleinsäureanhydrid, ab.Die Struktureinheiten der Formel 4 leiten sich von den α,β-ungesättigten Verbindungen der Formel 8 ab.
    Figure 00260001
    Beispielhaft seien die folgenden α,β-ungesättigten Olefine genannt: Styrol, α-Methylstyrol, Dimethylstyrol, α-Ethylstyrol, Diethylstyrol, i-Propylstyrol, tert.-Butylstyrol, Diisobutylen und α-Olefine, wie Decen, Dodecen, Tetradecen, Pentadecen, Hexadecen, Octadecen, C20-α-Olefin, C24-α-Olefin, C30-α-Olefin, Tripropenyl, Tetrapropenyl, Pentapropenyl sowie deren Mischungen. Bevorzugt sind α-Olefine mit 10 bis 24 C-Atomen und Styrol, besonders bevorzugt sind α-Olefine mit 12 bis 20 C-Atomen.Die Struktureinheiten der Formel 5 leiten sich von Polyoxyalkylenethern niederer, ungesättigter Alkohole der Formel 9 ab.
    Figure 00260002
    Bei den Monomeren der Formel 9 handelt es sich um Veretherungsprodukte (R32 = -C(O)R34) oder Veresterungsprodukte (R32 = -C(O)R34) von Polyoxyalkylenethem (R32 = H).Die Polyoxyalkylenether (R32 = H) lassen sich nach bekannten Verfahren durch Anlagerung von α-Olefinoxiden, wie Ethylenoxid, Propylenoxid und/oder Butylenoxid an polymerisierbare niedere, ungesättigte Alkohole der Formel 10
    Figure 00270001
    herstellen. Solche polymerisierbaren niederen ungesättigten Alkohole sind z.B. Allylalkohol, Methallylalkohol, Butenole, wie 3-Buten-1-ol und 1-Buten-3-ol oder Methylbutenole, wie 2-Methyl-3-buten-1-ol, 2-Methyl-3-buten-2-ol und
    3-Methyl-3-buten-1-ol. Bevorzugt sind Anlagerungsprodukte von Ethylenoxid und/oder Propylenoxid an Allylalkohol.Eine nachfolgende Veretherung dieser Polyoxyalkylenether zu Verbindungen der Formel 9 mit R32 = C1-C24-Alkyl, Cycloalkyl oder Aryl erfolgt nach an sich bekannten Verfahren. Geeignete Verfahren sind z.B. aus J. March, Advanced Organic Chemistry, 2. Auflage, S. 357f (1977) bekannt. Diese Veretherungsprodukte der Polyoxyalkylenether lassen sich auch herstellen, indem man α-Olefinoxide, bevorzugt Ethylenoxid, Propylenoxid und/oder Butylenoxid an Alkohole der Formel 11 R32 - OH worin R32 gleich C1-C24-Alkyl, C5-C20-Cycloalkyl oder C6-C18-Aryl, nach bekannten Verfahren anlagert und mit polymerisierbaren niederen, ungesättigten Halogeniden der Formel 12
    Figure 00270002
    umsetzt, wobei W für ein Halogenatom steht. Als Halogenide werden bevorzugt die Chloride und Bromide eingesetzt. Geeignete Herstellungsverfahren werden z.B. in J. March, Advanced Organic Chemistry, 2.Auflage, S.357f (1977) genannt. Die Veresterung der Polyoxyalkylenether (R32 = -C(O)-R34) erfolgt durch Umsetzung mit gängigen Veresterungsmittein, wie Carbonsäuren, Carbonsäurehalogeniden, Carbonsäureanhydriden oder Carbonsäureestem mit C1-C4-Alkoholen. Bevorzugt werden die Halogenide und Anhydride von C1-C40-Alkyl-, C5-C10-Cycloalkyl- oder C6-C18-Arylcarbonsäuren verwendet. Die Veresterung wird im allgemeinen bei Temperaturen von 0 bis 200°C, vorzugsweise 10 bis 100°C durchgeführt.Bei den Monomeren der Formel 9 gibt der Index m den Alkoxylierungsgrad, d.h. die Anzahl der Mole an α-Olefin an, die pro Mol der Formel 20 oder 21 angelagert werden.Als zur Herstellung der Terpolymere geeignete primäre Amine seien beispielsweise die folgenden genannt:
  • n-Hexylamin, n-Octylamin, n-Tetradecylamin, n-Hexadecylamin,
  • n-Stearylamin oder auch N,N-Dimethylaminopropylendiamin, Cyclohexylamin, Dehydroabietylamin sowie deren Mischungen.
  • Als zur Herstellung der Terpolymere geeignete sekundäre Amine seien beispielsweise genannt: Didecylamin, Ditetradecylamin, Distearylamin, Dicocosfettamin, Ditalgfettamin und deren Mischungen.Die Terpolymeren besitzen K-Werte (gemessen nach Ubbelohde in 5 gew.-%iger Lösung in Toluol bei 25°C) von 8 bis 100, bevorzugt 8 bis 50, entsprechend mittleren Molekulargewichten (Mw) zwischen ca. 500 und 100.000. Geeignete Beispiele sind in EP 606 055 aufgeführt.
  • 9. Umsetzungsprodukte von Alkanolaminen und/oder Polyetheraminen mit Polymeren enthaltend Dicarbonsäureanhydridgruppen, dadurch gekennzeichnet, dass sie 20 - 80, bevorzugt 40 - 60 Mol-% an bivalenten Struktureinheiten der Formeln 13 und 15 und gegebenenfalls 14
    Figure 00290001
    Figure 00290002
    Figure 00290003
    wobei
    R22 und R23
    unabhängig voneinander Wasserstoff oder Methyl,
    a, b
    gleich Null oder 1 und a + b gleich 1,
    R37 =
    -OH, -O-[C1-C30-Alkyl], -NR6R7, -OsNrR6R7H2
    R38 =
    R37 oder NR6R39
    R39 =
    -(A-O)x-E
    mit
    A =
    Ethylen- oder Propylengruppe
    x =
    1 bis 50
    E =
    H, C1-C30-Alkyl, C5-C12-Cycloalkyl oder C6-C30-Aryl
    bedeuten, und 80 - 20 Mol-%, bevorzugt 60 - 40 Mol-% an bivalenten Struktureinheiten der Formel 4 enthalten.
    Im einzelnen leiten sich die Struktureinheiten der Formeln 13, 14 und 15 von α,β-ungesättigten Dicarbonsäureanhydriden der Formeln 6 und/oder 7 ab. Die Struktureinheiten der Formel 4 leiten sich von den α,β-ungesättigten Olefinen der Formel 8 ab. Die vorgenannte Alkyl-, Cycloalkyl- und Arylreste haben die gleichen Bedeutungen wie unter 8.Die Reste R37 und R38 in Formel 13 bzw. R39 in Formel 15 leiten sich von Polyetheraminen oder Alkanolaminen der Formeln 16 a) und b), Aminen der Formel NR6R7R8 sowie gegebenenfalls von Alkoholen mit 1 bis 30 Kohlenstoffatomen ab.
    Figure 00300001
    Figure 00300002
    Darin bedeuten
    R53
    Wasserstoff, C6-C40-Alkyl oder
    Figure 00300003
    R54
    Wasserstoff, C1-C4-Alkyl
    R55
    Wasserstoff, C1- bis C4-Alkyl, C5- bis C12-Cycloalkyl oder C6- bis C30-Aryl
    R56, R57
    unabhängig voneinander Wasserstoff, C1- bis C22-Alkyl, C2- bis C22-Alkenyl oder Z - OH
    Z
    C2- bis C4-Alkylen
    n
    eine Zahl zwischen 1 und 1000.
    Zur Derivatisierung der Struktureinheiten der Formeln 6 und 7 werden vorzugsweise Gemische aus mindestens 50 Gew.-% Alkylaminen der Formel HNR6R7R8 und höchstens 50 Gew.-% Polyetheraminen, Alkanolaminen der Formeln 16 a) und b) verwendet.Die Herstellung der eingesetzten Polyetheramine ist beispielsweise durch reduktive Aminierung von Polyglykolen möglich. Des weiteren gelingt die Herstellung von Polyetheraminen mit einer primären Aminogruppe durch Addition von Polyglykolen an Acrylnitril und anschließende katalytische Hydrierung. Darüber hinaus sind Polyetheramine durch Umsetzung von Polyethern mit Phosgen bzw. Thionylchlorid und anschließende Aminierung zum Polyetheramin zugänglich. Die erfindungsgemäß eingesetzten Polyetheramine sind (z.B.) unter der Bezeichnung ®Jeffamine (Texaco) kommerziell erhältlich. Ihr Molekulargewicht beträgt bis zu 2000 g/mol und das Ethylenoxid-/Propylenoxid-Verhältnis beträgt von 1:10 bis 6:1.Eine weitere Möglichkeit zur Derivatisierung der Struktureinheiten der Formeln 6 und 7 besteht darin, dass anstelle der Polyetheramine ein Alkanolamin der Formeln 16a) oder 16b) eingesetzt und nachfolgend einer Oxalkylierung unterworfen wird.Pro Mol Anhydrid werden 0,01 bis 2 Mol, bevorzugt 0,01 bis 1 Mol Alkanolamin eingesetzt. Die Reaktionstemperatur beträgt zwischen 50 und 100°C (Amidbildung). Im Falle von primären Aminen erfolgt die Umsetzung bei Temperaturen oberhalb 100°C (Imidbildung). Die Oxalkylierung erfolgt üblicherweise bei Temperaturen zwischen 70 und 170°C unter Katalyse von Basen, wie NaOH oder NaOCH3, durch Aufgasen von Alkylenoxiden, wie Ethylenoxid (EO) und/oder Propylenoxid (PO). Üblicherweise werden pro Mol Hydroxylgruppen 1 bis 500, bevorzugt 1 bis 100 Mol Alkylenoxid zugegeben.Als geeignete Alkanolamine seien beispielsweise genannt:
  • Monoethanolamin, Diethanolamin, N-Methylethanolamin, 3-Aminopropanol, Isopropanol, Diglykolamin, 2-Amino-2-methylpropanol und deren Mischungen.
  • Als primäre Amine seien beispielsweise die folgenden genannt:
  • n-Hexylamin, n-Octylamin, n-Tetradecylamin, n-Hexadecylamin,
  • n-Stearylamin oder auch N,N-Dimethylaminopropylendiamin, Cyclohexylamin, Dehydroabietylamin sowie deren Mischungen.
  • Als sekundäre Amine seien beispielsweise genannt:
  • Didecylamin, Ditetradecylamin, Distearylamin, Dicocosfettamin,
  • Ditalgfettamin und deren Mischungen.
  • Als Alkohole seien beispielsweise genannt:
  • Methanol, Ethanol, Propanol, Isopropanol, n-, sek.-, tert.-Butanol, Octanol, Tetradecanol, Hexadecanol, Octadecanol, Talgfettalkohol, Behenylalkohol und deren Mischungen. Geeignete Beispiele sind in EP-A-688 796 aufgeführt.
  • 10. Co- und Terpolymere von N-C6-C24-Alkylmaleinimid mit C1-C30-Vinylestern, Vinylethern und/oder Olefinen mit 1 bis 30 C-Atomen, wie z.B. Styrol oder α-Olefinen. Diese sind zum einen durch Umsetzung eines Anhydridgruppen enthaltenden Polymers mit Aminen der Formel H2NR6 oder durch Imidierung der Dicarbonsäure und anschließende Copolymerisation zugänglich. Bevorzugte Dicarbonsäure ist dabei Maleinsäure bzw. Maleinsäureanhydrid. Bevorzugt sind dabei Copolymere aus 10 bis 90 Gew.-% C6-C24-α-Olefinen und 90 bis 10 Gew.-% N-C6-C22-Alkylmaleinsäureimid. Kammpolymere können beispielsweise durch die Formel
    Figure 00330001
    beschrieben werden. Darin bedeuten
    A
    R', COOR', OCOR', R"-COOR' oder OR';
    D
    H, CH3, A oder R;
    E
    xH oder A;
    G
    H, R", R"-COOR', einen Arylrest oder einen heterocyclischen Rest;
    M
    H, COOR", OCOR", OR" oder COOH;
    N
    H, R", COOR", OCOR, COOH oder einen Arylrest;
    R'
    eine Kohlenwasserstoffkette mit 8-150 Kohlenstoffatomen;
    R"
    eine Kohlenwasserstoffkette mit 1 bis 10 Kohlenstoffatomen;
    m
    eine Zahl zwischen 0,4 und 1,0; und
    n
    eine Zahl zwischen 0 und 0,6.
  • The polar nitrogen-containing paraffin dispersants (D) are low molecular weight or polymeric, oil-soluble nitrogen compounds, for example amine salts, imides and / or amides, which are obtained by reaction of aliphatic or aromatic amines, preferably long-chain aliphatic amines, with aliphatic or aromatic mono-, di-, , Tri- or tetracarboxylic acids or their anhydrides are obtained. Particularly preferred paraffin dispersants contain reaction products of secondary fatty amines having 8 to 36 carbon atoms, in particular dicoco fatty amine, ditallow fatty amine and distearylamine. Other paraffin dispersants are copolymers of maleic anhydride and α, β-unsaturated compounds which can optionally be reacted with primary monoalkylamines and / or aliphatic alcohols, the reaction products of alkenyl spiro-bis-lactones with amines and reaction products of terpolymers based on α, β-unsaturated dicarboxylic acid anhydrides, α, β -unsaturated compounds and polyoxyalkylene ethers of lower unsaturated alcohols. In the following, some suitable paraffin dispersants (D) are listed. The following paraffin dispersants (D) are prepared in part by reaction of compounds containing an acyl group with an amine. This amine is a compound of the formula NR 6 R 7 R 8 , in which R 6 , R 7 and R 8 may be identical or different, and at least one of these groups is C 8 -C 36 -alkyl, C 6 - C 36 -cycloalkyl, C 8 -C 36 -alkenyl, in particular C 12 -C 24 -alkyl, C 12 -C 24 -alkenyl or cyclohexyl, and the other groups are either hydrogen, C 1 -C 36 -alkyl, C 2 -C 36 alkenyl, cyclohexyl, or a group of the formulas - (AO) x -E or - (CH 2 ) n -NYZ, where A is an ethylene or propylene group, x is a number from 1 to 50, E Is H, C 1 -C 30 -alkyl, C 5 -C 12 -cycloalkyl or C 6 -C 30 -aryl, and n is 2, 3 or 4, and Y and Z are each independently H, C 1 -C 30 - Alkyl or - (AO) x . By acyl group is meant here a functional group of the following formula: > C = O
  • 1. Reaction products of Alkenylspirobislactonen the formula
    Figure 00120001
    where R is in each case C 8 -C 200 -alkenyl, with amines of the formula NR 6 R 7 R 8 . Suitable reaction products are listed in EP-A-0 413 279. Depending on the reaction condition, amides or amide-ammonium salts are obtained in the reaction of compounds of the formula with the amines.
  • 2. Amides or ammonium salts of aminoalkylene polycarboxylic acids with secondary amines of the formulas
    Figure 00130001
    Figure 00130002
    in which
    R 10 is a straight-chain or branched alkylene radical having 2 to 6 carbon atoms or the radical of the formula
    Figure 00130003
    in which R 6 and R 7 denote in particular alkyl radicals having 10 to 30, preferably 14 to 24, C atoms, the amide structures also forming part or all of the ammonium salt structure of the formula
    Figure 00130004
    may be present. The amides or amide ammonium salts or ammonium salts of, for example, nitrilotriacetic acid, ethylenediaminetetraacetic acid or propylene-1,2-diaminetetraacetic acid are obtained by reacting the acids with from 0.5 to 1.5 mol of amine, preferably from 0.8 to 1.2 mol Amine per carboxyl group. The reaction temperatures are about 80 to 200 ° C, wherein for the preparation of the amides a continuous removal of the resulting water of reaction takes place. However, the reaction does not have to be completely led to the amide, but may be 0 to 100 mol% of the amine used in the form of the ammonium salt. Under analogous conditions, the compounds mentioned under B1) can also be prepared. As amines of the formula
    Figure 00140001
    Particularly suitable dialkylamines are contemplated in which R 6 , R 7 is a straight-chain alkyl radical having 10 to 30 carbon atoms, preferably 14 to 24 carbon atoms. Specifically, dioleylamine, dipalmitinamine, dicoco fatty amine and dibehenylamine and preferably ditallow fatty amine may be mentioned.
  • 3. Quaternary ammonium salts of the formula + NR 6 R 7 R 8 R 11 X - where R 6 , R 7 , R 8 have the abovementioned meaning and R 11 is C 1 -C 30 -alkyl, preferably C 1 -C 22 -alkyl, C 1 -C 30 -alkenyl, preferably C 1 -C 22 - Alkenyl, benzyl or a radical of the formula - (CH 2 -CH 2 -O) n -R 12 wherein R 12 is hydrogen or a fatty acid radical of the formula C (O) -R 13 , with R 13 = C 6 -C 40 alkenyl, n is a number from 1 to 30 and X is halogen, preferably chlorine, or a methosulfate. Examples of such quaternary ammonium salts include: dihexadecyldimethylammonium chloride, distearyldimethylammonium chloride, quaternization products of esters of di- and triethanolamine with long-chain fatty acids (lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid and fatty acid mixtures such as coconut fatty acid, tallow fatty acid, hydrogenated tallow fatty acid, tall oil fatty acid) such as N-methyltriethanolammonium distearyl ester chloride, N-methyltriethanolammonium distearyl ester methosulfate, N, N-dimethyldiethanolammonium distearyl ester chloride, N-methyltriethanolammonium dioleyl ester chloride, N-methyltriethanolammonium trilauryl ester methosulfate, N-methyltriethanolammonium tristearyl ester methosulfate and mixtures thereof.
  • 4. Compounds of the formula
    Figure 00150001
    in which R 14 is CONR 6 R 7 or CO 2 - + H 2 NR 6 R 7 ,
    R 15 and R 16 are H, CONR 17 2 , CO 2 R 17 or OCOR 17 , -OR 17 , -R 17 or - NCOR 17 , and
    R 17 is alkyl, alkoxyalkyl or polyalkoxyalkyl and has at least 10 carbon atoms. Preferred carboxylic acids or acid derivatives are phthalic acid (anhydride), trimellit, pyromellitic acid (dianhydride), isophthalic acid, terephthalic acid, cyclohexane-dicarboxylic acid (anhydride), maleic acid (anhydride), alkenylsuccinic acid (anhydride). The formulation (anhydride) means that the anhydrides of said acids are also preferred acid derivatives.
    When the compounds of the above formula are amides or amine salts, they are preferably obtained from a secondary amine containing a hydrogen and carbon containing group having at least 10 carbon atoms. It is preferred that R 17 is 10 to 30, especially 10 to 22, eg Contains 14 to 20 carbon atoms and is preferably straight-chain or branched at the 1- or 2-position. The other hydrogen and carbon containing groups may be shorter, eg containing less than 6 carbon atoms, or may have at least 10 carbon atoms if desired. Suitable alkyl groups include methyl, ethyl, propyl, hexyl, decyl, dodecyl, tetradecyl, eicosyl and docosyl (behenyl). Further suitable are polymers containing at least one amide or ammonium group bonded directly to the backbone of the polymer, the amide - or ammonium group carries at least one alkyl group of at least 8 carbon atoms on the nitrogen atom. Such polymers can be prepared in various ways. One way is to use a polymer containing several carboxylic acid or anhydride groups and react this polymer with an amine of the formula NHR 6 R 7 to obtain the desired polymer. Polymers of these are generally copolymers of unsaturated esters such as C 1 C 40 alkyl (meth) acrylates, fumaric di (C 1 -C 40 alkyl esters), C 1 -C 40 alkyl vinyl ethers, C 1 -C 40 alkyl vinyl esters or C 2 -C 40 olefins (linear, branched, aromatic ) with unsaturated carboxylic acids or their reactive derivatives, such as carboxylic acid anhydrides (acrylic acid, methacrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, citraconic acid, preferably maleic anhydride) suitable. Carboxylic acids are preferably reacted with from 0.1 to 1.5 mol, in particular from 0.5 to 1.2 mol of amine per acid group, carboxylic anhydrides, preferably with from 0.1 to 2.5, in particular from 0.5 to 2.2, mol of amine per acid anhydride group Depending on the reaction conditions, amides, ammonium salts, amide-ammonium salts or imides are formed. Thus, copolymers containing unsaturated carboxylic acid anhydrides, upon reaction with a secondary amine, yield half amide and half amine salts by reaction with the anhydride group. By heating, water can be split off to form the diamide. Particularly suitable examples of amide group-containing polymers for use according to the invention are:
  • 5. Copolymers of (a) a dialkyl fumarate, maleate, citraconate or itaconate with maleic anhydride, or (b) vinyl esters, for example vinyl acetate or vinyl stearate with maleic anhydride, or (c) a dialkyl fumarate, maleate, citraconate or itaconate Maleic anhydride and vinyl acetate. Particularly suitable examples of these polymers are copolymers of didodecyl fumarate, vinyl acetate and maleic anhydride; Ditetradecyl fumarate, vinyl acetate and maleic anhydride; Dihexadecyl fumarate, vinyl acetate and maleic anhydride; In the above examples of suitable polymers, the desired amide is obtained by reacting the polymer containing anhydride groups with a secondary amine of the formula HNR 6 R 7 (optionally also with a Alcohol when an ester amide is formed). When polymers containing an anhydride group are reacted, the resulting amino groups will be ammonium salts and amides. Such polymers may be used provided that they contain at least two amide groups.
    It is essential that the polymer containing at least two amide groups contains at least one alkyl group having at least 10 carbon atoms. This long-chain group, which may be a straight-chain or branched alkyl group, may be bonded via the nitrogen atom of the amide group. The suitable amines may be replaced by the formula R 6 R 7 NH and the polyamines by R 6 NH [R 19 NH] x R 7 wherein R 19 is a divalent hydrocarbon group, preferably an alkylene or hydrocarbyl-substituted alkylene group, and x is an integer, preferably between 1 and 30. Preferably one or both of R 6 and R 7 contain at least 10 carbon atoms, for example 10 to 20 carbon atoms, for example dodecyl, tetradecyl, hexadecyl or octadecyl. Examples of suitable secondary amines are dioctylamine and those containing alkyl groups of at least 10 carbon atoms. for example, didecylamine, didodecylamine, dicocosamine (ie, mixed C 12 -C 14 amines), dioctadecylamine, hexadecyloctadecylamine, di (hydrogenated tallow) amine (approximately 4 wt% nC 14 alkyl, 30 wt% nC 10 - alkyl, 60 wt .-% nC 18 alkyl, the remainder being unsaturated) .Beispiele suitable polyamines are N-Octadecylpropandiamin, N, N'-Dioctadecylpropandiamin, N-Tetradecylbutandiamin and N, N'-Dihexadecylhexandiamin. N-coco propylenediamine (C 12 / C 14 alkyl propylene diamine), N-tallow propylenediamine (C 16 / C 18 alkyl propylenediamine). The amide-containing polymers typically have a number average molecular weight of from 1,000 to 500,000, for example 10,000 to 100,000.
  • 6. Copolymers of styrene, its derivatives or aliphatic olefins having 2 to 40 carbon atoms, preferably having 6 to 20 carbon atoms and olefinically unsaturated carboxylic acids or carboxylic anhydrides, which are reacted with amines of the formula HNR 6 R 7 . The reaction can be carried out before or after the polymerization. In detail, the structural units of the copolymers are derived from, for example, maleic acid, fumaric acid, tetrahydrophthalic acid, citraconic acid, preferably maleic anhydride. They can be used both in the form of their homopolymers and the copolymers. Suitable comonomers are: styrene and alkylstyrenes, straight-chain and branched olefins having 2 to 40 carbon atoms, and mixtures thereof with one another. Examples which may be mentioned: styrene, α-methylstyrene, dimethylstyrene, α-ethylstyrene, diethylstyrene, i-propylstyrene, tert-butylstyrene, ethylene, propylene, n-butylene, diisobutylene, decene, dodecene, tetradecene, hexadecene, octadecene. Styrene and isobutene are particularly preferred, and styrene is particularly preferred. Examples of polymers include polymaleic acid, a molar styrene / maleic acid copolymer of alternating design, random styrene / maleic acid copolymers in a ratio of 10:90 and an alternating copolymer of maleic acid and i-butene. The molar masses of the polymers are generally 500 g / mol to 20,000 g / mol, preferably 700 to 2000 g / mol. The reaction of the polymers or copolymers with the amines takes place at temperatures of 50 to 200 ° C. over the course of 0, 3 to 30 hours. The amine is applied in amounts of about one mole per mole of copolymerized dicarboxylic anhydride, ie about 0.9 to 1.1 mol / mol. The use of larger or smaller amounts is possible, but brings no advantage. If larger amounts than one mole are used, ammonium salts are sometimes obtained because the formation of a second amide group requires higher temperatures, longer residence times, and water recirculation. If less than one mole are used, complete conversion to the monoamide does not take place and a correspondingly reduced effect is obtained. Instead of the subsequent conversion of the carboxyl groups in the form of the dicarboxylic acid anhydride with amines to the corresponding amides, it may sometimes be advantageous to use the monoamides of the monomers and then polymerize directly in the polymerization. In most cases, however, this is technically much more complicated because the amines can attach to the double bond of the monomeric mono- and dicarboxylic acid and then no copolymerization is possible.
  • 7. Copolymers consisting of 10 to 95 mol% of one or more alkyl acrylates or alkyl methacrylates with C 1 -C 26 alkyl chains and from 5 to 90 mol% of one or more ethylenically unsaturated dicarboxylic acids or their anhydrides, wherein the copolymer is largely with a or more primary or secondary amines to the monoamide or amide / ammonium salt of the dicarboxylic acid is reacted. The copolymers consist of 10 to 95 mol%, preferably 40 to 95 mol% and particularly preferably 60 to 90 mol% of alkyl (meth) acrylates and 5 to 90 mol%, preferably 5 to 60 mol -% and particularly preferably from 10 to 40 mol% of the olefinically unsaturated dicarboxylic acid derivatives. The alkyl groups of the alkyl (meth) acrylates contain from 1 to 26, preferably 4 to 22 and more preferably 8 to 18 carbon atoms. They are preferably straight-chain and unbranched. However, up to 20% by weight of cyclic and / or branched portions may also be present. Examples of particularly preferred alkyl (meth) acrylates are n-octyl (meth) acrylate, n-decyl (meth) acrylate, n-dodecyl ( meth) acrylate, n-tetradecyl (meth) acrylate, n-hexadecyl (meth) acrylate and n-octadecyl (meth) acrylate and mixtures thereof. Examples of ethylenically unsaturated dicarboxylic acids are maleic acid, tetrahydrophthalic acid, citraconic acid and itaconic acid or their anhydrides and fumaric acid. Maleinsäureanhydrid.Als amines is preferable are compounds of the formula HNR 6 R 7 in Betracht.In a rule, it is advantageous, if available, to use the dicarboxylic acids in the form of the anhydrides in the copolymerization, for example, maleic anhydride, itaconic anhydride, citraconic anhydride and tetrahydrophthalic anhydride as the anhydrides usually copolymerize better with the (meth) acrylates. The anhydride groups of the copolymers can then be reacted directly with the amines. The reaction of the polymers with the amines takes place at temperatures of 50 to 200 ° C. in the course of 0.3 to 30 hours. The amine is employed in amounts of about one to two moles per mole of copolymerized dicarboxylic acid anhydride, ie, about 0.9 to 2.1 moles / mole. The use of larger or smaller amounts is possible, but brings no advantage. If amounts greater than two moles are used, free amine is present. When less than one mole is used, complete conversion to the monoamide does not occur and a correspondingly reduced effect is obtained. In some cases, it may be advantageous to synthesize the amide / ammonium salt structure from two different amines. For example, a copolymer of lauryl acrylate and maleic anhydride may first be reacted with a secondary amine such as hydrogenated di-tallow fatty amine to form the amide, after which the free carboxyl group derived from the anhydride is neutralized with another amine, eg 2-ethylhexylamine, to the ammonium salt. Likewise, the reverse procedure is conceivable: first with ethylhexylamine to the monoamide, then reacted with Ditalgfettamin to the ammonium salt. Preferably, at least one amine is used which has at least one straight-chain, unbranched alkyl group having more than 16 carbon atoms. It is not significant whether this amine is present in the structure of the amide structure or as the ammonium salt of the dicarboxylic acid. Instead of the subsequent reaction of the carboxyl groups or of the dicarboxylic acid anhydride with amines to the corresponding amides or amide / ammonium salts, it may sometimes be advantageous to use the monoamides or produce amide / ammonium salts of the monomers and then polymerize directly in the polymerization. However, this is usually technically much more complicated because the amines can attach to the double bond of the monomeric dicarboxylic acid and then no copolymerization is possible.
  • 8. terpolymers based on α, β-unsaturated dicarboxylic anhydrides, α, β-unsaturated compounds and polyoxyalkylene ethers of lower, unsaturated alcohols, which are characterized in that they contain 20-80, preferably 40-60 mol% of bivalent structural units of the formulas 1 and / or 3, and optionally 2, wherein the structural units 2 originate from unreacted anhydride residues,
    Figure 00220001
    Figure 00230001
    Figure 00230002
    in which
    R 22 and R 23 independently of one another are hydrogen or methyl,
    a, b is zero or one and a + b is one,
    R 24 and R 25 are the same or different and are -NHR 6 , N (R 6 ) 2 and / or -OR 27 and R 27 is a cation of the formula H 2 N (R 6 ) 2 or H 3 NR 6 stands,
    19-80 mol%, preferably 39-60 mol% of bivalent structural units of the formula 4
    Figure 00230003
    wherein
    R 28 is hydrogen or C 1 -C 4 -alkyl and
    R 29 is C 6 -C 60 -alkyl or C 6 -C 18 -aryl and
    1 - 30 mol%, preferably 1 - 20 mol% of bivalent structural units of the formula 5
    Figure 00240001
    wherein
    R 30 is hydrogen or methyl,
    R 31 is hydrogen or C 1 -C 4 -alkyl,
    R 33 is C 1 -C 4 -alkylene,
    m is a number from 1 to 100,
    R 32 is C 1 -C 24 -alkyl, C 5 -C 20 -cycloalkyl, C 6 -C 18 -aryl or -C (O) -R 34 , wherein
    R 34 is C 1 -C 40 -alkyl, C 5 -C 10 -cycloalkyl or C 6 -C 18 -aryl,
    contain. The abovementioned alkyl, cycloalkyl and aryl radicals may optionally be substituted. Suitable substituents of the alkyl and aryl radicals are, for example, (C 1 -C 6 ) -alkyl, halogens, such as fluorine, chlorine, bromine and iodine, preferably chlorine and (C 1 -C 6 ) -alkoxy.Alkyl here stands for a straight-chain or branched hydrocarbon radical. Specific examples which may be mentioned are: n-butyl, tert-butyl, n-hexyl, n-octyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, dodecenyl, tetrapropenyl, tetradecenyl, pentapropenyl, hexadecenyl, octadecenyl and eicosanyl or mixtures such as cocoalkyl , Talgfettalkyl and Behenyl.Cycloalkyl here stands for a cyclic aliphatic radical having 5 to 20 carbon atoms. Preferred cycloalkyl radicals are cyclopentyl and cyclohexyl. Aryl here stands for an optionally substituted aromatic ring system having 6 to 18 carbon atoms. The terpolymers consist of the bivalent structural units of the formulas 1 and 3 as well as 4 and 5 and optionally 2. They merely contain the polymerization in a manner known per se In detail, structural units of the formulas 1 to 3 of α, β-unsaturated dicarboxylic anhydrides of the formulas 6 and 7 are derived from initiation, inhibition and chain termination
    Figure 00250001
    Figure 00250002
    such as maleic anhydride, itaconic anhydride, citraconic anhydride, preferably maleic anhydride. The structural units of the formula 4 are derived from the α, β-unsaturated compounds of the formula 8.
    Figure 00260001
    Examples which may be mentioned are the following α, β-unsaturated olefins: styrene, α-methylstyrene, dimethylstyrene, α-ethylstyrene, diethylstyrene, i-propylstyrene, tert-butylstyrene, diisobutylene and α-olefins, such as decene, dodecene, tetradecene, pentadecene, Hexadecene, octadecene, C 20 -α-olefin, C 24 -α-olefin, C 30 -α-olefin, tripropenyl, tetrapropenyl, pentapropenyl and mixtures thereof. Preference is given to α-olefins having 10 to 24 C atoms and styrene, particular preference being given to α-olefins having 12 to 20 C atoms. The structural units of the formula 5 are derived from polyoxyalkylene ethers of lower, unsaturated alcohols of the formula 9.
    Figure 00260002
    The monomers of formula 9 are etherification products (R 32 = -C (O) R 34 ) or esterification products (R 32 = -C (O) R 34 ) of polyoxyalkylene ethers (R 32 = H). The polyoxyalkylene ethers (R 32 = H) can be prepared by known processes by addition of α-olefin oxides, such as ethylene oxide, propylene oxide and / or butylene oxide to polymerizable lower, unsaturated alcohols of formula 10th
    Figure 00270001
    produce. Such polymerizable lower unsaturated alcohols are, for example, allyl alcohol, methallyl alcohol, butenols, such as 3-buten-1-ol and 1-buten-3-ol or methylbutenols, such as 2-methyl-3-buten-1-ol, 2-methyl-3 -but-2-ol and
    3-methyl-3-buten-1-ol. Addition products of ethylene oxide and / or propylene oxide onto allyl alcohol are preferred. A subsequent etherification of these polyoxyalkylene ethers to give compounds of the formula 9 where R 32 = C 1 -C 24 -alkyl, cycloalkyl or aryl is carried out by processes known per se. Suitable methods are known, for example, from J. March, Advanced Organic Chemistry, 2nd edition, p. 357f (1977). These etherification products of the polyoxyalkylene ethers can also be prepared by reacting α-olefin oxides, preferably ethylene oxide, propylene oxide and / or butylene oxide, with alcohols of the formula II R 32 - OH wherein R 32 is C 1 -C 24 -alkyl, C 5 -C 20 -cycloalkyl or C 6 -C 18 -aryl, deposited by known methods and with polymerizable lower, unsaturated halides of the formula 12th
    Figure 00270002
    where W is a halogen atom. The halides used are preferably the chlorides and bromides. Suitable production methods are mentioned, for example, in J. March, Advanced Organic Chemistry, 2nd Edition, p. 377f (1977). The esterification of the polyoxyalkylene ethers (R 32 = -C (O) -R 34 ) is carried out by reaction with conventional Veresterungsmittein, such as carboxylic acids, carboxylic acid halides, carboxylic anhydrides or Carbonsäureestem with C 1 -C 4 alcohols. The halides and anhydrides of C 1 -C 40 -alkyl, C 5 -C 10 -cycloalkyl or C 6 -C 18 -arylcarboxylic acids are preferably used. The esterification is generally carried out at temperatures of 0 to 200 ° C, preferably 10 to 100 ° C. In the monomers of formula 9, the index m indicates the degree of alkoxylation, ie the number of moles of α-olefin, per mole of Formula 20 or 21. The following are examples of primary amines which are suitable for the preparation of the terpolymers:
  • n-hexylamine, n-octylamine, n-tetradecylamine, n-hexadecylamine,
  • N-stearylamine or N, N-dimethylaminopropylenediamine, cyclohexylamine, dehydroabietylamine and mixtures thereof.
  • Examples of suitable secondary amines for preparing the terpolymers are: didecylamine, ditetradecylamine, distearylamine, dicocosfettamine, ditallow fatty amine and mixtures thereof. The terpolymers have K values (measured according to Ubbelohde in 5% by weight solution in toluene at 25.degree. from 8 to 100, preferably from 8 to 50, corresponding to average molecular weights (M w ) of between about 500 and 100,000. Suitable examples are listed in EP 606,055.
  • 9. Reaction products of alkanolamines and / or polyetheramines with polymers containing dicarboxylic anhydride groups, characterized in that they contain 20-80, preferably 40-60, mol% of bivalent structural units of the formulas 13 and 15 and optionally 14
    Figure 00290001
    Figure 00290002
    Figure 00290003
    in which
    R 22 and R 23
    independently of one another hydrogen or methyl,
    a, b
    equal to zero or 1 and a + b equal to 1,
    R 37 =
    -OH, -O- [C 1 -C 30 -alkyl], -NR 6 R 7 , -O s N r R 6 R 7 H 2
    R 38 =
    R 37 or NR 6 R 39
    R 39 =
    - (AO) x -E
    With
    A =
    Ethylene or propylene group
    x =
    1 to 50
    E =
    H, C 1 -C 30 -alkyl, C 5 -C 12 -cycloalkyl or C 6 -C 30 -aryl
    and 80 to 20 mol%, preferably 60 to 40 mol%, of bivalent structural units of the formula 4.
    In detail, the structural units of the formulas 13, 14 and 15 are derived from α, β-unsaturated dicarboxylic acid anhydrides of the formulas 6 and / or 7. The structural units of the formula 4 are derived from the α, β-unsaturated olefins of the formula 8. The abovementioned alkyl, cycloalkyl and aryl radicals have the same meanings as under 8. The radicals R 37 and R 38 in formula 13 and R 39 in formula 15 are derived from polyetheramines or alkanolamines of the formulas 16 a) and b), amines of the formula NR 6 R 7 R 8 and, where appropriate, of alcohols having 1 to 30 carbon atoms.
    Figure 00300001
    Figure 00300002
    Mean in it
    R 53
    Hydrogen, C 6 -C 40 -alkyl or
    Figure 00300003
    R 54
    Hydrogen, C 1 -C 4 -alkyl
    R 55
    Is hydrogen, C 1 - to C 4 -alkyl, C 5 - to C 12 -cycloalkyl or C 6 - to C 30 -aryl
    R 56 , R 57
    independently of one another hydrogen, C 1 - to C 22 -alkyl, C 2 - to C 22 -alkenyl or Z - OH
    Z
    C 2 - to C 4 -alkylene
    n
    a number between 1 and 1000.
    For derivatization of the structural units of the formulas 6 and 7, preference is given to using mixtures of at least 50% by weight of alkylamines of the formula HNR 6 R 7 R 8 and at most 50% by weight of polyetheramines, alkanolamines of the formulas 16 a) and b) the polyetheramines used is possible, for example, by reductive amination of polyglycols. Furthermore, it is possible to prepare polyetheramines having a primary amino group by addition of polyglycols to acrylonitrile and subsequent catalytic hydrogenation. In addition, polyetheramines are accessible by reaction of polyethers with phosgene or thionyl chloride and subsequent amination to the polyetheramine. The polyetheramines used according to the invention are commercially available (for example) under the name ®Jeffamine (Texaco). Their molecular weight is up to 2000 g / mol and the ethylene oxide / propylene oxide ratio is from 1:10 to 6: 1. Another possibility for derivatizing the structural units of the formulas 6 and 7 is that instead of the polyether amines an alkanolamine of the formulas 16a) or 16b) is used and subsequently subjected to alkoxylation. Per mole of anhydride 0.01 to 2 mol, preferably 0.01 to 1 mol of alkanolamine are used. The reaction temperature is between 50 and 100 ° C (amide formation). In the case of primary amines, the reaction takes place at temperatures above 100 ° C (imide formation). The alkoxylation is usually carried out at temperatures between 70 and 170 ° C with catalysis of bases, such as NaOH or NaOCH 3 , by gassing of alkylene oxides, such as ethylene oxide (EO) and / or propylene oxide (PO). Usually, 1 to 500, preferably 1 to 100, moles of alkylene oxide are added per mole of hydroxyl groups. Examples of suitable alkanolamines are:
  • Monoethanolamine, diethanolamine, N-methylethanolamine, 3-aminopropanol, isopropanol, diglycolamine, 2-amino-2-methylpropanol and mixtures thereof.
  • As primary amines, for example, the following may be mentioned:
  • n-hexylamine, n-octylamine, n-tetradecylamine, n-hexadecylamine,
  • N-stearylamine or N, N-dimethylaminopropylenediamine, cyclohexylamine, dehydroabietylamine and mixtures thereof.
  • Examples of secondary amines are:
  • Didecylamine, ditetradecylamine, distearylamine, dicocosfettamine,
  • Ditalgfettamine and their mixtures.
  • Examples of alcohols which may be mentioned are:
  • Methanol, ethanol, propanol, isopropanol, n-, sec-, tert-butanol, octanol, tetradecanol, hexadecanol, octadecanol, tallow fatty alcohol, behenyl alcohol and mixtures thereof. Suitable examples are listed in EP-A-688,796.
  • 10. Co- and terpolymers of NC 6 -C 24 -alkylmaleinimid with C 1 -C 30 vinyl esters, vinyl ethers and / or olefins having 1 to 30 carbon atoms, such as styrene or α-olefins. These are accessible on the one hand by reacting an anhydride-containing polymer with amines of the formula H 2 NR 6 or by imidization of the dicarboxylic acid and subsequent copolymerization. Preferred dicarboxylic acid is maleic acid or maleic anhydride. Copolymers of 10 to 90% by weight of C 6 -C 24 -α-olefins and 90 to 10% by weight of NC 6 -C 22 -alkylmaleimide are preferred. Comb polymers may, for example, be represented by the formula
    Figure 00330001
    to be discribed. Mean in it
    A
    R ', COOR', OCOR ', R "-COOR' or OR ';
    D
    H, CH 3, A or R;
    e
    xH or A;
    G
    H, R ", R" -COOR ', an aryl radical or a heterocyclic radical;
    M
    H, COOR ", OCOR", OR "or COOH;
    N
    H, R ", COOR", OCOR, COOH or an aryl radical;
    R '
    a hydrocarbon chain of 8-150 carbon atoms;
    R "
    a hydrocarbon chain of 1 to 10 carbon atoms;
    m
    a number between 0.4 and 1.0; and
    n
    a number between 0 and 0.6.
  • Das Mischungsverhältnis (in Gewichtsteilen) der erfindungsgemäßen Additive mit Paraffindispergatoren, Harzen bzw. Kammpolymeren beträgt jeweils 1:10 bis 20:1, vorzugsweise 1:1 bis 10:1.The mixing ratio (in parts by weight) of the additives according to the invention Paraffin dispersants, resins or comb polymers are each 1:10 to 20: 1, preferably 1: 1 to 10: 1.

    Die erfindungsgemäßen Additivkomponenten können Mineralölen oder Mineralöldestillaten getrennt oder in Mischung zugesetzt werden. In einer bevorzugten Ausführungsform werden die einzelnen Additivbestandteile oder aber die entsprechende Mischung vor dem Zusatz zu den Mitteldestillaten in einem organischen Lösungs- oder Dispersionsmittel gelöst bzw. dispergiert. Die Lösung bzw. Dispersion enthält im allgemeinen 5 - 90, bevorzugt 5 - 75 Gew.-% des Additivs bzw. Additivgemischs. The additive components of the invention may be mineral oils or Mineral oil distillates are added separately or in mixture. In a preferred embodiment, the individual additive components or the appropriate mixture before adding to the middle distillates in one dissolved or dispersed organic solvent or dispersing agent. The solution or dispersion generally contains 5-90, preferably 5-75 wt .-% of Additive or additive mixture.

    Geeignete Lösungs- oder Dispersionsmittel sind dabei aliphatische und/oder aromatische Kohlenwasserstoffe oder Kohlenwasserstoffgemische, z.B. Benzinfraktionen, Kerosin, Decan, Pentadecan, Toluol, Xylol, Ethylbenzol oder kommerzielle Lösungsmittelgemische wie Solvent Naphtha, ®Shellsol AB, ®Solvesso 150, ®Solvesso 200, ®Exxsol, ®ISOPAR- und ®Shellsol D-Typen. Gegebenenfalls können auch polare Lösungsvermittler wie 2-Ethylhexanol, Decanol, iso-Decanol oder iso-Tridecanol zugesetzt werden.Suitable solvents or dispersants are aliphatic and / or aromatic hydrocarbons or hydrocarbon mixtures, e.g. Benzine fractions, kerosene, decane, pentadecane, toluene, xylene, ethylbenzene or commercial solvent mixtures such as Solvent Naphtha, ®Shellsol AB, ® Solvesso 150, ® Solvesso 200, ®Exxsol, ®ISOPAR and ®Shellsol D grades. Optionally, polar solubilizers such as 2-ethylhexanol, Decanol, iso-decanol or iso-tridecanol.

    Durch die erfindungsgemäßen Additive in ihren Kälteeigenschaften verbesserte Mineralöle oder Mineralöldestillate enthalten 0,001 bis 2, vorzugsweise 0,005 bis 0,5 Gew.-% der Additive, bezogen auf das Mineralöl bzw. Mineralöldestillat.Improved by the additives of the invention in their cold properties Mineral oils or mineral oil distillates contain from 0.001 to 2, preferably from 0.005 to 0.5 wt .-% of the additives, based on the mineral oil or mineral oil distillate.

    Die erfindungsgemäßen Additive sind insbesondere geeignet, die Kaltfließeigenschaften von tierischen, pflanzlichen oder mineralischen Ölen zu verbessern. Gleichzeitig verbessern sie unterhalb des Cloud Points die Dispergierung der ausgefallenen Paraffine. Sie sind für die Verwendung in Mitteldestillaten besonders gut geeignet. Als Mitteldestillate bezeichnet man insbesondere solche Mineralöle, die durch Destillation von Rohöl gewonnen werden und im Bereich von 120 bis 450°C sieden, beispielsweise Kerosin, Jet-Fuel, Diesel und Heizöl. Vorzugsweise werden die erfindungsgemäßen Additive in schwefelarmen Mitteldestillaten verwendet, die 350 ppm Schwefel und weniger, besonders bevorzugt weniger als 200 ppm Schwefel und insbesondere weniger als 50 ppm Schwefel enthalten. Die erfindungsgemäßen Additive werden weiterhin vorzugsweise in solchen Mitteldestillaten verwendet, die 95 %-Destillationspunkte unter 365°C, insbesondere 350°C und in Spezialfällen unter 330°C aufweisen und neben hohen Gehalten an Paraffinen mit 18 bis 24 C-Atomen nur geringe Anteile an Paraffinen mit Kettenlängen von 24 und mehr C-Atomen enthalten. Sie können auch als Komponenten in Schmierölen eingesetzt werden.The additives according to the invention are particularly suitable, the Cold flow properties of animal, vegetable or mineral oils improve. At the same time they improve below the cloud point Dispersion of the precipitated paraffins. They are for use in Middle distillates particularly well suited. As middle distillates one calls in particular those mineral oils obtained by distillation of crude oil and boiling in the range of 120 to 450 ° C, for example, kerosene, jet fuel, Diesel and heating oil. Preferably, the additives of the invention in low-sulfur middle distillates used 350 ppm sulfur and less, more preferably less than 200 ppm sulfur and especially less contain as 50 ppm of sulfur. The additives of the invention are furthermore preferably used in such middle distillates, the 95% distillation points below 365 ° C, especially 350 ° C and in special cases below 330 ° C and in addition to high levels of paraffins having 18 to 24 carbon atoms only small amounts of paraffins with chain lengths of 24 and more carbon atoms contain. They can also be used as components in lubricating oils become.

    Die Mineralöle bzw. Mineralöldestillate können auch noch weitere übliche Zusatzstoffe wie beispielsweise Entwachsungshilfsmittel, Korrosionsinhibitoren, Antioxidantien, Lubricity-Additive, Schlamminhibitoren, Cetanzahlverbesserer, Detergenzadditive, Dehazer, Leitfähigkeitsverbesserer oder Farbstoffe enthalten.The mineral oils or mineral oil distillates may also be other common Additives such as dewaxing aids, corrosion inhibitors, Antioxidants, lubricity additives, sludge inhibitors, cetane improvers, Detergent additives, dehazers, conductivity improvers or dyes.

    BeispieleExamples

    Es wurden folgende Ester A) als 50 %ige Lösung in aromatischem Lösemittel eingesetzt (EO steht für Ethylenoxid; PO steht für Propylenoxid): Tabelle 1: Charakterisierung der verwendeten Ester (Bestandteil A) Hauptbestandteile der Fettsäuren Säurezahl OH-Zahl Additiv Polyol Alkoxilierung C18 C20 C22 [mg KOH/g] [mg KOH/g] A1 Glycerin 22 mol EO 2 7 88 7 13 A2 Glycerin 22 mol EO 95 % 5 4 A3 Glycerin 22 mol EO 37 10 48 1 2 A4 Glycerin 16 mol PO 37 10 48 7 9 A5 Glycerin 16 mol PO 2 7 88 5 7 A6 Glycerin 24 mol PO 37 10 48 8 11 A7 Glycerin 10 mol EO 2 7 88 7 9 A8 Glycerin 30 mol EO 2 7 88 2 4 A9 Glycerin 40 mol EO 2 7 88 12 10 A10 Glycerin 20 mol EO 36 36 24 13 13 A11 Glycerin 20 mol EO 2 7 88 0,5 11 A12 Glycerin 15 mol EO 2 7 88 5 7 A13 (V) Ethylenglykol 13 mol EO 37 10 48 0,9 4 A14 (V) Glycerin - 2 7 88 0,2 4 A15 Mit Mischung aus Behensäure (2% C18, 7 % C20, 88% C22) und 10 mol-% Poly(isobutenylbernsteinsäureanhydrid (MW 1000 g/mol) verestertes Glycerinethoxilat (20 mol EO) Charakterisierung der als Fließverbesserer eingesetzten Ethylen-Copolymere (Bestandteil B)
    Die Bestimmung der Viskosität erfolgt gemäß ISO 3219/B mit einem Rotationsviskosimeter (Haake RV20) mit Platte-Kegel-Meßsystem bei 140 °C. Additiv Nr. Comonomere (neben Ethylen) V140 B 1) 32 Gew.-% Vinylacetat 125 mPas B 2) 31 Gew.-% Vinylacetat + 8 Gew.-% Neodecansäurevinylester 110 mPas B 3) Mischung der Cpolymere B1) und B2) im Verhältnis 1:5
    The following esters A) were used as a 50% solution in aromatic solvent (EO stands for ethylene oxide, PO stands for propylene oxide): Table 1: Characterization of the esters used (constituent A) Main components of fatty acids acid number OH number additive polyol alkoxylation C 18 C 20 C 22 [mg KOH / g] [mg KOH / g] A1 glycerin 22 mol EO 2 7 88 7 13 A2 glycerin 22 mol EO 95% 5 4 A3 glycerin 22 mol EO 37 10 48 1 2 A4 glycerin 16 mol PO 37 10 48 7 9 A5 glycerin 16 mol PO 2 7 88 5 7 A6 glycerin 24 mol PO 37 10 48 8th 11 A7 glycerin 10 mol EO 2 7 88 7 9 A8 glycerin 30 mol EO 2 7 88 2 4 A9 glycerin 40 mol EO 2 7 88 12 10 A10 glycerin 20 moles of EO 36 36 24 13 13 A11 glycerin 20 moles of EO 2 7 88 0.5 11 A12 glycerin 15 mol EO 2 7 88 5 7 A13 (V) ethylene glycol 13 mol EO 37 10 48 0.9 4 A14 (V) glycerin - 2 7 88 0.2 4 A15 With mixture of behenic acid (2% C 18 , 7% C 20 , 88% C 22 ) and 10 mol% poly (isobutenyl succinic anhydride (MW 1000 g / mol) esterified glycerol ethoxylate (20 mol EO) Characterization of the ethylene copolymers used as flow improvers (component B)
    The viscosity is determined according to ISO 3219 / B using a rotary viscometer (Haake RV20) with a plate-and-cone measuring system at 140 ° C. Additive no. Comonomers (besides ethylene) V 140 B 1) 32% by weight of vinyl acetate 125 mPas B 2) 31% by weight of vinyl acetate + 8% by weight of vinyl neodecanoate 110 mPas B 3) Mixture of the copolymers B1) and B2) in the ratio 1: 5

    Die Additive werden zur Verbesserung der Handhabbarkeit als 50%ige Lösungen in Solvent Naphtha bzw. Kerosin eingesetzt.The additives are used to improve handling as 50% solutions used in solvent naphtha or kerosene.

    Charakterisierung der verwendeten Alkylphenol-Aldehydharze (Bestandteil C))

  • C 1) Nonylphenol-Formaldehydharz
  • C 2) Dodecylphenol-Formaldehydharz
  • C 3) C20/24-Alkylphenol-Formaldehydharz
  • Characterization of the alkylphenol-aldehyde resins used (ingredient C))
  • C 1) nonylphenol-formaldehyde resin
  • C 2) dodecylphenol-formaldehyde resin
  • C 3) C 20/24 alkylphenol-formaldehyde resin
  • Charakterisierung der verwendeten Paraffindispergatoren (Bestandteil D))

  • D 1) Umsetzungsprodukt eines Dodecenyl-Spirobislactons mit einer Mischung aus primärem und sekundärem Talgfettamin
  • D 2) Umsetzungsprodukt eines Terpolymers aus C14/C16-α-Olefin, Maleinsäureanhydrid und Allylpolyglykol mit 2 Equivalenten Ditalgfettamin.
  • Characterization of the Paraffin Dispersants Used (Ingredient D))
  • D 1) Reaction product of a dodecenyl spirobislactone with a mixture of primary and secondary tallow fatty amine
  • D 2) Reaction product of a terpolymer of C 14 / C 16 -α-olefin, maleic anhydride and allylpolyglycol with 2 equivalents of ditallow fatty amine.
  • Charakterisierung der Testöle:Characterization of the test oils:

    Die Bestimmung der Siedekenndaten erfolgt gemäß ASTM D-86, die Bestimmung des CFPP-Werts gemäß EN 116 und die Bestimmung des Cloud Points gemäß ISO 3015. Kenndaten der Testöle Testöl 1 Testöl 2 Testöl 3 Testöl 4 Siedebeginn [°C] 169 200 174 241 20 % [°C] 211 251 209 256 90 % [°C] 327 342 327 321 95 % [°C] 344 354 345 341 Cloud Point [°C] -9,0 -4,2 -6,7 -8,2 CFPP [°C] -10 -6 -8 -10 Schwefelgehalt 33 ppm 35 ppm 210 ppm 45 ppm The boiling characteristics are determined according to ASTM D-86, the CFPP value according to EN 116 and the determination of the cloud point according to ISO 3015. Characteristics of the test oils Test oil 1 Test oil 2 Test oil 3 Test oil 4 Start of boiling [° C] 169 200 174 241 20% [° C] 211 251 209 256 90% [° C] 327 342 327 321 95% [° C] 344 354 345 341 Cloud Point [° C] -9.0 -4.2 -6.7 -8.2 CFPP [° C] -10 -6 -8th -10 sulfur content 33 ppm 35 ppm 210 ppm 45 ppm

    Wirksamkeit der AdditiveEffectiveness of the additives

    In Tabelle 4 wird die im Vergleich zum Stand der Technik überlegene Wirksamkeit der erfindungsgemäßen Additive zusammen mit Ethylen-Copolymeren für Mineralöle und Mineralöldestillate an Hand des CFPP-Tests (Cold Filter Plugging Test nach EN 116) in beschrieben.
    Die Paraffindispergierung in Mitteldestillaten wurde wie folgt im Kurzsedimenttest bestimmt:
    150 ml der mit den in der Tabelle angegebenen Additivkomponenten versetzten Mitteldestillate wurden in 200 ml-Meßzylindern in einem Kälteschrank mit -2°C/Stunde auf -13°C abgekühlt und 16 Stunden bei dieser Temperatur gelagert. Anschließend wurden visuell Volumen und Aussehen sowohl der sedimentierten Paraffinphase wie auch der darüber stehenden Ölphase bestimmt und beurteilt. Eine geringe Sedimentmenge bei gleichzeitig homogen trüber Ölphase bzw. ein großes Sedimentvolumen bei klarer Ölphase zeigen eine gute Paraffindispergierung. Zusätzlich wurden die unteren 20 Vol.-% isoliert und der Cloud Point gemäß ISO 3015 bestimmt. Eine nur geringe Abweichung des Cloud Points der unteren Phase (CPKS) vom Blindwert des Öls zeigt eine gute Paraffindispergierung. CFPP-Wirksamkeit in Testöl 1 Die CFPP-Wirksamkeit der erfindungsgemäßen Ester A wurde in Kombination mit gleichen Mengen C und D in Testöl 1 wie folgt gemessen: A C D B3 in ppm 50 75 100 Beispiel 1 50 ppm A1 50 ppm C1 50 ppm D2 -29 -31 -30 Beispiel 2 50 ppm A11 50 ppm C2 50 ppm D1 -27 -30 -30 Beispiel 3 50 ppm A7 50 ppm C1 50 ppm D2 -17 -28 -29 Beispiel 4 50 ppm A12 50 ppm C1 50 ppm D2 -19 -31 -29 Beispiel 5 50 ppm A8 50 ppm C1 50 ppm D2 -21 -29 -29 Beispiel 6 50 ppm A9 50 ppm C1 50 ppm D2 -18 -24 -29 Beispiel 7 50 ppm A2 50 ppm C1 50 ppm D2 -26 -29 -28 Beispiel 8 50 ppm A3 50 ppm C1 50 ppm D2 -30 -27 -30 Beispiel 9 50 ppm A5 50 ppm C1 50 ppm D2 -22 -29 -30 Beispiel 10 50 ppm A10 50 ppm C1 50 ppm D2 -19 -30 -29 Beispiel 11 50 ppm A6 50 ppm C1 50 ppm D2 -16 -26 -29 Beispiel 12 50 ppm A15 50 ppm C1 50 ppm D2 -28 -30 -31 Beispiel 13 (Vergleich) 50 ppm A13 50 ppm C1 50 ppm D2 -14 -22 -28 Beispiel 14 (Vergleich) - 75 ppm C1 75 ppm D2 -12 -17 -21 CFPP-Wirksamkeit in Testöl 2 Die Additivbestandteile A wurden mit 5 Teilen B2) gemischt und auf ihre CFPP-Wirksamkeit in Testöl 2 geprüft. CFPP [°C] Bestandteil A 100 ppm 200 ppm 300 ppm Beispiel 15 (Vergleich) A1 -11 -20 -21 Beispiel 16 (Vergleich) A2 -11 -22 -23 Beispiel 17 (Vergleich) A3 -10 -20 -22 Beispiel 18(Vergleich) A4 -10 -18 -23 Beispiel 19 (Vergleich) A13 -8 -10 -17 Beispiel 20 (Vergleich) - -6 -8 -9 CFPP- und Dispergierwirkung in Testöl 3 Für die Dispergiertests in Testöl 3 wurden in allen Messungen zusätzlich 200 ppm des Additivs B1) zudosiert. Additive Testöl 3 (CP -6,7°C) A C Sediment [Vol.-%] Aussehen Ölphase CFPP [°C] CPKS [°C] Beispiel 21 100 ppm A1 50 ppm C1 0 trüb -23 -5,9 Beispiel 22 100 ppm A1 50 ppm C2 7 trüb -24 -3,3 Beispiel 23 100 ppm A2 50 ppm C2 10 trüb -21 -2,4 Beispiel 24 100 ppm A1 50 ppm C3 20 wolkig -21 -0,8 Beispiel 25 50 ppm A2 100 ppm C1 20 wolkig -26 -1,4 Beispiel 26 100 ppm A3 50 ppm C1 10 trüb -28 -1,4 Beispiel 27 50 ppm A3 100 ppm C1 0 trüb -28 -5,3 Beispiel 28 100 ppm A4 100 ppm C1 7 trüb -21 -3,6 Beispiel 29 50 ppm A4 100 ppm C1 13 trüb -27 -2,0 Beispiel 30 100 ppm A5 50 ppm C1 3 trüb -22 -6,1 Beispiel 31 50 ppm A5 100 ppm C1 15 trüb -22 -2,0 Beispiel 32 100 ppm A6 50 ppm C1 20 wolkig -23 -1,6 Beispiel 33 50 ppm A6 100 ppm C1 3 trüb -21 -4,4 Beispiel 34 100 ppm A15 50 ppm C1 0 trüb -25 -6,2 Beispiel 35 (V) 100 ppm A14 50 ppm C1 16 klar -18 +3,0 Beispiel 36 (V) 150 ppm A1 - 20 klar -20 +3,4 Beispiel 37 (V) 150 ppm A2 - 20 klar -19 +3,2 Beispiel 38 (V) - 150 ppm C1 10 wolkig -20 +0,1 Beispiel 39 (V) - - 25 klar -19 +3,6 CFPP- und Dispergierwirkung in Testöl 4 Für die Dispergiertests in Testöl 4 wurden in allen Messungen zusätzlich 200 ppm des Additivs B1 zudosiert. Additive Testöl 4 (CP -8,2°C) A C Sediment [Vol.-%] AussehenÖlphase CFPP [°C] CPKS [°C] Beispiel 40 100 ppm A1 100 ppm C1 0 trüb -24 -6,3 Beispiel 41 100 ppm A1 100 ppm C1 0 trüb -24 -7,5 Beispiel 42 50 ppm A3 100 ppm C1 0 trüb -24 -5,4 Beispiel 43 50 ppm A3 100 ppm C1 0 trüb -28 -5,3 Beispiel 44 100 ppm A5 50 ppm C1 50 wolkig -23 -3,3 Beispiel 45 100 ppm A5 100 ppm C1 0 trüb -23 -5,5 Beispiel 46 50 ppm A5 100 ppm C1 70 wolkig -24 -4,3 Beispiel 47 (V) 100 ppm A14 50 ppm C1 16 klar -18 -1,1 Beispiel 48 (V) 150 ppm A1 - 20 klar -21 +2,4 Beispiel 49 (V) - 150 ppm C1 35 wolkig -20 +1,2 Beispiel 50 (V) - - 20 klar -18 +2,6

    Figure 00410001
    Table 4 describes the superior efficiency of the inventive additives in comparison with the prior art together with ethylene copolymers for mineral oils and mineral oil distillates by means of the CFPP test (Cold Filter Plugging Test according to EN 116).
    The paraffin dispersion in middle distillates was determined in the short sediment test as follows:
    150 ml of the middle distillates added with the additive components indicated in the table were cooled to -13 ° C. in a cold cabinet at -2 ° C./hour in 200 ml graduated cylinders and stored at this temperature for 16 hours. Subsequently, the volume and appearance of both the sedimented paraffin phase and the overlying oil phase were determined and assessed visually. A small amount of sediment with simultaneously homogeneous turbid oil phase or a large sediment volume with a clear oil phase show a good paraffin dispersion. In addition, the lower 20% by volume were isolated and the cloud point was determined according to ISO 3015. Only a small deviation of the cloud point of the lower phase (CP KS ) from the blank value of the oil shows a good paraffin dispersion. CFPP activity in test oil 1 The CFPP activity of the esters A according to the invention was measured in combination with equal amounts of C and D in test oil 1 as follows: A C D B3 in ppm 50 75 100 example 1 50 ppm A1 50 ppm C1 50 ppm D2 -29 -31 -30 Example 2 50 ppm A11 50 ppm C2 50 ppm D1 -27 -30 -30 Example 3 50 ppm A7 50 ppm C1 50 ppm D2 -17 -28 -29 Example 4 50 ppm A12 50 ppm C1 50 ppm D2 -19 -31 -29 Example 5 50 ppm A8 50 ppm C1 50 ppm D2 -21 -29 -29 Example 6 50 ppm A9 50 ppm C1 50 ppm D2 -18 -24 -29 Example 7 50 ppm A2 50 ppm C1 50 ppm D2 -26 -29 -28 Example 8 50 ppm A3 50 ppm C1 50 ppm D2 -30 -27 -30 Example 9 50 ppm A5 50 ppm C1 50 ppm D2 -22 -29 -30 Example 10 50 ppm A10 50 ppm C1 50 ppm D2 -19 -30 -29 Example 11 50 ppm A6 50 ppm C1 50 ppm D2 -16 -26 -29 Example 12 50 ppm A15 50 ppm C1 50 ppm D2 -28 -30 -31 Example 13 (comparison) 50 ppm A13 50 ppm C1 50 ppm D2 -14 -22 -28 Example 14 (comparison) - 75 ppm C1 75 ppm D2 -12 -17 -21 CFPP activity in test oil 2 The additive ingredients A were mixed with 5 parts B2) and tested for their CFPP activity in test oil 2. CFPP [° C] Component A 100 ppm 200 ppm 300 ppm Example 15 (comparison) A1 -11 -20 -21 Example 16 (comparison) A2 -11 -22 -23 Example 17 (comparison) A3 -10 -20 -22 Example 18 (comparison) A4 -10 -18 -23 Example 19 (comparison) A13 -8th -10 -17 Example 20 (comparison) - -6 -8th -9 CFPP and dispersing action in test oil 3 For the dispersing tests in test oil 3, an additional 200 ppm of additive B1) was added in all measurements. additives Test oil 3 (CP -6.7 ° C) A C Sediment [vol.%] Appearance oil phase CFPP [° C] CP KS [° C] Example 21 100 ppm A1 50 ppm C1 0 cloudy -23 -5.9 Example 22 100 ppm A1 50 ppm C2 7 cloudy -24 -3.3 Example 23 100 ppm A2 50 ppm C2 10 cloudy -21 -2.4 Example 24 100 ppm A1 50 ppm C3 20 cloudy -21 -0.8 Example 25 50 ppm A2 100 ppm C1 20 cloudy -26 -1.4 Example 26 100 ppm A3 50 ppm C1 10 cloudy -28 -1.4 Example 27 50 ppm A3 100 ppm C1 0 cloudy -28 -5.3 Example 28 100 ppm A4 100 ppm C1 7 cloudy -21 -3.6 Example 29 50 ppm A4 100 ppm C1 13 cloudy -27 -2.0 Example 30 100 ppm A5 50 ppm C1 3 cloudy -22 -6.1 Example 31 50 ppm A5 100 ppm C1 15 cloudy -22 -2.0 Example 32 100 ppm A6 50 ppm C1 20 cloudy -23 -1.6 Example 33 50 ppm A6 100 ppm C1 3 cloudy -21 -4.4 Example 34 100 ppm A15 50 ppm C1 0 cloudy -25 -6.2 Example 35 (V) 100 ppm A14 50 ppm C1 16 clear -18 +3.0 Example 36 (V) 150 ppm A1 - 20 clear -20 +3.4 Example 37 (V) 150 ppm A2 - 20 clear -19 +3.2 Example 38 (V) - 150 ppm C1 10 cloudy -20 +0.1 Example 39 (V) - - 25 clear -19 +3.6 CFPP and dispersing action in test oil 4 For the dispersing tests in test oil 4, an additional 200 ppm of additive B1 was added in all measurements. additives Test oil 4 (CP -8,2 ° C) A C Sediment [vol.%] Appearance oil phase CFPP [° C] CP KS [° C] Example 40 100 ppm A1 100 ppm C1 0 cloudy -24 -6.3 Example 41 100 ppm A1 100 ppm C1 0 cloudy -24 -7.5 Example 42 50 ppm A3 100 ppm C1 0 cloudy -24 -5.4 Example 43 50 ppm A3 100 ppm C1 0 cloudy -28 -5.3 Example 44 100 ppm A5 50 ppm C1 50 cloudy -23 -3.3 Example 45 100 ppm A5 100 ppm C1 0 cloudy -23 -5.5 Example 46 50 ppm A5 100 ppm C1 70 cloudy -24 -4.3 Example 47 (V) 100 ppm A14 50 ppm C1 16 clear -18 -1.1 Example 48 (V) 150 ppm A1 - 20 clear -21 +2.4 Example 49 (V) - 150 ppm C1 35 cloudy -20 +1.2 Example 50 (V) - - 20 clear -18 +2.6
    Figure 00410001

    Claims (13)

    1. A middle distillate having a maximum sulfur content of 0.05% by weight, comprising at least one fatty ester of alkoxylated polyols having at least 3 OH groups (A) and at least one alkylphenol-aldehyde resin (C).
    2. A middle distillate as claimed in claim 1, wherein the alkoxylated polyol (A) is derived from a polyol having three or more OH groups which has been reacted with from 1 to 100 mol of alkylene oxide.
    3. A middle distillate as claimed in claim 1 and/or 2, wherein the alkoxylated polyol (A) has been esterified with a fatty acid having from 8 to 50 carbon atoms.
    4. A middle distillate as claimed in one or more of claims 1 to 3, wherein the alkoxylated polyol (A) has been esterified with a mixture of at least one fatty acid having from 8 to 50 carbon atoms and at least one fat-soluble, polybasic carboxylic acid.
    5. A middle distillate as claimed in one or more of claims 1 to 4, wherein the alkoxylated polyol (A) is derived from glycerol.
    6. A middle distillate as claimed in one or more of claims 1 to 5, wherein the fatty acid ester (A) has an OH number of less than 15 mg KOH/g.
    7. A middle distillate as claimed in one or more of claims 1 to 6, wherein the alkyl radicals of the alkylphenol-aldehyde resin (C) have from 1 to 50 carbon atoms.
    8. A middle distillate as claimed in one or more of claims 1 to 7, wherein the alkylphenol-aldehyde resin (C) is derived from at least one aldehyde having from 1 to 10 carbon atoms.
    9. A middle distillate as claimed in one or more of claims 1 to 8, wherein an ethylene copolymer is additionally present.
    10. A middle distillate as claimed in claim 9, wherein the ethylene copolymer contains at least one unsaturated vinyl ester of an aliphatic carboxylic acid having from 2 to 15 carbon atoms.
    11. A middle distillate as claimed in claim 9 and/or 10, wherein the ethylene copolymer, in addition to ethylene, contains from 10 to 40 mol% of comonomers.
    12. A middle distillate as claimed in one or more of claims 1 to 11, wherein a polar nitrogen-containing paraffin dispersant, comprising amine salts and/or amides of secondary fatty amines having from 8 to 36 carbon atoms, is additionally present.
    13. The use of an additive, comprising at least one fatty ester of alkoxylated polyols having at least 3 OH groups (A) and at least one alkylphenol-aldehyde resin (C), for improving the cold flow properties and paraffin dispersancy in middle distillates having a maximum sulfur content of 0.05% by weight.
    EP02802985A 2001-11-14 2002-11-02 Additives for sulfur-poor mineral oil distillates comprising an ester of an alkoxylated polyol and an alkylphenol-aldehye resin Expired - Lifetime EP1446464B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE10155747 2001-11-14
    DE10155747A DE10155747B4 (en) 2001-11-14 2001-11-14 Low sulfur mineral oil distillate additives comprising an ester of an alkoxylated polyol and an alkylphenol-aldehyde resin
    PCT/EP2002/012235 WO2003042338A2 (en) 2001-11-14 2002-11-02 Additives for sulfur-poor mineral oil distillates comprising an ester of an alkoxylated polyol and an alkylphenol-aldehye resin

    Publications (2)

    Publication Number Publication Date
    EP1446464A2 EP1446464A2 (en) 2004-08-18
    EP1446464B1 true EP1446464B1 (en) 2005-07-27

    Family

    ID=7705616

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP02802985A Expired - Lifetime EP1446464B1 (en) 2001-11-14 2002-11-02 Additives for sulfur-poor mineral oil distillates comprising an ester of an alkoxylated polyol and an alkylphenol-aldehye resin

    Country Status (7)

    Country Link
    US (1) US7377949B2 (en)
    EP (1) EP1446464B1 (en)
    JP (1) JP2005509086A (en)
    KR (1) KR101072787B1 (en)
    DE (2) DE10155747B4 (en)
    ES (1) ES2243799T3 (en)
    WO (1) WO2003042338A2 (en)

    Families Citing this family (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10155774B4 (en) * 2001-11-14 2020-07-02 Clariant Produkte (Deutschland) Gmbh Additives for low sulfur mineral oil distillates, comprising an ester of alkoxylated glycerin and a polar nitrogen-containing paraffin dispersant
    WO2005040315A1 (en) * 2003-10-22 2005-05-06 Leuna Polymer Gmbh Additive mixture as component of a mineral oil composition
    JP2007509211A (en) * 2003-10-22 2007-04-12 ロイナ ポリマー ゲーエムベーハー Additives as a component of mineral oil compositions
    ES2317082T3 (en) * 2003-10-22 2009-04-16 Innospec Leuna Gmbh COMPOSITIONS BASED ON MINERAL OIL AND A MIXTURE OF ADDITIVES.
    JP4645073B2 (en) * 2004-06-21 2011-03-09 日油株式会社 Fuel oil additive and fuel oil composition
    ES2554978T3 (en) * 2005-12-22 2015-12-28 Clariant Produkte (Deutschland) Gmbh Mineral oils containing additives to confer detergency with an improved ability to flow cold
    DE102005061465B4 (en) * 2005-12-22 2008-07-31 Clariant Produkte (Deutschland) Gmbh Detergent additives containing mineral oils with improved cold flowability
    GB0902009D0 (en) * 2009-02-09 2009-03-11 Innospec Ltd Improvements in fuels
    US8262749B2 (en) 2009-09-14 2012-09-11 Baker Hughes Incorporated No-sulfur fuel lubricity additive
    RU2751622C2 (en) 2016-09-29 2021-07-15 ЭКОЛАБ ЮЭсЭй ИНК. Compositions based on inhibitors and depressors of paraffin deposition and methods
    RU2752630C2 (en) 2016-09-29 2021-07-29 ЭКОЛАБ ЮЭсЭй, ИНК. Paraffin suppressant compositions and methods
    EP3885424A1 (en) * 2020-03-24 2021-09-29 Clariant International Ltd Compositions and methods for dispersing paraffins in low-sulfur fuel oils

    Family Cites Families (26)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3098827A (en) * 1958-03-31 1963-07-23 Nalco Chemical Co Demulsification of petroleum oil emulsions
    US3762888A (en) * 1970-11-16 1973-10-02 Exxon Research Engineering Co Fuel oil composition containing oil soluble pour depressant polymer and auxiliary flow improving compound
    US4464182A (en) * 1981-03-31 1984-08-07 Exxon Research & Engineering Co. Glycol ester flow improver additive for distillate fuels
    US4564460A (en) * 1982-08-09 1986-01-14 The Lubrizol Corporation Hydrocarbyl-substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
    DE3443475A1 (en) 1984-11-29 1986-05-28 Amoco Corp., Chicago, Ill. TERPOLYMERISATE OF ETHYLENE, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE
    JPS61181892A (en) * 1985-02-06 1986-08-14 Kao Corp Flow improver for fuel oil
    CA1271895A (en) 1985-05-29 1990-07-17 Wolfgang Payer The use of ethylene terpolymers as additives in mineral oil and miniral oil distillates
    DE3625174A1 (en) 1986-07-25 1988-01-28 Ruhrchemie Ag METHOD FOR IMPROVING THE FLOWABILITY OF MINERAL OILS AND MINERAL OIL DISTILLATES
    DE3640613A1 (en) 1986-11-27 1988-06-09 Ruhrchemie Ag METHOD FOR THE PRODUCTION OF ETHYLENE MIXED POLYMERISATES AND THE USE THEREOF AS AN ADDITION TO MINERAL OIL AND MINERAL OIL FRACTIONS
    DE3926992A1 (en) * 1989-08-16 1991-02-21 Hoechst Ag USE OF TRANSPARENT PRODUCTS OF ALKENYL SPIROBISLACTONES AND AMINES AS PARAFFINDISPERGATORS
    DE4040228A1 (en) 1990-12-15 1992-06-17 Hoechst Ag METHOD FOR PRODUCING ETHYLENE ALKYLCARBONIC ACID VINYL ESTER MIXED POLYMERISIS
    DE4042206A1 (en) * 1990-12-29 1992-07-02 Hoechst Ag ETHYLENE TERPOLYMERISES, THEIR PREPARATION AND THEIR USE AS ADDITIVES FOR MINERALOLE DISTILLATES
    GB9200694D0 (en) * 1992-01-14 1992-03-11 Exxon Chemical Patents Inc Additives and fuel compositions
    US5399275A (en) * 1992-12-18 1995-03-21 The Lubrizol Corporation Environmentally friendly viscosity index improving compositions
    EP0606055B1 (en) * 1993-01-06 1997-09-17 Hoechst Aktiengesellschaft Terpolymers based on alpha, beta unsaturated dicarboxilic acid anhydryds, alpha, beta unsaturated compounds and polyoxyalkylene ether of lower unsaturated alcohols
    CN1063218C (en) * 1995-11-29 2001-03-14 鲁布里佐尔公司 Dispersions of waxy pour point depressants
    US5851429A (en) * 1996-04-08 1998-12-22 The Lubrizol Corporation Dispersions of waxy pour point depressants
    DE19620118C1 (en) * 1996-05-18 1997-10-23 Hoechst Ag Terpolymers of ethylene, their preparation and their use as additives for mineral oil distillates
    GB9621231D0 (en) * 1996-10-11 1996-11-27 Exxon Chemical Patents Inc Low sulfer fuels with lubricity additive
    DE59708189D1 (en) * 1997-01-07 2002-10-17 Clariant Gmbh Improving the flowability of mineral oils and mineral oil distillates using alkylphenol-aldehyde resins
    JPH10245574A (en) * 1997-02-28 1998-09-14 Sanyo Chem Ind Ltd Pour improver for fuel oil and fuel oil
    GB9707367D0 (en) * 1997-04-11 1997-05-28 Exxon Chemical Patents Inc Improved oil compositions
    GB9707366D0 (en) 1997-04-11 1997-05-28 Exxon Chemical Patents Inc Improved oil compositions
    GB9810994D0 (en) * 1998-05-22 1998-07-22 Exxon Chemical Patents Inc Additives and oil compositions
    JP4103218B2 (en) * 1998-12-15 2008-06-18 コスモ石油株式会社 Light oil composition
    DE10000649C2 (en) * 2000-01-11 2001-11-29 Clariant Gmbh Multi-functional additive for fuel oils

    Also Published As

    Publication number Publication date
    KR101072787B1 (en) 2011-10-14
    ES2243799T3 (en) 2005-12-01
    WO2003042338A2 (en) 2003-05-22
    DE10155747A1 (en) 2003-05-28
    EP1446464A2 (en) 2004-08-18
    US7377949B2 (en) 2008-05-27
    DE50203784D1 (en) 2005-09-01
    JP2005509086A (en) 2005-04-07
    US20050000152A1 (en) 2005-01-06
    KR20050042255A (en) 2005-05-06
    WO2003042338A3 (en) 2003-10-09
    DE10155747B4 (en) 2008-09-11

    Similar Documents

    Publication Publication Date Title
    EP1451271B1 (en) Additives for low-sulphur mineral oil distillates, containing an ester of an alkoxylated polyol and a polar nitrogenous paraffin dispersant
    EP1116781B1 (en) Polyfunctional additive for fuel oils
    EP1116780B1 (en) Polyfunctional additive for fuel oils
    DE102005035277B4 (en) Mineral oils with improved conductivity and cold flowability
    EP1458837B1 (en) Low-sulphur mineral oil distillates with improved cold properties, containing an ester of an alkoxylated polyol and a copolymer of ethylene and unsaturated esters
    DE102006001381A1 (en) Low-sulfur mineral oil distillate additives comprising graft copolymers based on ethylene-vinyl ester copolymers
    EP1621600B1 (en) Mineral oils having improved conductivity and cold flow properties
    EP1446464B1 (en) Additives for sulfur-poor mineral oil distillates comprising an ester of an alkoxylated polyol and an alkylphenol-aldehye resin
    DE10058359B4 (en) Fuel oils with improved lubricity, containing mixtures of fatty acids with paraffin dispersants, and a lubricant-improving additive
    EP0997517B1 (en) Polymer mixtures to improve the lubricating activity of middle distillates
    DE102007028305A1 (en) Detergent additives containing mineral oils with improved cold flowability
    EP1380634B1 (en) Lubricity additives stabilised against oxidation for highly desulphurised fuel oils.
    EP4127106B1 (en) Compositions and methods for dispersing paraffins in low-sulfur fuel oils
    DE102005020264B4 (en) Low sulfur mineral oil distillate additives comprising aromatics bearing a hydroxy group, a methoxy group and an acid function
    DE10252973A1 (en) Lubricity additive for low-sulfur fuel oils, e.g. diesel fuel, comprises a polyol fatty acid partial ester and an alkylphenol resin
    DE102005061465B4 (en) Detergent additives containing mineral oils with improved cold flowability
    DE19856270C2 (en) Polymer mixture to improve the lubricating effect of middle distillates
    DE10048682A1 (en) Cold flow and lubricity enhancer for diesel fuel comprises an oil-soluble amphiphile and an ethylene/vinyl carboxylate/vinyl neocarboxylate terpolymer

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20040614

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    RBV Designated contracting states (corrected)

    Designated state(s): BE DE ES FI FR GB IT NL SE

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): BE DE ES FI FR GB IT NL SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 50203784

    Country of ref document: DE

    Date of ref document: 20050901

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050923

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2243799

    Country of ref document: ES

    Kind code of ref document: T3

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH

    ET Fr: translation filed
    NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

    Owner name: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH

    Effective date: 20060315

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLAX Notice of opposition and request to file observation + time limit sent

    Free format text: ORIGINAL CODE: EPIDOSNOBS2

    26 Opposition filed

    Opponent name: INFINEUM INTERNATIONAL LIMITED

    Effective date: 20060425

    NLR1 Nl: opposition has been filed with the epo

    Opponent name: INFINEUM INTERNATIONAL LIMITED

    PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

    Free format text: ORIGINAL CODE: EPIDOSCOBS2

    PLBB Reply of patent proprietor to notice(s) of opposition received

    Free format text: ORIGINAL CODE: EPIDOSNOBS3

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    PLCK Communication despatched that opposition was rejected

    Free format text: ORIGINAL CODE: EPIDOSNREJ1

    BECN Be: change of holder's name

    Owner name: *CLARIANT PRODUKTE DEUTSCHLAND G.M.B.H.

    Effective date: 20050727

    PLBN Opposition rejected

    Free format text: ORIGINAL CODE: 0009273

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: OPPOSITION REJECTED

    27O Opposition rejected

    Effective date: 20071203

    NLR2 Nl: decision of opposition

    Effective date: 20071203

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20081027

    Year of fee payment: 7

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091102

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20131030

    Year of fee payment: 12

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20160429

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20141103

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20161021

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20171103

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FI

    Payment date: 20211118

    Year of fee payment: 20

    Ref country code: FR

    Payment date: 20211126

    Year of fee payment: 20

    Ref country code: GB

    Payment date: 20211123

    Year of fee payment: 20

    Ref country code: NL

    Payment date: 20211125

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20211125

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20220127

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 50203784

    Country of ref document: DE

    Ref country code: NL

    Ref legal event code: MK

    Effective date: 20221101

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20221101

    REG Reference to a national code

    Ref country code: BE

    Ref legal event code: MK

    Effective date: 20221102

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20221101