EP1445477A1 - Dispositif de dosage avec calibreur du débit et procédé pour ajuster le débit du dispositif de dosage - Google Patents

Dispositif de dosage avec calibreur du débit et procédé pour ajuster le débit du dispositif de dosage Download PDF

Info

Publication number
EP1445477A1
EP1445477A1 EP03001633A EP03001633A EP1445477A1 EP 1445477 A1 EP1445477 A1 EP 1445477A1 EP 03001633 A EP03001633 A EP 03001633A EP 03001633 A EP03001633 A EP 03001633A EP 1445477 A1 EP1445477 A1 EP 1445477A1
Authority
EP
European Patent Office
Prior art keywords
metering device
adjustment element
piezoelectric actuator
valve needle
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03001633A
Other languages
German (de)
English (en)
Other versions
EP1445477B1 (fr
Inventor
Angelo D'arrigo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive Italy SpA
Original Assignee
Siemens VDO Automotive SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens VDO Automotive SpA filed Critical Siemens VDO Automotive SpA
Priority to DE2003604442 priority Critical patent/DE60304442T2/de
Priority to EP20030001633 priority patent/EP1445477B1/fr
Priority to JP2003301930A priority patent/JP2004225687A/ja
Publication of EP1445477A1 publication Critical patent/EP1445477A1/fr
Application granted granted Critical
Publication of EP1445477B1 publication Critical patent/EP1445477B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/161Means for adjusting injection-valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting

Definitions

  • the present invention relates to a metering device for dosing pressurized fluids, particularly an injection valve for a fuel injection system in an internal combustion engine.
  • the metering device is of the type which comprises a housing having an end part provided with an outlet passage terminating with a metering opening, an axially moveable valve needle passing through the outlet passage and controlling opening and closing of the metering opening, and a piezoelectric actuator in axial alignment with the valve needle and cooperating with the valve needle to control its axial movement.
  • the invention further relates to a method for setting a flow rate of such a metering device.
  • EP 1 046 809 A2 discloses an injection valve of this type.
  • the flow rate delivered by the injector can be set to a defined value at the end of the assembly process in the factory.
  • the calibration of such an injector is carried out in a state where the injector is not completely assembled and welded.
  • the injector to be calibrated is introduced in an appropriate blocking tool.
  • the regulation of the flow rate through the injector is carried out by inserting one or more calibrated spacer rings in the valve spring blockage and repeatedly measuring the flow rate until a desired flow rate is reached.
  • the injector proceeds to the final welding of the inlet fitting on the housing.
  • the current process is also extremely complex, because several process variables such as the length and the elongation of the piezoelectric stack, the dimensional tolerances of the parts involved, and the chamber height of the thermal compensator have to be taken into account. Further, as the spacer rings have to be changed repeatedly, it is not possible to calibrate the injector during a flow phase of the fluid.
  • a major drawback of the current solution arises from the inability to adjust the flow of the injector after the completion of the whole assembly process.
  • the current type of flow adjustment is feasible only before the final welding of the housing and the valve body of the injector. Therefore, if it is found in the post calibration run that an injector does not meet the flow requirements, no further corrections are possible, and the injector has to be discarded.
  • a plastically deformable adjustment element is arranged axially aligned between a bottom end piece of the piezoelectric actuator and a head of the valve needle, wherein a plastic deformation of the adjustment element regulates the axial spacing between the piezoelectric actuator and the valve needle, thereby setting a flow rate for the metering device.
  • the invention is thus based on the idea to provide a deformable adjustment element in the metering device allowing for a flow rate calibration even after the metering device is completely assembled.
  • the plastically deformable adjustment element comprises a metal element shaped such that a radial compression of the element causes an axial elongation thereof.
  • the flow rate can then be set by driving two or more shaped punches radially inward through the housing of the metering device, thereby radially compressing and axially elongating the adjustment element.
  • the relative movement of the upper and lower face of the metal element is based on a controlled deformation of the metal element, the desired lift of the needle and thus the desired flow rate can be achieved.
  • the adjustment element has a first contact area for mounting the adjustment element to the bottom end piece of the piezoelectric actuator, a plastically deformable crimping area, the radial compression of which causes an axial elongation of the adjustment element, and a second contact area for contacting the head of the valve needle.
  • the first contact area of the adjustment element and the bottom end piece of the piezoelectric actuator comprise corresponding engagement means to mount the adjustment element to the piezoelectric actuator.
  • the second contact area of the adjustment element may advantageously comprise a hardened hemispherical head pin to provide good contact with the needle head.
  • the adjustment element is formed as a hollow frustroconical and biconical body with a central cylindrical area.
  • two or more through holes are provided in the housing of the metering device, which are radially aligned with a crimping area of the adjustment element.
  • the through holes provide access to the adjustment element and allowing plastic deformation thereof after the complete assembly of the metering device.
  • the flow rate through a completely assembled metering device is repeatedly measured and the adjustment element is gradually radially compressed until a predetermined flow rate through the metering device is achieved.
  • one or more punches are inserted in the through holes of the housing and driven inwardly, thereby inducing an axial adjustment of the spacing between the piezoelectric actuator and the valve needle.
  • the punch or the punches are driven inwardly by imposed strokes.
  • the punch or the punches may be driven inwardly by an imposed load.
  • FIG. 1 illustrates an injection valve 10 for direct-injection gasoline engines.
  • the injection valve 10 has a housing 12, whose lower part has an outlet passage 14 terminating with a metering opening 16.
  • the housing 12 contains a piezoelectric actuator 18.
  • An excitation voltage is applied to the piezoelectric actuator 18 to open the injection valve 10 and inject gasoline into the engine cylinder.
  • the piezoelectric actuator 18 increases in length in axial direction by a predetermined amount.
  • the length extension is transmitted to a valve needle 20 disposed in the outlet passage 14.
  • the needle 20 depresses a biasing spring and lifts from its seat to start the injection of pressurized gasoline in the engine cylinder.
  • the length of the piezoelectric actuator 18 decreases to its normal value and the valve needle 20 is pushed back in its closing position.
  • a plastically deformable adjustment element 22 is arranged axially aligned between a bottom action cap 24 of the piezoelectric actuator 18 and a head 26 of the valve needle 20.
  • the adjustment element 22 is formed as a hollow frustroconical and biconical metal body 30 with a central cylindrical area 32.
  • the metal body 30 has a shape for which a radial compression of the body 30 causes an axial elongation of the adjustment element 22.
  • Fig. 3 shows an exploded view of the adjustment element 22 together with the piezoelectric actuator 18.
  • the bottom end piece 24 of the piezoelectric actuator 18 comprises an engagement element 38, which allows the metal body 30 to be easily mounted to the piezoelectric actuator 18 by geometrical interference of the contact area 39 (Fig. 2) of the adjustment element 22 with the corresponding engagement element 38.
  • the adjustment element 22 further comprises a hardened hemispherical head pin 34 to optimize the contact with the needle head 26.
  • the hemispherical head pin 34 comprises an engagement element 36 allowing the metal body 30 to be easily mounted to the hemispherical head pin 34 by geometrical interference.
  • two through holes 28 and 29 are provided in the housing 12 of the injection valve 10 to provide access to the adjustment element 22 and allowing plastic deformation thereof after the complete assembly of the injection valve 10.
  • the two through holes 28 and 29 are radially aligned with the central crimping area 32 of the adjustment element and are spaced by 180° along the circumference of the housing 12. While only two through holes are shown in the embodiment of Fig. 1, it will be appreciated that three or more appropriately spaced through holes may be provided in the housing 12 as well.
  • the flow rate of the injector valve 10 can then be adjusted after it is completely assembled and welded. In this state the through holes 28 and 29 are initially closed by plastic plugs for packaging purposes.
  • the pre-adjusted lift and/or flow rate is measured. If the desired flow rate is not attained, the plastic plugs are removed and one or more punches are inserted in the through holes 28 and 29 and driven inwardly by applying strokes or a constant load. Thereby, the metal body 30 of the adjustment element 22 is gradually deformed.
  • the resulting plastic deformation of the metal body caused by the action of the punches induces an axial elongation of the of adjustment element 22 and therefore increases the spacing between the piezoelectric actuator 18 and the needle 20.
  • the relative movement of the upper and lower face of the metal body 30 is based on a controlled deformation, the desired lift and the desired flow rate can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel-Injection Apparatus (AREA)
EP20030001633 2003-01-24 2003-01-24 Dispositif de dosage avec calibreur du débit et procédé pour ajuster le débit du dispositif de dosage Expired - Fee Related EP1445477B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE2003604442 DE60304442T2 (de) 2003-01-24 2003-01-24 Messvorrichtung mit Durchfluss-Kalibriereinrichtung sowie Verfahren zur Einstellung der Durchflussmenge der Messvorrichtung
EP20030001633 EP1445477B1 (fr) 2003-01-24 2003-01-24 Dispositif de dosage avec calibreur du débit et procédé pour ajuster le débit du dispositif de dosage
JP2003301930A JP2004225687A (ja) 2003-01-24 2003-08-26 流量キャリブレータを備えた調量装置及び調量装置の流量を設定するための方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20030001633 EP1445477B1 (fr) 2003-01-24 2003-01-24 Dispositif de dosage avec calibreur du débit et procédé pour ajuster le débit du dispositif de dosage

Publications (2)

Publication Number Publication Date
EP1445477A1 true EP1445477A1 (fr) 2004-08-11
EP1445477B1 EP1445477B1 (fr) 2006-04-05

Family

ID=32605241

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20030001633 Expired - Fee Related EP1445477B1 (fr) 2003-01-24 2003-01-24 Dispositif de dosage avec calibreur du débit et procédé pour ajuster le débit du dispositif de dosage

Country Status (3)

Country Link
EP (1) EP1445477B1 (fr)
JP (1) JP2004225687A (fr)
DE (1) DE60304442T2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1865194A1 (fr) * 2006-06-06 2007-12-12 Siemens Aktiengesellschaft Méthode pour ajuster un injecteur de carburant
WO2012095384A1 (fr) * 2011-01-13 2012-07-19 Continental Automotive Gmbh Injecteur de combustible et procédé de fabrication d'un injecteur de combustible

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010042476A1 (de) * 2010-10-14 2012-04-19 Robert Bosch Gmbh Vorrichtung zum Einspritzen von Kraftstoff

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3735288A1 (de) * 1987-10-17 1989-04-27 Pierburg Gmbh Elektromagnetisches einspritzventil fuer brennkraftmaschinen
US5232167A (en) * 1991-11-16 1993-08-03 Robert Bosch Gmbh Electromagnetically actuatable injection valve
DE19932762A1 (de) * 1999-07-14 2001-01-18 Bosch Gmbh Robert Verfahren zur Einstellung des Ventilhubs eines Einspritzventils
EP1106817A2 (fr) * 1999-12-06 2001-06-13 Siemens Aktiengesellschaft Soupape à géométrie de butée améliorée
WO2001090570A1 (fr) * 2000-05-23 2001-11-29 Caterpillar Inc. Butee d'arret variable pour microdosage dans un injecteur de carburant
US6385848B1 (en) * 2000-06-29 2002-05-14 Siemens Automotive Corporation Method of setting armature/needle lift in a fuel injector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3735288A1 (de) * 1987-10-17 1989-04-27 Pierburg Gmbh Elektromagnetisches einspritzventil fuer brennkraftmaschinen
US5232167A (en) * 1991-11-16 1993-08-03 Robert Bosch Gmbh Electromagnetically actuatable injection valve
DE19932762A1 (de) * 1999-07-14 2001-01-18 Bosch Gmbh Robert Verfahren zur Einstellung des Ventilhubs eines Einspritzventils
EP1106817A2 (fr) * 1999-12-06 2001-06-13 Siemens Aktiengesellschaft Soupape à géométrie de butée améliorée
WO2001090570A1 (fr) * 2000-05-23 2001-11-29 Caterpillar Inc. Butee d'arret variable pour microdosage dans un injecteur de carburant
US6385848B1 (en) * 2000-06-29 2002-05-14 Siemens Automotive Corporation Method of setting armature/needle lift in a fuel injector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1865194A1 (fr) * 2006-06-06 2007-12-12 Siemens Aktiengesellschaft Méthode pour ajuster un injecteur de carburant
WO2012095384A1 (fr) * 2011-01-13 2012-07-19 Continental Automotive Gmbh Injecteur de combustible et procédé de fabrication d'un injecteur de combustible

Also Published As

Publication number Publication date
DE60304442T2 (de) 2006-08-24
DE60304442D1 (de) 2006-05-18
EP1445477B1 (fr) 2006-04-05
JP2004225687A (ja) 2004-08-12

Similar Documents

Publication Publication Date Title
CN105275695B (zh) 燃料喷射器
US7828233B2 (en) Fuel injector and method for its adjustment
JPH06307309A (ja) 燃料噴射方法及び装置
JP3707841B2 (ja) バネ付勢された制御バルブを伴う燃料噴射器
US20030094513A1 (en) Fuel-injection valve and a method for regulating the same
EP1445477A1 (fr) Dispositif de dosage avec calibreur du débit et procédé pour ajuster le débit du dispositif de dosage
EP1467086B1 (fr) Soupape d'injection de carburant munie de deux manchons de réglage et procédé pour régler la prétension du ressort d'une soupape d'injection à ressort
US7699242B2 (en) Injector
US7841320B2 (en) Actuator unit and method for manufacturing an actuator unit
EP1024915A1 (fr) Procede d'assemblage de composants de pompe d'injection de carburant
US6687965B2 (en) Apparatus for setting armature/needle lift in a fuel injector
US6421913B1 (en) Retention feature for assembling a pole pieces into a tube of a fuel injector
EP2302196B1 (fr) Procédé de réglage de flux/course externe pour les injecteurs de carburant
EP2910770B1 (fr) Ensemble de filtre et injecteur de carburant
KR20020075453A (ko) 연료 분사 밸브의 밸브 니들과 아마추어의 연결
KR20030036710A (ko) 연료 분사 밸브 및 그 조정 방법
EP1450036B1 (fr) Dispositif de dosage et procédé de réglage de la précontrainte d'un ressort
EP1391606B1 (fr) Doseur à débit réglable et procédé pour établir le débit d'un doseur
EP1865191A1 (fr) Agencement pour l'ajustement d'une vanne d'injection, vanne d'injection et méthode d'ajustement d'une vanne d'injection
US5815920A (en) Method of assembling fuel injector pump components
EP1767774B1 (fr) Procédé et appareil pour la fabrication d'une soupape pour un injecteur
EP1803929B1 (fr) Injecteur de fluide et méthode de fabrication de cet injecteur
EP2080895B1 (fr) Agencement de compensation thermique et soupape d'injection
EP1816343B1 (fr) Ensemble et procédé pour le prétraitement d'un dispositif d'équilibrage
EP1865194B1 (fr) Méthode pour ajuster un injecteur de carburant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20050207

AKX Designation fees paid

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20050406

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060405

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60304442

Country of ref document: DE

Date of ref document: 20060518

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070108

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200131

Year of fee payment: 18

Ref country code: GB

Payment date: 20200123

Year of fee payment: 18

Ref country code: DE

Payment date: 20200131

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 60304442

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200121

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60304442

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210124

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210124