EP1445421A1 - Dispositif de ventilation d'un rotor de turbine à haute pression d'une turbomachine - Google Patents
Dispositif de ventilation d'un rotor de turbine à haute pression d'une turbomachine Download PDFInfo
- Publication number
- EP1445421A1 EP1445421A1 EP04100404A EP04100404A EP1445421A1 EP 1445421 A1 EP1445421 A1 EP 1445421A1 EP 04100404 A EP04100404 A EP 04100404A EP 04100404 A EP04100404 A EP 04100404A EP 1445421 A1 EP1445421 A1 EP 1445421A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- upstream
- downstream
- disc
- turbine
- flange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009423 ventilation Methods 0.000 title claims description 14
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 122
- 238000001816 cooling Methods 0.000 claims abstract description 46
- 238000002485 combustion reaction Methods 0.000 claims description 16
- 125000006850 spacer group Chemical group 0.000 claims description 6
- 239000002826 coolant Substances 0.000 abstract 1
- 210000003027 ear inner Anatomy 0.000 description 30
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/08—Heating, heat-insulating or cooling means
- F01D5/081—Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
- F01D5/082—Cooling fluid being directed on the side of the rotor disc or at the roots of the blades on the side of the rotor disc
Definitions
- the present invention relates so general to the field of ventilation of a rotor high pressure turbine of a turbomachine.
- the invention relates to a device for ventilating a turbine rotor high pressure, including an upstream turbine disc as well as a downstream turbine disk.
- Figure 1 shows a turbine rotor high pressure 1 conventional of the prior art, disposed downstream of a combustion chamber 2, and comprising an upstream turbine disk 3 fitted with blades 4, as well as a downstream turbine disk 5 equipped vanes 6.
- the upstream disc 3 is provided on the one hand with a upstream flange 8 ensuring its attachment to a spacer 9 arranged around a rotor shaft 11 of a turbine low pressure, and on the other hand of a downstream flange 10 fixedly assembled to an upstream flange 12 of the downstream disc 5.
- an inter-disc seal 14 worn by a hollow structure 16 integral with a storey fixed distributor 18 or stator, is located at the assembly between the two flanges 10 and 12.
- the seal inter-disc 14, of the labyrinth joint type allows well to create a separation between the two floors rotor 20 and 22, arranged on either side of the distributor stage 18.
- downstream disc 5 has a downstream flange 13, also assembled on the spacer 9 surrounding the shaft 11 of the low pressure turbine.
- a first air flow of cooling D1 taken from the bottom of the combustion 2 is delivered in a delimited cavity 26 on the one hand using a downstream face of a labyrinth upstream 24 disposed near the upstream disc 3, and on the other hand using an upstream face of this same upstream disc 3.
- This air flow D1 is effectively taken from the bottom of the combustion chamber 2, then routed into a cavity 30, in particular delimited by an upstream labyrinth seal 32 and a seal downstream labyrinth 34, via a conduit 28 arranged in an enclosure 29 separating the labyrinth upstream 24 from the bottom of the combustion chamber 2, thus that using injectors 36 arranged in the extension of the conduit 28 and opening into the cavity 30.
- the seals 32 and 34 are arranged so as to be in contact with the upstream labyrinth 24.
- cooling air located in the cavity 30 is able to penetrate into the cavity 26 by using orifices 38 provided in a upstream part of the upstream labyrinth 24, these orifices 38 being of axes substantially perpendicular to the axis longitudinal 40 of the turbine.
- cooling D1 circulates in cavity 26 first longitudinally then radially outwards the along the upstream face of the upstream labyrinth 24 in order to cool, then enter cells 4a containing the feet of the blades 4 so as to cool these latest.
- a second air flow of D2 cooling also taken from the bottom of combustion chamber 2, enters the enclosure 29 and flows through orifices 44 and 42, respectively provided in the upstream part of the upstream labyrinth 24, and in the upstream flange 8 of the disc upstream 3.
- the second cooling air flow D2 borrows a annular chamber 46 internally bounded by the spacer 9, and externally delimited by successively, from upstream to downstream, the flange 8, a bore inside 48 of the upstream disc 3, the flanges 10 and 12, a inner bore 50 of the downstream disc 5, and the flange 13.
- a first part D2a of the second air flow of cooling D2 flows through orifices 52 made in the downstream flange 10 of the upstream disc 3, so to join the gap 19 located between the floor fixed distributor 18 and the rotor stage 20, like the schematically represents the arrow referenced D2a.
- the air flow d shown schematically in Figure 1 corresponds to an air leak at the level of the cells 4a.
- a second part D2b of the second cooling air flow D2 flows through orifices 54 formed in the downstream flange 13 of the disc downstream 5, to penetrate inside a cavity 56 delimited on the one hand using an upstream face of a downstream labyrinth 58 disposed near the downstream disc 5, and on the other hand using a downstream face of this same downstream disc 5.
- the rotor ventilation device therefore has two cooling circuits separate, each associated with one of the two discs of turbine, and respectively powered by the first and second cooling air flows D1 and D2.
- the invention therefore aims to provide a ventilation device of a high turbine rotor pressure of a turbomachine, the turbine being arranged downstream of a combustion chamber and comprising upstream and downstream turbine discs fitted with blades, the device comprising a cooling circuit fitted with injectors arranged upstream of the upstream disc and being supplied by a cooling air flow D taken from the bottom of the combustion chamber, the device at least partially remedying the disadvantages mentioned above relating to the achievements of art prior.
- the invention relates to a ventilation device of a high turbine rotor pressure of a turbomachine, the turbine being arranged downstream of a combustion chamber and comprising a upstream turbine disk fitted with blades and a downstream turbine disk also fitted with blades, the device comprising a cooling circuit fitted with injectors arranged upstream of the upstream disc, the circuit being supplied by an air flow of cooling D taken from the bottom of the combustion.
- the circuit cooling is arranged so that the flow cooling air D from the injectors crosses holes made in an upstream flange of the upstream disc allowing its attachment to an upstream flange of the downstream disc, so that this air flow of cooling D flows axially downstream between an inner bore of the upstream disc and an upstream flange of the downstream disc authorizing its attachment to a flange downstream of a high pressure compressor as well as the centering of the upstream disc, the ventilation device further comprising a single labyrinth integral with one of the two turbine disks and being interposed between these two discs, so that the air flow of cooling D separates into a first flow F1 flowing between a downstream face of the upstream disc and a upstream face of the single labyrinth towards the blades of the upstream disc, and in a second flow F2 circulating between an upstream face of the downstream disc and a downstream face of the single labyrinth towards the disc blades downstream.
- the device ventilation no longer has two labyrinths respectively associated with the upstream turbine disks and downstream, but has a unique inter-disc labyrinth each of the upstream and downstream faces of which is intended for guide a flow of cooling air towards blades. Reducing the number of parts used therefore considerably reduces the mass, size and cost of production of the rotor.
- the specific positioning of the unique maze leads the latter to be less thermally stressed that a labyrinth arranged in upstream of the upstream disk, mainly due to its location in relation to the combustion chamber, and since the air flow temperature of cooling D drops significantly during passage in the inner bore of the upstream disc. This characteristic thus generates an increase in the lifespan of this labyrinth, compared to the duration of life that an upstream labyrinth could present prior art.
- the adjacent cavity jointly delimited by an upstream face of the disc downstream and through a downstream face of the single labyrinth is advantageously used to reduce the pressure feeding the blades of the downstream disc.
- the weak pressure inside this adjacent cavity allows actually not having to provide holes feeding blades that are too small, which are difficult to achieve.
- the rotor made more compact by reducing the number of elements components of the rotor allows a reconciliation of the bearing under chamber of the upstream and downstream discs, so that it is then possible to obtain a better control of games at the top of blades, and therefore a higher efficiency of the high pressure turbine.
- FIG 2 it is depicted a high pressure turbine 100 of a turbojet engine, comprising a ventilation device of the turbine rotor according to one embodiment preferred of the present invention. Note that on the Figure 2, the elements bearing the same references digital than those attached to the elements shown in Figure 1 correspond to identical or similar elements.
- Figure 2 shows a turbine 100 which differs first of all from turbine 1 of prior art by the fact that an air flow of cooling D, taken from the bottom of the combustion 2 and able to pass through the injectors 36, is intended to simultaneously feed the blades 4 and 6 of upstream 3 and downstream 5 discs.
- the cooling air flow D from the injectors 36 then enters a cavity 64 partially delimited by an upstream flange 66 of the upstream turbine disk 3, this upstream flange 66 main function of which is to secure the this upstream disc 3 on an upstream flange 78 of the downstream disc 5.
- this cavity 64 is also jointly delimited by the upstream joint 32 and the downstream joint 34, preferably of the joint type labyrinth, arranged near the injectors 36 respectively upstream and downstream of the latter.
- the upstream seal 32 cooperates with a downstream flange 70 of the high pressure turbine, this downstream flange 70 being formed so as to be locate radially outward relative to the upstream flange 66.
- the upstream seal 32 closes the cavity 64 by matching the upstream end of the flange upstream 66.
- the downstream seal 34 cooperates with a secondary upstream flange 72 of the upstream turbine disk 3, arranged so as to lie radially towards the exterior with respect to the upstream flange 66.
- the cooling air escaping from the cavity 64 by the downstream seal 34 can flow radially towards outside, along the upstream face of the upstream disc 3, towards the blades 4.
- Ports 74 are provided in the flange upstream 66 of the upstream turbine disk 3, so that the cooling air flow D can be routed towards the two turbine disks 3 and 5.
- the orifices 74 are preferably arranged so as to be locate radially opposite the injectors 36.
- the cooling air flow D enters a annular chamber 76 of axis 40, delimited externally via the upstream flange 66 of the disc upstream 3, and using the internal bore 48 of this same disc.
- the annular chamber 76 is internally bounded by the upstream flange 78 of the downstream disc 5, this upstream flange 78 having for main function of securing this disc downstream 5 on the upstream flange 66 of the upstream disc 3, and center the entire high pressure turbine 100 on a downstream flange 79 of a high pressure compressor.
- the cooling air flow D can then flow axially downstream between the bore interior 48 and the upstream flange 78, so that the upstream turbine disc 3 can be suitably cooled by contact of cooling air with its internal bore 48.
- the ventilation device comprises a single labyrinth 80 interposed between the discs of turbine 3 and 5, and is integral with one of these two discs.
- the labyrinth single 80 also called inter-disc labyrinth, is attached to a secondary upstream flange 82 of the disc downstream turbine 5, the latter being arranged so as to be locate radially outward relative to the upstream flange 78.
- the labyrinth 80 extends radially up to the fixed distributor stage 18 or stator provided between the two rotor stages 20 and 22, and has an inner bore 83 surrounding the upstream flange 78 of the disc 5, this bore 83 preferably having a diameter substantially identical to the diameter of the inner bore 48 of the disc 3.
- the first F1 flow therefore flows in a cavity 68 located between the downstream face of the disc upstream turbine 3 and the upstream face of labyrinth 80 so to cool the downstream face of the disc 3, then penetrate in cells 4a containing the feet of the blades 4 in order to cool them too.
- the second flow F2 flows in a cavity 69 located between the upstream face of the disc downstream turbine 5 and the downstream face of the same labyrinth 80 in order to cool the upstream face of the disc 5, then penetrates into cells 6a containing the feet of vanes 6 in order to cool them as well.
- a plurality 84 is made in the upstream flange secondary 82 of the downstream disc 5.
- the ventilation according to the invention is such that the flow cooling air D taken from the chamber bottom 2 and intended to supply simultaneously blades 4 and 6, follows a circuit of one-time cooling to exit the passage between the bore 48 of the upstream disc 3 and the upstream flange 78 of the downstream turbine disk 5.
- This characteristic specific greatly simplifies the design of turbine 100 relative to that of turbine 1 of the prior art, in which two air flows of cooling were taken from the bottom of the combustion 2, in order to borrow two circuits of totally separate cooling.
- the upstream flange 78 of the disc downstream turbine 5 has a plurality of orifices 86 capable of being crossed by a third flow F3 of the cooling air flow D.
- This third flow F3 is therefore routed from the annular chamber 76 to a annular space 88 of the same axis, space 88 being located on the one hand between the upstream flange 78 of the downstream disc 5 and the internal bore 50 of this same downstream disc 5, and on the other hand the spacer 9 arranged around the rotor shaft 11 of the low pressure turbine.
- the flow of cooling air F3 can flow axially downstream in the annular space 88, in order to cool the downstream disc 5 by contact of the air with its internal bore 50.
- the third flow F3 is then evacuated downstream of the turbine 100 by the orifices 54 formed on the downstream flange 13 of the disc downstream turbine 5, this downstream flange 13 participating also to the outer delimitation of space annular 88 and being assembled on the spacer 9 axis 40.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
- la figure 1, déjà décrite, représente en demi-coupe une turbine à haute pression d'un turboréacteur selon l'art antérieur, et
- la figure 2 représente en demi-coupe une turbine à haute pression d'un turboréacteur, comportant un dispositif de ventilation selon un mode de réalisation préféré de la présente invention.
Claims (4)
- Dispositif de ventilation d'un rotor de turbine (100) à haute pression d'une turbomachine, la turbine (100) étant disposée en aval d'une chambre de combustion (2) et comportant un disque de turbine amont (3) équipé d'aubes (4) ainsi que d'un disque de turbine aval (5) équipé d'aubes (6), ledit dispositif comportant un circuit de refroidissement muni d'injecteurs (36) disposés en amont du disque amont (3) et étant alimenté par un débit d'air de refroidissement D prélevé en fond de chambre de combustion (2), caractérisé en ce que ledit circuit de refroidissement est agencé de manière à ce que le débit d'air de refroidissement D provenant des injecteurs (36) traverse des orifices (74) ménagés dans une bride amont (66) du disque amont (3) autorisant sa fixation sur une bride amont (78) du disque aval (5), afin que ce débit d'air de refroidissement D circule axialement vers l'aval entre un alésage intérieur (48) du disque amont (3) et la bride amont (78) du disque aval (5) autorisant sa fixation sur une bride aval (79) d'un compresseur haute pression ainsi que le centrage du disque amont (3), ledit dispositif de ventilation comportant en outre un labyrinthe unique (80) solidaire de l'un des deux disques de turbine (3,5) et étant interposé entre ces deux disques, de sorte que le débit d'air de refroidissement D se sépare en un premier flux F1 circulant entre une face aval du disque amont (3) et une face amont du labyrinthe unique (80) en direction des aubes (4), et en un second flux F2 circulant entre une face amont du disque aval (5) et une face aval du labyrinthe unique (80) en direction des aubes (6).
- Dispositif selon la revendication 1,
caractérisé en ce que les injecteurs (36) débouchent dans une cavité (64) partiellement délimitée par la bride amont (66) du disque de turbine amont (3), ainsi que par un joint amont (32) et un joint aval (34), ce dernier coopérant avec une bride amont secondaire (72) du disque de turbine amont (3). - Dispositif selon la revendication 1 ou la revendication 2, caractérisé en ce que la bride amont (78) du disque de turbine aval (5) dispose d'une pluralité d'orifices (86) aptes à être traversés par un troisième flux F3 du débit d'air de refroidissement D, ledit troisième flux F3 étant susceptible de circuler axialement vers l'aval dans un espace annulaire (88) situé entre d'une part la bride amont (78) du disque aval (5) et un alésage intérieur (50) de ce disque aval (5), et d'autre part une entretoise (9) disposée autour d'un arbre (11) de rotor d'une turbine basse pression.
- Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le labyrinthe unique (80) est solidaire d'une bride amont secondaire (82) du disque de turbine aval (5), dans laquelle est pratiquée une pluralité d'orifices (84) autorisant la circulation du second flux F2 du débit d'air de refroidissement D, en direction des aubes (6).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0301391A FR2851010B1 (fr) | 2003-02-06 | 2003-02-06 | Dispositif de ventilation d'un rotor de turbine a haute pression d'une turbomachine |
FR0301391 | 2003-02-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1445421A1 true EP1445421A1 (fr) | 2004-08-11 |
EP1445421B1 EP1445421B1 (fr) | 2006-01-04 |
Family
ID=32606008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04100404A Expired - Lifetime EP1445421B1 (fr) | 2003-02-06 | 2004-02-04 | Dispositif de ventilation d'un rotor de turbine à haute pression d'une turbomachine |
Country Status (8)
Country | Link |
---|---|
US (1) | US6916151B2 (fr) |
EP (1) | EP1445421B1 (fr) |
JP (1) | JP4060279B2 (fr) |
CA (1) | CA2456589C (fr) |
DE (1) | DE602004000301T2 (fr) |
ES (1) | ES2255697T3 (fr) |
FR (1) | FR2851010B1 (fr) |
RU (1) | RU2330976C2 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010142682A1 (fr) * | 2009-06-10 | 2010-12-16 | Snecma | Turbomachine comprenant des moyens ameliores de reglage du debit d'un flux d'air de refroidissement preleve en sortie de compresseur haute pression |
FR2960260A1 (fr) * | 2010-05-21 | 2011-11-25 | Snecma | Turbomachine comprenant un circuit de ventilation de turbine basse pression ameliore |
EP3196408A1 (fr) * | 2015-02-05 | 2017-07-26 | United Technologies Corporation | Moteur à turbine à gaz présentant une section avec une zone thermiquement isolée |
US9920652B2 (en) | 2015-02-09 | 2018-03-20 | United Technologies Corporation | Gas turbine engine having section with thermally isolated area |
EP3808937A1 (fr) * | 2019-10-18 | 2021-04-21 | Pratt & Whitney Canada Corp. | Ensemble injecteur tangentiel embarqué (tobi) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2892148B1 (fr) * | 2005-10-19 | 2011-07-22 | Snecma | Fourreau d'arbre de turboreacteur et turboreacteur comportant ce fourreau |
US8668437B1 (en) * | 2006-09-22 | 2014-03-11 | Siemens Energy, Inc. | Turbine engine cooling fluid feed system |
US8562285B2 (en) * | 2007-07-02 | 2013-10-22 | United Technologies Corporation | Angled on-board injector |
FR2937371B1 (fr) * | 2008-10-20 | 2010-12-10 | Snecma | Ventilation d'une turbine haute-pression dans une turbomachine |
US8371127B2 (en) * | 2009-10-01 | 2013-02-12 | Pratt & Whitney Canada Corp. | Cooling air system for mid turbine frame |
JP5494457B2 (ja) * | 2010-12-13 | 2014-05-14 | トヨタ自動車株式会社 | ガスタービンエンジン |
US20120308360A1 (en) * | 2011-05-31 | 2012-12-06 | General Electric Company | Overlap seal for turbine nozzle assembly |
US9279341B2 (en) | 2011-09-22 | 2016-03-08 | Pratt & Whitney Canada Corp. | Air system architecture for a mid-turbine frame module |
US9091173B2 (en) * | 2012-05-31 | 2015-07-28 | United Technologies Corporation | Turbine coolant supply system |
US20130327061A1 (en) * | 2012-06-06 | 2013-12-12 | General Electric Company | Turbomachine bucket assembly and method of cooling a turbomachine bucket assembly |
US10167723B2 (en) * | 2014-06-06 | 2019-01-01 | United Technologies Corporation | Thermally isolated turbine section for a gas turbine engine |
US9915204B2 (en) * | 2014-06-19 | 2018-03-13 | United Technologies Corporation | Systems and methods for distributing cooling air in gas turbine engines |
CN104675447A (zh) * | 2015-01-30 | 2015-06-03 | 北京华清燃气轮机与煤气化联合循环工程技术有限公司 | 一种燃气轮机涡轮冷却气路 |
WO2016163975A1 (fr) * | 2015-04-06 | 2016-10-13 | Siemens Energy, Inc. | Refroidissement à deux pressions de profils aérodynamiques de turbine |
US10030519B2 (en) * | 2015-10-26 | 2018-07-24 | Rolls-Royce Corporation | System and method to retain a turbine cover plate between nested turbines with a tie bolt and spanner nut |
US10718220B2 (en) * | 2015-10-26 | 2020-07-21 | Rolls-Royce Corporation | System and method to retain a turbine cover plate with a spanner nut |
US10273812B2 (en) | 2015-12-18 | 2019-04-30 | Pratt & Whitney Canada Corp. | Turbine rotor coolant supply system |
CN111946464B (zh) * | 2020-07-21 | 2021-09-07 | 中国科学院工程热物理研究所 | 一种用于高压涡轮盘后轴承腔的导流阻挡密封结构 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3043561A (en) * | 1958-12-29 | 1962-07-10 | Gen Electric | Turbine rotor ventilation system |
FR2598179A1 (fr) * | 1986-04-30 | 1987-11-06 | Gen Electric | Dispositif de transfert d'air de refroidissement pour une turbine |
FR2712029A1 (fr) * | 1993-11-03 | 1995-05-12 | Snecma | Turbomachine pourvue d'un moyen de réchauffage des disques de turbines aux montées en régime. |
DE19854907A1 (de) * | 1998-11-27 | 2000-05-31 | Rolls Royce Deutschland | Kühlluftführung an einer Axialturbine |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2081392B (en) * | 1980-08-06 | 1983-09-21 | Rolls Royce | Turbomachine seal |
US4462204A (en) * | 1982-07-23 | 1984-07-31 | General Electric Company | Gas turbine engine cooling airflow modulator |
US4882902A (en) * | 1986-04-30 | 1989-11-28 | General Electric Company | Turbine cooling air transferring apparatus |
US5555721A (en) * | 1994-09-28 | 1996-09-17 | General Electric Company | Gas turbine engine cooling supply circuit |
US6468032B2 (en) * | 2000-12-18 | 2002-10-22 | Pratt & Whitney Canada Corp. | Further cooling of pre-swirl flow entering cooled rotor aerofoils |
US6540477B2 (en) * | 2001-05-21 | 2003-04-01 | General Electric Company | Turbine cooling circuit |
US6735956B2 (en) * | 2001-10-26 | 2004-05-18 | Pratt & Whitney Canada Corp. | High pressure turbine blade cooling scoop |
-
2003
- 2003-02-06 FR FR0301391A patent/FR2851010B1/fr not_active Expired - Fee Related
-
2004
- 2004-02-02 CA CA2456589A patent/CA2456589C/fr not_active Expired - Fee Related
- 2004-02-03 JP JP2004026230A patent/JP4060279B2/ja not_active Expired - Fee Related
- 2004-02-04 EP EP04100404A patent/EP1445421B1/fr not_active Expired - Lifetime
- 2004-02-04 DE DE602004000301T patent/DE602004000301T2/de not_active Expired - Lifetime
- 2004-02-04 ES ES04100404T patent/ES2255697T3/es not_active Expired - Lifetime
- 2004-02-05 RU RU2004103479/06A patent/RU2330976C2/ru not_active IP Right Cessation
- 2004-02-05 US US10/771,540 patent/US6916151B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3043561A (en) * | 1958-12-29 | 1962-07-10 | Gen Electric | Turbine rotor ventilation system |
FR2598179A1 (fr) * | 1986-04-30 | 1987-11-06 | Gen Electric | Dispositif de transfert d'air de refroidissement pour une turbine |
FR2712029A1 (fr) * | 1993-11-03 | 1995-05-12 | Snecma | Turbomachine pourvue d'un moyen de réchauffage des disques de turbines aux montées en régime. |
DE19854907A1 (de) * | 1998-11-27 | 2000-05-31 | Rolls Royce Deutschland | Kühlluftführung an einer Axialturbine |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010142682A1 (fr) * | 2009-06-10 | 2010-12-16 | Snecma | Turbomachine comprenant des moyens ameliores de reglage du debit d'un flux d'air de refroidissement preleve en sortie de compresseur haute pression |
FR2946687A1 (fr) * | 2009-06-10 | 2010-12-17 | Snecma | Turbomachine comprenant des moyens ameliores de reglage du debit d'un flux d'air de refroidissement preleve en sortie de compresseur haute pression |
CN102459817A (zh) * | 2009-06-10 | 2012-05-16 | 斯奈克玛 | 具有对在高压压缩机的输出端取样的冷却空气流的流量进行调节的改良的装置的涡轮发动机 |
US8402770B2 (en) | 2009-06-10 | 2013-03-26 | Snecma | Turbine engine including an improved means for adjusting the flow rate of a cooling air flow sampled at the output of a high-pressure compressor using an annular air injection channel |
CN102459817B (zh) * | 2009-06-10 | 2014-10-22 | 斯奈克玛 | 具有对在高压压缩机的输出端取样的冷却空气流的流量进行调节的改良的装置的涡轮发动机 |
RU2532479C2 (ru) * | 2009-06-10 | 2014-11-10 | Снекма | Турбореактивный двигатель, содержащий улучшенные средства регулирования расхода потока воздуха охлаждения, отбираемого с выхода компрессора высокого давления |
FR2960260A1 (fr) * | 2010-05-21 | 2011-11-25 | Snecma | Turbomachine comprenant un circuit de ventilation de turbine basse pression ameliore |
EP3196408A1 (fr) * | 2015-02-05 | 2017-07-26 | United Technologies Corporation | Moteur à turbine à gaz présentant une section avec une zone thermiquement isolée |
US9920652B2 (en) | 2015-02-09 | 2018-03-20 | United Technologies Corporation | Gas turbine engine having section with thermally isolated area |
EP3808937A1 (fr) * | 2019-10-18 | 2021-04-21 | Pratt & Whitney Canada Corp. | Ensemble injecteur tangentiel embarqué (tobi) |
US11421597B2 (en) | 2019-10-18 | 2022-08-23 | Pratt & Whitney Canada Corp. | Tangential on-board injector (TOBI) assembly |
US11815020B2 (en) | 2019-10-18 | 2023-11-14 | Pratt & Whitney Canada Corp. | Tangential on-board injector (TOBI) assembly |
Also Published As
Publication number | Publication date |
---|---|
ES2255697T3 (es) | 2006-07-01 |
US20040219008A1 (en) | 2004-11-04 |
FR2851010A1 (fr) | 2004-08-13 |
CA2456589C (fr) | 2012-04-24 |
FR2851010B1 (fr) | 2005-04-15 |
RU2330976C2 (ru) | 2008-08-10 |
RU2004103479A (ru) | 2005-07-10 |
JP4060279B2 (ja) | 2008-03-12 |
EP1445421B1 (fr) | 2006-01-04 |
CA2456589A1 (fr) | 2004-08-06 |
US6916151B2 (en) | 2005-07-12 |
DE602004000301T2 (de) | 2006-08-31 |
DE602004000301D1 (de) | 2006-03-30 |
JP2004239260A (ja) | 2004-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1445421B1 (fr) | Dispositif de ventilation d'un rotor de turbine à haute pression d'une turbomachine | |
EP2440746B1 (fr) | Turbomachine comprenant des moyens ameliores de reglage du debit d'un flux d'air de refroidissement preleve en sortie de compresseur haute pression | |
CA2430143C (fr) | Refroidissement du flasque amont d'une turbine a haute pression par un systeme a double injecteurs fond de chambre | |
EP1316675B1 (fr) | Stator pour turbomachine | |
CA2475404C (fr) | Echangeur sur circuit de ventilation de turbine | |
CA2758175C (fr) | Moteur a turbine a gaz a double corps pourvu d ' un palier inter-arbres | |
EP2337929B1 (fr) | Ventilation d'une turbine haute-pression dans une turbomachine | |
CA2500548C (fr) | Turbomachine comme par exemple un turboreacteur pour avion | |
CA2564491C (fr) | Dispositif de ventilation de disques de turbine dans un moteur a turbine a gaz | |
CA2490619A1 (fr) | Circuits de ventilation de la turbine d'une turbomachine | |
FR2483008A1 (fr) | Dispositif pour minimiser et maintenir constant le jeu d'extremite des aubes de turbines axiales de moteurs a turbines a gaz | |
FR2872541A1 (fr) | Aube fixe de turbine a refroidissement ameliore | |
FR2598179A1 (fr) | Dispositif de transfert d'air de refroidissement pour une turbine | |
EP3994340A1 (fr) | Dispositif de refroidissement ameliore d'anneau de turbine d'aeronef | |
FR2961250A1 (fr) | Dispositif de refroidissement des alveoles d'un disque de rotor de turbomachine a l'aval du cone d'entrainement | |
FR3064050A1 (fr) | Chambre de combustion d'une turbomachine | |
WO2023047055A1 (fr) | Carter d'injection d'air de refroidissement pour turbine de turbomachine | |
EP4136327B1 (fr) | Dispositif de refroidissement d'un carter de turbine | |
FR2881472A1 (fr) | Circuit de ventilation d'un rotor de turbine haute pression dans un moteur a turbine a gaz | |
FR2960020A1 (fr) | Dispositif et procede de refroidissement de disques de rotor d'une turbomachine | |
WO2018215718A1 (fr) | Aube pour turbine de turbomachine comprenant des cavites internes de circulation d'air de refroidissement | |
FR3145013A1 (fr) | Dispositif de guidage d’un arbre et de refroidissement d’un palier pour un generateur de gaz |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20050131 |
|
AKX | Designation fees paid |
Designated state(s): DE ES FR GB IT SE |
|
17Q | First examination report despatched |
Effective date: 20050527 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SNECMA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060213 |
|
REF | Corresponds to: |
Ref document number: 602004000301 Country of ref document: DE Date of ref document: 20060330 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2255697 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20061005 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20130207 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20160127 Year of fee payment: 13 Ref country code: DE Payment date: 20160121 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20160126 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140205 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602004000301 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170205 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170901 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: SAFRAN AIRCRAFT ENGINES Effective date: 20170719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170204 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230119 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230121 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20240203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240203 |