EP1444030A1 - Method and device for reducing nitrogen oxides present in exhaust gases - Google Patents

Method and device for reducing nitrogen oxides present in exhaust gases

Info

Publication number
EP1444030A1
EP1444030A1 EP02802599A EP02802599A EP1444030A1 EP 1444030 A1 EP1444030 A1 EP 1444030A1 EP 02802599 A EP02802599 A EP 02802599A EP 02802599 A EP02802599 A EP 02802599A EP 1444030 A1 EP1444030 A1 EP 1444030A1
Authority
EP
European Patent Office
Prior art keywords
reactor
urea solution
freezing point
heat transfer
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02802599A
Other languages
German (de)
French (fr)
Inventor
Wolfgang Ripper
Gerd Scheying
Johannes Schaller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1444030A1 publication Critical patent/EP1444030A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/11Adding substances to exhaust gases the substance or part of the dosing system being cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1473Overflow or return means for the substances, e.g. conduits or valves for the return path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention is based on a method for reducing nitrogen oxides in an exhaust gas, in particular an exhaust gas of a motor vehicle, in accordance with the type defined in more detail in the preamble of patent claim 1 and on an apparatus for carrying out the method in accordance with the type defined in more detail in the preamble of patent claim 15.
  • urea in aqueous solution to the exhaust gas generated by the internal combustion engine.
  • a hydrolysis catalytic converter is used in which ammonia is obtained from the urea.
  • the aqueous urea solution is upstream of the hydrolysis catalytic converter.
  • tors injected into the relevant exhaust line.
  • the ammonia then reacts on a so-called SCR catalyst with the nitrogen oxides contained in the exhaust gas to form molecular nitrogen and water.
  • compressed air can additionally be used, which aids in atomizing the solution, so that an aerosol is formed. Droplets of the aqueous urea solution are thus distributed in the exhaust gas.
  • a 32.5% urea solution is provided in a tank.
  • this solution is removed from the tank and sprayed into the exhaust gas.
  • the droplets of the urea solution formed during the injection heat up in the exhaust gas, so that the water in the solution evaporates and the urea dries. This causes the urea to crystallize.
  • the urea crystals formed in this way heat up further until the at 130 ° C Melting point of urea is reached.
  • urea is thermally decomposed into ammonia (NH 3 ) and isocyanic acid (HNCO).
  • HNCO isocyanic acid
  • Such by-products are, for example, water-insoluble biuret, which is formed from isocyanic acid and urea, and cyanuric acid, which is the trimerization product of isocyanic acid.
  • a method of the type mentioned in the introduction is known from US 6,077,491.
  • solid urea is added to a tank from a storage container and processed there together with water to form an aqueous urea solution.
  • the aqueous urea solution is fed to a so-called hydrolysis reactor by means of a pump, where it is heated by means of a heating device and thus preconditioned.
  • ammonium carbamate is produced as an intermediate product, which in turn produces ammonia and carbon dioxide, which are largely present in a gas phase.
  • the gas phase is then fed via a check valve with the support of compressed air to a process gas stream, as a result of which nitrogen oxides contained therein are broken down.
  • the method for reducing nitrogen oxides of an exhaust gas, in particular an exhaust gas of a motor vehicle, with the features according to the preamble of claim 1, in which method the aqueous urea solution comprises a substance for heat transfer and freezing point depression, has the advantage in particular in use in motor vehicles that it can also be used at low ambient temperatures.
  • the aqueous urea solution comprising the substance for heat transfer and lowering the freezing point is preconditioned, it is possible to ensure a substantial reduction of nitrogen oxides in an exhaust gas down to temperatures of minus 40 ° C. without this would lead to the formation of urea crystals, which lines or nozzles could clog a device for carrying out the method.
  • the substance for heat transfer and freezing point depression is basically characterized in that it does not react chemically with urea, has a boiling point that is higher than that of water, and has a freezing point that is lower than that of water. With an excess of ammonia and carbon dioxide contained in the aqueous solution, the substance preferably also serves to stabilize the solution.
  • the substance for heat transfer and freezing point depression and H 2 0 form the carrier for the urea contained in the solution.
  • the heat transfer and freezing point lowering agent is selected, for example, from a group which includes ethylene glycol diethyl ether, diethylene glycol dibutyl ether, diethylene triamine, diethyl glycol and glycerol.
  • the aqueous urea solution comprising the substance for heat transfer and freezing point reduction is a supersaturated solution, the urea and the water of the solution having a molar ratio of 1: 1.
  • the urea can ideally be completely hydrolyzed during preconditioning in the reactor, with no additional water vapor being removed from the reactor.
  • the urea is thermohydrolysed according to the following formula:
  • the aqueous urea solution comprising the substance for heat transfer and freezing point depression is pumped into the reactor under pressure. All liquid components of the solution and the gases dissolved in the solution form the carrier for the urea.
  • the aqueous urea solution is preferably heated to a temperature above of about 180 ° C. Under these conditions, the urea is completely decomposed into ammonia and carbon dioxide in the aqueous solution. There are no undesirable by-products such as isocyanic acid.
  • the decomposition product which comprises the ammonia and the carbon dioxide, can then be atomized directly and thus added to the exhaust gas in question.
  • the gas phase comprising carbon dioxide, ammonia and, if appropriate, H 2 O
  • the decomposition product is advantageously expanded downstream of the reactor.
  • the pressure of the gas phase present after the expansion should be above the pressure of the exhaust gas in question, so that the gas phase can be added to the exhaust gas without further energy expenditure.
  • the decomposition product in a so-called low-pressure process, in which the aqueous urea solution is fed to the reactor, for example under atmospheric pressure, the decomposition product can be compressed downstream of the reactor, likewise to a pressure which is above the pressure of the waste gas in question.
  • aqueous urea solution comprising the material for heat transfer and freezing point lowering to a temperature between 80 ° C. and 150 ° C.
  • Thermolysis ie the thermal decomposition of urea into ammonia and isocyanic acid, takes place at these temperatures.
  • the components remain in aqueous solution, which prevents the formation of unwanted by-products.
  • the aqueous solution can then be sprayed into the exhaust gas and further heated by it.
  • the unwanted isocyanic acid decomposes in aqueous solution in reaction with water to carbon dioxide and ammonia.
  • the liquid phase can be returned to a tank for the aqueous urea solution comprising the substance for heat transfer and freezing point reduction.
  • the liquid phase usually includes water, the substance and small amounts of dissolved ammonia and carbon dioxide.
  • the liquid phase is advantageously relaxed when it is returned to the tank, specifically to the pressure prevailing in the tank, for example atmospheric pressure.
  • aqueous urea solution preconditioned in the reactor downstream of the reactor it may be expedient to cool the aqueous urea solution preconditioned in the reactor downstream of the reactor. If a dosing valve is present, this should also be done upstream of the dosing valve in order to protect it from thermal damage.
  • the reactor is arranged, for example, in an exhaust line of a motor vehicle, so that the exhaust gas heats the reactor and thus the urea solution comprising the substance for heat transfer and freezing point reduction.
  • the invention also relates to a device for carrying out such a method according to the invention.
  • This device comprises a tank for an aqueous urea solution, a reactor in which the aqueous urea solution is preconditioned, and a valve by means of which a decomposition product comprising ammonia generated by the reactor is supplied to an exhaust gas line.
  • the aqueous urea solution comprises a substance for heat transfer and freezing point depression.
  • the device according to the invention is particularly suitable for use in an exhaust line of a diesel internal combustion engine of a motor vehicle.
  • Figure 1 is a schematic diagram of a low pressure process for reducing nitrogen oxides in an exhaust gas
  • Figure 2 is a schematic diagram of an apparatus for performing the method of Figure 1;
  • FIG. 3 shows a high-pressure process for reducing nitrogen oxides in an exhaust gas
  • Figure 4 is a schematic diagram of an apparatus for performing the method of Figure 3;
  • Figure 5 is a schematic diagram of an alternative device for performing the method of Figure 3;
  • FIG. 6 shows a schematic diagram of a special embodiment of a device for carrying out a high-pressure process for reducing nitrogen oxides in the exhaust gas of a motor vehicle
  • FIG. 7 shows a special embodiment of a high-pressure process for reducing nitrogen oxides in the exhaust gas of a motor vehicle.
  • FIG. 1 shows a low-pressure process for preconditioning an aqueous urea solution which comprises a substance for heat transfer and freezing point depression.
  • the method according to FIG. 1 can be carried out by means of a device shown in FIG. 2.
  • an aqueous, for example 32.5% urea solution is stored in a tank 20, which comprises a substance for heat transfer and lowering of the freezing point.
  • This substance is formed here, for example, from diethylene glycol diethyl ether.
  • the solution carried in the tank 20 is led in a process step 2 via a line 21 into a reactor 22 and heated there to a temperature between 80 ° C and 150 ° C.
  • the urea (NH 2 ) 2 CO contained in the solution decomposes by heating the solution in ammonia NH 3 and isocyanic acid HNCO and is thus preconditioned.
  • HNCO is unstable in aqueous solution and decomposes to NH 3 and C0 2 .
  • the decomposition product or preconditioning product therefore consists of ammonia, water, CO 2 and the substance for heat transfer and lowering the freezing point, the ammonia, depending on the process pressure, being partially gaseous.
  • the decomposition product described above is injected by means of a pump 23 and a solenoid valve 24 into an exhaust line of a motor vehicle (not shown here) and further heated there in a process step 4, so that the water evaporates and therefore changes into a gaseous state.
  • the gaseous ammonia NH 3 reacts with nitrogen oxides, which are contained in exhaust gases flowing in the exhaust line, to form molecular nitrogen and water.
  • FIG. 3 shows a high-pressure process for reducing nitrogen oxides in the exhaust gas of a motor vehicle.
  • a device for carrying out the method is shown in FIG. 4 and FIG. 5.
  • a supersaturated, aqueous urea solution with a molar ratio of urea: water of 1: 1 is produced in a tank 21, which comprises ethylene glycol diethyl ether as a substance for heat transfer and freezing point depression.
  • this solution is fed under pressure to a reactor 42 by means of a pump 41 and is heated there to a temperature of at least 180 ° C., for example 220 ° C., so that the urea in the aqueous solution increases Reacts ammonia NH 3 and carbon dioxide C0 2 .
  • the conversion or decomposition takes place completely.
  • the decomposed product or the gas phase of the decomposition product of ammonia NH 3 and carbon dioxide C0 2 isssendust via a solenoid valve 24 in an exhaust line of a motor vehicle with a diesel process brennungsmotor.
  • the ammonia reacts on an SCR catalytic converter with nitrogen oxides contained in the exhaust gas to form molecular nitrogen and water.
  • the SCR catalyst consists, for example, of coated zeolites or copper-exchanged zeolites.
  • FIG. 5 shows an alternative embodiment of a device for carrying out the method according to FIG. 3.
  • This device differs from that according to FIG. 4 in that a solenoid valve 51 is arranged between the pump 41 and the reactor 42, by means of which the supply of the substances contained in the tank 21, the material for heat transfer and freezing point depression, the aqueous urea solution in the reactor 42 is controlled.
  • a check valve 52 is arranged downstream of the reactor 42 instead of a solenoid valve, which opens as soon as the gas pressure generated in the reactor 42 exceeds the pressure of the exhaust gas prevailing in the exhaust line by a certain amount, for example 1 bar.
  • FIG. 6 shows a special embodiment for carrying out the method according to FIG. 3.
  • This device comprises a tank 21 for an aqueous urea solution comprising a substance for heat transfer and freezing point depression, which can also serve to stabilize the solution.
  • a pump 41 is connected downstream of the tank 21, by means of which the aqueous urea solution comprising the substance is conveyed into a coiled, thus spiral reactor 61.
  • the reactor 61 is arranged in an exhaust line 62 of a motor vehicle with a diesel internal combustion engine.
  • the direction of flow of an exhaust gas in the exhaust line 62 is indicated by an arrow x.
  • the urea solution contained in the reactor 61 and comprising the substance for heat transfer and lowering the freezing point can be heated to a temperature above 180 ° C., ideally to 220 ° C.
  • the urea contained in the solution decomposes into ammonia and CO 2 .
  • a line 63 leads out of the exhaust line 62 to a heat exchanger 64.
  • the decomposition product heated in the reactor 61 which is designed as a wound tube, is removed. cools so that a downstream metering valve 65, again leading into the exhaust line 62, is protected against thermal damage.
  • metering valve 65 Downstream of the metering valve 65 there is an SCR catalytic converter (not shown) in the exhaust line, on which the ammonia injected by means of the metering valve 65 reacts with nitrogen oxides contained in the exhaust gas to form molecular nitrogen and water.
  • SCR catalytic converter (not shown) in the exhaust line, on which the ammonia injected by means of the metering valve 65 reacts with nitrogen oxides contained in the exhaust gas to form molecular nitrogen and water.
  • FIG. 7 shows a further embodiment of a method according to the invention using a schematically indicated device for metering ammonia into an exhaust gas system (not shown here) of a motor vehicle with a diesel internal combustion engine.
  • the device shown in FIG. 7 comprises a tank 21 for an aqueous solution which comprises urea and diethylene glycol dibutyl ether as a substance for heat transfer and freezing point depression.
  • the solution is in the tank 21 under a pressure p 0 and is a saturated solution, which has the advantage that the concentration of urea in the solution is always constant.
  • the tank 21 is equipped with a first supply line 71 for supplying solid urea and a second supply line 72 for supplying water and the material for heat transfer and lowering of the freezing point.
  • the supply line 71 is provided with a check valve 73 and the supply line 72 with a check valve 74.
  • the tank 21 is connected via a line 75, in which a pump 41 is arranged, to a reactor 42, in which a heating element 76 is arranged. Downstream, the reactor 42 is connected to a line 77 in which a throttle 78 is arranged and which leads to an intermediate store
  • the intermediate storage 79 leads.
  • the intermediate storage 79 is via a metering valve
  • the intermediate store 79 is connected to the tank 21 for the urea solution comprising diethylene glycol dibutyl ether via a return line 82, in which a throttle 83 is arranged.
  • the method carried out by means of the device according to FIG. 7 described above is carried out in such a way that the solution stored in the tank 21, which comprises urea, diethylene glycol dibutyl ether and water, is fed under pressure into the reactor 42 by means of the pump 41 via the line 75 and there by means of the Heater 76 is heated to a temperature greater than 200 ° C.
  • the heating converts the urea (NH 2 ) 2 C0 and the water H 2 0 of the solution to ammonia NH 3 and carbon dioxide C0 2 .
  • the solution or the decomposition product resulting from the solution is at a pressure pi in the reactor 42 which is greater than the pressure p 0 prevailing in the tank 21.
  • the decomposition product which comprises ammonia, carbon dioxide, water and the substance for heat transfer and freezing point depression, is expanded by means of the throttle 78 and supplied to the intermediate store 79. leads.
  • a binary phase system consisting of a liquid and a gaseous phase is thus present in the intermediate store 79.
  • the gaseous phase includes ammonia, carbon dioxide and water. With appropriate process control, the gas phase contains ammonia and carbon dioxide in a ratio of 2: 1.
  • the liquid phase contains water with the substance for heat transfer and freezing point depression and a dissolved portion of ammonia and carbon dioxide.
  • the gas pressure p? is lower than the pressure pi prevailing in the reactor 42, but higher than the pressure p 0 prevailing in the tank 21. The pressure p?
  • the gas phase is sufficient to overcome the exhaust gas back pressure acting via the metering tube 81 and to be able to supply the gases directly into the exhaust gas line of the motor vehicle.
  • the gas phase comprising ammonia, carbon dioxide and water is cooled when it is removed from the intermediate store 79, so that the water contained in the gas phase condenses, so that only ammonia and carbon dioxide in the gaseous phase are led into the exhaust gas line.
  • the ammonia reacts there with nitrogen oxides contained in the combustion gas of the internal combustion engine.
  • the liquid phase contained in the intermediate store 79 is returned to the tank 21 via the return line 82.
  • the consumption of urea is compensated for by adding urea via the feed line 71 into the tank 21.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)

Abstract

The invention concerns a method and a device for reducing nitrogen oxides in exhaust gases, in particular in a motor vehicle exhaust gases. The method is characterized in that it consists in introducing an aqueous urea solution in a reactor (42) and converting it by thermal, catalytic or enzymatic treatment into a decomposition product containing ammonia and carbon dioxide, the ammonia being added to the exhaust gases. Th aqueous urea solution contains a substance for heat transmission and for lowering freezing point.

Description

Verfahren und Vorrichtung zur Verminderung von Stickoxiden eines AbgasesMethod and device for reducing nitrogen oxides in an exhaust gas
Stand der TechnikState of the art
Die vorliegende Erfindung geht von einem Verfahren zur Verminderung von Stickoxiden eines Abgases, insbesondere eines Abgases eines Kraftfahrzeuges, gemäß der im Oberbegriff des Patentanspruches 1 näher definierten Art sowie von einer Vorrichtung zur Durchführung des Verfahrens gemäß der im Oberbegriff des Patentanspruches 15 näher definierten Art aus .The present invention is based on a method for reducing nitrogen oxides in an exhaust gas, in particular an exhaust gas of a motor vehicle, in accordance with the type defined in more detail in the preamble of patent claim 1 and on an apparatus for carrying out the method in accordance with the type defined in more detail in the preamble of patent claim 15.
Insbesondere bei Dieselverbrennungsmaschinen hat es sich bewährt, Harnstoff in wässriger Lösung dem von der Verbrennungsmaschine erzeugten Abgas zuzugeben. Hierbei kommt bei bekannten Verfahren ein Hydrolyse-Katalysator zum Einsatz, an dem aus dem Harnstoff Ammoniak gewonnen wird. Die wassrige Harnstofflösung wird stromauf des Hydrolyse-Katalysa- tors in den betreffenden Abgasstrang eingedust. Der Ammoniak reagiert dann an einem sogenannten SCR-Katalysator mit in dem Abgas enthaltenen Srickoxiden zu molekularem Stickstoff und Wasser.In diesel combustion machines in particular, it has proven useful to add urea in aqueous solution to the exhaust gas generated by the internal combustion engine. In the case of known processes, a hydrolysis catalytic converter is used in which ammonia is obtained from the urea. The aqueous urea solution is upstream of the hydrolysis catalytic converter. tors injected into the relevant exhaust line. The ammonia then reacts on a so-called SCR catalyst with the nitrogen oxides contained in the exhaust gas to form molecular nitrogen and water.
Bei der Einspritzung der wassrigen Harnstofflosung in das Abgas kann zusatzlich Druckluft eingesetzt werden, welche eine Verdusung der Losung unterstützt, so daß sich ein Aerosol bildet. Tropfchen der wassrigen Harnstofflosung werden somit in dem Abgas verteilt.When the aqueous urea solution is injected into the exhaust gas, compressed air can additionally be used, which aids in atomizing the solution, so that an aerosol is formed. Droplets of the aqueous urea solution are thus distributed in the exhaust gas.
Der Einsatz von Druckluft mindert des weiteren die Gefahr, daß der Harnstoff der wassrigen Harnstofflosung auskristal- lisiert und die Düse bzw. eine zu der Düse fuhrende Leitung verstopft.The use of compressed air further reduces the risk of the urea crystallizing out of the aqueous urea solution and clogging the nozzle or a line leading to the nozzle.
Bei Systemen, die ohne zusatzliche Druckluft arbeiten, hat es sich gezeigt, daß ein Auskπstallisieren des Harnstoffs der wassrigen Harnstofflosung nicht zuverlässig gewahrleistet werden kann.In systems that work without additional compressed air, it has been shown that the urea cannot be reliably removed from the aqueous urea solution.
Bei einem aus der Praxis bekannten Verfahren zur Verminderung von Stickstoffen eines Abgases eines Kraftfahrzeuges wird in einem Tank eine 32,5%-ige Harnstofflosung bereitgestellt. Zur Entstickung des Abgases wird diese Losung dem Tank entnommen und in das Abgas eingedust. Die beim Eindu- sen entstehenden Tropfchen der Harnstofflosung erwarmen sich in dem Abgas, so daß das Wasser der Losung verdampft und der Harnstoff trocknet. Hierbei kommt es zu einem Kristallisieren des Harnstoffes. Die so entstandenen Harnstoffkristalle erwarmen sich weirer, bis bei 130 °C der Schmelzpunkt von Harnstoff erreicht ist. Bei dieser Temperatur erfolgt eine thermische Zersetzung von Harnstoff in Ammoniak (NH3) und Isocyansäure (HNCO) . Durch Einsatz eines Hydrolyse-Katalysators wird die Isocyansäure mittels Wasser zu Ammoniak und Kohlendioxid umgesetzt.In a method known from practice for reducing nitrogen in an exhaust gas from a motor vehicle, a 32.5% urea solution is provided in a tank. In order to denitrify the exhaust gas, this solution is removed from the tank and sprayed into the exhaust gas. The droplets of the urea solution formed during the injection heat up in the exhaust gas, so that the water in the solution evaporates and the urea dries. This causes the urea to crystallize. The urea crystals formed in this way heat up further until the at 130 ° C Melting point of urea is reached. At this temperature, urea is thermally decomposed into ammonia (NH 3 ) and isocyanic acid (HNCO). By using a hydrolysis catalyst, the isocyanic acid is converted to ammonia and carbon dioxide using water.
Insbesondere bei nicht-idealen Betriebsbedingungen können bei dem vorstehend beschriebenen Verfahren Kristalle bzw. unerwünschte Nebenprodukte entstehen. Derartige Nebenprodukte sind beispielsweise wasserunlösliches Biuret, das sich aus Isocyansäure und Harnstoff bildet, und Cyanursäu- re, welche das Trimerisierungsprodukt der Isocyansäure darstellt.Particularly in the case of non-ideal operating conditions, crystals or undesired by-products can arise in the process described above. Such by-products are, for example, water-insoluble biuret, which is formed from isocyanic acid and urea, and cyanuric acid, which is the trimerization product of isocyanic acid.
Ein Verfahren der einleitend genannten Art ist aus der US 6,077,491 bekannt. Bei diesem Verfahren wird fester Harnstoff aus einem Vorratsbehälter einem Tank zugegeben und dort zusammen mit Wasser zu einer wassrigen Harnstofflösung aufbereitet. Mittels einer Pumpe wird die wassrige Harnstofflosung einem sogenannten Hydrolyse-Reaktor zugeführt und dort mittels einer Heizvorrichtung erwärmt und damit vorkonditioniert . Bei der Erwärmung entsteht als Zwischenprodukt Ammoniumcarbamat, aus welchem wiederum Ammoniak und Kohlendioxid entsteht, welche großteilig in einer Gasphase vorliegen. Die Gasphase wird dann über ein Rückschlagventil unter Unterstützung von Druckluft einem Prozeßgasstrom zugeführt, wodurch in diesem enthaltene Stickoxide abgebaut werden.A method of the type mentioned in the introduction is known from US 6,077,491. In this process, solid urea is added to a tank from a storage container and processed there together with water to form an aqueous urea solution. The aqueous urea solution is fed to a so-called hydrolysis reactor by means of a pump, where it is heated by means of a heating device and thus preconditioned. When heated, ammonium carbamate is produced as an intermediate product, which in turn produces ammonia and carbon dioxide, which are largely present in a gas phase. The gas phase is then fed via a check valve with the support of compressed air to a process gas stream, as a result of which nitrogen oxides contained therein are broken down.
Vorteile der Erfindung Das Verfahren zur Verminderung von Stickoxiden eines Abgases, insbesondere eines Abgases eines Kraftfahrzeuges, mit den Merkmalen nach dem Oberbegriff des Patentanspruches 1, bei welchem Verfahren die wassrige Harnstofflosung einen Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung umfaßt, hat insbesondere beim Einsatz bei Kraftfahrzeugen den Vorteil, daß es auch bei tiefen Umgebungstemperaturen anwendbar ist.Advantages of the invention The method for reducing nitrogen oxides of an exhaust gas, in particular an exhaust gas of a motor vehicle, with the features according to the preamble of claim 1, in which method the aqueous urea solution comprises a substance for heat transfer and freezing point depression, has the advantage in particular in use in motor vehicles that it can also be used at low ambient temperatures.
Durch die Anwendung des erfindungsgemäßen Verfahrens, bei welchem die den Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung umfassende, wassrige Harnstofflosung vor- konditioniert wird, ist es möglich, eine weitgehende Reduzierung von Stickoxiden in einem Abgas bis zu Temperaturen von minus 40 °C zu gewährleisten, ohne daß es dabei zur Bildung von Harnstoffkristallen käme, welche Leitungen bzw. Düsen einer Vorrichtung zur Durchführung des Verfahrens zusetzen könnten.By using the method according to the invention, in which the aqueous urea solution comprising the substance for heat transfer and lowering the freezing point is preconditioned, it is possible to ensure a substantial reduction of nitrogen oxides in an exhaust gas down to temperatures of minus 40 ° C. without this would lead to the formation of urea crystals, which lines or nozzles could clog a device for carrying out the method.
Der Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung zeichnet sich hier grundsätzlich dadurch aus, daß er mit Harnstoff nicht chemisch reagiert, einen Siedepunkt hat, der höher als derjenige von Wasser ist, sowie einen Gefrierpunkt hat, der niedriger als derjenige von Wasser ist. Bei einem Überschuß von in der wassrigen Lösung enthaltenem Ammoniak und Kohlendioxid dient der Stoff vorzugsweise auch zur Stabilisierung der Lösung. Der Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung und H20 bilden den Träger für den in der Lösung enthaltenen Harnstoff.The substance for heat transfer and freezing point depression is basically characterized in that it does not react chemically with urea, has a boiling point that is higher than that of water, and has a freezing point that is lower than that of water. With an excess of ammonia and carbon dioxide contained in the aqueous solution, the substance preferably also serves to stabilize the solution. The substance for heat transfer and freezing point depression and H 2 0 form the carrier for the urea contained in the solution.
Der Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung wird beispielsweise aus einer Gruppe ausgewählt, die Di- ethylenglycoldiethylether, Diethylenglycoldibutylether, Diethylentriamin, Diethylglycol und Glycerin umfaßt.The heat transfer and freezing point lowering agent is selected, for example, from a group which includes ethylene glycol diethyl ether, diethylene glycol dibutyl ether, diethylene triamine, diethyl glycol and glycerol.
Nach einer bevorzugten Ausführungs orm des Verfahrens nach der Erfindung ist die den Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung umfassende, wassrige Harnstofflösung eine übersättigte Lösung, wobei der Harnstoff und das Wasser der Lösung ein molares Verhältnis von 1:1 haben. Dadurch kann der Harnstoff bei der Vorkonditionierung in dem Reaktor im Idealfall vollständig hydrolysiert werden, wobei kein zusätzlicher Wasserdampf dem Reaktor entnommen wird.According to a preferred embodiment of the method according to the invention, the aqueous urea solution comprising the substance for heat transfer and freezing point reduction is a supersaturated solution, the urea and the water of the solution having a molar ratio of 1: 1. As a result, the urea can ideally be completely hydrolyzed during preconditioning in the reactor, with no additional water vapor being removed from the reactor.
Die Thermohydrolyse des Harnstoffes erfolgt nach folgender Formel :The urea is thermohydrolysed according to the following formula:
(NH2)2CO + H20 → 2NH3 + C02 (NH 2 ) 2 CO + H 2 0 → 2NH 3 + C0 2
Nach einer bevorzugten Ausführungsform des Verfahrens nach der Erfindung wird die den Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung umfassende, wassrige Harnstofflösung unter Druck in den Reaktor gepumpt. Alle flüssigen Bestandteile der Lösung und die in der Lösung gelösten Gase bilden hier den Träger für den Harnstoff. Bei diesem, sogenannten Hochdruckverfahren wird die wassrige Harnstofflosung bevorzugt auf eine Temperatur erwärmt, die oberhalb von etwa 180 °C liegt. Unter diesen Bedingungen findet in der wassrigen Lösung eine vollständige Zersetzung des Harnstoffs in Ammoniak und Kohlendioxid statt. Es entstehen keine unerwünschten Nebenprodukte, wie Isocyansäure. Das Zersetzungsprodukt, das den Ammoniak und das Kohlendioxid umfaßt, kann dann direkt verdüst und somit dem betreffenden Abgas zugegeben werden.According to a preferred embodiment of the process according to the invention, the aqueous urea solution comprising the substance for heat transfer and freezing point depression is pumped into the reactor under pressure. All liquid components of the solution and the gases dissolved in the solution form the carrier for the urea. In this so-called high pressure process, the aqueous urea solution is preferably heated to a temperature above of about 180 ° C. Under these conditions, the urea is completely decomposed into ammonia and carbon dioxide in the aqueous solution. There are no undesirable by-products such as isocyanic acid. The decomposition product, which comprises the ammonia and the carbon dioxide, can then be atomized directly and thus added to the exhaust gas in question.
Zur Separation einer Gasphase und einer Flüssigphase, wobei die Gasphase Kohlendioxid, Ammoniak und gegebenenfalls H20 umfaßt, wird das Zersetzungsprodukt vorteilhaft stromab des Reaktors entspannt. Der nach der Entspannung vorliegende Druck der Gasphase sollte jedoch oberhalb des Drucks des betreffenden Abgases liegen, damit die Gasphase ohne weiteren Energieaufwand dem Abgas zugegeben werden kann.To separate a gas phase and a liquid phase, the gas phase comprising carbon dioxide, ammonia and, if appropriate, H 2 O, the decomposition product is advantageously expanded downstream of the reactor. However, the pressure of the gas phase present after the expansion should be above the pressure of the exhaust gas in question, so that the gas phase can be added to the exhaust gas without further energy expenditure.
Alternativ kann bei einem sogenannten Niederdruckverfahren, bei welchem die wassrige Harnstofflosung dem Reaktor beispielsweise unter Atmosphärendruck zugeführt wird, das Zersetzungsprodukt stromab des Reaktors verdichtet werden, und zwar ebenfalls auf einen Druck, der oberhalb des Druckes des betreffenden Abgases liegt.Alternatively, in a so-called low-pressure process, in which the aqueous urea solution is fed to the reactor, for example under atmospheric pressure, the decomposition product can be compressed downstream of the reactor, likewise to a pressure which is above the pressure of the waste gas in question.
Bei dem Niederdruckverfahren kann es gegebenenfalls ausreichend sein, die den Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung umfassende, wassrige Harnstofflösung auf eine Temperatur zwischen 80 °C und 150 °C zu erwärmen. Bei diesen Temperaturen findet die Thermolyse, d.h. die thermische Zersetzung von Harnstoff in Ammoniak und Isocyansäure, statt. Die Komponenten bleiben dabei in wässriger Lösung, was die Bildung unerwünschter Nebenprodukte verhindert. Die wassrige Lösung kann dann in das Abgas eingedust und durch dieses weiter erwärmt werden. Die unerwünschte Isocyansäure zerfällt in wässriger Lösung in Reaktion mit Wasser zu Kohlendioxid und Ammoniak.In the low-pressure process, it may be sufficient to heat the aqueous urea solution comprising the material for heat transfer and freezing point lowering to a temperature between 80 ° C. and 150 ° C. Thermolysis, ie the thermal decomposition of urea into ammonia and isocyanic acid, takes place at these temperatures. The components remain in aqueous solution, which prevents the formation of unwanted by-products. The aqueous solution can then be sprayed into the exhaust gas and further heated by it. The unwanted isocyanic acid decomposes in aqueous solution in reaction with water to carbon dioxide and ammonia.
Wenn das Zersetzungsprodukt eine flüssige und eine gasförmige Phase umfaßt, kann die flüssige Phase in einen Tank für die den Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung umfassende, wassrige Harnstofflosung zurückgeführt werden. Die flüssige Phase umfaßt in der Regel Wasser, den Stoff sowie geringe Mengen an gelöstem Ammoniak und Kohlendioxid.If the decomposition product comprises a liquid and a gaseous phase, the liquid phase can be returned to a tank for the aqueous urea solution comprising the substance for heat transfer and freezing point reduction. The liquid phase usually includes water, the substance and small amounts of dissolved ammonia and carbon dioxide.
Vorteilhaft wird die flüssige Phase beim Rückführen in den Tank entspannt, und zwar auf den in dem Tank herrschenden Druck, beispielsweise Atmosphärendruck.The liquid phase is advantageously relaxed when it is returned to the tank, specifically to the pressure prevailing in the tank, for example atmospheric pressure.
Gegebenenfalls kann es zweckmäßig sein, die in dem Reaktor vorkonditionierte wassrige Harnstofflosung stromab des Reaktors abzukühlen. Wenn ein Dosierventil vorhanden ist, sollte dies zudem stromauf des Dossierventils erfolgen, um dieses vor thermischen Schädigungen zu schützen.If appropriate, it may be expedient to cool the aqueous urea solution preconditioned in the reactor downstream of the reactor. If a dosing valve is present, this should also be done upstream of the dosing valve in order to protect it from thermal damage.
Eine ökonomische Prozeßführung ist gewährleistet, wenn die den Träger umfassende, wassrige Harnstofflosung mittels des Abgases erwärmt wird. In diesem Falle ist der Reaktor beispielsweise in einem Abgasstrang eines Kraftfahrzeuges angeordnet, so daß das Abgas den Reaktor und damit die den Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung umfassende Harnstofflosung erwärmt. Die Erfindung hat auch eine Vorrichtung zur Durchführung eines solchen erfindungsgemäßen Verfahrens zum Gegenstand. Diese Vorrichtung umfaßt einen Tank für eine wassrige Harnstofflösung, einen Reaktor, in dem eine Vorkonditionierung der wassrigen Harnstofflösung erfolgt, sowie ein Ventil, mittels dessen ein mittels des Reaktors erzeugtes, Ammoniak umfassendes Zersetzungsprodukts einem Abgasstrang zugeführt wird. Die wassrige Harnstofflösung umfaßt dabei einen Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung.Economic process control is ensured if the aqueous urea solution comprising the carrier is heated by means of the exhaust gas. In this case, the reactor is arranged, for example, in an exhaust line of a motor vehicle, so that the exhaust gas heats the reactor and thus the urea solution comprising the substance for heat transfer and freezing point reduction. The invention also relates to a device for carrying out such a method according to the invention. This device comprises a tank for an aqueous urea solution, a reactor in which the aqueous urea solution is preconditioned, and a valve by means of which a decomposition product comprising ammonia generated by the reactor is supplied to an exhaust gas line. The aqueous urea solution comprises a substance for heat transfer and freezing point depression.
Die Vorrichtung nach der Erfindung ist insbesondere zur Verwendung bei einem Abgasstrang einer Dieselverbrennungskraftmaschine eines Kraftfahrzeuges geeignet.The device according to the invention is particularly suitable for use in an exhaust line of a diesel internal combustion engine of a motor vehicle.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes nach der Erfindung sind der Beschreibung, der Zeichnung und den Patentansprüchen entnehmbar.Further advantages and advantageous refinements of the subject matter according to the invention can be found in the description, the drawing and the patent claims.
Zeichnungdrawing
Mehrere Ausführungsbeispiele des Verfahrens nach der Erfindung sowie der Vorrichtung nach der Erfindung sind in der Zeichnung schematisch vereinfacht dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigenSeveral embodiments of the method according to the invention and the device according to the invention are shown schematically simplified in the drawing and are explained in more detail in the following description. Show it
Figur 1 eine Prinzipskizze eines Niederdruckverfahrens zur Verminderung von Stickoxiden bei einem Abgas;Figure 1 is a schematic diagram of a low pressure process for reducing nitrogen oxides in an exhaust gas;
Figur 2 eine Prinzipskizze einer Vorrichtung zur Durchführung des Verfahrens nach Figur 1;Figure 2 is a schematic diagram of an apparatus for performing the method of Figure 1;
Figur 3 ein Hochdruckverfahren zur Verminderung von Stickoxiden bei einem Abgas; Figur 4 eine Prinzipskizze einer Vorrichtung zur Durchführung des Verfahrens nach Figur 3;FIG. 3 shows a high-pressure process for reducing nitrogen oxides in an exhaust gas; Figure 4 is a schematic diagram of an apparatus for performing the method of Figure 3;
Figur 5 eine Prinzipskizze einer alternativen Vorrichtung zur Durchführung des Verfahrens nach Figur 3;Figure 5 is a schematic diagram of an alternative device for performing the method of Figure 3;
Figur 6 eine Prinzipskizze einer speziellen Ausführungsform einer Vorrichtung zur Durchführung eines Hochdruckverfahrens zur Verminderung von Stickoxiden bei einem Abgas eines Kraftfahrzeuges; undFIG. 6 shows a schematic diagram of a special embodiment of a device for carrying out a high-pressure process for reducing nitrogen oxides in the exhaust gas of a motor vehicle; and
Figur 7 eine spezielle Ausführungsform eines Hochdruckverfahrens zur Verminderung von Stickoxiden bei einem Abgas eines Kraftfahrzeuges.FIG. 7 shows a special embodiment of a high-pressure process for reducing nitrogen oxides in the exhaust gas of a motor vehicle.
Beschreibung der AusführungsbeispieleDescription of the embodiments
In Figur 1 ist ein Niederdruckverfahren zur Vorkonditionie- rung einer wassrigen Harnstofflosung dargestellt, welche einen Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung umfaßt. Das Verfahren nach Figur 1 ist mittels einer in Figur 2 dargestellten Vorrichtung durchführbar.FIG. 1 shows a low-pressure process for preconditioning an aqueous urea solution which comprises a substance for heat transfer and freezing point depression. The method according to FIG. 1 can be carried out by means of a device shown in FIG. 2.
Bei dem Verfahren nach Figur 1 wird in einem Prozeßschritt 1 in einem Tank 20 eine wassrige, beispielsweise 32, 5%-ige Harnstofflösung gelagert, die einen Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung umfaßt. Dieser Stoff ist hier beispielsweise aus Diethylenglycoldiethylether gebildet.In the process according to FIG. 1, in a process step 1, an aqueous, for example 32.5% urea solution is stored in a tank 20, which comprises a substance for heat transfer and lowering of the freezing point. This substance is formed here, for example, from diethylene glycol diethyl ether.
Die in dem Tank 20 mitgeführte Lösung wird in einem Prozeßschritt 2 über eine Leitung 21 in einen Reaktor 22 geführt und dort auf eine Temperatur zwischen 80 °C und 150 °C erwärmt .The solution carried in the tank 20 is led in a process step 2 via a line 21 into a reactor 22 and heated there to a temperature between 80 ° C and 150 ° C.
Der in der Lösung enthaltene Harnstoff (NH2)2CO zersetzt sich durch die Erwärmung der Lösung in Ammoniak NH3 und Isocyansäure HNCO und wird so vorkonditioniert. HNCO ist in wässriger Lösung instabil und zerfällt zu NH3 und C02. Das Zersetzungsprodukt bzw. Vorkonditionierungsprodukt besteht mithin aus Ammoniak, Wasser, C02 und dem Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung, wobei der Ammoniak, abhängig vom Prozeßdruck, teilweise gasförmig vorliegen kann.The urea (NH 2 ) 2 CO contained in the solution decomposes by heating the solution in ammonia NH 3 and isocyanic acid HNCO and is thus preconditioned. HNCO is unstable in aqueous solution and decomposes to NH 3 and C0 2 . The decomposition product or preconditioning product therefore consists of ammonia, water, CO 2 and the substance for heat transfer and lowering the freezing point, the ammonia, depending on the process pressure, being partially gaseous.
In einem weiteren Prozeßschritt 3 wird das vorstehend beschriebene Zersetzungsprodukt mittels einer Pumpe 23 und eines Magnetventils 24 in einen hier nicht dargestellten Abgasstrang eines Kraftfahrzeuges eingedust und dort in einem Prozeßschritt 4 weiter erwärmt, so daß das Wasser verdampft und mithin in einen gasförmigen Zustand übergeht. Der gasförmige Ammoniak NH3 reagiert mit Stickoxiden, die in in dem Abgasstrang strömenden Abgasen enthalten sind, unter Bildung von molekularem Stickstoff und Wasser. Die Reaktion findet an einem sogenannten SCR-Katalysator (SCR = Selective Catalytic Reduction) statt.In a further process step 3, the decomposition product described above is injected by means of a pump 23 and a solenoid valve 24 into an exhaust line of a motor vehicle (not shown here) and further heated there in a process step 4, so that the water evaporates and therefore changes into a gaseous state. The gaseous ammonia NH 3 reacts with nitrogen oxides, which are contained in exhaust gases flowing in the exhaust line, to form molecular nitrogen and water. The reaction takes place on a so-called SCR catalyst (SCR = Selective Catalytic Reduction).
In Figur 3 ist ein Hochdruckverfahren zur Verminderung von Stickoxiden bei einem Abgas eines Kraftfahrzeuges dargestellt. Eine Vorrichtung zur Durchführung des Verfahrens ist in Figur 4 bzw. Figur 5 dargestellt. Bei dem in Figur 3 dargestellten Hochdruckverfahren wird wie bei dem Niederdruckverfahren in einem Tank 21 eine übersättigte, wassrige Harnstofflosung mit einem Molverhältnis Harnstoff :Wasser von 1:1 hergestellt, welche Di- ethylenglycoldiethylether als Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung umfaßt. Jedoch wird diese Lösung bei dem Hochdruckverfahren in einem zweiten Prozeßschritt 32 mittels einer Pumpe 41 unter Druck einem Reaktor 42 zugeführt und dort auf eine Temperatur von mindestens 180 °C, beispielsweise 220 °C, erwärmt, so daß sich der Harnstoff in der wassrigen Lösung zu Ammoniak NH3 und Kohlendioxid C02 umsetzt. Die Um- bzw. Zersetzung erfolgt dabei vollständig.FIG. 3 shows a high-pressure process for reducing nitrogen oxides in the exhaust gas of a motor vehicle. A device for carrying out the method is shown in FIG. 4 and FIG. 5. In the high-pressure process shown in FIG. 3, as in the low-pressure process, a supersaturated, aqueous urea solution with a molar ratio of urea: water of 1: 1 is produced in a tank 21, which comprises ethylene glycol diethyl ether as a substance for heat transfer and freezing point depression. However, in the high pressure process in a second process step 32 this solution is fed under pressure to a reactor 42 by means of a pump 41 and is heated there to a temperature of at least 180 ° C., for example 220 ° C., so that the urea in the aqueous solution increases Reacts ammonia NH 3 and carbon dioxide C0 2 . The conversion or decomposition takes place completely.
In einem dritten Prozeßschritt 33 wird das Zersetzungsprodukt bzw. die Gasphase des Zersetzungsproduktes aus Ammoniak NH3 und Kohlendioxid C02 über ein Magnetventil 24 in einen Abgasstrang eines Kraftfahrzeuges mit einem Dieselver- brennungsmotor eingedust. Dort reagiert der Ammoniak an einem SCR-Katalysator mit in dem Abgas enthaltenen Stickoxiden zu molekularem Stickstoff und Wasser. Der SCR-Katalysator besteht beispielsweise aus beschichteten Zeoliten oder kupferausgetauschren Zeoliten.In a third process step 33, the decomposed product or the gas phase of the decomposition product of ammonia NH 3 and carbon dioxide C0 2 is eingedust via a solenoid valve 24 in an exhaust line of a motor vehicle with a diesel process brennungsmotor. There, the ammonia reacts on an SCR catalytic converter with nitrogen oxides contained in the exhaust gas to form molecular nitrogen and water. The SCR catalyst consists, for example, of coated zeolites or copper-exchanged zeolites.
In Figur 5 ist eine alternative Ausführungsform einer Vorrichtung zur Durchführung des Verfahrens nach Figur 3 dargestellt. Diese Vorrichtung unterscheidet sich von derjenigen nach Figur 4 dadurch, daß zwischen der Pumpe 41 und dem Reaktor 42 ein Magnetventil 51 angeordnet ist, mittels dessen die Zufuhr der in dem Tank 21 enthaltenen, den Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung umfassen- den, wassrigen Harnstofflosung in den Reaktor 42 gesteuert wird. Des weiteren ist stromab des Reaktors 42 anstatt eines Magnetventils ein Rückschlagventil 52 angeordnet, das öffnet, sobald der in dem Reaktor 42 erzeugte Gasdruck den in dem Abgasstrang herrschenden Druck des Abgases um einen gewissen Betrag, beispielsweise 1 bar, übersteigt.FIG. 5 shows an alternative embodiment of a device for carrying out the method according to FIG. 3. This device differs from that according to FIG. 4 in that a solenoid valve 51 is arranged between the pump 41 and the reactor 42, by means of which the supply of the substances contained in the tank 21, the material for heat transfer and freezing point depression, the aqueous urea solution in the reactor 42 is controlled. Furthermore, a check valve 52 is arranged downstream of the reactor 42 instead of a solenoid valve, which opens as soon as the gas pressure generated in the reactor 42 exceeds the pressure of the exhaust gas prevailing in the exhaust line by a certain amount, for example 1 bar.
In Figur 6 ist eine spezielle Ausführungsform zur Durchführung des Verfahrens nach Figur 3 dargestellt. Diese Vorrichtung umfaßt einen Tank 21 für eine wassrige Harnstofflösung, die einen Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung umfaßt, der auch zur Stabilisierung der Lösung dienen kann. Dem Tank 21 ist eine Pumpe 41 nachgeschaltet, mittels der die den Stoff umfassende, wassrige Harnstofflosung in einen gewickelt ausgebildeten, mithin spiralförmigen Reaktor 61 gefördert wird.FIG. 6 shows a special embodiment for carrying out the method according to FIG. 3. This device comprises a tank 21 for an aqueous urea solution comprising a substance for heat transfer and freezing point depression, which can also serve to stabilize the solution. A pump 41 is connected downstream of the tank 21, by means of which the aqueous urea solution comprising the substance is conveyed into a coiled, thus spiral reactor 61.
Der Reaktor 61 ist in einem Abgasstrang 62 eines Kraftfahrzeuges mit einem Dieselverbrennungsmotor angeordnet. Die Strömungsrichtung eines Abgases in dem Abgasstrang 62 ist mit einem Pfeil x gekennzeichnet. Mittels des Abgases kann so die in dem Reaktor 61 enthaltene, den Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung umfassende Harn- stofflösung auf eine Temperatur oberhalb von 180 °C, idealerweise auf 220 °C, erwärmt werden. Dadurch zersetzt sich der in der Lösung enthaltene Harnstoff in Ammoniak und C02.The reactor 61 is arranged in an exhaust line 62 of a motor vehicle with a diesel internal combustion engine. The direction of flow of an exhaust gas in the exhaust line 62 is indicated by an arrow x. By means of the exhaust gas, the urea solution contained in the reactor 61 and comprising the substance for heat transfer and lowering the freezing point can be heated to a temperature above 180 ° C., ideally to 220 ° C. As a result, the urea contained in the solution decomposes into ammonia and CO 2 .
Stromab des Reaktors 61 führt eine Leitung 63 aus dem Abgasstrang 62 heraus zu einem Wärmeaustauscher 64. In dem Wärmeaustauscher 64 wird das in dem als gewickeltes Rohr ausgeführten Reaktor 61 erwärmte Zersetzungsprodukt abge- kühlt, so daß ein nachgeschaltetes, erneut in den Abgasstrang 62 führendes Dosierventil 65 vor thermischer Schädigung geschützt ist.Downstream of the reactor 61, a line 63 leads out of the exhaust line 62 to a heat exchanger 64. In the heat exchanger 64, the decomposition product heated in the reactor 61, which is designed as a wound tube, is removed. cools so that a downstream metering valve 65, again leading into the exhaust line 62, is protected against thermal damage.
In dem Abgasstrang befindet sich stromab des Dosierventils 65 ein nicht dargestellter SCR-Katalysator, an dem der mittels des Dossierventils 65 eingedüste Ammoniak mit in dem Abgas enthaltenen Stickoxiden zu molekularem Stickstoff und Wasser reagiert.Downstream of the metering valve 65 there is an SCR catalytic converter (not shown) in the exhaust line, on which the ammonia injected by means of the metering valve 65 reacts with nitrogen oxides contained in the exhaust gas to form molecular nitrogen and water.
In Figur 7 ist eine weitere Ausführungsform eines Verfahrens nach der Erfindung unter Einsatz einer schematisch angedeuteten Vorrichtung zum Eindosieren von Ammoniak in einen hier nicht dargestellten Abgasstrang eines Kraftfahrzeuges mit einem Dieselverbrennungsmotor dargestellt.FIG. 7 shows a further embodiment of a method according to the invention using a schematically indicated device for metering ammonia into an exhaust gas system (not shown here) of a motor vehicle with a diesel internal combustion engine.
Die in Figur 7 dargestellte Vorrichtung umfaßt einen Tank 21 für eine wassrige Lösung, die Harnstoff und Diethylen- glycoldibutylether als Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung umfaßt. Die Lösung steht in dem Tank 21 unter einem Druck p0 und stellt eine gesättigte Lösung dar, was den Vorteil hat, daß die Konzentration an Harnstoff in der Lösung stets konstant ist.The device shown in FIG. 7 comprises a tank 21 for an aqueous solution which comprises urea and diethylene glycol dibutyl ether as a substance for heat transfer and freezing point depression. The solution is in the tank 21 under a pressure p 0 and is a saturated solution, which has the advantage that the concentration of urea in the solution is always constant.
Zur Befüllung ist der Tank 21 mit einer ersten Zuleitung 71 zur Zufuhr von festem Harnstoff sowie einer zweiten Zuleitung 72 zur Zufuhr von Wasser und dem Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung ausgestattet. Die Zuleitung 71 ist mit einem Sperrventil 73 und die Zuleitung 72 mit einem Sperrventil 74 versehen. Der Tank 21 ist über eine Leitung 75, in der eine Pumpe 41 angeordnet ist, mit einem Reaktor 42 verbunden, in welchem ein Heizelement 76 angeordnet ist. Stromabseitig ist der Reaktor 42 mit einer Leitung 77 verbunden, in welcher eine Drossel 78 angeordnet ist und die zu einem ZwischenspeicherFor filling, the tank 21 is equipped with a first supply line 71 for supplying solid urea and a second supply line 72 for supplying water and the material for heat transfer and lowering of the freezing point. The supply line 71 is provided with a check valve 73 and the supply line 72 with a check valve 74. The tank 21 is connected via a line 75, in which a pump 41 is arranged, to a reactor 42, in which a heating element 76 is arranged. Downstream, the reactor 42 is connected to a line 77 in which a throttle 78 is arranged and which leads to an intermediate store
79 führt. Der Zwischenspeicher 79 ist über ein Dosierventil79 leads. The intermediate storage 79 is via a metering valve
80 mit einem Dosierrohr 81 verbunden, welches in den Abgasstrang des Kraftfahrzeuges führt.80 connected to a metering tube 81, which leads into the exhaust line of the motor vehicle.
Des weiteren ist der Zwischenspeicher 79 über eine Rückführleitung 82, in welcher eine Drossel 83 angeordnet ist, mit dem Tank 21 für die Diethylenglycoldibutylether umfassende Harnstofflosung verbunden.Furthermore, the intermediate store 79 is connected to the tank 21 for the urea solution comprising diethylene glycol dibutyl ether via a return line 82, in which a throttle 83 is arranged.
Das mittels der vorstehend beschriebenen Vorrichtung nach Figur 7 durchgeführte Verfahren erfolgt derart, daß die in dem Tank 21 gespeicherte Lösung, welche Harnstoff, Diethylenglycoldibutylether und Wasser umfasst, mittels der Pumpe 41 über die Leitung 75 unter Druck in den Reaktor 42 geführt und dort mittels der Heizvorrichtung 76 auf eine Temperatur größer 200 °C erwärmt wird. Durch die Erwärmung wird der Harnstoff (NH2)2C0 und das Wasser H20 der Lösung zu Ammoniak NH3 und Kohlendioxid C02 umgesetzt. Die Lösung bzw. das aus der Lösung entstehende Zersetzungsprodukt steht in dem Reaktor 42 unter einem Druck pi, der größer als der in dem Tank 21 herrschende Druck p0 ist.The method carried out by means of the device according to FIG. 7 described above is carried out in such a way that the solution stored in the tank 21, which comprises urea, diethylene glycol dibutyl ether and water, is fed under pressure into the reactor 42 by means of the pump 41 via the line 75 and there by means of the Heater 76 is heated to a temperature greater than 200 ° C. The heating converts the urea (NH 2 ) 2 C0 and the water H 2 0 of the solution to ammonia NH 3 and carbon dioxide C0 2 . The solution or the decomposition product resulting from the solution is at a pressure pi in the reactor 42 which is greater than the pressure p 0 prevailing in the tank 21.
Stromab des Reaktors 42 wird das Zersetzungsprodukt, welches Ammoniak, Kohlendioxid, Wasser und den Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung umfaßt, mittels der Drossel 78 entspannt und dem Zwischenspeicher 79 zuge- führt. In dem Zwischenspeicher 79 liegt so ein binäres Phasensystem aus einer flüssigen und einer gasförmigen Phase vor. Die gasförmige Phase umfaßt Ammoniak, Kohlendioxid und Wasser. Die Gasphase enthält bei entsprechender Prozeßführung Ammoniak und Kohlendioxid im Verhältnis 2:1. Die flüssige Phase enthält Wasser mit dem Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung und einem gelösten Anteil von Ammoniak und Kohlendioxid. Der in dem Zwischenspeicher 79 herrschende Gasdruck p? ist niedriger als der in dem Reaktor 42 herrschende Druck pi, jedoch höher als der in dem Tank 21 herrschende Druck p0. Der Druck p? der Gasphase ist hinreichend, um den über das Dosierrohr 81 wirkenden Abgasgegendruck zu überwinden und die Gase direkt in den Abgas- sträng des Kraftfahrzeuges zuführen zu können. Die Ammoniak, Kohlendioxid und Wasser umfassende Gasphase wird bei der Abfuhr aus dem Zwischenspeicher 79 abgekühlt, so daß das in der Gasphase enthaltene Wasser kondensiert, wodurch nur Ammoniak und Kohlendioxid in gasförmiger Phase in den Abgasstrang geführt werden. Der Ammoniak reagiert dort mit in dem Verbrennungsgas des Verbrennungsmotors enthaltenen Stickoxiden.Downstream of the reactor 42, the decomposition product, which comprises ammonia, carbon dioxide, water and the substance for heat transfer and freezing point depression, is expanded by means of the throttle 78 and supplied to the intermediate store 79. leads. A binary phase system consisting of a liquid and a gaseous phase is thus present in the intermediate store 79. The gaseous phase includes ammonia, carbon dioxide and water. With appropriate process control, the gas phase contains ammonia and carbon dioxide in a ratio of 2: 1. The liquid phase contains water with the substance for heat transfer and freezing point depression and a dissolved portion of ammonia and carbon dioxide. The gas pressure p? is lower than the pressure pi prevailing in the reactor 42, but higher than the pressure p 0 prevailing in the tank 21. The pressure p? the gas phase is sufficient to overcome the exhaust gas back pressure acting via the metering tube 81 and to be able to supply the gases directly into the exhaust gas line of the motor vehicle. The gas phase comprising ammonia, carbon dioxide and water is cooled when it is removed from the intermediate store 79, so that the water contained in the gas phase condenses, so that only ammonia and carbon dioxide in the gaseous phase are led into the exhaust gas line. The ammonia reacts there with nitrogen oxides contained in the combustion gas of the internal combustion engine.
Die in dem Zwischenspeicher 79 enthaltene flüssige Phase wird über die Rückführleitung 82 in den Tank 21 zurückgeführt. Der Verbrauch von Harnstoff wird durch die Zugabe von Harnstoff über die Zufuhrleitung 71 in den Tank 21 ausgeglichen. The liquid phase contained in the intermediate store 79 is returned to the tank 21 via the return line 82. The consumption of urea is compensated for by adding urea via the feed line 71 into the tank 21.

Claims

Ansprüche Expectations
1. Verfahren zur Verminderung von Stickoxiden bei einem Abgas, insbesondere bei einem Abgas eines Kraftfahrzeuges, bei welchem Verfahren eine wassrige Harnstofflösung einem Reaktor (22, 42, 61) zugeführt und durch thermische, katalytische oder enzymatische Behandlung zu einem Ammoniak und Kohlendioxid umfassenden Zersetzungsprodukt umgesetzt wird und zumindest der Ammoniak dem Abgas zugegeben wird, dadurch gekennzeichnet, daß die wassrige Harnstofflosung einen Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung umfaßt.1. A method for reducing nitrogen oxides in an exhaust gas, in particular in an exhaust gas from a motor vehicle, in which method an aqueous urea solution is fed to a reactor (22, 42, 61) and converted by thermal, catalytic or enzymatic treatment to a decomposition product comprising ammonia and carbon dioxide is and at least the ammonia is added to the exhaust gas, characterized in that the aqueous urea solution comprises a substance for heat transfer and lowering of the freezing point.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung aus einer Diethylenglycoldiethylether, Diethy- lenglycoldibutylether und Diethylentriamin umfassenden Gruppe ausgewählt wird.2. The method according to claim 1, characterized in that the substance for heat transfer and freezing point depression is selected from a group comprising diethylene glycol diethyl ether, diethylene glycol dibutyl ether and diethylene triamine.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die wassrige Harnstofflosung eine übersättigte Lösung ist und der Harnstoff und das Wasser der Lösung ein molares Verhältnis von 1:1 haben.3. The method according to claim 1 or 2, characterized in that the aqueous urea solution is a supersaturated Solution is and the urea and the water of the solution have a molar ratio of 1: 1.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der den Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung umfassenden, wassrigen Harnstofflösung Ammoniak zugegeben wird.4. The method according to any one of claims 1 to 3, characterized in that the aqueous heat urea solution comprising the substance for heat transfer and lowering the freezing point is added ammonia.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die den Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung umfassende, wassrige Harnstofflösung unter Druck in den Reaktor (22, 42, 61) gepumpt wird.5. The method according to any one of claims 1 to 4, characterized in that the aqueous heat urea solution comprising the substance for heat transfer and lowering the freezing point is pumped under pressure into the reactor (22, 42, 61).
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die den Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung umfassende, wassrige Harnstofflösung in dem Reaktor (42, 61) auf eine Temperatur oberhalb eines Wertes von wenigstens annähernd 180°C, vorzugsweise auf eine Temperatur von etwa 220 °C, erwärmt wird.6. The method according to any one of claims 1 to 5, characterized in that the material for heat transfer and freezing point lowering, aqueous urea solution in the reactor (42, 61) to a temperature above a value of at least approximately 180 ° C, preferably to a Temperature of about 220 ° C, is heated.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß das Zersetzungsprodukt stromab des Reaktors (42) entspannt wird.7. The method according to claim 5 or 6, characterized in that the decomposition product is expanded downstream of the reactor (42).
8. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Zersetzungsprodukt stromab des Reaktors (22) verdichtet wird. 8. The method according to any one of claims 1 to 4, characterized in that the decomposition product is compressed downstream of the reactor (22).
9. Verfahren nach einem der Ansprüche 1 bis 5 oder 7 oder 8, dadurch gekennzeichnet, daß die den Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung umfassende, wassrige Harnstofflosung in dem Reaktor (22) auf eine Temperatur in einem Bereich zwischen 80 °C und 150 °C erwärmt wird.9. The method according to any one of claims 1 to 5 or 7 or 8, characterized in that the aqueous heat urea solution comprising the substance for heat transfer and freezing point lowering in the reactor (22) to a temperature in a range between 80 ° C and 150 ° C is heated.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß in dem Reaktor (22) entstehende Isocyansäure an einem Hydrolyse-Katalysator in Kohlendioxid und Ammoniak zersetzt wird.10. The method according to claim 9, characterized in that in the reactor (22) isocyanic acid is decomposed on a hydrolysis catalyst in carbon dioxide and ammonia.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß eine stromab des Reaktors (42) auftretende, flüssige Phase des Zersetzungsprodukts in einen Tank (21) für die den Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung umfassende, wassrige Harnstofflosung zurückgeführt wird.11. The method according to any one of claims 1 to 10, characterized in that a liquid phase of the decomposition product occurring downstream of the reactor (42) is returned to a tank (21) for the aqueous urea solution comprising the substance for heat transfer and lowering the freezing point.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß die flüssige Phase bei ihrer Rückführung entspannt wird.12. The method according to claim 11, characterized in that the liquid phase is relaxed when it is recycled.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß das Zersetzungsprodukt stromab des Reaktors (61) abgekühlt wird.13. The method according to any one of claims 1 to 12, characterized in that the decomposition product is cooled downstream of the reactor (61).
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die den Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung umfassende, wassrige Harnstofflösung mittels des Abgases erwärmt wird. 14. The method according to any one of claims 1 to 13, characterized in that the aqueous heat urea solution comprising the substance for heat transfer and lowering the freezing point is heated by means of the exhaust gas.
15. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, umfassend einen Tank (21) für eine wassrige Harnstofflosung, einen Reaktor (22, 42, 61) zur Vorkon- ditionierung der wassrigen Harnstofflosung sowie ein Ventil (24, 52, 65, 80) zum Eindüsen eines mittels des Reaktors (22, 42, 61) erzeugten, Ammonik umfassenden Zersetzungsprodukts in einen Abgasstrang (62), dadurch gekennzeichnet, daß die wassrige Harnstofflosung einen Stoff zur Wärmeübertragung und Gefrierpunkterniedrigung umfaßt .15. Device for carrying out the method according to claim 1, comprising a tank (21) for an aqueous urea solution, a reactor (22, 42, 61) for preconditioning the aqueous urea solution and a valve (24, 52, 65, 80) for injecting a decomposition product comprising ammonia and produced by means of the reactor (22, 42, 61) into an exhaust line (62), characterized in that the aqueous urea solution comprises a substance for heat transfer and freezing point depression.
16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß der Reaktor als spiralförmiges Rohr (61) ausgebildet ist .16. The apparatus according to claim 15, characterized in that the reactor is designed as a spiral tube (61).
17. Vorrichtung nach Anspruch 15 oder 16, dadurch gekennzeichnet, daß der Reaktor (61) in dem Abgasstrang (62) angeordnet ist.17. The apparatus of claim 15 or 16, characterized in that the reactor (61) is arranged in the exhaust line (62).
18. Vorrichtung nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, daß stromab des Reaktors (61) ein Wärmeaustauscher (64) zur Abkühlung der vorkonditionier- ten, wassrigen Harnstofflosung angeordnet ist.18. Device according to one of claims 15 to 17, characterized in that a heat exchanger (64) for cooling the preconditioned, aqueous urea solution is arranged downstream of the reactor (61).
19. Vorrichtung nach einem der Ansprüche 15 bis 18, dadurch gekennzeichnet, daß stromauf des Reaktors (42, 61) eine Pumpe (41) angeordnet ist. 19. Device according to one of claims 15 to 18, characterized in that a pump (41) is arranged upstream of the reactor (42, 61).
20. Vorrichtung nach einem der Ansprüche 15 bis 19, dadurch gekennzeichnet, daß stromab des Reaktors (22) eine Pumpe (23) angeordnet ist.20. Device according to one of claims 15 to 19, characterized in that a pump (23) is arranged downstream of the reactor (22).
21. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet, daß zwischen der Pumpe (41) und dem Reaktor (42) ein Ventil (51) angeordnet ist.21. The apparatus according to claim 20, characterized in that a valve (51) is arranged between the pump (41) and the reactor (42).
22. Vorrichtung nach einem der Ansprüche 15 bis 21, dadurch gekennzeichnet, daß das Ventil zum Eindüsen des Ammoniak umfassenden Zersetzungsproduktes als Rückschlagventil (52) ausgebildet ist. 22. Device according to one of claims 15 to 21, characterized in that the valve for injecting the decomposition product comprising ammonia is designed as a check valve (52).
EP02802599A 2001-11-06 2002-10-18 Method and device for reducing nitrogen oxides present in exhaust gases Withdrawn EP1444030A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10154421A DE10154421A1 (en) 2001-11-06 2001-11-06 Method and device for reducing nitrogen oxides in an exhaust gas
DE10154421 2001-11-06
PCT/DE2002/003947 WO2003039718A1 (en) 2001-11-06 2002-10-18 Method and device for reducing nitrogen oxides present in exhaust gases

Publications (1)

Publication Number Publication Date
EP1444030A1 true EP1444030A1 (en) 2004-08-11

Family

ID=7704753

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02802599A Withdrawn EP1444030A1 (en) 2001-11-06 2002-10-18 Method and device for reducing nitrogen oxides present in exhaust gases

Country Status (6)

Country Link
US (1) US20040115110A1 (en)
EP (1) EP1444030A1 (en)
JP (1) JP2005507985A (en)
KR (1) KR20040060969A (en)
DE (1) DE10154421A1 (en)
WO (1) WO2003039718A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10251588A1 (en) * 2002-11-06 2004-05-19 Robert Bosch Gmbh Reprocessing internal combustion engine exhaust gas involves partial chemical conversion of auxiliary material into material that lowers liquid freezing point if temperature falls below critical value
JP3732493B2 (en) * 2003-10-02 2006-01-05 日産ディーゼル工業株式会社 Engine exhaust purification system
SE526072C2 (en) * 2003-12-04 2005-06-28 Volvo Lastvagnar Ab Heating device
US7644577B2 (en) * 2004-10-29 2010-01-12 Philip Morris Usa, Inc. Reducing agent metering system for reducing NOx in lean burn internal combustion engines
DE102004056412B4 (en) * 2004-11-23 2016-06-16 Robert Bosch Gmbh Method for operating an internal combustion engine and device for carrying out the method
DE102006023147A1 (en) * 2006-05-16 2008-01-10 Emitec Gesellschaft Für Emissionstechnologie Mbh Method and device for providing a gaseous substance mixture
DE102006023146A1 (en) * 2006-05-16 2007-11-22 Emitec Gesellschaft Für Emissionstechnologie Mbh Method and device for providing a gaseous substance mixture
DE102006047018A1 (en) * 2006-10-02 2008-04-03 Emitec Gesellschaft Für Emissionstechnologie Mbh Method for providing reducing agent precursor, involves heating quasi-closed evaporator volume, delimited by wall, which is partially filled with solution of reducing agent precursor to lead temperature of solution
DE102006047019A1 (en) * 2006-10-02 2008-04-03 Emitec Gesellschaft Für Emissionstechnologie Mbh Exhaust gas system's reduction agent containing gas flow providing method for internal combustion engine, involves adding reduction agent containing gas flow to exhaust gas of internal combustion engine
US8087239B2 (en) 2007-10-25 2012-01-03 Continental Automotive Systems Us, Inc. Fluid supply connection for reductant delivery unit for selective catalytic reduction systems
DE102008003846A1 (en) * 2008-01-10 2009-07-16 Robert Bosch Gmbh Providing ammonia for treating exhaust gases of self-igniting internal combustion engine, comprises adding water into reservoir having precursor, converting water with the precursor to ammonia, and removing ammonia-containing material flow
DE102008041903A1 (en) 2008-09-09 2010-03-11 Robert Bosch Gmbh Exhaust gas post-treatment method for diesel engine of motor vehicle, involves providing auxiliary fluid in auxiliary agent, and supplying fuel to internal-combustion engine from fuel tank that is exclusively refueled with fuel
SE534217E (en) * 2009-10-16 2015-03-10 Proppabort Ab Substance to add urea solutions
EP2729676B1 (en) * 2011-07-07 2015-10-07 NV Bekaert SA Selective catalytic reduction tank with heating element
EP2746548B1 (en) * 2012-12-21 2017-03-15 Inergy Automotive Systems Research (Société Anonyme) Method and system for purifying the exhaust gases of a combustion engine.
EP2784282B1 (en) * 2013-03-29 2017-11-01 Inergy Automotive Systems Research (Société Anonyme) A tank for selective catalytic reduction purification of the exhaust gases of a combustion engine of a vehicle
EP2846011A1 (en) * 2013-09-04 2015-03-11 Inergy Automotive Systems Research (Société Anonyme) Method and system for purifying the exhaust gases of a combustion engine
US9957862B2 (en) 2014-04-03 2018-05-01 Robert Bosch Gmbh Secondary heating device for diesel exhaust fluid tank
WO2017145234A1 (en) * 2016-02-22 2017-08-31 日野自動車 株式会社 Exhaust purification system
US10519829B2 (en) 2016-02-22 2019-12-31 Hino Motors, Ltd. Exhaust purification system
DE102016006139A1 (en) 2016-05-18 2017-11-23 Daimler Ag Reducing agent solution, use of a reducing agent solution and method for preparing a reducing agent solution
EP3543492A1 (en) * 2018-03-22 2019-09-25 Plastic Omnium Advanced Innovation and Research A system for converting an ammonia precursor into a gas containing ammonia
CN109569295A (en) * 2019-01-03 2019-04-05 灵谷化工有限公司 A kind of exhaust gas from diesel vehicle treatment fluid process units and technique
CN110102179A (en) * 2019-05-06 2019-08-09 苏州仕净环保科技股份有限公司 LCR liquid catalyst denitrating technique
CN115006991A (en) * 2022-05-23 2022-09-06 陕西一山环保科技有限公司 High-conversion-rate vehicle urea solution and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2200184A (en) * 1938-10-20 1940-05-07 American Maize Prod Co Antifreeze composition
US4657689A (en) * 1986-04-01 1987-04-14 Texaco Inc. Corrosion-inhibited antifreeze/coolant composition containing hydrocarbyl sulfonate
US5017347A (en) * 1987-02-13 1991-05-21 Fuel Tech, Inc. Process for nitrogen oxides reduction and minimization of the production of other pollutants
US6077491A (en) * 1997-03-21 2000-06-20 Ec&C Technologies Methods for the production of ammonia from urea and/or biuret, and uses for NOx and/or particulate matter removal
US6063350A (en) * 1997-04-02 2000-05-16 Clean Diesel Technologies, Inc. Reducing nox emissions from an engine by temperature-controlled urea injection for selective catalytic reduction
US5976475A (en) * 1997-04-02 1999-11-02 Clean Diesel Technologies, Inc. Reducing NOx emissions from an engine by temperature-controlled urea injection for selective catalytic reduction
US5968464A (en) * 1997-05-12 1999-10-19 Clean Diesel Technologies, Inc. Urea pyrolysis chamber and process for reducing lean-burn engine NOx emissions by selective catalytic reduction
JP2002514495A (en) * 1998-05-11 2002-05-21 シーメンス アクチエンゲゼルシヤフト Method and apparatus for selective catalytic reduction of nitrogen oxides in oxygen-containing gaseous medium
JP2000026834A (en) * 1998-07-13 2000-01-25 Hino Motors Ltd Reducing agent composition for cleaning exhaustion gas from internal combustion engine
AU2156000A (en) * 1998-11-23 2000-06-13 Mobil Oil Corporation Liquid urea exhaust gas treatment additive

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03039718A1 *

Also Published As

Publication number Publication date
KR20040060969A (en) 2004-07-06
US20040115110A1 (en) 2004-06-17
WO2003039718A1 (en) 2003-05-15
DE10154421A1 (en) 2003-05-22
JP2005507985A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
EP1444030A1 (en) Method and device for reducing nitrogen oxides present in exhaust gases
EP0981403B1 (en) Method and device for reducing nitrogen oxides using a scr catalyst
DE69821505T2 (en) METHOD FOR PRODUCING AMMONIUM FROM UREA AND USE OF THIS METHOD
DE19719998C1 (en) Method and device for nitrogen oxide reduction in the exhaust gas of a combustion device
EP1338562A1 (en) Process and apparatus for producing ammoniac
DE102008040708A1 (en) Antifreeze urea solution for urea-based SCR system and urea-based SCR system using the same
DE4038054A1 (en) METHOD AND DEVICE FOR SELECTIVE CATALYTIC NO (DOWN ARROW) X (DOWN ARROW) REDUCTION IN OXYGEN-BASED EXHAUST GASES
DE202012012914U1 (en) Ammonia gas generator for producing ammonia for reducing nitrogen oxides in exhaust gases
EP1263520A1 (en) Method of converting a solid nitrogen-containing reducing agent to the gas phase for use in the reduction of nitrogen oxides in exhaust gases
DE102011105419B4 (en) Process for the reduction of nitrogen oxides
DE19651212C2 (en) Method and device for reducing nitrogen oxides in gas mixtures
DE102007034314B4 (en) Assembly and method for introducing a reducing agent into an exhaust pipe
DE102007062594B4 (en) Method for lowering the freezing point of a urea-containing reducing agent solution and exhaust gas aftertreatment system
DE2828001A1 (en) METHOD FOR PRODUCTION OF HYDROGEN
DE102011106237A1 (en) Ammonia gas generator for exhaust system used in internal combustion engine, has injection device which is provided for introducing the solution of ammonia precursor into mixing chamber
DE102011106233A1 (en) Continuous production of ammonia from a solution of an ammonia precursor substance by an ammonia gas generator comprising a catalyst unit, useful to reduce nitrogen oxides in exhaust gases from e.g. industrial plants and gas engines
DE102019203660A1 (en) Method for operating a drive device, corresponding drive device and use of an aqueous urea solution for operating a drive device
DE102018000851A1 (en) Reducing agent dosing system with evaporator
EP4368818A1 (en) Metering system with a metering pump with a push-out spring
DE29825250U1 (en) Reducing emissions of nitrogen oxide(s) from lean-burn engine with associated exhaust system - by feeding aqueous urea solution from storage vessel through line to injector, returning solution to storage vessel, injecting solution into exhaust gases and passing gas to selective catalytic reduction reactor
DE102022004198A1 (en) Dosing system with dosing pump with extending spring
DE1907025B2 (en) PROCESS FOR THE MANUFACTURING OF UREA IN RELATION TO A PROCESS FOR THE MANUFACTURING OF AMMONIA
DE102010048040A1 (en) Process and apparatus for purifying leachate gases
EP2054591A1 (en) Method and device for providing a reducing agent precursor
DE102011106243A1 (en) Ammonia gas generator useful e.g. for producing ammonia from ammonia precursor solution, and in gas engines, comprises catalyst unit comprising catalyst and mixing chamber, injection device having nozzle, and outlet for formed ammonia gas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040607

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20100824

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140501