EP1442312A1 - Procede et appareil d'imagerie pour ecoulements de formations souterraines - Google Patents

Procede et appareil d'imagerie pour ecoulements de formations souterraines

Info

Publication number
EP1442312A1
EP1442312A1 EP02787602A EP02787602A EP1442312A1 EP 1442312 A1 EP1442312 A1 EP 1442312A1 EP 02787602 A EP02787602 A EP 02787602A EP 02787602 A EP02787602 A EP 02787602A EP 1442312 A1 EP1442312 A1 EP 1442312A1
Authority
EP
European Patent Office
Prior art keywords
fluid
gradient
formation
earth formation
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02787602A
Other languages
German (de)
English (en)
Inventor
Matthias Appel
Bernhard Peter Jakob BLÜMICH
John Justin Freeman
Mario Winkler
Mohamed Naguib Hashem
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of EP1442312A1 publication Critical patent/EP1442312A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/32Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with electron or nuclear magnetic resonance

Definitions

  • T2cutoff' which is the value of T2 that is empirically related to the capillary properties of the wetting fluid for the specific formation lithology.
  • the porosity estimate below T2 cu toff i- s generally referred to as the bound fluid porosity or bulk volume irreducible (BVI) . While estimates of 2 Cu toff values have been made for various types of mineralogy, the only accurate means of determining T2cutoff ⁇ s by performing NMR measurements on a core sample.
  • Another model for estimating formation permeability is based on the restricted diffusion and pore size of the formation as set forth in equation 5 below:
  • Two permanent magnets 54a and 54b are being disposed in the sensor 50, the axes of the magnets 54a and 54b (between the poles for each respective magnet) being coplanar.
  • the magnets 54a and 54b are oriented such that the North pole of magnet 54a is adjacent to the South pole of magnet 54b.
  • EM coils 56a and 56b are shown as being wound about magnets 54a and 54b. It will be appreciated that EM coils' 56a and 56b may instead be wound about ferrite cores disposed in parallel to magnets 54a and 54b to provide the G s magnetic field gradient.
  • EM coils 216a and- 216b are shown as being disposed in a plane that is orthogonal to the magnets 204 and 206 longitudinal axes and substantially parallel to the magnetization direction of magnets 204 and 206. It will be appreciated that EM coil 216b is located beneath bar magnets 204 and 206. EM coils 216a and 216b are energized to provide the Gf magnetic field gradient utilized in the present invention as further described below.
  • the embodiment of Fig. 5, while illustrated in the context of an eccentered self-standing probe could be combined with a formation test tool as shown in Figs. 3A and 3B or continue to be used on a stand-alone basis. Where used as a self standing tool, it can derive permeability of the formation utilizing the models described above. Moreover, it may be used in conjunction with a formation test tool to provide additional information.
  • the measured intensity of the acquired spin echo is a superposition of the projections of the magnetic moments onto the x' (real part of the signal) and y' (imaginary part of the signal) axes of the rotating frame reference.
  • dV small elemental volume
  • the frequency content of a square 90° pulse (“hard” pulse) is preferably shaped as an apodized sine pulse, the amplitude of the sine function being the largest at the frequency of the RF pulse. This frequency will be rotated by 90° while other smaller and greater frequencies will be rotated by lesser angles.
  • the application of a "hard” 90° RF pulse with a magnetic field gradient in the x direction will rotate a broad spectrum ' of spins in a plane perpendicular to the x axis by 90°.
  • a "soft" RF pulse will serve as a slice-selective read-out gradient since only spins precessing with a Larmor frequency in the vicinity of the center frequency of the sine pulse will rotate the magnetic moments.
  • Time of flight (TOF) angiography is also referred to as "spin tagging" and is the most common form of angiography utilized within the medical field.
  • spin tagging is the most common form of angiography utilized within the medical field.
  • One technique utilizes a spin echo sequence where a 90° slice selective pulse is applied followed by a 180° slice selective pulse having a differing frequency. The net effect would be to have two differing slices.
  • Fig. 17A the activation of the various pulse sequences are depicted along a common "time line" with the movement of fluid through a formation.
  • a 90° slice selection RF pulse and a slice selection gradient G s are applied.
  • the phase encoding gradient G ⁇ and the frequency (or read) gradient Gf are applied after the 90° RF pulse and the slice selection gradient.
  • the spin packet 600 within the 90° slice thickness is moved to the transverse plane. This is followed by the application of the phase encoding and read gradients.
  • Scan Time TR x Number of Phase Encodes x NEX r salt ⁇ where TR is the repetition time between successive RF pulses; Number of Phase Encodes which determines spatial resolution; and NEX is the number of averages of the data required to form a sufficiently noise free image.
  • the phase gradient is applied in equal steps from its -G ⁇ r ⁇ to its G ⁇ jyj;- simultaneously, the read gradient is turned on with a negative sign to assure that the echo will be centered in the. if the read period when the read gradient is turned positive.
  • the sequence ends with the phase gradient "rewinding" the spins by applying it from G ⁇ to -G ⁇ r ⁇ . The sequence is then repeated n times. .
  • the particular sequence shown in Fig. 22 is sometimes called a FAST SSFP (Steady State Free Precession) is that by applying the rewinding gradient, the transverse coherence of the spins is retained to create a steady state free precession.
  • Figs. 24A and B an illustrative thirteen interval sequence is set forth.
  • the true laboratory gradient is set forth for Condition I. It will be noted that the effective gradient is the same during the preparation period. as during the read period of the sequence.
  • Fig. 24B represents the applied polarities of the system. As in the true gradient illustration, the effective gradient is similar during the preparation and read phases of the sequence.
  • the echo amplitudes for the various sequences each includes a cross term G a Gg.
  • the POSXY technique encodes average position on the principal diagonal and position change corresponding to velocity on the secondary diagonal.
  • a 2D Fourier transformation permits one to correlate the displacement of the spin packets with the average position r parallel to the applied gradient direction. This can then be used to determine an average velocity of the spin packet by dividing the displacement by the elapsed time ⁇ .

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

L'invention concerne un procédé et un appareil servant à mesurer une propriété relative à un écoulement fluidique dans une formation terrestre, plus spécifiquement, à mesurer directement la perméabilité de la formation terrestre ainsi que d'autres caractéristiques fluidiques. L'invention concerne en outre un procédé qui permet de déterminer la perméabilité d'une formation terrestre chargée d'hydrocarbures qui consiste à: localiser un outil dans une position sélectionnée dans un trou de forage perforant la formation terrestre; introduire un écoulement de fluide dans la formation terrestre en direction dudit outil; prendre au moins deux images IRM dudit fluide en écoulement dans la formation terrestre en direction dudit outil, ces deux images étant saisies à des moments différents; déterminer le déplacement dudit fluide dans la formation terrestre entre ces intervalles de temps sur la base des deux images IRM au moins; et enfin, (e) déterminer la perméabilité de la formation terrestre à partir du déplacement du fluide en question.
EP02787602A 2001-11-06 2002-11-06 Procede et appareil d'imagerie pour ecoulements de formations souterraines Withdrawn EP1442312A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US33293801P 2001-11-06 2001-11-06
US332938P 2001-11-06
PCT/EP2002/012484 WO2003040743A1 (fr) 2001-11-06 2002-11-06 Procede et appareil d'imagerie pour ecoulements de formations souterraines

Publications (1)

Publication Number Publication Date
EP1442312A1 true EP1442312A1 (fr) 2004-08-04

Family

ID=23300532

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02787602A Withdrawn EP1442312A1 (fr) 2001-11-06 2002-11-06 Procede et appareil d'imagerie pour ecoulements de formations souterraines

Country Status (8)

Country Link
EP (1) EP1442312A1 (fr)
AU (1) AU2002351916B2 (fr)
BR (1) BR0213902A (fr)
CA (1) CA2465809C (fr)
EA (1) EA006178B1 (fr)
NO (1) NO20042301L (fr)
OA (1) OA12722A (fr)
WO (1) WO2003040743A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6774628B2 (en) 2002-01-18 2004-08-10 Schlumberger Technology Corporation Nuclear magnetic resonance imaging using phase encoding with non-linear gradient fields
US6518757B1 (en) * 2002-03-08 2003-02-11 Schlumberger Technology Corporation Use of CPMG sequences with phase cycled refocusing pulses in inside-out NMR for phase encoded imaging and to eliminate coherent ringing within one scan
US6897652B2 (en) * 2003-06-19 2005-05-24 Shell Oil Company NMR flow measurement while drilling
WO2009048781A1 (fr) 2007-10-12 2009-04-16 Exxonmobil Upstream Research Company Détermination non destructive de la distribution de la dimension des pores et de la distribution de vitesses d'écoulement de fluide
US8550184B2 (en) 2007-11-02 2013-10-08 Schlumberger Technology Corporation Formation coring apparatus and methods
CN101581222B (zh) * 2009-02-10 2012-11-21 重庆奥能瑞科石油技术有限责任公司 一种石油钻井液核磁共振随钻分析方法
US9689256B2 (en) 2012-10-11 2017-06-27 Schlumberger Technology Corporation Core orientation systems and methods
CN105473813B (zh) * 2013-08-30 2019-04-05 哈利伯顿能源服务公司 方位角选择性井下核磁共振(nmr)工具
WO2016067108A1 (fr) * 2014-10-27 2016-05-06 Cgg Services Sa Prédiction d'efficacité de traitement de fracture hydraulique et de productivité dans des réservoirs de pétrole et de gaz
US10359485B2 (en) 2014-12-30 2019-07-23 Halliburton Energy Services, Inc. Nuclear magnetic resonance tool with projections for improved measurements
ES2953470T3 (es) * 2016-03-03 2023-11-13 Shell Int Research Generador de imágenes químicamente selectivo para generar imágenes de fluido de una formación de subsuperficie y método de uso del mismo
BR112019001717B1 (pt) * 2016-08-08 2022-09-06 Halliburton Energy Services Inc Dispositivo de caracterização subterrânea e amostragem de fluidos, e, método de caracterização subterrânea
BR112019001315B1 (pt) 2016-08-08 2021-06-15 Halliburton Energy Services, Inc Dispositivo de caracterização subterrânea e amostragem de fluido, e, método de caracterização subterrânea
CN107525553B (zh) * 2017-09-19 2019-09-06 中国石油天然气股份有限公司 一种确定多相流体组分流量的方法及装置
RU2688956C1 (ru) * 2018-11-01 2019-05-23 Хэллибертон Энерджи Сервисиз, Инк. Инструмент ядерного магнитного резонанса с выступами для улучшенных измерений
SG11202109088TA (en) * 2019-02-22 2021-09-29 Promaxo Inc Systems and methods for performing magnetic resonance imaging
CN112834543B (zh) * 2020-04-28 2024-05-14 苏州纽迈分析仪器股份有限公司 基于脉冲梯度硬件结构的一维空间选层t2谱测试方法
US20230313672A1 (en) * 2022-03-29 2023-10-05 Halliburton Energy Services, Inc. Fluid Monitoring In Oil And Gas Wells Using Ultra-Deep Azimuthal Electromagnetic Logging While Drilling Tools

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4745802A (en) * 1986-09-18 1988-05-24 Halliburton Company Formation testing tool and method of obtaining post-test drawdown and pressure readings
US5289124A (en) * 1991-09-20 1994-02-22 Exxon Research And Engineering Company Permeability determination from NMR relaxation measurements for fluids in porous media
US5473939A (en) * 1992-06-19 1995-12-12 Western Atlas International, Inc. Method and apparatus for pressure, volume, and temperature measurement and characterization of subsurface formations
US5428291A (en) * 1993-07-01 1995-06-27 Exxon Research And Engineering Company Determination of fluid transport properties in porous media by nuclear magnetic resonance measurements of fluid flow
US6242912B1 (en) * 1995-10-12 2001-06-05 Numar Corporation System and method for lithology-independent gas detection using multifrequency gradient NMR logging
US6566874B1 (en) * 1998-07-30 2003-05-20 Schlumberger Technology Corporation Detecting tool motion effects on nuclear magnetic resonance measurements
US6522137B1 (en) * 2000-06-28 2003-02-18 Schlumberger Technology Corporation Two-dimensional magnetic resonance imaging in a borehole

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03040743A1 *

Also Published As

Publication number Publication date
EA200400635A1 (ru) 2004-10-28
BR0213902A (pt) 2004-09-28
WO2003040743A1 (fr) 2003-05-15
EA006178B1 (ru) 2005-10-27
AU2002351916B2 (en) 2007-08-23
CA2465809A1 (fr) 2003-05-15
OA12722A (en) 2006-06-27
NO20042301L (no) 2004-06-04
CA2465809C (fr) 2016-06-07

Similar Documents

Publication Publication Date Title
US6856132B2 (en) Method and apparatus for subterranean formation flow imaging
US5796252A (en) Nuclear magnetic resonance borehole logging apparatus and method for ascertaining a volume of hydrocarbons independent of a diffusion coefficient
CA2565587C (fr) Diminution d'artefacts dus au mouvement en rmn
CA2465809C (fr) Procede et appareil d'imagerie pour ecoulements de formations souterraines
US6331775B1 (en) Gas zone evaluation by combining dual wait time NMR data with density data
CA2563698C (fr) Utilisation de mesures realisees dans un train d'echos pour la correction d'echos multiples dans un deuxieme train d'echos, permettant d'eviter l'utilisation de paire a alternancede phase dans le deuxieme train
US6466013B1 (en) Nuclear magnetic resonance measurements in well logging using an optimized rephasing pulse sequence
US6933719B2 (en) Fluid flow properties from acoustically stimulated NMR
US20130200890A1 (en) Kerogen porosity volume and pore size distribution using nmr
AU2002351916A1 (en) Method and apparatus for subterranean formation flow imaging
US6023163A (en) Well logging method and apparatus for determining gas and diffusion coefficient using NMR
CA2469891C (fr) Rmn stochastique pour utilisation de fond
US20020175681A1 (en) NMR apparatus and method utilizing pulsed static magnetic fields
RU2736931C2 (ru) Химически избирательное устройство формирования изображений для формирования изображений флюида в подземном пласте и способ его использования
US7049815B2 (en) Method and apparatus for multi-frequency NMR diffusion measurements in the presence of internal magnetic field gradients
US8781745B2 (en) NMR-DNA fingerprint
WO2017106807A1 (fr) Imagerie de formations et de caractéristiques souterraines par mesures de rmn à bobines multiples
US9823205B2 (en) Methods and systems for determining surface relaxivity of a medium using nuclear magnetic resonance
US6097184A (en) Nuclear magnetic resonance well logging to determine gas-filled porosity and oil-filled porosity of earth formations without a constant static magnetic field gradient
US20070032956A1 (en) Fast T1 measurement by using driven equilibrium
US8912916B2 (en) Non-uniform echo train decimation
US7336071B2 (en) Enhancement of NMR vertical resolution using walsh function based inversion
WO2006058005A1 (fr) Mesure rapide t1 d'une formation terrestre a l'aide d'un equilibre entretenu
WO2021158929A1 (fr) Annulation d'oscillations amorties lors de mesures par rmn
GB2440280A (en) Reduction of Motion Artifacts in NMR

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040427

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20100413

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170601