CN105473813B - 方位角选择性井下核磁共振(nmr)工具 - Google Patents

方位角选择性井下核磁共振(nmr)工具 Download PDF

Info

Publication number
CN105473813B
CN105473813B CN201480041305.5A CN201480041305A CN105473813B CN 105473813 B CN105473813 B CN 105473813B CN 201480041305 A CN201480041305 A CN 201480041305A CN 105473813 B CN105473813 B CN 105473813B
Authority
CN
China
Prior art keywords
volume
nmr
antenna
tool
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201480041305.5A
Other languages
English (en)
Other versions
CN105473813A (zh
Inventor
A·里德曼
陈松华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Publication of CN105473813A publication Critical patent/CN105473813A/zh
Application granted granted Critical
Publication of CN105473813B publication Critical patent/CN105473813B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/002Survey of boreholes or wells by visual inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/081Making measurements of geologic samples, e.g. measurements of moisture, pH, porosity, permeability, tortuosity or viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3808Magnet assemblies for single-sided MR wherein the magnet assembly is located on one side of a subject only; Magnet assemblies for inside-out MR, e.g. for MR in a borehole or in a blood vessel, or magnet assemblies for fringe-field MR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/32Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with electron or nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3678Electrical details, e.g. matching or coupling of the coil to the receiver involving quadrature drive or detection, e.g. a circularly polarized RF magnetic field

Abstract

在一些方面,一种井下核磁共振(NMR)工具包括磁体组件和天线组件。所述NMR工具能在地下区域的井眼中操作来从所述地下区域获得NMR数据。所述磁体组件在所述井眼周围的体积中产生磁场。所述天线组件在所述体积中产生激励,并基于所述激励获取来自所述体积的方位角选择性响应。所述天线组件可包括横向偶极天线和单极天线。

Description

方位角选择性井下核磁共振(NMR)工具
相关申请的交叉引用
本申请要求2013年8月30日提交的标题为“Obtaining Nuclear MagneticResonance(NMR)Data from a Subterranean Region.”的美国临时专利申请号61/872,362的优先权,所述优先权申请特此以引用的方式并入本申请中。
发明背景
本申请涉及方位角选择性的井下核磁共振(NMR)工具,其例如用于从地下区域获得NMR数据。
在测井的领域中(例如,电缆测井、随钻测井(LWD)和随钻测量(MWD)),核磁共振(NMR)工具已经用来基于与地下物质的磁性相互作用探测地下。一些井下NMR工具包括产生静磁场的磁体组件和生成射频(RF)控制信号并检测地下物质中的磁共振现象的线圈组件。可从所检测到的现象识别地下物质的性质。
附图描述
图1A为示例性井系统的图。
图1B为包括电缆测井环境中的NMR工具的示例性井系统的图。
图1C为包括随钻测井(LWD)环境中的NMR工具的示例性井系统的图。
图2A为用于从地下区域获得NMR数据的示例性井下工具的图。
图2B为用于从地下区域获得NMR数据的另一个示例性井下工具的图。
图3A为示出示例性井下工具的方位角选择性的座标图。
图3B为用于从地下区域获得NMR数据的另一个示例性井下工具的图。
图4A为示出用于从地下区域获得NMR数据的示例性技术的流程图。
图4B为示出用于从地下区域获得NMR数据的另一种示例性技术的流程图。
在各图中,类似的参考符号指示类似的元件。
具体实施方式
在一些实现方式中,NMR仪器可提供用于从地下获得NMR数据的实际解决方案。在一些实例中,所述仪器可提供(例如,用于给定的DC功率预算)更高的信噪比(SNR)、动态抗扰性、测量的方位角选择性或这些或其他优点的组合。在一些情况下,所述仪器可对环境因素具有鲁棒性,并为地下分析提供准确或精确的信息。
用于井下NMR仪器的一些示例性配置包括用于磁体组件和天线组件的基本上二维(2D)的横向偶极布置。由磁体和天线生成的磁场可具有适合在轴向运动期间使用的轴向均匀性(即,沿NMR仪器的长轴的均匀性)。在一些情况下,例如,可使用更宽的频带激励(核磁的饱和)来实现与这类型仪器的轴对称(圆度)。在一些实现方式中,一种井下NMR工具被配置来生成轴对称磁场,其中磁体组件生成径向磁场并且天线组件生成纵向RF磁场(还具有纵向灵敏度方向)。
在一些实例中,NMR仪器可在所感兴趣的体积中产生纵向静磁场。在一些实例中,所述仪器包括多个横向偶极天线(例如,两个相同的横向偶极天线),所述横向偶极天线产生圆偏振激励并提供正交线圈检测。例如,多个正交天线的布置可与在所感兴趣的体积中生成轴向静磁场的纵向偶极磁体一起使用。在一些实例中,所述仪器包括利用磁体组件的不同区域来获取NMR信号的多体积布置。在一些实例中,勘测区具有适合于在装卸钻柱(即,在井眼中转接钻柱)时测量的形状。一些示例性实现方式包括横向偶极天线轴对称响应和单极天线轴对称响应的组合,所述组合可在一些实例中实现方位角分辨的单方向NMR测量。
图1A为示例性井系统100a的图。示例性井系统100a包括NMR测井系统108和在地面106下方的地下区域120。井系统可包括在图1A中未示出的另外的或不同的特征件。例如,井系统100a可包括另外的钻井系统部件、电缆测井系统部件等。
地下区域120可包括一个或多个地下地层或区中的全部或部分。在图1A中示出的示例性地下区域120包括多个地下层122和穿透地下层122的井眼104。地下层122可包括沉积层、岩石层、沙层或这些及其他类型的地下层的组合。地下层中的一个或多个可包含流体,如盐水、石油、气体等。虽然在图1A中示出的示例性井眼104为垂直井眼,但NMR测井系统108可在其他井眼取向上加以实现。例如,NMR测井系统108可适于水平井眼、倾斜井眼、弧形井眼、垂直井眼或这些的组合。
示例性NMR测井系统108包括测井工具102、地面设备112和计算子系统110。在图1A中所示的实例中,测井工具102是在设置在井眼104中时进行操作的井下测井工具。在图1A中所示的示例性地面设备112在地面106处或在地面106上方(例如,靠近井口105)进行操作,以便控制测井工具102以及可能其他井下设备或井系统100的其他部件。示例性计算子系统110可接收并分析来自测井工具102的测井数据。NMR测井系统可包括另外的或不同的特征件,并且NMR测井系统的特征件可如图1A所示的或以另一种方式进行布置和操作。
在一些实例中,计算子系统110的全部或部分可实现为地面设备112、测井工具102或两者中的一个部件,或者可与地面设备112、测井工具102或两者的一个或多个部件集成为一体。在一些情况下,计算子系统110可实现为与地面设备112和测井工具102分开的一个或多个计算结构。
在一些实现方式中,计算子系统110嵌入在测井工具102中,并且计算子系统110和测井工具102可在设置在井眼104中时可同时进行操作。例如,尽管在图1A中所示的实例中在地面106的上方示出了计算子系统110,但计算子系统110的全部或部分可驻留于地面106的下方,例如,在测井工具102的位置处或靠近测井工具102的位置。
井系统100a可包括允许在计算子系统110、测井工具102和NMR测井系统108的其他部件之间进行通信的通信或遥测设备。例如,NMR测井系统108的部件可各自包括用于在各种部件之间有线或无线数据通信的一个或多个收发器或类似装置。例如,NMR测井系统108可包括用于光学遥测、电缆遥测、有线钻杆遥测、泥浆脉冲遥测、声学遥测、电测遥测或这些及其他类型遥测的组合的系统和装置。在一些情况下,测井工具102从计算子系统110或另一种源接收命令、状态信号或其他类型的信息。在一些情况下,计算子系统110从测井工具102或另一种源接收测井数据、状态信号或其他类型的信息。
NMR测井操作可结合各种类型的井下操作在井系统寿命的各阶段处执行。地面设备112和测井工具102的结构属性和部件可适于各种类型的NMR测井操作。例如,可在钻井操作期间、在电缆测井操作期间或在其他环境中执行NMR测井。这样,地面设备112和测井工具102可包括钻井设备、电缆测井设备或用于其他类型的操作的其他设备或可结合钻井设备、电缆测井设备或用于其他类型的操作的其他设备进行操作。
在一些实现方式中,测井工具102包括磁体组件,所述磁体组件包括中心磁体和两个端件磁体。在图2A、图2B和图3B中示出了实例。端件磁体可与中心磁体的轴端隔开。端件磁体连同中心磁体一起可限定四个磁极,所述四个磁极可被布置来增强所感兴趣的体积中的静磁场。在一些情况下,中心磁体限定第一磁场取向,并且端件磁体限定与所述第一磁场取向正交的第二磁场取向。测井工具102还可包括多个正交的横向偶极天线。所述正交的横向偶极天线可在地下体积中产生圆偏振激励并通过正交线圈检测来从所述体积获取响应。
在一些实现方式中,测井工具102包括在地下区域120中的多个不同的子体积中产生磁场的磁体组件。在图2B中示出实例。第一子体积可以是在纵向方向(平行于井眼轴)上延伸的伸长的圆柱形壳体区域,并且第一子体积中的磁场可沿纵向方向基本均匀地取向。第二子体积和第三子体积可与第一子体积的轴端隔开,并且第二子体积和第三子体积中的静磁场可具有径向取向(垂直于纵向方向)。第二子体积和第三子体积可位于距工具管柱的中心与第一体积不同的距离。在一些实例中,第二子体积和第三子体积的位置允许测井工具收集信息以用于泥浆滤液侵入剖析。测井工具102还可包括在沿纵轴的对应位置处的多个天线组件。天线组件中的每一个可检测来自不同子体积中相应的一个的NMR响应。
在一些实现方式中,测井工具102包括磁体组件以及横向偶极和单极天线组件。在图3B中示出实例。横向偶极和单极天线组件可从磁体组件周围的地下体积获得单方向的方位角选择性的NMR响应。横向偶极和单极天线组件可包括正交的横向偶极天线和单极天线。
在一些实例中,在电缆测井操作期间执行NMR测井操作。图1B示出包括电缆测井环境中的测井工具102的示例性井系统100b。在一些示例性电缆测井操作中,地面设备112包括在地面106上方的平台,所述平台配备有支撑延伸到井眼104中的电缆缆线134的井架132。例如,可在将钻柱从井眼104移除之后执行电缆测井操作,以允许通过电缆或测井缆线将电缆测井工具102下降到井眼104中。
在一些实例中,在钻井操作期间执行NMR测井操作。图1C示出包括随钻测井(LWD)环境中的测井工具102的示例性井系统100c。通常使用连接在一起以便形成钻柱140的一连串钻杆来执行钻井,所述钻柱140下降穿过转盘而到井眼104中。在一些情况下,在钻柱140操作来钻探穿透地下区域120的井眼时,在地面106处的钻机142支撑钻柱140。钻柱140可包括,例如,方钻杆、钻杆、井底组件以及其他部件。钻柱上的井底组件可包括钻铤、钻头、测井工具102以及其他部件。测井工具可包括随钻测量(MWD)工具、LWD工具以及其他。
在一些实现方式中,测井工具102包括用于从地下区域120获得NMR测量的NMR工具。例如,如图1B所示,测井工具102可通过连续管、电缆缆线或将工具连接到地面控制单元或地面设备112的其他部件的另一种结构悬挂在井眼104中。在一些示例性实现方式中,测井工具102下降到感兴趣的区域的底部,并且随后被向上拉动(例如以基本恒定的速度)穿过所感兴趣的区域。例如,如图1C中所示,测井工具102可部署在井眼104中在接合的钻杆、硬接线钻杆或其他部署硬件上。在一些示例性实现方式中,测井工具102随着其向下移动穿过所感兴趣的区域在钻井操作期间收集数据。在一些示例性实现方式中,测井工具102在钻柱140移动(例如,在其被装入井眼104中或从井眼104中取出时)期间收集数据。
在一些实现方式中,测井工具102在井眼104中的离散测井点处收集数据。例如,测井工具102可在井眼104中以递增的方式向上或向下移动到一系列深度处的每个测井点处。在每个测井点处,测井工具102中的仪器对地下区域120执行测量。可将测量数据传送至计算子系统110以供存储、处理和分析。可在钻井操作期间(例如,在随钻测井(LWD)操作期间)、在电缆测井操作期间或在其他类型的活动期间搜集和分析此类数据。
计算子系统110可接收和分析来自测井工具102的测量数据以便检测各个地下层122的性质。例如,计算子系统110可基于由井眼104中的测井工具102获取的NMR测量来识别地下层122的密度、黏度、孔隙度、材料内容或其他性质。
在一些实现方式中,测井工具102通过使核自旋在地下区域120中偏振并用射频(RF)磁场来脉冲化原子核来获得NMR信号。各种脉冲序列(即,射频脉冲、延迟及其他操作的序列)可用来获得NMR信号,所述各种脉冲序列包括Carr Purcell Meiboom Gill(CPMG)序列(其中首先使用尖脉冲然后使用一系列重调焦脉冲来使自旋尖端化)、优化的重调焦脉冲序列(ORPS)(其中所述重调焦脉冲小于180°)、饱和恢复脉冲序列以及其他脉冲序列。
所获取的自旋回波信号(或其他NMR数据)可被处理(例如,倒置、变换等)成弛豫时间分布(例如,横向弛豫时间的分布T2或纵向的弛豫时间的分布T1)或两者。所述弛豫时间分布可用来通过解决一个或多个逆问题来确定地层的各种物理特性。在一些情况下,弛豫时间分布针对多个测井点被获取,并用来训练地下区域的模型。在一些情况下,弛豫时间分布被针对多个测井点被获取,并用来预测地下区域的特性。
图2A为示例性NMR工具200A的图。所述示例性NMR工具200A包括:磁体组件,其生成静磁场以产生偏振;和天线组件,其(a)生成射频(RF)磁场来生成激励,并且(b)获取NMR信号。在图2A中示出的实例中,包括端件磁体11A、11B和中心磁体12的磁体组件在勘测体积17中生成静磁场。在勘测体积17中,静磁场的方向(示为实线黑色箭头18)平行于井眼的纵轴。在一些实例中,具有两极强度的磁体配置可用来增加磁场的强度(例如,在一些实例中达100-150高斯或更高)。
在图2A中示出的实例中,天线组件13包括两个相互正交的横向偶极天线15、16。在一些实例中,可利用单个横向偶极天线来实现NMR工具200A。例如,可从天线组件13省去横向偶极天线15、16中的一个。在图2A中示出的示例性横向偶极天线15、16放置在软磁芯14的外部表面上,所述软磁芯14用于RF磁通量集中。静磁场可为轴对称(或基本轴对称),并因此可能不需要与另外的能量损耗相关联的更宽的频带激励。可将勘测体积制作得轴向足够长且足够厚(例如,在一些环境中为20cm长和0.5cm厚)来提供抗扰性或以其他方式降低对轴向运动、横向运动或两者的灵敏度。更长的灵敏度区域可实现装卸钻柱时的测量。可通过使磁体11A、11B、12和磁芯14的软磁性材料成形来使灵敏度区域成形。
在一些实现方式中,天线组件13另外地或替代地包括执行两个横向偶极天线15、16的操作的集成线圈组。例如,所述集成线圈(例如,而不是两个横向偶极天线15、16)可用来产生圆偏振并执行正交线圈检测。可适于执行此类操作的集成线圈组的实例包括通常用于高场磁共振成像(MRI)的多线圈布置或复杂的单个-线圈布置(例如像鸟笼型线圈)。
与一些示例性轴对称设计相比,由于比用于一些纵向偶极天线具有更长的涡电流,使用纵向偶极磁体和横向偶极天线组件还具有在井眼中地层和钻井液(即,“泥浆”)中更小的涡电流损耗的优势。
在一些方面,在多个子体积上的NMR测量可增加数据密度并从而增加每单位时间的SNR。可例如通过在第二频率上获取NMR数据同时在第一频率上等待原子核磁化恢复(例如,在CPMG脉冲链之后)来在具有径向梯度的静磁场中进行多次体积测量。许多不同的频率可用来进行多频率NMR获取,涉及具有不同勘测深度的多个激励体积。除了更高的SNR之外,多频率测量还可实现在井眼中剖析流体侵入,从而实现对地层的渗透性的更好评估。进行多体积测量的另一种方法是使用磁体组件的不同区域来获取NMR信号。可在同一时间(例如,同时)或不同时间来进行这些不同区域的NMR测量。
图2B为另一个示例性NMR工具200B的图。所述示例性NMR工具200B也包括:磁体组件,其生成静磁场以产生偏振;和天线组件,其(a)生成射频(RF)磁场来生成激励,并且(b)获取NMR信号。在图2B中示出的实例中,磁体组件在勘测体积21中产生具有主导轴向分量的磁场。在22处示出了RF磁场(如图2A中由两个横向偶极天线产生)和在这个区域中的静磁场的方向。在图2B中示出的实例中,在靠近磁极处(超过中心磁体的轴端)产生两个不同的勘测体积24A、24B,其中静磁场具有主导径向分量。在23A和23B处所示的示例性NMR天线可在勘测体积24A和24B中靠近纵向偶极天线处生成RF磁场。在25A和25B处示出了RF磁场在勘测体积24A和24B中的纵向方向和静磁场在勘测体积24A和24B中的径向方向。
在一些方面中,横向偶极天线和单极天线的组合可用来实现单方向的方位角选择性的测量,而在一些情况下基本上不减小SNR。在一些实例中,NMR激励可基本上是轴对称的(例如,使用横向偶极天线或单极天线),而轴对称灵敏度的横向偶极天线响应和轴对称灵敏度的单极天线响应的组合可实现方位角分辨测量。
图3A和图3B示出示例性方位角选择性的NMR工具的方面。图3A为示出来自在图3B中所示的示例性井下工具300B的方位角所选择数据的实例的座标图300A。所述示例性NMR工具300B包括:磁体组件,其生成静磁场以产生偏振;和天线组件,其(a)生成射频(RF)磁场来生成激励,并且(b)获取NMR信号。在图3B中示出的天线组件31包括单极天线和两个正交的横向偶极天线35和36。示例性单极天线包括两个线圈37A和37B,所述两个线圈37A和37B在相反极性上连接以便在勘测体积34中生成基本径向的RF磁场。由于互易性,相同的线圈布置可具有径向的灵敏度方向。在32和33处呈现的示例性RF磁场BRF可反映当单极天线响应与横向偶极天线响应中的一个组合时的总灵敏度方向。
在图3B中所示的示例性单极天线包括局部生成基本径向方向的磁场(即,将由单个“磁荷”或磁极产生的场)的线圈的布置。在本文中,我们使用术语“单极”来将这类型的磁场与偶极磁场(横向的或纵向的)加以区分。在一些情况下,单极天线组件生成准静(相对低频率)磁场。在示出的实例中,在相反极性上连接的线圈37A和37B为一个单极天线组件的两部分。每个线圈自身可实现为标准纵向天线。可以另一种方式实现单极天线。
在图3A中的极座标图示出天线灵敏度的实例,表明单方向的方位角选择性。正交的横向偶极天线中的每一个的响应与单极天线的响应的组合可给定覆盖横向平面的所有象限的四个可能方向中的任意一个。钻柱在钻井时的旋转可引起方位角选择响应的幅度调制并从而引起NMR弛豫信号(例如,CPMG回波链)的幅度调制。幅度调制参数可指示NMR特性的方位角变化(例如,NMR孔隙度变化)。
例如,在图3B中所示的示例性单极天线的线圈37A和37B可结合横向偶极天线35和36使用来实现方位角选择性。例如,线圈37A和37B中的任意一个可用作单独的天线(除了或没有横向偶极天线35、36)来取得SNR。在一些情况下,在没有其他天线的情况下,利用单极天线和纵向磁体来实现NMR工具。例如,在一些情况下,可从天线组件31省去横向偶极天线35和36。
图4A为示出用于从地下区域获得NMR数据的示例性过程400的流程图;并且图4B为示出用于从地下区域获得NMR数据的另一个示例性过程420的流程图。过程400和420中的每一个可独立于另一个而执行,或者过程400和420可同时地或一致地执行。例如,过程400和420可串行或平行执行,或者所述过程中的一个可在不执行另一个的情况下加以执行。
过程400和420可由如在图2A、图2B和图3B中所示的示例性NMR工具200A、200B或300B的井下NMR工具或由另一种类型的NMR工具执行。在井系统操作期间,在工具设置在井眼内时,过程400和420可由井下NMR工具执行。例如,井下NMR工具可悬挂在井眼中以用于电缆测井(例如,如图1B中所示),或井下NMR工具可耦接到钻柱以用于NMR LWD(例如,如图1C中所示)。
过程400和420中的每一个可包括(分别)在图4A和4B中所示的操作,或所述过程中的任意一个可包括另外的或不同的操作。所述操作可按在相应的图中所示的顺序或按另一顺序执行。在一些情况下,在重叠或非重叠时间段期间,操作中的一个或多个可串行或平行地执行。在一些情况下,例如,操作中的一个或多个可迭代或重复进行特定数目的迭代特定的持续时间,或直到达到终止的条件。
在图4A中所示的示例性过程400中的402,将NMR工具定位在井眼中。在一些情况下,NMR工具包括在井眼周围的地下区域的体积中产生磁场的磁体组件。所述体积可包括例如在图2A、图2B或图3B中所示的勘测体积17、21、24A、24B、34中的任一个的全部或部分或另一个所感兴趣的体积。通常,NMR工具包括:磁体组件,其用以使核自旋在所感兴趣的体积中偏振;和天线组件,其用以激励核自旋并基于所述激励来获取NMR信号。
在404,在井眼周围的体积中产生偏振。所述偏振由静磁场生成,所述静磁场在井眼中由NMR工具的磁体组件产生。所述偏振指核自旋在体积中的磁偏振。换句话说,核自旋的一部分变得与静磁场对齐,并且所述体积产生块体磁矩。在一些情况下,静磁场被配置来(例如,由磁体组件的形状和位置)产生纵向偏振(例如,平行于井眼的长轴)或具有另一取向的偏振。
在一些实例中,磁体组件包括中心磁体(例如,在图2A、图2B、图3B中所示的中心磁体12或另一类型的中心磁体)和两个端件磁体(例如,在图2A、图2B、图3B中所示的端件磁体11A、11B,或另一类型的端件磁体)。在一些情况下,在磁体组件中的磁体为永磁体。例如,如图2A所示,中心磁体可以是具有第一轴端和相反的第二轴端的伸长的永磁体,其中第一端件磁体与中心磁体的第一轴端间隔开,并且其中第二端件磁体与中心磁体的第二轴端间隔开。在一些情况下,两个端件磁体具有公共的磁场取向,并且中心磁体具有相反的磁场取向,(例如,使得两个端件磁体具有与中心磁体的磁场取向正交的磁场取向)。
在406,在井眼周围的体积中生成圆偏振激励。在体积中由天线组件产生所述圆偏振激励。例如,天线组件可由射频电流提供能量,所述射频电流在井眼周围的体积中产生射频(RF)磁场。由天线组件生成的RF磁场操纵核自旋来产生具有圆偏振的受激的自旋态。换句话说,所产生的自旋偏振在井眼周围的体积中具有圆形(或周向)取向。
在一些实例中,天线组件包括正交的横向偶极天线。在图2A和图2B中所示的天线组件13和在图3B中所示的天线组件31为包括两个正交的横向偶极天线的天线组件的实例。在示例性天线组件13中的每个天线15、16例如可通过传导射频电流来独立地产生横向偶极磁场。在示出的实例中,每个横向偶极磁场相对于NMR工具的纵轴具有横向取向。换句话说,横向偶极磁场取向成与井眼的长轴正交。
在所示的实例中,由天线15产生的横向偶极磁场与由另一个天线16产生的横向偶极磁场正交。例如,在三个相互正交方向的笛卡尔坐标系中,NMR工具的纵轴可视为“z”方向,并且横向偶极磁场(由天线15、16产生)分别沿“x”方向和“y”方向进行取向。
在一些实现方式中,其他类型的激励由NMR工具产生。例如,在一些情况下,在第一子体积(例如,在图2B中的勘测体积21)中由正交的横向偶极天线产生圆偏振激励,并且在第二子体积和第三子体积(例如,在图2B中的勘测体积24A、24B)中产生具有另一取向的激励,所述第二子体积和第三子体积与所述第一子体积的轴端间隔开。例如,可由纵向偶极RF场在第二子体积和第三子体积中产生激励,所述纵向偶极RF场由其他天线组件(例如,由在图2B中的天线23A和23B)生成。不同的子体积可用于不同的目的。例如,第一子体积可为伸长的(平行于井眼的长轴),以便在NMR工具沿井眼移动时(例如,在装卸钻柱时)从第一子体积获取NMR数据。在一些情况下,可定位其他子体积来获取NMR数据以用于泥浆滤液侵入剖析或其他应用。
在408,NMR信号由正交线圈检测获取。NMR信号基于在406处产生的激励。NMR信号可以是例如回波链、自由感应衰减(FID)或另一类型的NMR信号。在一些情况下,所获取的NMR数据包括T1弛豫数据、T2弛豫数据或其他数据。NMR信号可由产生激励的天线组件或由另一种天线组件获取。在一些情况下,可在多个子体积中获取NMR信号。
正交线圈检测可由正交的横向偶极天线执行。可通过使用两个正交线圈、各自拾取由圆偏振原子核磁化诱导的信号(在线圈中的信号具有90度相位差)来执行正交线圈检测。即使在传输期间仅使用一个线圈(例如,产生线性偏振的RF磁场),原子核磁化可仍然是圆偏振。正交线圈传输(由具有90度相位差的RF电流驱动的两个正交线圈)可实现圆偏振激励,所述圆偏振激励与在一些情况下的线性偏振激励相比可帮助减小功率损耗。正交线圈检测可例如用来在仅激励一个线圈(不使用圆偏振激励来简化硬件)时增加信噪比(SNR),或圆偏振可用来在利用一个线圈检测信号时节省功率。在一些情况下,圆偏振和正交线圈检测均可用来节省功率并增加SNR。在一些情况下,当相互正交的天线基本相同时,使用圆偏振或正交线圈检测(或两者)是有效的。在示例性磁体/天线配置中可能具有纵向偶极磁体和两个横向天线。虽然允许相互正交的天线,但是在一些情况下,具有两个天线中的一个比另一个更低效率的其他配置可能不能提供相同的优势。
在410,处理NMR数据。可处理NMR数据来识别地下区域的物理特性或提取其他类型的信息。例如,可处理NMR数据来识别井眼周围的地下区域的密度、黏度、孔隙度、材料内容或其他特性。
在图4B中所示的示例性过程420的422,将NMR工具定位在井眼中,并且在424,在井眼周围的体积中生成偏振。在图4B中的操作422和424与在图4A中所示的操作402和404类似。例如,NMR工具包括:磁体组件,其用以使核自旋在所感兴趣的体积中偏振;和天线组件,其用以激励核自旋并基于所述激励来获取NMR信号。在424,以参照图4A的操作404所描述的方式并且由相同类型的磁体组件产生偏振;或在424处,以另一种方式或由另一类型的磁体组件产生偏振。
在426,在井眼周围的体积中生成激励。在体积中由天线组件产生激励。例如,天线组件可由射频电流提供能量,所述射频电流在井眼周围的体积中产生射频(RF)磁场。由天线组件生成的RF磁场操纵核自旋来产生受激的自旋态。在一些实例中,例如,由于方位角选择性的RF磁场,自旋态在所选择的方位角方向上具有更高的激励,以使得自旋激励的等级沿绕井眼的圆形(或周向)方向而变化。
在一些实例中,天线组件包括横向偶极天线组件和单极天线组件。在图3B中所示的天线组件31为包括横向偶极天线组件和单极天线组件的天线组件的实例。在图3B中所示的实例中,横向偶极天线组件和单极天线组件包括在中心区域中的两个正交的横向偶极天线35和36以及单极天线,所述单极天线包括在横向偶极天线35和36的第一轴端处的第一线圈37A和在横向偶极天线35和36的相反的第二轴端处的第二线圈37B;单极天线的线圈37A和37B布置有相反极性。
在428,获取方位角选择性的NMR信号。NMR信号基于在426处产生的激励。NMR信号可以是例如回波链、自由感应衰减(FID)或另一类型的NMR信号。在一些情况下,所获取的NMR数据包括T1弛豫数据、T2弛豫数据或其他数据。NMR信号可由产生激励的天线组件或由另一种天线组件获取。在一些情况下,NMR信号由具有方位角选择性灵敏度的天线组件(如横向偶极天线组件和单极天线组件)获取。
在一些实现方式中,获取方位角选择性的NMR信号作为多个NMR信号获取的组合。所述信号获取例如可包括通过一个或多个横向偶极天线和一个或多个单极天线的获取。可组合所述信号来实现井眼周围的体积的方位角分辨的测量。例如,在一些情况下,正交的横向偶极天线中的每一个的响应与单极天线的响应的适当组合可给定覆盖横向平面的所有象限的四个可能方向中的任意一个。
在430,处理NMR数据。可处理NMR数据来识别地下区域的物理特性或提取其他类型的信息。例如,可处理NMR数据来识别井眼周围的地下区域的密度、黏度、孔隙度、材料内容或其他特性。在一些情况下,处理NMR数据来识别在井眼周围的地下区域中的方位角变化。例如,旋转NMR工具可引起方位角选择性响应的幅度调制。所述幅度调制参数可指示影响NMR信号的特性(例如,孔隙度、密度、黏度、材料内容等)的方位角变化。
尽管本说明书包含许多细节,但这些细节并不应当解释为对可要求保护的范围的限制,而应当解释为特定于特定实例的特征的描述。也可将在本说明书中描述于独立实现方式的上下文中的某些特征加以组合。反之,描述于单个实现方式的上下文中的各种特征也可以单独地或以任何适合的子组合实现于多个实施方案中。
已描述了多个实例。然而,应理解,可做出各种修改。因此,其他实现方式也在所附权利要求书的范围内。

Claims (24)

1.一种用于在地下区域的井眼中使用的核磁共振(NMR)工具,所述NMR工具包括:
磁体组件,其用以在地下区域的体积中产生磁场;以及
天线组件,其用以在所述体积中产生激励并基于所述激励来从所述体积获取方位选择性响应,所述天线组件包括横向偶极天线和单极天线,
其中所述天线组件被配置为使得所述NMR工具使用所述横向偶极天线和所述单极天线从所述体积中获取所述方位选择性响应。
2.如权利要求1所述的NMR工具,其中所述单极天线包括:
第一线圈,其处于所述横向偶极天线的第一轴端处;以及
第二线圈,其处于所述横向偶极天线的相反的第二轴端处,并且所述第一线圈和所述第二线圈沿公共轴进行取向并具有相反的极性。
3.如权利要求1所述的NMR工具,其中所述激励由所述横向偶极天线和所述单极天线产生。
4.如权利要求2所述的NMR工具,其中所述激励由所述横向偶极天线和所述单极天线产生。
5.如任一前述权利要求所述的NMR工具,其中所述磁体组件包括:
中心磁体,其具有第一轴端和相反的第二轴端;
第一端件磁体,其与所述中心磁体的所述第一轴端间隔开;以及
第二端件磁体,其与所述中心磁体的所述第二轴端间隔开。
6.如权利要求5所述的NMR工具,其中所述磁体组件包括永磁体组件,并且所述中心磁体以及所述第一端件磁体和第二端件磁体各自包括一个或多个永磁体。
7.如权利要求5所述的NMR工具,其中所述中心磁体限定第一磁场取向,并且所述第一端件磁体和所述第二端件磁体各自限定与所述第一磁场取向正交的第二磁场取向。
8.如权利要求1-4中任一项所述的NMR工具,其中所述磁体组件和所述天线组件被配置来在钻井操作期间在所述地下区域的井眼内进行操作。
9.如权利要求1-4中任一项所述的NMR工具,其中:
所述体积包括多个不同的子体积,所述多个不同的子体积包括在平行于所述NMR工具的纵轴的第一方向上为伸长的第一子体积,在所述第一子体积中的所述磁场在所述第一方向上基本均匀地进行取向;并且
所述NMR工具包括在沿所述纵轴的相应位置处的多个天线组件,每个天线组件用以检测来自所述不同的子体积中相应的一个的NMR响应。
10.如权利要求1-4中任一项所述的NMR工具,其中所述磁体组件和所述天线组件能操作来在钻井时获取NMR信号。
11.一种从地下区域获得核磁共振(NMR)数据的方法,所述方法包括:
在地下区域的体积中由井眼中的磁体组件产生磁场;以及
在所述体积中产生激励;以及
基于所述激励来从所述体积获取方位选择性响应,所述响应由包括横向偶极天线和单极天线的天线组件获取。
12.如权利要求11所述的方法,其还包括基于所述响应来识别所述体积中的方位角变化。
13.如权利要求11所述的方法,其中:
所述天线组件包括横向偶极天线;
所述单极天线包括处于所述横向偶极天线的第一轴端处的第一线圈,和处于所述横向偶极天线的相反的第二轴端处的第二线圈;并且
所述第一线圈和所述第二线圈沿公共轴进行取向并具有相反的极性。
14.如权利要求12所述的方法,其中:
所述天线组件包括横向偶极天线;
所述单极天线包括处于所述横向偶极天线的第一轴端处的第一线圈,和处于所述横向偶极天线的相反的第二轴端处的第二线圈;并且
所述第一线圈和所述第二线圈沿公共轴进行取向并具有相反的极性。
15.如权利要求13所述的方法,其中所述激励由所述单极天线中的至少一个或所述横向偶极天线中的一个或多个产生。
16.如权利要求14所述的方法,其中所述激励由所述单极天线中的至少一个或所述横向偶极天线中的一个或多个产生。
17.如权利要求11-16中任一项所述的方法,其中井下NMR工具包括所述磁体组件和所述天线组件,并且在所述井下NMR工具设置在所述地下区域的井眼中时产生所述激励并获取所述响应。
18.如权利要求17所述的方法,其中所述NMR工具耦接到钻柱并在所述井眼中进行钻井操作期间进行操作。
19.一种包括设置在地下区域的井眼中的井下核磁共振(NMR)工具的钻柱组件,所述井下NMR工具包括:
磁体组件,其用以在地下区域的体积中产生磁场;以及
横向偶极天线组件和单极天线组件,其用以从所述体积获得NMR响应,
其中所述横向偶极天线组件和单极天线组件被配置为使得所述NMR工具使用横向偶极天线和单极天线从所述体积中获取所述NMR响应。
20.如权利要求19所述的钻柱组件,其中所述横向偶极天线组件和单极天线组件能操作来获得来自所述体积的单方向的方位角选择性NMR响应。
21.如权利要求19或20所述的钻柱组件,其中所述井下NMR工具包括多个横向偶极正交天线,以便:
在第一子体积中产生圆偏振激励;并且
通过正交线圈检测来获取来自所述第一子体积的响应。
22.如权利要求19或20所述的钻柱组件,其中:
所述体积包括多个不同的子体积,所述多个不同的子体积包括在平行于所述井下NMR工具的纵轴的第一方向上为伸长的第一子体积,并且在所述第一子体积中的所述磁场在所述第一方向上基本均匀地进行取向;并且
所述井下NMR工具包括在沿所述纵轴的相应位置处的多个天线组件,每个天线组件能操作来检测来自所述不同的子体积中相应的一个的NMR响应。
23.如权利要求21所述的钻柱组件,其中:
所述体积包括多个不同的子体积,所述多个不同的子体积包括在平行于所述井下NMR工具的纵轴的第一方向上为伸长的第一子体积,并且在所述第一子体积中的所述磁场在所述第一方向上基本均匀地进行取向;并且
所述井下NMR工具包括在沿所述纵轴的相应位置处的多个天线组件,每个天线组件能操作来检测来自所述不同的子体积中相应的一个的NMR响应。
24.一种用于在地下区域的井眼中使用的核磁共振(NMR)工具,所述NMR工具包括:
磁体组件,其用以在地下区域的体积中产生磁场,在所述体积中的所述磁场平行于所述NMR工具的纵轴进行取向;以及
天线组件,其用以在所述体积中产生激励并基于所述激励来从所述体积获取响应,所述天线组件包括单极天线,
其中所述天线组件被配置为使得所述NMR工具使用横向偶极天线和所述单极天线从所述体积中获取所述响应。
CN201480041305.5A 2013-08-30 2014-08-08 方位角选择性井下核磁共振(nmr)工具 Expired - Fee Related CN105473813B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361872362P 2013-08-30 2013-08-30
US61/872,362 2013-08-30
PCT/US2014/050298 WO2015031027A1 (en) 2013-08-30 2014-08-08 Azimuthally-selective downhole nuclear magnetic resonance (nmr) tool

Publications (2)

Publication Number Publication Date
CN105473813A CN105473813A (zh) 2016-04-06
CN105473813B true CN105473813B (zh) 2019-04-05

Family

ID=52582307

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480041305.5A Expired - Fee Related CN105473813B (zh) 2013-08-30 2014-08-08 方位角选择性井下核磁共振(nmr)工具
CN201480042905.3A Pending CN105473814A (zh) 2013-08-30 2014-08-08 具有横向偶极天线配置的井下核磁共振(nmr)工具

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201480042905.3A Pending CN105473814A (zh) 2013-08-30 2014-08-08 具有横向偶极天线配置的井下核磁共振(nmr)工具

Country Status (14)

Country Link
US (2) US9377557B2 (zh)
EP (1) EP2867459B1 (zh)
CN (2) CN105473813B (zh)
AR (2) AR097504A1 (zh)
AU (2) AU2014311657B2 (zh)
BR (2) BR112016002042A2 (zh)
CA (2) CA2918628C (zh)
DE (1) DE112014003910T5 (zh)
GB (1) GB2533228B (zh)
MX (2) MX366753B (zh)
MY (1) MY181015A (zh)
NO (1) NO345909B1 (zh)
RU (2) RU2618241C1 (zh)
WO (2) WO2015031027A1 (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8970217B1 (en) 2010-04-14 2015-03-03 Hypres, Inc. System and method for noise reduction in magnetic resonance imaging
WO2015031027A1 (en) * 2013-08-30 2015-03-05 Halliburton Energy Services, Inc. Azimuthally-selective downhole nuclear magnetic resonance (nmr) tool
US10222505B2 (en) 2014-12-30 2019-03-05 Halliburton Energy Services, Inc. Combined NMR-resistivity measurement apparatus, systems, and methods
AR103439A1 (es) 2015-03-05 2017-05-10 Halliburton Energy Services Inc Aparato, sistemas y métodos de resonancia magnética nuclear
WO2016144460A1 (en) 2015-03-11 2016-09-15 Halliburton Energy Services, Inc. Downhole nuclear magnetic resonance sensor using anisotropic magnetic material
US10082594B2 (en) * 2015-04-07 2018-09-25 Baker Hughes, A Ge Company, Llc Magnet arrays for magnetic resonance measurements
US10061053B2 (en) 2015-04-30 2018-08-28 Baker Hughes, A Ge Company, Llc NMR T2 distribution from simultaneous T1 and T2 inversions for geologic applications
EP3303766A4 (en) 2015-08-14 2019-03-27 Halliburton Energy Services, Inc. GRADIENT MULTI-FREQUENCY NUCLEAR MAGNETIC RESONANCE WITH INTERBAND INTERFERENCE
EP3329089A4 (en) * 2015-10-02 2019-01-09 Halliburton Energy Services, Inc. TOOL FOR MEASURING DURING DRILLING WITH NESTED INSTRUMENTS
BR112018003876A2 (pt) * 2015-10-06 2018-09-25 Halliburton Energy Services Inc ?ferramenta de perfilagem de ressonância magnética nuclear, e, método?
US10422915B2 (en) * 2015-12-29 2019-09-24 Halliburton Energy Services ,Inc. External housing for signal to noise improvement
US10145976B2 (en) 2016-05-27 2018-12-04 Baker Hughes, A Ge Company, Llc Arrays of receive antennas for magnetic resonance measurements
US10983242B2 (en) 2016-08-08 2021-04-20 Halliburton Energy Services, Inc. Nuclear magnetic resonance sensing and fluid sampling device for subterranean characterization
BR112019001376B1 (pt) * 2016-08-08 2023-04-04 Halliburton Energy Services Inc Dispositivo de ressonância magnética nuclear, e, método para caracterizar uma formação subterrânea com ressonância magnética nuclear
BR112019001315B1 (pt) 2016-08-08 2021-06-15 Halliburton Energy Services, Inc Dispositivo de caracterização subterrânea e amostragem de fluido, e, método de caracterização subterrânea
BR112019003016B1 (pt) * 2016-09-20 2022-09-27 Halliburton Energy Services, Inc Ferramenta de perfilagem de ressonância magnética nuclear, e, métodos de perfilagem de ressonância magnética nuclear
BR112019005012A2 (pt) 2016-09-28 2019-06-04 Halliburton Energy Services Inc dispositivo de ressonância magnética nuclear, e, método de caracterização de uma formação subterrânea
CN110199087A (zh) * 2017-03-09 2019-09-03 哈利伯顿能源服务公司 具有对动生效应的主动补偿的井下核磁共振工具
CN107192972B (zh) * 2017-05-17 2019-08-23 常楚笛 一种核磁共振成像系统及其成像方法
BR112019020576B1 (pt) * 2017-06-28 2023-05-16 Halliburton Energy Services, Inc Método para realizar medições de ressonância magnética nuclear, sensor de ressonância magnética nuclear, e, sistema operável em um ambiente de poço
CA3073505C (en) * 2017-09-29 2022-05-31 Halliburton Energy Services, Inc. Unidirectional magnetization of nuclear magnetic resonance tools having soft magnetic core material
WO2019135752A1 (en) * 2018-01-04 2019-07-11 Halliburton Energy Services, Inc. Downhole nuclear magnetic resonance (nmr) tool for one-dimensional nmr imaging
CN108590629B (zh) 2018-03-23 2020-09-18 中国石油大学(北京) 井下三维扫描核磁共振成像测井仪探头、天线、及仪器
CN108459041A (zh) * 2018-03-26 2018-08-28 重庆大学 一种用于多区域测量的核磁共振传感器
CN111335868B (zh) * 2018-12-18 2023-11-03 中国石油天然气股份有限公司 一种油井工况识别方法、装置及系统
WO2020204947A1 (en) * 2019-04-05 2020-10-08 Halliburton Energy Services, Inc. Circular polarization correction in nuclear magnetic resonsance (nmr) logging
NO20211062A1 (en) 2019-04-05 2021-09-03 Halliburton Energy Services Inc Reverse circular polarization based antenna orientation
US10895659B2 (en) 2019-04-18 2021-01-19 Halliburton Energy Services, Inc. Detecting nuclear magnetic resonance logging tool motion
WO2021044319A1 (en) 2019-09-05 2021-03-11 Khalifa University of Science and Technology Measuring flow rates of multiphase fluids
US11531135B2 (en) * 2020-09-18 2022-12-20 Halliburton Energy Services, Inc. Method of imaging using azimuthally resolved NMR while drilling
US11422283B1 (en) * 2021-07-14 2022-08-23 Halliburton Energy Services, Inc. Reducing motion effects on nuclear magnetic resonance relaxation data
US11899158B2 (en) 2022-03-14 2024-02-13 Halliburton Energy Services, Inc. Logging tool motion error reduction for nuclear magnetic resonance logging via pulse sub-sequences

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1249436A (zh) * 1998-07-30 2000-04-05 施卢默格控股有限公司 使用梯度线圈进行的具有角向分辨率的核磁共振测井
CN1253296A (zh) * 1998-11-05 2000-05-17 施卢默格控股有限公司 用于在钻探过程中获取核磁共振测量数据的设备和方法
CN101680936A (zh) * 2007-06-01 2010-03-24 贝克休斯公司 用于高信噪比nmr测井的方法与装置
CN102865067A (zh) * 2012-09-12 2013-01-09 中国海洋石油总公司 随钻方位电磁波电阻率测井仪的阵列线圈系

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8315866D0 (en) 1983-06-09 1983-07-13 Nat Res Dev Nuclear magnetic logging
GB9022145D0 (en) 1990-10-11 1990-11-21 Oxford Instr Ltd Magnetic field generating assembly
MX9102363A (es) 1990-12-05 1992-06-01 Numar Corp Sistema de diagrafia de un pozo durante la perforacion del mismo.
US5705927A (en) 1992-07-30 1998-01-06 Schlumberger Technology Corporation Pulsed nuclear magnetism tool for formation evaluation while drilling including a shortened or truncated CPMG sequence
DE69314261T2 (de) * 1992-07-30 1998-04-09 Schlumberger Technology Bv Gepulster NMR-Gerät zur Formationsbewertung während des Bohrens
US5543711A (en) * 1994-11-22 1996-08-06 Picker International, Inc. Multiple quadrature volume coils for magnetic resonance imaging
US5712566A (en) 1996-02-23 1998-01-27 Western Atlas International, Inc. Nuclear magnetic resonance apparatus and method
US5828214A (en) * 1996-02-23 1998-10-27 Western Atlas International, Inc. Method and apparatus for resistivity determination by nuclear magnetic resonance measurement
US5710511A (en) * 1996-03-14 1998-01-20 Western Atlas International, Inc. Method and apparatus for eddy current suppression
US6051973A (en) 1996-12-30 2000-04-18 Numar Corporation Method for formation evaluation while drilling
US6121773A (en) 1997-03-27 2000-09-19 Western Atlas International, Inc. Longitudinal NMR well logging apparatus and method
US5959453A (en) 1997-10-29 1999-09-28 Western Atlas International, Inc. Radial NMR well logging apparatus and method
US5977768A (en) 1997-06-23 1999-11-02 Schlumberger Technology Corporation Nuclear magnetic resonance logging with azimuthal resolution
US6255817B1 (en) 1997-06-23 2001-07-03 Schlumberger Technology Corporation Nuclear magnetic resonance logging with azimuthal resolution
US6215304B1 (en) 1998-01-21 2001-04-10 Oxford Instruments (Uk) Ltd. NMR sensor
US6326784B1 (en) 1998-11-05 2001-12-04 Schlumberger Technology Corporation Nuclear magnetic resonance logging with azimuthal resolution using gradient coils
US6163151A (en) * 1998-09-09 2000-12-19 Baker Hughes Incorporated Apparatus and method for making nuclear magnetic measurements in a borehole
US6459262B1 (en) 2000-04-25 2002-10-01 Baker Hughes Incorporated Toroidal receiver for NMR MWD
US6836218B2 (en) * 2000-05-22 2004-12-28 Schlumberger Technology Corporation Modified tubular equipped with a tilted or transverse magnetic dipole for downhole logging
US6586931B2 (en) * 2001-04-20 2003-07-01 Baker Hughes Incorporated NMR logging in the earth's magnetic field
US7301338B2 (en) * 2001-08-13 2007-11-27 Baker Hughes Incorporated Automatic adjustment of NMR pulse sequence to optimize SNR based on real time analysis
EA006178B1 (ru) * 2001-11-06 2005-10-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ и устройство для изображения подземного потока в пласте
US6690170B2 (en) * 2002-03-29 2004-02-10 Schlumberger Technology Corporation Antenna structures for electromagnetic well logging tools
US6930652B2 (en) * 2002-03-29 2005-08-16 Schlumberger Technology Corporation Simplified antenna structures for logging tools
US6586932B1 (en) * 2002-10-16 2003-07-01 Schlumberger Technology Corporation Enhanced performance antennas for NMR logging
RU2230345C1 (ru) * 2003-01-17 2004-06-10 Стариков Владислав Петрович Способ ямр каротажа и устройство для его осуществления
US7463027B2 (en) * 2003-05-02 2008-12-09 Halliburton Energy Services, Inc. Systems and methods for deep-looking NMR logging
US7268547B2 (en) 2003-10-07 2007-09-11 Baker Hughes Incorporated Correction of motion influences in NMR signals
US7423426B2 (en) * 2004-02-09 2008-09-09 Baker Hughes Incorporated Selective excitation in earth's magnetic field nuclear magnetic resonance well logging tool
US7859260B2 (en) * 2005-01-18 2010-12-28 Baker Hughes Incorporated Nuclear magnetic resonance tool using switchable source of static magnetic field
US7916092B2 (en) * 2006-08-02 2011-03-29 Schlumberger Technology Corporation Flexible circuit for downhole antenna
WO2012170014A1 (en) 2011-06-07 2012-12-13 Halliburton Energy Services, Inc. Rotational indexing to optimize sensing volume of a nuclear magnetic resonance logging tool
US9121550B2 (en) * 2011-07-12 2015-09-01 Baker Hughes Incorporated Apparatus of a magnetic resonance multiphase flow meter
WO2015031027A1 (en) * 2013-08-30 2015-03-05 Halliburton Energy Services, Inc. Azimuthally-selective downhole nuclear magnetic resonance (nmr) tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1249436A (zh) * 1998-07-30 2000-04-05 施卢默格控股有限公司 使用梯度线圈进行的具有角向分辨率的核磁共振测井
CN1253296A (zh) * 1998-11-05 2000-05-17 施卢默格控股有限公司 用于在钻探过程中获取核磁共振测量数据的设备和方法
CN101680936A (zh) * 2007-06-01 2010-03-24 贝克休斯公司 用于高信噪比nmr测井的方法与装置
CN102865067A (zh) * 2012-09-12 2013-01-09 中国海洋石油总公司 随钻方位电磁波电阻率测井仪的阵列线圈系

Also Published As

Publication number Publication date
CA2918629C (en) 2018-05-01
CA2918628C (en) 2018-04-03
CN105473813A (zh) 2016-04-06
MX366753B (es) 2019-07-23
EP2867459B1 (en) 2016-12-07
RU2016102842A (ru) 2017-10-05
AR097504A1 (es) 2016-03-16
CN105473814A (zh) 2016-04-06
EP2867459A1 (en) 2015-05-06
AR097505A1 (es) 2016-03-16
RU2618241C1 (ru) 2017-05-03
AU2014311658B2 (en) 2016-12-15
WO2015031026A1 (en) 2015-03-05
AU2014311657B2 (en) 2017-05-11
MY181015A (en) 2020-12-16
RU2652046C2 (ru) 2018-04-24
NO345909B1 (en) 2021-10-04
NO20160124A1 (en) 2016-01-27
DE112014003910T5 (de) 2016-05-19
CA2918629A1 (en) 2015-03-05
US10197698B2 (en) 2019-02-05
WO2015031027A1 (en) 2015-03-05
US20150061664A1 (en) 2015-03-05
US9377557B2 (en) 2016-06-28
BR112016002044A2 (pt) 2017-08-01
MX2016001380A (es) 2016-08-03
EP2867459A4 (en) 2015-11-04
BR112016002042A2 (pt) 2017-08-01
AU2014311658A1 (en) 2016-02-11
MX366635B (es) 2019-07-17
AU2014311657A1 (en) 2016-02-11
GB2533228A (en) 2016-06-15
US20150061665A1 (en) 2015-03-05
MX2016000560A (es) 2016-07-19
GB2533228B (en) 2017-03-22
CA2918628A1 (en) 2015-03-05
GB201600690D0 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
CN105473813B (zh) 方位角选择性井下核磁共振(nmr)工具
US10768334B2 (en) Nuclear magnetic resonance apparatus, systems, and methods
US9201159B2 (en) Nuclear magnetic resonance logging tool having an array of antennas
US20160033670A1 (en) Switching an Operating Mode of an NMR Logging Tool
NO20200187A1 (en) Unidirectional Magnetization of Nuclear Magnetic Resonance Tools Having Soft Magnetic Core Material
BR112020003191B1 (pt) Ferramenta de ressonância magnética nuclear, método para obter dados de ressonância magnética nuclear de uma região subterrânea e composição de fundo

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190405

Termination date: 20200808