EP1442109B1 - Polymers for laundry applications - Google Patents
Polymers for laundry applications Download PDFInfo
- Publication number
- EP1442109B1 EP1442109B1 EP02774634.6A EP02774634A EP1442109B1 EP 1442109 B1 EP1442109 B1 EP 1442109B1 EP 02774634 A EP02774634 A EP 02774634A EP 1442109 B1 EP1442109 B1 EP 1442109B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- group
- alkyl
- cellulose
- compositions
- use according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- YHIZZSLGMMCSNN-UHFFFAOYSA-N CCC(CC(C)N)O Chemical compound CCC(CC(C)N)O YHIZZSLGMMCSNN-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/22—Carbohydrates or derivatives thereof
- C11D3/222—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
- C11D3/226—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin esterified
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/0036—Soil deposition preventing compositions; Antiredeposition agents
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/22—Carbohydrates or derivatives thereof
- C11D3/222—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
- C11D3/225—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin etherified, e.g. CMC
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/22—Carbohydrates or derivatives thereof
- C11D3/222—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
- C11D3/228—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin with phosphorus- or sulfur-containing groups
Definitions
- the present invention relates to substituted polysaccharides which are used in laundry cleaning products, for instance, for incorporation in products for dosing in the wash and/or rinse. These polymers are intended for, but not limited to, soil release benefits in such products.
- a laundry cleaning composition comprises a graft polysaccharide polymer benefit agent capable of imparting a benefit such as soil release or fabric care, and at least one additional laundry cleaning ingredient.
- WO 2000/65015 discloses a surface care composition, preferably a fabric care composition to be applied on a new and/or clean surface, preferably fabric surface, fully or in discrete regions thereof, comprising a film-forming polymer and providing superior soil removal performance while maintaining the particulate stain removal performance.
- the present invention further relates to a process of treating a new and/or clean surface, preferably fabric surface, fully or in discrete regions thereof with such composition, to impart soil release properties thereto.
- GB 1 537 287 discloses cellulose-based soil release ethers are used in detergent compositions containing C 10 -C 13 alkyl sulfate surfactants, and substantially free from interfering amounts of longer-chain length alkyl sulfates, to provide optimal soil release performance.
- soil release polymer is used in the art to cover polymeric materials which assist release of soil from fabrics, e.g. cotton or polyester based fabrics. For example, it is used in relation to polymers which assist release of soil direct from fibres. It is also used to refer to polymers which modify the fibres so that dirt adheres to the polymer-modified fibres rather than to the fibre material itself. Then, when the fabric is washed the next time, the dirt is more easily removed than if it was adhering the fibres. Although not wishing to be bound by any particular theory or explanation, the inventors believe that the soil release polymers utilised in the present invention probably exert their effect mainly by the latter mechanism.
- the compounds utilised by the present invention have been found, dependent upon the structure of the compound in question, to deliver a soil release, fabric care and/or other laundry cleaning benefit.
- a benefit agent onto a substrate such as a fabric
- a substrate such as a fabric
- typical "benefit agents” include fabric softeners and conditioners, soil release polymers, sunscreens; and the like.
- Deposition of a benefit agent is used, for example, in fabric treatment processes such as fabric softening to impart desirable properties to the fabric substrate.
- the deposition of the benefit agent has had to rely upon the attractive forces between the oppositely charged substrate and the benefit agent.
- this requires the addition of benefit agents during the rinsing step of a treatment process so as to avoid adverse effects from other charged chemical species present in the treatment compositions.
- cationic fabric conditioners are incompatible with anionic surfactants in laundry washing compositions.
- Such adverse charge considerations can place severe limitations upon the inclusion of benefit agents in compositions where an active component thereof is of an opposite charge to that of the benefit agent.
- cotton is negatively charged and thus requires a positively charged benefit agent in order for the benefit agent to be substantive to the cotton, i.e. to have an affinity for the cotton so as to absorb onto it.
- the substantivity of the benefit agent is reduced and/or the deposition rate of the material is reduced because of the presence of incompatible charged species in the compositions.
- the compounds used by the present invention for soil-release and/or other benefits are substituted polysaccharide structures, especially substituted cellulosic structures.
- US-A-4 235 735 discloses cellulose acetates with a defined degree of substitution as anti-redeposition agents in laundry products.
- Cellulosic esters are also known for use in non-laundry applications, as described in WO-A-91/16359 and GB-A-1 041 020 .
- cellulose based materials adhere to cotton fibres.
- WO 00/18861 and WO 00/18862 disclose cellulosic compounds having a benefit agent attached, so that the benefit agent will be attached to the fibre. See also WO 99/1-4925 .
- polysaccharide, especially cellulose, based materials to adhere has not been fully investigated, and a need exists to find polysaccharide based materials that are of commercial significance.
- the present invention provides use according to claim 1.
- cleaning or "laundering” mean “washing and/or rinsing”.
- group -L-R 1 is a relatively small substituent of relatively low molecular weight compared to many of the groups which have been used as substituents for polysaccharides in the prior art.
- a halogen atom may be a fluorine, chlorine, bromine or iodine atom and any group which contains a halo moiety, such as a haloalkyl group, may thus contain any one or more of these halogen atoms.
- the term "degree of substitution” refers to substitution of the functional groups on the repeating sugar unit.
- DS refers to substitution of the three hydroxyl groups on the repeating anhydroglucose unit.
- the average degree of substitution groups is preferably from 0.1 to 3 (eg. from 0.3 to 3), more preferably from 0.1 to 1 (eg. from 0.3 to 1).
- polysaccharides includes natural polysaccharides, synthetic polysaccharides, polysaccharide derivatives and modified polysaccharides.
- Suitable polysaccharides for use in preparing the compounds of the present invention include, but are not limited to, gums, arabinans, galactans, seeds and mixtures thereof as well as cellulose and derivatives thereof.
- Suitable polysaccharides that are useful in the present invention include polysaccharides with a degree of polymerisation (DP) over 40, preferably from about 50 to about 100,000, more preferably from about 500 to about 50,000.
- Constituent saccharides preferably include, but are not limited to, one or more of the following saccharides: isomaltose, isomaltotriose, isomaltotetraose, isomaltooligosaccharide, fructooligosaccharide, levooligosaccharides, galactooligosaccharide, xylooligosaccharide, gentiooligosaccharides, disaccharides, glucose, fructose, galactose, xylose, mannose, sorbose, arabinose, rhamnose, fucose, maltose, sucrose, lactose, maltulose, ribose, lyxose, allose, altrose, gu
- the polysaccharides can be extracted from plants, produced by organisms, such as bacteria, fungi, prokaryotes, eukaryotes, extracted from animal and/or humans.
- xanthan gum can be produced by Xanthomonas campestris, gellan by Sphingomonas paucimobilis, xyloglucan can be extracted from tamarind seed.
- the polysaccharides can be linear, or branched in a variety of ways, such as 1-2, 1-3, 1-4, 1-6, 2-3 and mixtures thereof. Many naturally occurring polysaccharides have at least some degree of branching, or at any rate, at least some saccharide rings are in the form of pendant side groups on a main polysaccharide backbone.
- the polysaccharides of the present invention have a molecular weight in the range of from about 10,000 to about 10,000,000, more preferably from about 50,000 to about 1,000,000, most preferably from about 50,000 to about 500,000.
- the polysaccharide is selected from the group consisting of: tamarind gum (preferably consisting of xyloglucan polymers), guar gum, locust bean gum (preferably consisting of galactomannan polymers), and other industrial gums and polymers, which include, but are not limited to, Tara, Fenugreek, Aloe, Chia, Flaxseed, Psyllium seed, quince seed, xanthan, gellan, welan, rhamsan, dextran, curdlan, pullulan, scleroglucan, schizophyllan, chitin, hydroxyalkyl cellulose, arabinan (preferably from sugar beets), de-branched arabinan (preferably from sugar beets), arabinoxylan (preferably from rye and wheat flour), galactan (preferably from lupin and potatoes), pectic galactan (preferably from potatoes), galactomannan (preferably from carob, and including both low and high viscosities),
- Polysaccharides can be used which have an ⁇ - or ⁇ -linked backbone. However, more preferred polysaccharides have a ⁇ -linked backbone, preferably a ⁇ -1,4 linked backbone. It is preferred that the ⁇ -1,4-linked polysaccharide is cellulose; a cellulose derivative, particularly cellulose sulphate, cellulose acetate, sulphoethyl cellulose, cyanoethyl cellulose, methyl cellulose, ethyl cellulose, carboxymethylcellulose, hydroxyethylcellulose or hydroxypropylcellulose; a xyloglucan, particularly one derived from Tamarind seed gum; a glucomannan, particularly Konjac glucomannan; a galactomannan, particularly Locust Bean gum and Guar gum; a side chain branched galactomannan, particularly Xanthan gum; chitosan or a chitosan salt.
- the natural polysaccharides can be modified with amines (primary , secondary, tertiary), amides, esters, ethers, urethanes, alcohols, carboxylic acids, tosylates, sulfonates, sulfates, nitrates, phosphates and mixtures thereof. Such a modification can take place in position 2, 3 and/or 6 of the saccharide unit.
- modified or derivatised polysaccharides can be included in the compositions of the present invention in addition to the natural polysaccharides.
- Nonlimiting examples of such modified polysaccharides include: carboxyl and hydroxymethyl substitutions (e.g. glucuronic acid instead of glucose); amino polysaccharides (amine substitution, e.g. glucosamine instead of glucose); C 1 -C 6 alkylated polysaccharides; acetylated polysaccharide ethers; polysaccharides having amino acid residues attached (small fragments of glycoprotein); polysaccharides containing silicone moieties.
- modified polysaccharides are commercially available from Carbomer and include, but are not limited to, amino alginates, such as hexanediamine alginate, amine functionalised cellulose-like O-methyl-(N-1,12-dodecanediamine) cellulose, biotin heparin, carboxymethylated dextran, guar polycarboxylic acid, carboxymethylated locust bean gum, carboxymethylated xanthan, chitosan phosphate, chitosan phosphate sulfate, diethylaminoethyl dextran, dodecylamide alginate, sialic acid, glucuronic acid, galacturonic acid, mannuronic acid, guluronic acid, N-acetylgluosamine, N-acetylgalactosamine, and mixtures thereof.
- amino alginates such as hexanediamine alginate, amine functionalised cellulose-like O-methyl-(N-1,12-
- Especially preferred polysaccharides include cellulose, ether, ester and urethane derivatives of cellulose, particularly cellulose monoacetate, xyloglucans and galactomannans, particularly Locust Bean gum.
- the polysaccharide has a total number of sugar units from 10 to 7000, although this figure will be dependent on the type of polysaccharide chosen, at least to some extent.
- the total number of sugar units is preferably from 50 to 1000, more preferably 50 to 750 and especially 200 to 300.
- the preferred molecular weight of such polysaccharides is from 10 000 to 150 000.
- the total number of sugar units is from 10 to 200, preferably 100 to 150.
- the preferred molecular weight is from 10 000 to 20 000.
- the total number of sugar units is preferably from 50 to 7000.
- the preferred molecular weight is from 10 000 to 1000 000.
- the total number of sugar units is preferably from 1000 to 3000.
- the preferred molecular weight is from 250 000 to 600 000.
- the polysaccharide can be linear, like in hydroxyalkyl cellulose, it can have an alternating repeat like in carrageenan, it can have an interrupted repeat like in pectin, it can be a block copolymer like in alginate, it can be branched like in dextran, or it can have a complex repeat like in xanthan. Descriptions of the polysaccharides are given in " An introduction to Polysaccharide Biotechnology", by M. Tombs and S. E. Harding, T.J. Press 1998 .
- the polymers utilised in the invention are polysaccharides in which at least one sugar unit of the polysaccharide has been substituted by a group of the general formula in which m, L and R 1 are as defined below.
- L represents a group -O-CO- or -O-.
- polysaccharide backbone in the polymers is ⁇ -linked, preferably ⁇ -1,4-linked.
- the polysaccharide backbone is selected from the group consisting of cellulose, cellulose derivatives (preferably cellulose sulphate, cellulose acetate, sulphoethyl cellulose, cyanoethyl cellulose, methyl cellulose, ethyl cellulose, carboxymethylcellulose, hydroxyethylcellulose or hydroxypropylcellulose), xyloglucans (preferably those derived from Tamarind seed gum), glucomannans (preferably Konjac glucomannan), galactomannans (preferably Locust Bean gum, Guar gum and Xanthan gum), chitosan and chitosan salts. It is especially preferred that the polysaccharide backbone is Locust Bean gum or xyloglucan.
- the polymers have the general formula: wherein at least one or more -OR groups of the polymer are independently replaced by a group -L-R 1 in which L and R 1 are as defined above and at least one or more R groups are independently selected from groups of formulae:-
- R 12 is a methyl, ethyl, phenyl, hydroxyethyl, hydroxypropyl, carboxymethyl, sulphoethyl or cyanoethyl group.
- R groups may optionally have one or more structures, for example as hereinbefore described.
- one or more R groups may simply be hydrogen or an alkyl group.
- Preferred groups may for example be independently selected from one or more of acetate, propanoate, trifluoroacetate, 2-(2-hydroxy-1-oxopropoxy) propanoate, lactate, glycolate, pyruvate, crotonate, isovalerate cinnamate, formate, salicylate, carbamate, methylcarbamate, benzoate, gluconate, methanesulphonate, toluene, sulphonate, groups and hemiester groups of fumaric, malonic, itaconic, oxalic, maleic, succinic, tartaric, aspartic, glutamic, and malic acids.
- cellulose monoacetate refers to a molecule that has acetate esters in a degree of substitution of about 1.1 or less, preferably about 1.1 to about 0.5.
- Cellulose triacetate refers to a molecule that has acetate esters in a degree of substitution of about 2.7 to 3.
- Cellulose esters of hydroxyacids can be obtained using the acid anhydride in acetic acid solution at 20-30°C and in any case below 50°C. When the product has dissolved the liquid is poured into water. Tri-esters can be converted to secondary products as with the triacetate. Glycollic and lactic ester are most common.
- Cellulose glycollate may also be obtained from cellulose chloracetate ( GB-A-320 842 ) by treating 100 parts with 32 parts of NaOH in alcohol added in small portions.
- An alternative method of preparing cellulose esters consists in the partial displacement of the acid radical in a cellulose ester by treatment with another acid of higher ionisation constant ( FR-A-702 116 ).
- the ester is heated at about 100°C with the acid which, preferably, should be a solvent for the ester.
- the acid which, preferably, should be a solvent for the ester.
- cellulose acetate-oxalate, tartrate, maleate, pyruvate, salicylate and phenylglycollate have been obtained, and from cellulose tribenzoate a cellulose benzoate-pyruvate.
- a cellulose acetate-lactate or acetate-glycollate could be made in this way also.
- cellulose acetate (10 g.) in dioxan (75 ml.) containing oxalic acid (10 g.) is heated at 100°C for 2 hours under reflux.
- esters are prepared by variations of this process.
- a simple ester of cellulose e.g. the acetate, is dissolved in a mixture of two (or three) organic acids, each of which has an ionisation constant greater than that of acetic acid (1.82 x 10 -5 ).
- suitable solvents such as propionic acid, dioxan and ethylene dichloride are used. If a mixed cellulose ester is treated with an acid this should have an ionisation constant greater than that of either of the acids already in combination.
- a cellulose acetate-lactate-pyruvate is prepared from cellulose acetate, 40 per cent. acetyl (100 g.), in a bath of 125 ml. pyruvic acid and 125 ml. of 85 per cent. lactic acid by heating at 100°C for 18 hours. The product is soluble in water and is precipitated and washed with ether-acetone. M.p. 230-250°C.
- m is from 1 to 2, preferably 1.
- polymers used in the present invention may be synthesised by a variety of routes which are well known to those skilled in the art of polymer chemistry.
- carboxyalkyl ether-linked polymers can be made by reacting a polysaccharide with a suitable haloalkanoic acid
- carboxyalkyl ester-linked polymers can be made by reacting a polysaccharide with a suitable anhydride, such as succinic anhydride
- sulfoalkyl ether-linked polymers can be made by reacting a polysaccharide with a suitable alkenyl sulphonic acid.
- the substituted polysaccharide according to the present invention may be incorporated into compositions containing only a diluent (which may comprise solid and/or liquid) and/or also comprising an active ingredient.
- the compound is typically included in said compositions at levels of from 0.01% to 25% by weight, preferably from 0.05% to 15%, more preferably from 0.1% to 10%, especially from 0.1% to 5% and most preferably from 0.5% to 3%.
- the active ingredient in the compositions is preferably a surface active agent or a fabric conditioning agent. More than one active ingredient may be included. For some applications a mixture of active ingredients may be used.
- compositions of the invention may be in any physical form e.g. a solid such as a powder or granules, a tablet, a solid bar, a paste, gel or liquid, especially, an aqueous based liquid.
- a solid such as a powder or granules, a tablet, a solid bar, a paste, gel or liquid, especially, an aqueous based liquid.
- the compositions may be used in laundry compositions, especially in liquid, powder or tablet laundry composition.
- compositions of the present invention are preferably laundry compositions, especially main wash (fabric washing) compositions or rinse-added softening compositions.
- the main wash compositions may include a fabric softening agent and rinse-added fabric softening compositions may include surface-active compounds, particularly non-ionic surface-active compounds, if appropriate.
- the detergent compositions of the invention may contain a surface-active compound (surfactant) which may be chosen from soap and non-soap anionic, cationic, non-ionic, amphoteric and zwitterionic surface-active compounds and mixtures thereof.
- surfactant may be chosen from soap and non-soap anionic, cationic, non-ionic, amphoteric and zwitterionic surface-active compounds and mixtures thereof.
- surface-active compound surfactant
- surfactant may be chosen from soap and non-soap anionic, cationic, non-ionic, amphoteric and zwitterionic surface-active compounds and mixtures thereof.
- the preferred detergent-active compounds that can be used are soaps and synthetic non-soap anionic and non-ionic compounds.
- compositions of the invention may contain linear alkylbenzene sulphonate, particularly linear alkylbenzene sulphonates having an alkyl chain length of C 8 -C 15 . It is preferred if the level of linear alkylbenzene sulphonate is from 0 wt% to 30 wt%, more preferably 1 wt% to 25 wt%, most preferably from 2 wt% to 15 wt%.
- compositions of the invention may contain other anionic surfactants in amounts additional to the percentages quoted above.
- Suitable anionic surfactants are well-known to those skilled in the art. Examples include primary and secondary alkyl sulphates, particularly C 8 -C 15 primary alkyl sulphates; alkyl ether sulphates; olefin sulphonates; alkyl xylene sulphonates; dialkyl sulphosuccinates; and fatty acid ester sulphonates.
- Sodium salts are generally preferred.
- compositions of the invention may also contain non-ionic surfactant.
- Nonionic surfactants that may be used include the primary and secondary alcohol ethoxylates, especially the C 8 -C 20 aliphatic alcohols ethoxylated with an average of from 1 to 20 moles of ethylene oxide per mole of alcohol, and more especially the C 10 -C 15 primary and secondary aliphatic alcohols ethoxylated with an average of from 1 to 10 moles of ethylene oxide per mole of alcohol.
- Non-ethoxylated nonionic surfactants include alkylpolyglycosides, glycerol monoethers, and polyhydroxyamides (glucamide).
- the level of non-ionic surfactant is from 0 wt% to 30 wt%, preferably from 1 wt% to 25 wt%, most preferably from 2 wt% to 15 wt%.
- any conventional fabric conditioning agent may be used in the compositions of the present invention.
- the conditioning agents may be cationic or non-ionic. If the fabric conditioning compound is to be employed in a main wash detergent composition the compound will typically be non-ionic. For use in the rinse phase, typically they will be cationic. They may for example be used in amounts from 0.5% to 35%, preferably from 1% to 30% more preferably from 3% to 25% by weight of the composition.
- the fabric conditioning agent(s) have two long chain alkyl or alkenyl chains each having an average chain length greater than or equal to C 16 . Most preferably at least 50% of the long chain alkyl or alkenyl groups have a chain length of C 18 or above. It is preferred if the long chain alkyl or alkenyl groups of the fabric conditioning agents are predominantly linear.
- the fabric conditioning agents are preferably compounds that provide excellent softening, and are characterised by a chain melting L ⁇ to L ⁇ transition temperature greater than 25°C, preferably greater than 35°C, most preferably greater than 45°C.
- This L ⁇ to L ⁇ transition can be measured by DSC as defined in " Handbook of Lipid Bilayers, D Marsh, CRC Press, Boca Raton, Florida, 1990 (pages 137 and 337 ).
- Substantially insoluble fabric conditioning compounds in the context of this invention are defined as fabric conditioning compounds having a solubility less than 1 x 10 -3 wt % in deminerailised water at 20°C.
- the fabric softening compounds have a solubility less than 1 x 10 -4 wt %, most preferably less than 1 x 10 -8 to 1 x 10 -6 .
- Preferred cationic fabric softening agents comprise a substantially water insoluble quaternary ammonium material comprising a single alkyl or alkenyl long chain having an average chain length greater than or equal to C 20 or, more preferably, a compound comprising a polar head group and two alkyl or alkenyl chains having an average chain length greater than or equal to C 14 .
- the cationic fabric softening agent is a quaternary ammonium material or a quaternary ammonium material containing at least one ester group.
- the quaternary ammonium compounds containing at least one ester group are referred to herein as ester-linked quaternary ammonium compounds.
- ester group' includes an ester group which is a linking group in the molecule.
- ester-linked quaternary ammonium compounds it is preferred for the ester-linked quaternary ammonium compounds to contain two or more ester groups. In both monoester and the diester quaternary ammonium compounds it is preferred if the ester group(s) is a linking group between the nitrogen atom and an alkyl group. The ester groups(s) are preferably attached to the nitrogen atom via another hydrocarbyl group.
- quaternary ammonium compounds containing at least one ester group, preferably two, wherein at least one higher molecular weight group containing at least one ester group and two or three lower molecular weight groups are linked to a common nitrogen atom to produce a cation and wherein the electrically balancing anion is a halide, acetate or lower alkosulphate ion, such as chloride or methosulphate.
- the higher molecular weight substituent on the nitrogen is preferably a higher alkyl group, containing 12 to 28, preferably 12 to 22, e.g.
- the lower molecular weight substituents are preferably lower alkyl of 1 to 4 carbon atoms, such as methyl or ethyl, or substituted lower alkyl.
- One or more of the said lower molecular weight substituents may include an aryl moiety or may be replaced by an aryl, such as benzyl, phenyl or other suitable substituents.
- the quaternary ammonium material is a compound having two C 12 -C 22 alkyl or alkenyl groups connected to a quaternary ammonium head group via at least one ester link, preferably two ester links or a compound comprising a single long chain with an average chain length equal to or greater than C 20 .
- the quaternary ammonium material comprises a compound having two long chain alkyl or alkenyl chains with an average chain length equal to or greater than C 14 . Even more preferably each chain has an average chain length equal to or greater than C 16 . Most preferably at least 50% of each long chain alkyl or alkenyl group has a chain length of C 18 . It is preferred if the long chain alkyl or alkenyl groups are predominantly linear.
- ester-linked quaternary ammonium material that can be used in laundry rinse compositions according to the invention is represented by the formula (A) :
- each R 20 group is methyl and w is 1 or 2.
- the quaternary ammonium material is biologically degradable.
- Preferred materials of this class such as 1,2 bis[hardened tallowoyloxy]-3-trimethylammonium propane chloride and their method of preparation are, for example, described in US-A-4 137 180 .
- these materials comprise small amounts of the corresponding monoester as described in US-A-4 137 180 for example 1-hardened tallowoyloxy-2-hydroxy-3-trimethylammonium propane chloride.
- Another class of preferred ester-linked quaternary ammonium materials for use in laundry rinse compositions according to the invention can be represented by the formula:
- di-(tallowyloxyethyl)-dimethyl ammonium chloride available from Hoechst, is the most preferred.
- Di-(hardened tallowyloxyethyl)dimethyl ammonium chloride, ex Hoechst and di-(tallowyloxyethyl)-methyl hydroxyethyl methosulphate are also preferred.
- Another preferred class of quaternary ammonium cationic fabric softening agent is defined by formula (C):- where R 20 , R 21 and Y - are as hereinbefore defined.
- a preferred material of formula (C) is di-hardened tallow-diethyl ammonium chloride, sold under the Trademark Arquad 2HT.
- the optionally ester-linked quaternary ammonium material may contain optional additional components, as known in the art, in particular, low molecular weight solvents, for instance isopropanol and/or ethanol, and co-actives such as nonionic softeners, for example fatty acid or sorbitan esters.
- low molecular weight solvents for instance isopropanol and/or ethanol
- co-actives such as nonionic softeners, for example fatty acid or sorbitan esters.
- compositions of the invention when used as main wash fabric washing compositions, will generally also contain one or more detergency builders.
- the total amount of detergency builder in the compositions will typically range from 5 to 80 wt%, preferably from 10 to 60 wt%.
- Cationic surfactants which can be used in main-wash compositions for fabrics.
- Cationic surfactants that may be used include quaternary ammonium salts of the general formula R 1 R 2 R 3 R 4 N + X - wherein the R groups are long or short hydrocarbon chains, typically alkyl, hydroxyalkyl or ethoxylated alkyl groups, and X is a counter-ion (for example, compounds in which R 1 is a C 8 -C 22 alkyl group, preferably a C 8 -C 10 or C 12 -C 14 alkyl group, R 2 is a methyl group, and R 3 and R 4 , which may be the same or different, are methyl or hydroxyethyl groups); and cationic esters (for example, choline esters).
- surfactant surface-active compound
- amount present will depend on the intended use of the detergent composition.
- surfactant systems may be chosen, as is well known to the skilled formulator, for handwashing products and for products intended for use in different types of washing machine.
- the total amount of surfactant present will also depend on the intended end use and may be as high as 60 wt%, for example, in a composition for washing fabrics by hand. In compositions for machine washing of fabrics, an amount of from 5 to 40 wt% is generally appropriate. Typically the compositions will comprise at least 2 wt% surfactant e.g. 2-60%, preferably 15-40% most preferably 25-35%.
- Detergent compositions suitable for use in most automatic fabric washing machines generally contain anionic non-soap surfactant, or non-ionic surfactant, or combinations of the two in any suitable ratio, optionally together with soap.
- compositions of the invention when used as main wash fabric washing compositions, will generally also contain one or more detergency builders.
- the total amount of detergency builder in the compositions will typically range from 5 to 80 wt%, preferably from 10 to 60 wt%.
- Inorganic builders that may be present include sodium carbonate, if desired in combination with a crystallisation seed for calcium carbonate, as disclosed in GB 1 437 950 (Unilever); crystalline and amorphous aluminosilicates, for example, zeolites as disclosed in GB 1 473 201 (Henkel ), amorphous aluminosilicates as disclosed in GB 1 473 202 (Henkel ) and mixed crystalline/amorphous aluminosilicates as disclosed in GB 1 470 250 (Procter & Gamble); and layered silicates as disclosed in EP 164 514B (Hoechst).
- Inorganic phosphate builders for example, sodium orthophosphate, pyrophosphate and tripolyphosphate are also suitable for use with this invention.
- compositions of the invention preferably contain an alkali metal, preferably sodium, aluminosilicate builder.
- Sodium aluminosilicates may generally be incorporated in amounts of from 10 to 70% by weight (anhydrous basis), preferably from 25 to 50 wt%.
- the alkali metal aluminosilicate may be either crystalline or amorphous or mixtures thereof, having the general formula: 0.8-1.5 Na 2 O. Al 2 O 3 . 0.8-6 SiO 2
- the preferred sodium aluminosilicates contain 1.5-3.5 SiO 2 units (in the formula above). Both the amorphous and the crystalline materials can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature. Suitable crystalline sodium aluminosilicate ion-exchange detergency builders are described, for example, in GB 1 429 143 (Procter & Gamble). The preferred sodium aluminosilicates of this type are the well-known commercially available zeolites A and X, and mixtures thereof.
- the zeolite may be the commercially available zeolite 4A now widely used in laundry detergent powders.
- the zeolite builder incorporated in the compositions of the invention is maximum aluminium zeolite P (zeolite MAP) as described and claimed in EP 384 070A (Unilever).
- Zeolite MAP is defined as an alkali metal aluminosilicate of the zeolite P type having a silicon to aluminium ratio not exceeding 1.33, preferably within the range of from 0.90 to 1.33, and more preferably within the range of from 0.90 to 1.20.
- zeolite MAP having a silicon to aluminium ratio not exceeding 1.07, more preferably about 1.00.
- the calcium binding capacity of zeolite MAP is generally at least 150 mg CaO per g of anhydrous material.
- Organic builders that may be present include polycarboxylate polymers such as polyacrylates, acrylic/maleic copolymers, and acrylic phosphinates; monomeric polycarboxylates such as citrates, gluconates, oxydisuccinates, glycerol mono-, di and trisuccinates, carboxymethyloxy succinates, carboxymethyloxymalonates, dipicolinates, hydroxyethyliminodiacetates, alkyl- and alkenylmalonates and succinates; and sulphonated fatty acid salts. This list is not intended to be exhaustive.
- polycarboxylate polymers such as polyacrylates, acrylic/maleic copolymers, and acrylic phosphinates
- monomeric polycarboxylates such as citrates, gluconates, oxydisuccinates, glycerol mono-, di and trisuccinates, carboxymethyloxy succinates, carboxymethyloxymalonates, dipicolinates, hydroxyethy
- Especially preferred organic builders are citrates, suitably used in amounts of from 5 to 30 wt%, preferably from 10 to 25 wt%; and acrylic polymers, more especially acrylic/maleic copolymers, suitably used in amounts of from 0.5 to 15 wt%, preferably from 1 to 10 wt%.
- compositions according to the invention may also suitably contain a bleach system.
- Fabric washing compositions may desirably contain peroxy bleach compounds, for example, inorganic persalts or organic peroxyacids, capable of yielding hydrogen peroxide in aqueous solution.
- Suitable peroxy bleach compounds include organic peroxides such as urea peroxide, and inorganic persalts such as the alkali metal perborates, percarbonates, perphosphates, persilicates and persulphates.
- organic peroxides such as urea peroxide
- inorganic persalts such as the alkali metal perborates, percarbonates, perphosphates, persilicates and persulphates.
- Preferred inorganic persalts are sodium perborate monohydrate and tetrahydrate, and sodium percarbonate.
- sodium percarbonate having a protective coating against destabilisation by moisture Especially preferred is sodium percarbonate having a protective coating against destabilisation by moisture.
- Sodium percarbonate having a protective coating comprising sodium metaborate and sodium silicate is disclosed in GB 2 123 044B (Kao).
- the peroxy bleach compound is suitably present in an amount of from 0.1 to 35 wt%, preferably from 0.5 to 25 wt%.
- the peroxy bleach compound may be used in conjunction with a bleach activator (bleach precursor) to improve bleaching action at low wash temperatures.
- the bleach precursor is suitably present in an amount of from 0.1 to 8 wt%, preferably from 0.5 to 5 wt%.
- Preferred bleach precursors are peroxycarboxylic acid precursors, more especially peracetic acid precursors and pernoanoic acid precursors.
- Especially preferred bleach precursors suitable for use in the present invention are N,N,N',N',-tetracetyl ethylenediamine (TAED) and sodium nonanoyloxybenzene sulphonate (SNOBS).
- TAED N,N,N',N',-tetracetyl ethylenediamine
- SNOBS sodium nonanoyloxybenzene sulphonate
- the novel quaternary ammonium and phosphonium bleach precursors disclosed in US 4 751 015 and US 4 818 426 (Lever Brothers Company) and EP 402 971A (Unilever), and the cationic bleach precursors disclosed in EP 284 292A and EP 303 520A (Kao ) are also of interest.
- the bleach system can be either supplemented with or replaced by a peroxyacid.
- peracids can be found in US 4 686 063 and US 5 397 501 (Unilever).
- a preferred example is the imido peroxycarboxylic class of peracids described in EP A 325 288 , EP A 349 940 , DE 382 3172 and EP 325 289 .
- a particularly preferred example is phthalimido peroxy caproic acid (PAP).
- PAP phthalimido peroxy caproic acid
- Such peracids are suitably present at 0.1 - 12%, preferably 0.5 - 10%.
- a bleach stabiliser may also be present.
- Suitable bleach stabilisers include ethylenediamine tetra-acetate (EDTA), the polyphosphonates such as Dequest (Trade Mark) and non-phosphate stabilisers such as EDDS (ethylene diamine di-succinic acid). These bleach stabilisers are also useful for stain removal especially in products containing low levels of bleaching species or no bleaching species.
- An especially preferred bleach system comprises a peroxy bleach compound (preferably sodium percarbonate optionally together with a bleach activator), and a transition metal bleach catalyst as described and claimed in EP 458 397A , EP 458 398A and EP 509 787A (Unilever ).
- a peroxy bleach compound preferably sodium percarbonate optionally together with a bleach activator
- a transition metal bleach catalyst as described and claimed in EP 458 397A , EP 458 398A and EP 509 787A (Unilever ).
- compositions according to the invention may also contain one or more enzyme(s).
- Suitable enzymes include the proteases, amylases, cellulases, oxidases, peroxidases and lipases usable for incorporation in detergent compositions.
- Preferred proteolytic enzymes are, catalytically active protein materials which degrade or alter protein types of stains when present as in fabric stains in a hydrolysis reaction. They may be of any suitable origin, such as vegetable, animal, bacterial or yeast origin.
- proteolytic enzymes or proteases of various qualities and origins and having activity in various pH ranges of from 4-12 are available and can be used in the instant invention.
- suitable proteolytic enzymes are the subtilins which are obtained from particular strains of B .
- Subtilis B . licheniformis such as the commercially available subtilisins Maxatase (Trade Mark), as supplied by Gist Brocades N.V., Delft, Holland, and Alcalase (Trade Mark), as supplied by Novo Industri A/S, Copenhagen, Denmark.
- protease obtained from a strain of Bacillus having maximum activity throughout the pH range of 8-12, being commercially available, e.g. from Novo Industri A/S under the registered trade-names Esperase (Trade Mark) and Savinase (Trade-Mark).
- Esperase Trade Mark
- Savinase Trade-Mark
- Other commercial proteases are Kazusase (Trade Mark obtainable from Showa-Denko of Japan), Optimase (Trade Mark from Miles Kali-Chemie, Hannover, West Germany), and Superase (Trade Mark obtainable from Pfizer of U.S.A.).
- Detergency enzymes are commonly employed in granular form in amounts of from about 0.1 to about 3.0 wt%. However, any suitable physical form of enzyme may be used.
- compositions of the invention may contain alkali metal, preferably sodium carbonate, in order to increase detergency and ease processing.
- Sodium carbonate may suitably be present in amounts ranging from 1 to 60 wt%, preferably from 2 to 40 wt%.
- compositions containing little or no sodium carbonate are also within the scope of the invention.
- Powder flow may be improved by the incorporation of a small amount of a powder structurant, for example, a fatty acid (or fatty acid soap), a sugar, an acrylate or acrylate/maleate copolymer, or sodium silicate.
- a powder structurant for example, a fatty acid (or fatty acid soap), a sugar, an acrylate or acrylate/maleate copolymer, or sodium silicate.
- a powder structurant for example, a fatty acid (or fatty acid soap), a sugar, an acrylate or acrylate/maleate copolymer, or sodium silicate.
- fatty acid soap suitably present in an amount of from 1 to 5 wt%.
- detergent compositions of the invention include sodium silicate; antiredeposition agents such as cellulosic polymers; soil release polymers; inorganic salts such as sodium sulphate; lather control agents or lather boosters as appropriate; proteolytic and lipolytic enzymes; dyes; coloured speckles; foam controllers and decoupling polymers.
- Further additional ingredients include surfactants, detergency builders, bleaches, transition metal sequestrants, enzymes, fabric softening and/or conditioning agents, lubricants for inhibition of fibre damage and/or for colour care and/or for crease reduction and/or for ease of ironing, UV absorbers such as fluorescers and photofading inhibitors, for example sunscreens/UV inhibitors and/or anti-oxidants, fungicides, insect repellents and/or insecticides, perfumes, dye fixatives, waterproofing agents, deposition aids, flocculants, anti-redeposition agents and soil release agents.
- UV absorbers such as fluorescers and photofading inhibitors
- sunscreens/UV inhibitors and/or anti-oxidants for example sunscreens/UV inhibitors and/or anti-oxidants
- fungicides fungicides, insect repellents and/or insecticides
- perfumes dye fixatives
- waterproofing agents for example sunscreens/UV inhibitors and/or anti-oxidants
- deposition aids for example, water
- the detergent composition when diluted in the wash liquor will typically give a pH of the wash liquor from 7 to 10.5 for a main wash detergent.
- Particulate detergent compositions are suitably prepared by spray-drying a slurry of compatible heat-insensitive ingredients, and then spraying on or post-dosing those ingredients unsuitable for processing via the slurry.
- the skilled detergent formulator will have no difficulty in deciding which ingredients should be included in the slurry and which should not.
- Particulate detergent compositions of the invention preferably have a bulk density of at least 4.00 g/1litre, more preferably at least 500 g/litre.
- Especially preferred compositions have bulk densities of at least 650 g/litre, more preferably at least 700 g/litre.
- Such powders may be prepared either by post-tower densification of spray-dried powder, or by wholly non-tower methods such as dry mixing and granulation; in both cases a high-speed mixer/granulator may advantageously be used. Processes using high-speed mixer/granulators are disclosed, for example, in EP 340 013A , EP 367 339A , EP 390 251A and EP 420 317A (Unilever).
- Liquid detergent compositions can be prepared by admixing the essential and optional ingredients thereof in any desired order to provide compositions containing components in the requisite concentrations.
- Liquid compositions according to the present invention can also be in compact form which means it will contain a lower level of water compared to a conventional liquid detergent.
- the substrate may be any substrate onto which it is desirable to deposit a polymer and which is subjected to treatment such as a washing or rinsing process.
- the substrate may be a textile fabric, fabric, preferably of cotton.
- the treatment of the substrate with the material of the invention can be made by any suitable method such as washing, soaking or rinsing of the substrate.
- the treatment will involve a washing or rinsing method such as treatment in the main wash or rinse cycle of a washing machine and involves contacting the substrate with an aqueous medium comprising the material of the invention.
- Locust Bean Gum (MUD 246B, ex Rhodia) (5g, 30.84 mmol of anhydrosugar units) was dispersed in a mixture of demineralised water (12 ml) and propan-2-ol (30 ml) with vigorous stirring in a 2-necked 100ml round bottom flask fitted with a mechanical stirrer. After heating the solution to 70°C, sodium hydroxide (0.625g, 15.6 mmol) was added and the mixture stirred for 15 minutes at the reaction temperature. Sodium chloroacetate (1.8g, 15 mmol) was then added as a solution in demineralised water (2 ml) and the reaction mixture vigorously stirred for 15 minutes at 70°C.
- Locust Bean Gum (MUD 246B, ex Rhodia) (5g, 30.84 mmol of anhydrosugar units) was dispersed in a mixture of demineralised water (12 ml) and propan-2-ol (30 ml) with vigorous stirring in a 2-necked 100ml round bottom flask fitted with a mechanical stirrer. After heating the solution to 70°C, sodium hydroxide (0.625g, 15.6 mmol) was added as a solution in water (2 ml) and the mixture stirred for 15 minutes at the reaction temperature. Vinyl sulfonic acid (8 ml of a 25% aqueous solution, 15.6 mmol) was added and the reaction mixture vigorously stirred for 15 minutes at 70°C.
- a 9% w/v solution of lithium chloride in anhydrous dimethylsulfoxide (DMSO) was prepared by heating 100 ml of the solvent to 150°C in a 2-necked round bottom flask fitted with a mechanical stirrer.
- Locust Bean Gum (MUD 246B, ex Rhodia) (5g, 30.84 mmol of anhydrosugar units) was added whilst maintaining the temperature until a highly viscous, homogeneous solution had formed.
- Locust Bean Gum-succinate as prepared above (1.355g) was added to a conical flask, to which 25ml of 1M sodium hydroxide solution was added. This was repeated with a sample of the unmodified Locust Bean Gum (0.5g) as a blank. The flasks were stoppered and left at ambient temperature overnight. Each flask was then titrated with 1M hydrochloric acid solution using phenolphthalein as indicator. The amount of acid required for neutralisation allows the number of the succinic acid molecules present to be calculated. For this example, the Locust Bean Gum derivative was found to be 53% succinoylated.
- copolymer with a backbone of (1,4)-linked ⁇ -D-mannose units having side stubs of (1,6)-linked ⁇ -D-galactose groups in a ratio of mannose to galactose 4 :1
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Emergency Medicine (AREA)
- Detergent Compositions (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Description
- The present invention relates to substituted polysaccharides which are used in laundry cleaning products, for instance, for incorporation in products for dosing in the wash and/or rinse. These polymers are intended for, but not limited to, soil release benefits in such products.
-
WO 2003/010267 discloses A laundry cleaning composition comprises a graft polysaccharide polymer benefit agent capable of imparting a benefit such as soil release or fabric care, and at least one additional laundry cleaning ingredient. -
WO 2000/65015 -
GB 1 537 287 - The term "soil release polymer" is used in the art to cover polymeric materials which assist release of soil from fabrics, e.g. cotton or polyester based fabrics. For example, it is used in relation to polymers which assist release of soil direct from fibres. It is also used to refer to polymers which modify the fibres so that dirt adheres to the polymer-modified fibres rather than to the fibre material itself. Then, when the fabric is washed the next time, the dirt is more easily removed than if it was adhering the fibres. Although not wishing to be bound by any particular theory or explanation, the inventors believe that the soil release polymers utilised in the present invention probably exert their effect mainly by the latter mechanism.
- The compounds utilised by the present invention have been found, dependent upon the structure of the compound in question, to deliver a soil release, fabric care and/or other laundry cleaning benefit.
- The deposition of a benefit agent onto a substrate, such as a fabric, is well known in the art. In laundry applications typical "benefit agents" include fabric softeners and conditioners, soil release polymers, sunscreens; and the like. Deposition of a benefit agent is used, for example, in fabric treatment processes such as fabric softening to impart desirable properties to the fabric substrate.
- Conventionally, the deposition of the benefit agent has had to rely upon the attractive forces between the oppositely charged substrate and the benefit agent. Typically this requires the addition of benefit agents during the rinsing step of a treatment process so as to avoid adverse effects from other charged chemical species present in the treatment compositions. For example, cationic fabric conditioners are incompatible with anionic surfactants in laundry washing compositions.
- Such adverse charge considerations can place severe limitations upon the inclusion of benefit agents in compositions where an active component thereof is of an opposite charge to that of the benefit agent. For example, cotton is negatively charged and thus requires a positively charged benefit agent in order for the benefit agent to be substantive to the cotton, i.e. to have an affinity for the cotton so as to absorb onto it. Often the substantivity of the benefit agent is reduced and/or the deposition rate of the material is reduced because of the presence of incompatible charged species in the compositions. However, in recent times, it has been proposed to deliver a benefit agent in a form whereby it is substituted onto another chemical moiety which increases its affinity for the substrate in question.
- The compounds used by the present invention for soil-release and/or other benefits are substituted polysaccharide structures, especially substituted cellulosic structures.
- Recently, substituted cellulosic oligomers and polymers have been proposed as ingredients in laundry products for providing a variety of different benefits such as fabric rebuild, as disclosed in
WO-A-98/29528 WO-A-99/14245 WO-A-00/18861 WO-A-00/18862 WO-A-00/40684 WO-A-00/40685 -
US-A-4 235 735 discloses cellulose acetates with a defined degree of substitution as anti-redeposition agents in laundry products. - Cellulosic esters are also known for use in non-laundry applications, as described in
WO-A-91/16359 GB-A-1 041 020 - It has previously been recognised in the art that cellulose based materials adhere to cotton fibres. For example,
WO 00/18861 WO 00/18862 WO 99/1-4925 - The present invention provides use according to claim 1.
- In the context of this specification, the terms "cleaning" or "laundering" mean "washing and/or rinsing".
- It will be appreciated that the group -L-R1 is a relatively small substituent of relatively low molecular weight compared to many of the groups which have been used as substituents for polysaccharides in the prior art.
- The following definitions pertain to chemical structures, molecular segments and substituents:
- The term "alkyl" as used herein refers to a branched or unbranched saturated hydrocarbon group which may contain from 1 to 12 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, octyl, decyl etc.
- A halogen atom may be a fluorine, chlorine, bromine or iodine atom and any group which contains a halo moiety, such as a haloalkyl group, may thus contain any one or more of these halogen atoms.
- As those of skill in the art of polysaccharide, especially cellulosic, polymers recognise, the term "degree of substitution" (or DS) refers to substitution of the functional groups on the repeating sugar unit. In the case of cellulosic polymers, DS refers to substitution of the three hydroxyl groups on the repeating anhydroglucose unit. Thus, for cellulose polymers, the maximum degree of substitution is 3. DS values do not generally relate to the uniformity of substitution of chemical groups along the polysaccharide molecule and are not related to the molecular weight of the polysaccharide backbone. The average degree of substitution groups is preferably from 0.1 to 3 (eg. from 0.3 to 3), more preferably from 0.1 to 1 (eg. from 0.3 to 1).
- As used herein, the term "polysaccharides" includes natural polysaccharides, synthetic polysaccharides, polysaccharide derivatives and modified polysaccharides. Suitable polysaccharides for use in preparing the compounds of the present invention include, but are not limited to, gums, arabinans, galactans, seeds and mixtures thereof as well as cellulose and derivatives thereof.
- Suitable polysaccharides that are useful in the present invention include polysaccharides with a degree of polymerisation (DP) over 40, preferably from about 50 to about 100,000, more preferably from about 500 to about 50,000. Constituent saccharides preferably include, but are not limited to, one or more of the following saccharides: isomaltose, isomaltotriose, isomaltotetraose, isomaltooligosaccharide, fructooligosaccharide, levooligosaccharides, galactooligosaccharide, xylooligosaccharide, gentiooligosaccharides, disaccharides, glucose, fructose, galactose, xylose, mannose, sorbose, arabinose, rhamnose, fucose, maltose, sucrose, lactose, maltulose, ribose, lyxose, allose, altrose, gulose, idose, talose, trehalose, nigerose, kojibiose, lactulose, oligosaccharides, maltooligosaccharides, trisaccharides, tetrasaccharides, pentasaccharides, hexasaccharides, oligosaccharides from partial hydrolysates of natural polysaccharide sources and mixtures thereof.
- The polysaccharides can be extracted from plants, produced by organisms, such as bacteria, fungi, prokaryotes, eukaryotes, extracted from animal and/or humans. For example, xanthan gum can be produced by Xanthomonas campestris, gellan by Sphingomonas paucimobilis, xyloglucan can be extracted from tamarind seed.
- The polysaccharides can be linear, or branched in a variety of ways, such as 1-2, 1-3, 1-4, 1-6, 2-3 and mixtures thereof. Many naturally occurring polysaccharides have at least some degree of branching, or at any rate, at least some saccharide rings are in the form of pendant side groups on a main polysaccharide backbone.
- It is desirable that the polysaccharides of the present invention have a molecular weight in the range of from about 10,000 to about 10,000,000, more preferably from about 50,000 to about 1,000,000, most preferably from about 50,000 to about 500,000.
- Preferably, the polysaccharide is selected from the group consisting of: tamarind gum (preferably consisting of xyloglucan polymers), guar gum, locust bean gum (preferably consisting of galactomannan polymers), and other industrial gums and polymers, which include, but are not limited to, Tara, Fenugreek, Aloe, Chia, Flaxseed, Psyllium seed, quince seed, xanthan, gellan, welan, rhamsan, dextran, curdlan, pullulan, scleroglucan, schizophyllan, chitin, hydroxyalkyl cellulose, arabinan (preferably from sugar beets), de-branched arabinan (preferably from sugar beets), arabinoxylan (preferably from rye and wheat flour), galactan (preferably from lupin and potatoes), pectic galactan (preferably from potatoes), galactomannan (preferably from carob, and including both low and high viscosities), glucomannan, lichenan (preferably from icelandic moss), mannan (preferably from ivory nuts), pachyman, rhamnogalacturonan, acacia gum, agar, alginates, carrageenan, chitosan, clavan, hyaluronic acid, heparin, inulin, cellodextrins, cellulose, cellulose derivatives and mixtures thereof. These polysaccharides can also be treated (preferably enzymatically) so that the best fractions of the polysaccharides are isolated.
- Polysaccharides can be used which have an α- or β-linked backbone. However, more preferred polysaccharides have a β-linked backbone, preferably a β-1,4 linked backbone. It is preferred that the β-1,4-linked polysaccharide is cellulose; a cellulose derivative, particularly cellulose sulphate, cellulose acetate, sulphoethyl cellulose, cyanoethyl cellulose, methyl cellulose, ethyl cellulose, carboxymethylcellulose, hydroxyethylcellulose or hydroxypropylcellulose; a xyloglucan, particularly one derived from Tamarind seed gum; a glucomannan, particularly Konjac glucomannan; a galactomannan, particularly Locust Bean gum and Guar gum; a side chain branched galactomannan, particularly Xanthan gum; chitosan or a chitosan salt. Other β-1,4-linked polysaccharides having an affinity for cellulose, such as mannan, are also preferred.
- The natural polysaccharides can be modified with amines (primary , secondary, tertiary), amides, esters, ethers, urethanes, alcohols, carboxylic acids, tosylates, sulfonates, sulfates, nitrates, phosphates and mixtures thereof. Such a modification can take place in position 2, 3 and/or 6 of the saccharide unit. Such modified or derivatised polysaccharides can be included in the compositions of the present invention in addition to the natural polysaccharides.
- Nonlimiting examples of such modified polysaccharides include: carboxyl and hydroxymethyl substitutions (e.g. glucuronic acid instead of glucose); amino polysaccharides (amine substitution, e.g. glucosamine instead of glucose); C1-C6alkylated polysaccharides; acetylated polysaccharide ethers; polysaccharides having amino acid residues attached (small fragments of glycoprotein); polysaccharides containing silicone moieties. Suitable examples of such modified polysaccharides are commercially available from Carbomer and include, but are not limited to, amino alginates, such as hexanediamine alginate, amine functionalised cellulose-like O-methyl-(N-1,12-dodecanediamine) cellulose, biotin heparin, carboxymethylated dextran, guar polycarboxylic acid, carboxymethylated locust bean gum, carboxymethylated xanthan, chitosan phosphate, chitosan phosphate sulfate, diethylaminoethyl dextran, dodecylamide alginate, sialic acid, glucuronic acid, galacturonic acid, mannuronic acid, guluronic acid, N-acetylgluosamine, N-acetylgalactosamine, and mixtures thereof.
- Especially preferred polysaccharides include cellulose, ether, ester and urethane derivatives of cellulose, particularly cellulose monoacetate, xyloglucans and galactomannans, particularly Locust Bean gum.
- It is preferred that the polysaccharide has a total number of sugar units from 10 to 7000, although this figure will be dependent on the type of polysaccharide chosen, at least to some extent.
- In the case of cellulose and water-soluble modified celluloses, the total number of sugar units is preferably from 50 to 1000, more preferably 50 to 750 and especially 200 to 300. The preferred molecular weight of such polysaccharides is from 10 000 to 150 000.
- In the case of cellulose monoacetate, the total number of sugar units is from 10 to 200, preferably 100 to 150. The preferred molecular weight is from 10 000 to 20 000.
- In the case of Locust Bean gum, the total number of sugar units is preferably from 50 to 7000. The preferred molecular weight is from 10 000 to 1000 000.
- In the case of xyloglucan, the total number of sugar units is preferably from 1000 to 3000. the preferred molecular weight is from 250 000 to 600 000.
- The polysaccharide can be linear, like in hydroxyalkyl cellulose, it can have an alternating repeat like in carrageenan, it can have an interrupted repeat like in pectin, it can be a block copolymer like in alginate, it can be branched like in dextran, or it can have a complex repeat like in xanthan. Descriptions of the polysaccharides are given in "An introduction to Polysaccharide Biotechnology", by M. Tombs and S. E. Harding, T.J. Press 1998.
-
-
- in which each SU represents a sugar unit in a polysaccharide backbone;
- a represents the number of unsubstituted sugar units as a percentage of the total number of sugar units and is in the range from 0 to 99.9%, preferably 65 to 99%, more preferably 80 to 99%;
- b represents the number of substituted sugar units as a percentage of the total number of sugar units and is in the range from 0.1 to 100%, preferably 1 to 35%, more preferably 1 to 20%;
- m represents the degree of substitution per sugar unit and is from 1 to 3;
- L represents an ester or ether linkage; and
- R1 represents an alkyl group which is a branched or unbranched saturated hydrocarbon group which contains from 1 to 12 carbon atoms, substituted by a group selected from - OH, -CO-OR2 and -SO3-R2 where R2 represents hydrogen atom or an alkali metal, preferably sodium or potassium atom.
- Preferably, L represents a group -O-CO- or -O-.
- It is preferred that the polysaccharide backbone in the polymers is β-linked, preferably β-1,4-linked.
- Preferably, the polysaccharide backbone is selected from the group consisting of cellulose, cellulose derivatives (preferably cellulose sulphate, cellulose acetate, sulphoethyl cellulose, cyanoethyl cellulose, methyl cellulose, ethyl cellulose, carboxymethylcellulose, hydroxyethylcellulose or hydroxypropylcellulose), xyloglucans (preferably those derived from Tamarind seed gum), glucomannans (preferably Konjac glucomannan), galactomannans (preferably Locust Bean gum, Guar gum and Xanthan gum), chitosan and chitosan salts. It is especially preferred that the polysaccharide backbone is Locust Bean gum or xyloglucan.
-
- wherein each R8 is independently selected from C1-20 (preferably C1-6) alkyl, C2-20 (preferably C2-6) alkenyl (e.g. vinyl) and C5-7 aryl (e.g. phenyl) any of which is optionally substituted by one or more substituents independently selected from C1-4 alkyl, C1-12 (preferably C1-4) alkoxy, hydroxyl, vinyl and phenyl groups;
- each R9 is independently selected from hydrogen and groups R8 as hereinbefore defined;
- R10 is a bond or is selected from C1-4 alkylene, C2-4 alkenylene and C5-7 arylene (e.g. phenylene) groups, the carbon atoms in any of these being optionally substituted by one or more substituents independently selected from C1-12 (preferably C1-4) alkoxy, vinyl, hydroxyl, halo and amine groups;
- each R11 is independently selected from hydrogen, counter cations such as alkali metal (preferably Na) or
- R12 is selected from C1-20 (preferably C1-6) alkyl, C2-20 (preferably C2-6) alkenyl (e.g. vinyl) and C5-7 aryl (e.g. phenyl), any of which is optionally substituted by one or more substituents independently selected from C1-4 alkyl, C1-12 (preferably C1-4) alkoxy, hydroxyl, carboxyl, cyano, sulfonato, vinyl and phenyl groups;
- x is from 1 to 3; and
- groups R which together with the oxygen atom forming the linkage to the respective saccharide ring forms an ester or hemi-ester group of a tricarboxylic- or higher polycarboxylic- or other complex acid such as citric acid, an amino acid, a synthetic amino acid analogue or a protein;
- any remaining R groups being selected from hydrogen and ether substituents.
- It is particularly preferred that R12 is a methyl, ethyl, phenyl, hydroxyethyl, hydroxypropyl, carboxymethyl, sulphoethyl or cyanoethyl group.
- For the avoidance of doubt, as already mentioned, in formula (II), some of the R groups may optionally have one or more structures, for example as hereinbefore described. For example, one or more R groups may simply be hydrogen or an alkyl group.
- Preferred groups may for example be independently selected from one or more of acetate, propanoate, trifluoroacetate, 2-(2-hydroxy-1-oxopropoxy) propanoate, lactate, glycolate, pyruvate, crotonate, isovalerate cinnamate, formate, salicylate, carbamate, methylcarbamate, benzoate, gluconate, methanesulphonate, toluene, sulphonate, groups and hemiester groups of fumaric, malonic, itaconic, oxalic, maleic, succinic, tartaric, aspartic, glutamic, and malic acids.
- Particularly preferred such groups are the monoacetate, hemisuccinate, and 2-(2-hydroxy-1-oxopropoxy)propanoate.
The term "monoacetate" is used herein to denote those acetates with the degree of substitution of about 1 or less on a cellulose or other β-1,4 polysaccharide backbone. Thus, "cellulose monoacetate" refers to a molecule that has acetate esters in a degree of substitution of about 1.1 or less, preferably about 1.1 to about 0.5. "Cellulose triacetate" refers to a molecule that has acetate esters in a degree of substitution of about 2.7 to 3. - Cellulose esters of hydroxyacids can be obtained using the acid anhydride in acetic acid solution at 20-30°C and in any case below 50°C. When the product has dissolved the liquid is poured into water. Tri-esters can be converted to secondary products as with the triacetate. Glycollic and lactic ester are most common.
- Cellulose glycollate may also be obtained from cellulose chloracetate (
GB-A-320 842 - An alternative method of preparing cellulose esters consists in the partial displacement of the acid radical in a cellulose ester by treatment with another acid of higher ionisation constant (
FR-A-702 116 - Multiple esters are prepared by variations of this process. A simple ester of cellulose, e.g. the acetate, is dissolved in a mixture of two (or three) organic acids, each of which has an ionisation constant greater than that of acetic acid (1.82 x 10-5). With solid acids suitable solvents such as propionic acid, dioxan and ethylene dichloride are used. If a mixed cellulose ester is treated with an acid this should have an ionisation constant greater than that of either of the acids already in combination.
- A cellulose acetate-lactate-pyruvate is prepared from cellulose acetate, 40 per cent. acetyl (100 g.), in a bath of 125 ml. pyruvic acid and 125 ml. of 85 per cent. lactic acid by heating at 100°C for 18 hours. The product is soluble in water and is precipitated and washed with ether-acetone. M.p. 230-250°C.
- It is preferred that m is from 1 to 2, preferably 1.
- The polymers used in the present invention may be synthesised by a variety of routes which are well known to those skilled in the art of polymer chemistry. For instance, carboxyalkyl ether-linked polymers can be made by reacting a polysaccharide with a suitable haloalkanoic acid, carboxyalkyl ester-linked polymers can be made by reacting a polysaccharide with a suitable anhydride, such as succinic anhydride, and sulfoalkyl ether-linked polymers can be made by reacting a polysaccharide with a suitable alkenyl sulphonic acid.
- The substituted polysaccharide according to the present invention may be incorporated into compositions containing only a diluent (which may comprise solid and/or liquid) and/or also comprising an active ingredient. The compound is typically included in said compositions at levels of from 0.01% to 25% by weight, preferably from 0.05% to 15%, more preferably from 0.1% to 10%, especially from 0.1% to 5% and most preferably from 0.5% to 3%.
- The active ingredient in the compositions is preferably a surface active agent or a fabric conditioning agent. More than one active ingredient may be included. For some applications a mixture of active ingredients may be used.
- The compositions of the invention may be in any physical form e.g. a solid such as a powder or granules, a tablet, a solid bar, a paste, gel or liquid, especially, an aqueous based liquid. In particular the compositions may be used in laundry compositions, especially in liquid, powder or tablet laundry composition.
- The compositions of the present invention are preferably laundry compositions, especially main wash (fabric washing) compositions or rinse-added softening compositions. The main wash compositions may include a fabric softening agent and rinse-added fabric softening compositions may include surface-active compounds, particularly non-ionic surface-active compounds, if appropriate.
- The detergent compositions of the invention may contain a surface-active compound (surfactant) which may be chosen from soap and non-soap anionic, cationic, non-ionic, amphoteric and zwitterionic surface-active compounds and mixtures thereof. Many suitable surface-active compounds are available and are fully described in the literature, for example, in "Surface-Active Agents and Detergents", Volumes I and II, by Schwartz, Perry and Berch.
- The preferred detergent-active compounds that can be used are soaps and synthetic non-soap anionic and non-ionic compounds.
- The compositions of the invention may contain linear alkylbenzene sulphonate, particularly linear alkylbenzene sulphonates having an alkyl chain length of C8-C15. It is preferred if the level of linear alkylbenzene sulphonate is from 0 wt% to 30 wt%, more preferably 1 wt% to 25 wt%, most preferably from 2 wt% to 15 wt%.
- The compositions of the invention may contain other anionic surfactants in amounts additional to the percentages quoted above. Suitable anionic surfactants are well-known to those skilled in the art. Examples include primary and secondary alkyl sulphates, particularly C8-C15 primary alkyl sulphates; alkyl ether sulphates; olefin sulphonates; alkyl xylene sulphonates; dialkyl sulphosuccinates; and fatty acid ester sulphonates. Sodium salts are generally preferred.
- The compositions of the invention may also contain non-ionic surfactant. Nonionic surfactants that may be used include the primary and secondary alcohol ethoxylates, especially the C8-C20 aliphatic alcohols ethoxylated with an average of from 1 to 20 moles of ethylene oxide per mole of alcohol, and more especially the C10-C15 primary and secondary aliphatic alcohols ethoxylated with an average of from 1 to 10 moles of ethylene oxide per mole of alcohol. Non-ethoxylated nonionic surfactants include alkylpolyglycosides, glycerol monoethers, and polyhydroxyamides (glucamide).
- It is preferred if the level of non-ionic surfactant is from 0 wt% to 30 wt%, preferably from 1 wt% to 25 wt%, most preferably from 2 wt% to 15 wt%.
- Any conventional fabric conditioning agent may be used in the compositions of the present invention. The conditioning agents may be cationic or non-ionic. If the fabric conditioning compound is to be employed in a main wash detergent composition the compound will typically be non-ionic. For use in the rinse phase, typically they will be cationic. They may for example be used in amounts from 0.5% to 35%, preferably from 1% to 30% more preferably from 3% to 25% by weight of the composition.
- Preferably the fabric conditioning agent(s) have two long chain alkyl or alkenyl chains each having an average chain length greater than or equal to C16. Most preferably at least 50% of the long chain alkyl or alkenyl groups have a chain length of C18 or above. It is preferred if the long chain alkyl or alkenyl groups of the fabric conditioning agents are predominantly linear.
- The fabric conditioning agents are preferably compounds that provide excellent softening, and are characterised by a chain melting Lβ to Lα transition temperature greater than 25°C, preferably greater than 35°C, most preferably greater than 45°C. This Lβ to Lα transition can be measured by DSC as defined in " Handbook of Lipid Bilayers, D Marsh, CRC Press, Boca Raton, Florida, 1990 (pages 137 and 337).
- Substantially insoluble fabric conditioning compounds in the context of this invention are defined as fabric conditioning compounds having a solubility less than 1 x 10-3 wt % in deminerailised water at 20°C. Preferably the fabric softening compounds have a solubility less than 1 x 10-4 wt %, most preferably less than 1 x 10-8 to 1 x 10-6. Preferred cationic fabric softening agents comprise a substantially water insoluble quaternary ammonium material comprising a single alkyl or alkenyl long chain having an average chain length greater than or equal to C20 or, more preferably, a compound comprising a polar head group and two alkyl or alkenyl chains having an average chain length greater than or equal to C14.
- Preferably, the cationic fabric softening agent is a quaternary ammonium material or a quaternary ammonium material containing at least one ester group. The quaternary ammonium compounds containing at least one ester group are referred to herein as ester-linked quaternary ammonium compounds.
- As used in the context of the quarternary ammonium cationic fabric softening agents, the term 'ester group', includes an ester group which is a linking group in the molecule.
- It is preferred for the ester-linked quaternary ammonium compounds to contain two or more ester groups. In both monoester and the diester quaternary ammonium compounds it is preferred if the ester group(s) is a linking group between the nitrogen atom and an alkyl group. The ester groups(s) are preferably attached to the nitrogen atom via another hydrocarbyl group.
- Also preferred are quaternary ammonium compounds containing at least one ester group, preferably two, wherein at least one higher molecular weight group containing at least one ester group and two or three lower molecular weight groups are linked to a common nitrogen atom to produce a cation and wherein the electrically balancing anion is a halide, acetate or lower alkosulphate ion, such as chloride or methosulphate. The higher molecular weight substituent on the nitrogen is preferably a higher alkyl group, containing 12 to 28, preferably 12 to 22, e.g. 12 to 20 carbon atoms, such as coco-alkyl, tallowalkyl, hydrogenated tallowalkyl or substituted higher alkyl, and the lower molecular weight substituents are preferably lower alkyl of 1 to 4 carbon atoms, such as methyl or ethyl, or substituted lower alkyl. One or more of the said lower molecular weight substituents may include an aryl moiety or may be replaced by an aryl, such as benzyl, phenyl or other suitable substituents. Preferably the quaternary ammonium material is a compound having two C12-C22 alkyl or alkenyl groups connected to a quaternary ammonium head group via at least one ester link, preferably two ester links or a compound comprising a single long chain with an average chain length equal to or greater than C20.
- More preferably, the quaternary ammonium material comprises a compound having two long chain alkyl or alkenyl chains with an average chain length equal to or greater than C14. Even more preferably each chain has an average chain length equal to or greater than C16. Most preferably at least 50% of each long chain alkyl or alkenyl group has a chain length of C18. It is preferred if the long chain alkyl or alkenyl groups are predominantly linear.
-
- wherein T is
- w is an integer from 1-5 or is 0; and
- y is an integer from 1-5.
- It is especially preferred that each R20 group is methyl and w is 1 or 2.
- It is advantageous for environmental reasons if the quaternary ammonium material is biologically degradable.
- Preferred materials of this class such as 1,2 bis[hardened tallowoyloxy]-3-trimethylammonium propane chloride and their method of preparation are, for example, described in
US-A-4 137 180 . Preferably these materials comprise small amounts of the corresponding monoester as described inUS-A-4 137 180 for example 1-hardened tallowoyloxy-2-hydroxy-3-trimethylammonium propane chloride. -
- wherein T is
- wherein R20, R21, w, and Y- are as defined above.
- Of the compounds of formula (B), di-(tallowyloxyethyl)-dimethyl ammonium chloride, available from Hoechst, is the most preferred. Di-(hardened tallowyloxyethyl)dimethyl ammonium chloride, ex Hoechst and di-(tallowyloxyethyl)-methyl hydroxyethyl methosulphate are also preferred.
-
- A preferred material of formula (C) is di-hardened tallow-diethyl ammonium chloride, sold under the Trademark Arquad 2HT.
- The optionally ester-linked quaternary ammonium material may contain optional additional components, as known in the art, in particular, low molecular weight solvents, for instance isopropanol and/or ethanol, and co-actives such as nonionic softeners, for example fatty acid or sorbitan esters.
- The compositions of the invention, when used as main wash fabric washing compositions, will generally also contain one or more detergency builders. The total amount of detergency builder in the compositions will typically range from 5 to 80 wt%, preferably from 10 to 60 wt%.
- It is also possible to include certain mono-alkyl cationic surfactants which can be used in main-wash compositions for fabrics. Cationic surfactants that may be used include quaternary ammonium salts of the general formula R1R2R3R4N+ X-wherein the R groups are long or short hydrocarbon chains, typically alkyl, hydroxyalkyl or ethoxylated alkyl groups, and X is a counter-ion (for example, compounds in which R1 is a C8-C22 alkyl group, preferably a C8-C10 or C12-C14 alkyl group, R2 is a methyl group, and R3 and R4, which may be the same or different, are methyl or hydroxyethyl groups); and cationic esters (for example, choline esters).
- The choice of surface-active compound (surfactant), and the amount present, will depend on the intended use of the detergent composition. In fabric washing compositions, different surfactant systems may be chosen, as is well known to the skilled formulator, for handwashing products and for products intended for use in different types of washing machine.
- The total amount of surfactant present will also depend on the intended end use and may be as high as 60 wt%, for example, in a composition for washing fabrics by hand. In compositions for machine washing of fabrics, an amount of from 5 to 40 wt% is generally appropriate. Typically the compositions will comprise at least 2 wt% surfactant e.g. 2-60%, preferably 15-40% most preferably 25-35%.
- Detergent compositions suitable for use in most automatic fabric washing machines generally contain anionic non-soap surfactant, or non-ionic surfactant, or combinations of the two in any suitable ratio, optionally together with soap.
- The compositions of the invention, when used as main wash fabric washing compositions, will generally also contain one or more detergency builders. The total amount of detergency builder in the compositions will typically range from 5 to 80 wt%, preferably from 10 to 60 wt%.
- Inorganic builders that may be present include sodium carbonate, if desired in combination with a crystallisation seed for calcium carbonate, as disclosed in
GB 1 437 950 GB 1 473 201 (Henkel GB 1 473 202 (Henkel GB 1 470 250 EP 164 514B - The compositions of the invention preferably contain an alkali metal, preferably sodium, aluminosilicate builder. Sodium aluminosilicates may generally be incorporated in amounts of from 10 to 70% by weight (anhydrous basis), preferably from 25 to 50 wt%.
- The alkali metal aluminosilicate may be either crystalline or amorphous or mixtures thereof, having the general formula: 0.8-1.5 Na2O. Al2O3. 0.8-6 SiO2
- These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g. The preferred sodium aluminosilicates contain 1.5-3.5 SiO2 units (in the formula above). Both the amorphous and the crystalline materials can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature. Suitable crystalline sodium aluminosilicate ion-exchange detergency builders are described, for example, in
GB 1 429 143 - The zeolite may be the commercially available zeolite 4A now widely used in laundry detergent powders. However, according to a preferred embodiment of the invention, the zeolite builder incorporated in the compositions of the invention is maximum aluminium zeolite P (zeolite MAP) as described and claimed in
EP 384 070A - Especially preferred is zeolite MAP having a silicon to aluminium ratio not exceeding 1.07, more preferably about 1.00. The calcium binding capacity of zeolite MAP is generally at least 150 mg CaO per g of anhydrous material.
- Organic builders that may be present include polycarboxylate polymers such as polyacrylates, acrylic/maleic copolymers, and acrylic phosphinates; monomeric polycarboxylates such as citrates, gluconates, oxydisuccinates, glycerol mono-, di and trisuccinates, carboxymethyloxy succinates, carboxymethyloxymalonates, dipicolinates, hydroxyethyliminodiacetates, alkyl- and alkenylmalonates and succinates; and sulphonated fatty acid salts. This list is not intended to be exhaustive.
- Especially preferred organic builders are citrates, suitably used in amounts of from 5 to 30 wt%, preferably from 10 to 25 wt%; and acrylic polymers, more especially acrylic/maleic copolymers, suitably used in amounts of from 0.5 to 15 wt%, preferably from 1 to 10 wt%.
- Builders, both inorganic and organic, are preferably present in alkali metal salt, especially sodium salt, form. Compositions according to the invention may also suitably contain a bleach system. Fabric washing compositions may desirably contain peroxy bleach compounds, for example, inorganic persalts or organic peroxyacids, capable of yielding hydrogen peroxide in aqueous solution.
- Suitable peroxy bleach compounds include organic peroxides such as urea peroxide, and inorganic persalts such as the alkali metal perborates, percarbonates, perphosphates, persilicates and persulphates. Preferred inorganic persalts are sodium perborate monohydrate and tetrahydrate, and sodium percarbonate.
- Especially preferred is sodium percarbonate having a protective coating against destabilisation by moisture. Sodium percarbonate having a protective coating comprising sodium metaborate and sodium silicate is disclosed in
GB 2 123 044B - The peroxy bleach compound is suitably present in an amount of from 0.1 to 35 wt%, preferably from 0.5 to 25 wt%. The peroxy bleach compound may be used in conjunction with a bleach activator (bleach precursor) to improve bleaching action at low wash temperatures. The bleach precursor is suitably present in an amount of from 0.1 to 8 wt%, preferably from 0.5 to 5 wt%.
- Preferred bleach precursors are peroxycarboxylic acid precursors, more especially peracetic acid precursors and pernoanoic acid precursors. Especially preferred bleach precursors suitable for use in the present invention are N,N,N',N',-tetracetyl ethylenediamine (TAED) and sodium nonanoyloxybenzene sulphonate (SNOBS). The novel quaternary ammonium and phosphonium bleach precursors disclosed in
US 4 751 015 andUS 4 818 426 (Lever Brothers Company) andEP 402 971A EP 284 292A EP 303 520A (Kao - The bleach system can be either supplemented with or replaced by a peroxyacid. examples of such peracids can be found in
US 4 686 063 andUS 5 397 501 (Unilever). A preferred example is the imido peroxycarboxylic class of peracids described inEP A 325 288 EP A 349 940 DE 382 3172 andEP 325 289 - A bleach stabiliser (transition metal sequestrant) may also be present. Suitable bleach stabilisers include ethylenediamine tetra-acetate (EDTA), the polyphosphonates such as Dequest (Trade Mark) and non-phosphate stabilisers such as EDDS (ethylene diamine di-succinic acid). These bleach stabilisers are also useful for stain removal especially in products containing low levels of bleaching species or no bleaching species.
- An especially preferred bleach system comprises a peroxy bleach compound (preferably sodium percarbonate optionally together with a bleach activator), and a transition metal bleach catalyst as described and claimed in
EP 458 397A EP 458 398A EP 509 787A (Unilever - The compositions according to the invention may also contain one or more enzyme(s).
- Suitable enzymes include the proteases, amylases, cellulases, oxidases, peroxidases and lipases usable for incorporation in detergent compositions. Preferred proteolytic enzymes (proteases) are, catalytically active protein materials which degrade or alter protein types of stains when present as in fabric stains in a hydrolysis reaction. They may be of any suitable origin, such as vegetable, animal, bacterial or yeast origin.
- Proteolytic enzymes or proteases of various qualities and origins and having activity in various pH ranges of from 4-12 are available and can be used in the instant invention. Examples of suitable proteolytic enzymes are the subtilins which are obtained from particular strains of B. Subtilis B. licheniformis, such as the commercially available subtilisins Maxatase (Trade Mark), as supplied by Gist Brocades N.V., Delft, Holland, and Alcalase (Trade Mark), as supplied by Novo Industri A/S, Copenhagen, Denmark.
- Particularly suitable is a protease obtained from a strain of Bacillus having maximum activity throughout the pH range of 8-12, being commercially available, e.g. from Novo Industri A/S under the registered trade-names Esperase (Trade Mark) and Savinase (Trade-Mark). The preparation of these and analogous enzymes is described in
GB 1 243 785 - Detergency enzymes are commonly employed in granular form in amounts of from about 0.1 to about 3.0 wt%. However, any suitable physical form of enzyme may be used.
- The compositions of the invention may contain alkali metal, preferably sodium carbonate, in order to increase detergency and ease processing. Sodium carbonate may suitably be present in amounts ranging from 1 to 60 wt%, preferably from 2 to 40 wt%. However, compositions containing little or no sodium carbonate are also within the scope of the invention.
- Powder flow may be improved by the incorporation of a small amount of a powder structurant, for example, a fatty acid (or fatty acid soap), a sugar, an acrylate or acrylate/maleate copolymer, or sodium silicate. One preferred powder structurant is fatty acid soap, suitably present in an amount of from 1 to 5 wt%.
- Other materials that may be present in detergent compositions of the invention include sodium silicate; antiredeposition agents such as cellulosic polymers; soil release polymers; inorganic salts such as sodium sulphate; lather control agents or lather boosters as appropriate; proteolytic and lipolytic enzymes; dyes; coloured speckles; foam controllers and decoupling polymers. Further additional ingredients include surfactants, detergency builders, bleaches, transition metal sequestrants, enzymes, fabric softening and/or conditioning agents, lubricants for inhibition of fibre damage and/or for colour care and/or for crease reduction and/or for ease of ironing, UV absorbers such as fluorescers and photofading inhibitors, for example sunscreens/UV inhibitors and/or anti-oxidants, fungicides, insect repellents and/or insecticides, perfumes, dye fixatives, waterproofing agents, deposition aids, flocculants, anti-redeposition agents and soil release agents. These lists are not intended to be exhaustive. However, many of these ingredients will be better delivered as benefit agent groups in materials according to the first aspect of the invention.
- The detergent composition when diluted in the wash liquor (during a typical wash cycle) will typically give a pH of the wash liquor from 7 to 10.5 for a main wash detergent.
- Particulate detergent compositions are suitably prepared by spray-drying a slurry of compatible heat-insensitive ingredients, and then spraying on or post-dosing those ingredients unsuitable for processing via the slurry. The skilled detergent formulator will have no difficulty in deciding which ingredients should be included in the slurry and which should not.
- Particulate detergent compositions of the invention preferably have a bulk density of at least 4.00 g/1litre, more preferably at least 500 g/litre. Especially preferred compositions have bulk densities of at least 650 g/litre, more preferably at least 700 g/litre.
- Such powders may be prepared either by post-tower densification of spray-dried powder, or by wholly non-tower methods such as dry mixing and granulation; in both cases a high-speed mixer/granulator may advantageously be used. Processes using high-speed mixer/granulators are disclosed, for example, in
EP 340 013A EP 367 339A EP 390 251A EP 420 317A - Liquid detergent compositions can be prepared by admixing the essential and optional ingredients thereof in any desired order to provide compositions containing components in the requisite concentrations. Liquid compositions according to the present invention can also be in compact form which means it will contain a lower level of water compared to a conventional liquid detergent.
- The substrate may be any substrate onto which it is desirable to deposit a polymer and which is subjected to treatment such as a washing or rinsing process.
- In particular, the substrate may be a textile fabric, fabric, preferably of cotton.
- It has been found that particular good results are achieved when using a natural fabric substrate such as cotton, or fabric blends containing cotton.
- The treatment of the substrate with the material of the invention can be made by any suitable method such as washing, soaking or rinsing of the substrate.
- Typically the treatment will involve a washing or rinsing method such as treatment in the main wash or rinse cycle of a washing machine and involves contacting the substrate with an aqueous medium comprising the material of the invention.
- The present invention will now be explained in more detail by reference to the following non-limiting examples:-
- Locust Bean Gum (MUD 246B, ex Rhodia) (5g, 30.84 mmol of anhydrosugar units) was dispersed in a mixture of demineralised water (12 ml) and propan-2-ol (30 ml) with vigorous stirring in a 2-necked 100ml round bottom flask fitted with a mechanical stirrer. After heating the solution to 70°C, sodium hydroxide (0.625g, 15.6 mmol) was added and the mixture stirred for 15 minutes at the reaction temperature. Sodium chloroacetate (1.8g, 15 mmol) was then added as a solution in demineralised water (2 ml) and the reaction mixture vigorously stirred for 15 minutes at 70°C. The same protocol of adding both reagents was repeated three times and the reaction mixture stirred for 6 hours whilst maintaining the temperature at 70°C. The reaction mixture was then poured into methanol (200ml) and the resultant white precipitate collected on a sinter funnel. The product was washed repeatedly with methanol to remove glycolic acid. The product was then re-dispersed into hot demineralised water, resulting in a highly viscous solution. This was freeze dried resulting in 4.75g of white material.
IR: 1598cm-1 (s, carboxylate ion)
1 H-NMR (500MHz): - Prior to analysis the sample was de-polymerised by acid hydrolysis using a solution of 20% DCl in D2O heated for 1 hour at 80°C:
- 4-4.8 ppm (6H, sugar H); 4.94 ppm (0.32H, glycolate CH2); 5.25-5.95 ppm (1H, anomeric H). This corresponds to a degree of substitution by glycolate ester groups of 0.15.
- Locust Bean Gum (MUD 246B, ex Rhodia) (5g, 30.84 mmol of anhydrosugar units) was dispersed in a mixture of demineralised water (12 ml) and propan-2-ol (30 ml) with vigorous stirring in a 2-necked 100ml round bottom flask fitted with a mechanical stirrer. After heating the solution to 70°C, sodium hydroxide (0.625g, 15.6 mmol) was added as a solution in water (2 ml) and the mixture stirred for 15 minutes at the reaction temperature. Vinyl sulfonic acid (8 ml of a 25% aqueous solution, 15.6 mmol) was added and the reaction mixture vigorously stirred for 15 minutes at 70°C. The same protocol of adding both reagents was repeated three times and the reaction mixture stirred for 6 hours whilst maintaining the temperature at 70°C. The reaction mixture was then poured into methanol (200ml) and the resultant white precipitate collected on a sinter funnel. The product was washed repeatedly with methanol and then re-dispersed into hot demineralised water. This was freeze dried resulting in 6.25g of creamy coloured material.
IR: 1079cm-1, 1155cm-1 (s, sulfonic acid salts). - A 9% w/v solution of lithium chloride in anhydrous dimethylsulfoxide (DMSO) was prepared by heating 100 ml of the solvent to 150°C in a 2-necked round bottom flask fitted with a mechanical stirrer. Locust Bean Gum (MUD 246B, ex Rhodia) (5g, 30.84 mmol of anhydrosugar units) was added whilst maintaining the temperature until a highly viscous, homogeneous solution had formed. After cooling the solution to 40°C, succinic anhydride (4.5g, 45 mmol) was added as a solution in anhydrous dimethyl sulphoxide (DMSO) (10ml) followed by the addition of 4-(dimethylamino)pyridine (1.15g, 9.4 mmol), also as a solution in DMSO (10ml). The mixture was stirred at 40°C for 16 hours. The reaction mixture was then poured into methanol (300ml) and the resultant white precipitate collected on a sinter funnel After repeated washing with methanol the product was dried, then re-dispersed into hot demineralised water. This was freeze dried resulting in 4.54g of creamy coloured material.
IR: 1720cm-1 (vs, aliphatic ester carbonyl) - Locust Bean Gum-succinate, as prepared above (1.355g) was added to a conical flask, to which 25ml of 1M sodium hydroxide solution was added. This was repeated with a sample of the unmodified Locust Bean Gum (0.5g) as a blank. The flasks were stoppered and left at ambient temperature overnight. Each flask was then titrated with 1M hydrochloric acid solution using phenolphthalein as indicator. The amount of acid required for neutralisation allows the number of the succinic acid molecules present to be calculated. For this example, the Locust Bean Gum derivative was found to be 53% succinoylated.
-
- copolymer with a backbone of (1,4)-linked β-D-mannose units having side stubs of (1,6)-linked α-D-galactose groups in a ratio of mannose to galactose = 4 :1
-
- copolymer with a β-D-glucose-(1,4)-β-D-glucose backbone containing β-D-galactose-(1,2)-α-D-xylose-(1,6)-β-D-glucose side chains
- Per tray - 400 -500 cm3 of copolymer solution (sufficient to cover cloth)
- 1 piece of cotton, 12" x 9", of known weight, marked into 12 3" x 3" squares
- soak for 30 mins.
- hand wring to remove excess polymer solution and reweigh (wet).
- fabric dried overnight on a flat surface at ambient temperature and then cut into 3" x 3" squares.
-
- pipette 0.15 cm3 of a 15% dirty motor oil (DMO) in toluene solution into the centre of each piece of fabric in a fume cupboard.
- allow to wick at ambient, temperature overnight (cloths should be left in the fume cupboard for at least 2 hrs).
- Per pot
- 1 litre of wash liquor (1) or demineralised water.
- reference pots 8 untreated cloths.
- sample pots 8 polymer treated cloths.
- wash at 30°C for 15 mins, tergotometer speed 72rpm.
- rinse, 1 litre demineralised water, 5 mins.
- fabric dried overnight on a flat surface at ambient temperature.
-
- reflectance of cloths is measured before staining/after padding, after staining/before washing and after washing.
- place 3 pieces of clean cotton cloth behind the sample being measured.
- take 1 reading per piece of fabric.
- (1)
- 10cm3 LAS stock solution (12.3 g 48% LAS paste in 100 cm3 demineralised water).
- 5 cm3 CaCl2.2H2O stock solution (0.41g CaCl2,2H2O in 100 cm3 demineralised water).
- 20 cm3 Solution A (30 g NaCl, 33g Na TPP and 37.5 g Na2CO3 in 1000 cm3 demineralised water) .
- make up to 1 litre with demineralised water.
- (1)
- LAS = linear alkylbenzene sulphonate
- NaTPP = Sodium tripolyphosphate
- Detergency used 0.5% w/w polymer
Δ R (Washed / Soiled) | ||
Sample | no surfactant +/- | surfactant +/- |
CONTROL 1 | 5.3 | 10.4 |
0.9 | 0.8 | |
CM-XG | 8.1 | 13.0 |
4:1 | 0.4 | 0.4 |
CM-XG | 8.0 | 13.0 |
3:1 | 0.6 | 0.6 |
CM-XG | 8.5 | 14.4 |
2:1 | 0.4 | 0.2 |
CM-XG | 8.5 | 12.9 |
1:1 | 0.4 | 0.3 |
CM-XG | 8.3 | 13.5 |
0.5:1 | 0.6 | 0.5 |
CM-LBG | 8.1 | 13.0 |
4:1 | 0.3 | 0.5 |
CM-LBG | 8.4 | 13.2 |
3:1 | 0.3 | 0.4 |
CM-LBG | 8.1 | 13.8 |
2:1 | 0.4 | 0.3 |
CM-LBG | 9.4 | 12.7 |
1:1 | 0.5 | 0.5 |
CM-LBG | 6.8 | 11.6 |
0.5:1 | 0.6 | 0.3 |
SU-XG | 6.6 | 11.9 |
53 | 0.5 | 0.6 |
SU-XG | 7.3 | 12.2 |
33 | 0.5 | 0.4 |
SU-XG | 8.4 | 11.3 |
26 | 0.3 | 0.3 |
SU-XG | 7.5 | 10.8 |
14 | 0.7 | 0.7 |
SU-XG | 7.3 | 11.8 |
10 | 0.4 | 0.4 |
SU-LBG | 8.0 | 10.6 |
10 | 0.4 | 0.2 |
SU-LBG | 7.6 | 11.1 |
8 | 0.4 | 0.6 |
SU-LBG | 8.1 | 12.4 |
5.5 | 0.4 | 0.3 |
SU-LBG | 7.5 | 10.9 |
3.8 | 0.3 | 0.7 |
SU-LBG | 7.9 | 12.4 |
1.9 | 0.2 | 0.6 |
Xyloglucan | 7.1 | 11.0 |
Locust Bean | 0.4 | 0.6 |
Gum | 5.2 | 10.1 |
0.5 | 0.4 |
Δ R (washed /Soiled) | ||
Sample | no Surfactant +/- | surfactant +/- |
Su-Et XG | 7.6 | 12.5 |
4:1 | 0.7 | 0.17 |
Su-Et XG | 7.6 | 12.4 |
3:1. | 0.5 | 0.5 |
Su-Et XG | 7.2 | 11.8 |
2:1 | 0.4 | 0.6 |
Su-Et XG | 6.7 | 12.3 |
1:1 | 0.6 | 0.4 |
Su-Et XG | 6.5 | 10.9 |
0.5:1 | 0.4 | 0.7 |
Su-Et LBG | 7.3 | 11.4 |
4:1 | 0.3 | 0.4 |
Su-Et LBG | 7.4 | 11.8 |
3:1 | 0.4 | 0.5 |
Su-Et LBG | 7.6 | 12.4 |
2:1 | 0.5 | 0.7 |
Su-Et LBG | 7.3 | 11.8 |
1:1 | 0.5 | 0.5 |
Su-Et LBG | 7.3 | 12.3 |
0.5:1 | 0.8 | 0.3 |
Control | 4.8 | 9.5 |
0.3 | 0.5 |
CM-XG = carboxymethylated xyloglucan CM-LBG = carboxymethylated Locust Bean Gum SU-XG = succinoylated xyloglucan SU-LBG = succinoylated Locust Bean Gum Su-Et XG = sulfoethylated xyloglucan Su-Et XG = sulfoethylated Locust Bean Gum |
Claims (7)
- Use of a polymer for promoting soil release during laundering of a textile fabric, characterised in that the polymer has the general formula I:-in which each SU represents a sugar unit in a polysaccharide backbone; the polysaccharide backbone being selected from the group consisting of xyloglucans, glucomannans, galactomannans;a represents the number of unsubstituted sugar units as a percentage of the total number of sugar units and is in the range from 0 to 99.9%, preferably 65 to 99%,more preferably 80 to 99%;b represents the number of substituted sugar units as a percentage of the total number of sugar units and is in the range from 0.1 to 100%, preferably 1 to 35%,more preferably 1 to 20%;m represents the degree of substitution per sugar unit and is from 1 to 3;L represents an ester or ether linkage;R1 represents and an alkyl group, which is a branched or unbranched saturated hydrocarbon group which contains from 1 to 12 carbon atoms substituted by a group selected from -OH, -CO-OR2 where R2 represents a hydrogen atom or an alkali metal, preferably a sodium or potassium, atom.
- Use according to claim 1 characterised in that L represents a group -O-CO- or -O-.
- Use according to any one of the preceding claims characterised in that the alkyl group is a C1-6 alkyl, preferably a C1-4 alkyl, group.
- Use according to any one of the preceding claims characterised in that R1 represents a hydroxy C1-4 alkyl, preferably a hydroxymethyl, group, a carboxy C1-6 alkyl, preferably a carboxy C1-4 alkyl, group or a sulfo C2-4 alkyl, preferably a sulfoethyl, group or a sodium salt thereof.
- Use according to any one of the preceding claims characterised in that -L-R1 represents a group selected from -O-CH2OH, -O-CH2CH2SO3H, -O-CH2-CO2H and -O-CO-CH2CH2CO2H and sodium salts thereof.
- Use according to any one of the preceding claims characterised in that the polysaccharide backbone is β-1,4-linked.
- Use according to any one of the preceding claims, characterised in that the polysaccharide backbone has a number average molecular weight from 10000 to 1000000.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10183587.4A EP2330178A3 (en) | 2001-11-09 | 2002-09-20 | Polymers for laundry applications |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0127036 | 2001-11-09 | ||
GB0127036A GB0127036D0 (en) | 2001-11-09 | 2001-11-09 | Polymers for laundry applications |
PCT/EP2002/010586 WO2003040279A1 (en) | 2001-11-09 | 2002-09-20 | Polymers for laundry applications |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10183587.4A Division EP2330178A3 (en) | 2001-11-09 | 2002-09-20 | Polymers for laundry applications |
EP10183587.4A Division-Into EP2330178A3 (en) | 2001-11-09 | 2002-09-20 | Polymers for laundry applications |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1442109A1 EP1442109A1 (en) | 2004-08-04 |
EP1442109B1 true EP1442109B1 (en) | 2018-04-25 |
Family
ID=9925546
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10183587.4A Withdrawn EP2330178A3 (en) | 2001-11-09 | 2002-09-20 | Polymers for laundry applications |
EP02774634.6A Expired - Lifetime EP1442109B1 (en) | 2001-11-09 | 2002-09-20 | Polymers for laundry applications |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10183587.4A Withdrawn EP2330178A3 (en) | 2001-11-09 | 2002-09-20 | Polymers for laundry applications |
Country Status (5)
Country | Link |
---|---|
EP (2) | EP2330178A3 (en) |
BR (1) | BR0213709B1 (en) |
ES (1) | ES2675289T3 (en) |
GB (1) | GB0127036D0 (en) |
WO (1) | WO2003040279A1 (en) |
Families Citing this family (206)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0313900D0 (en) * | 2003-06-16 | 2003-07-23 | Unilever Plc | Laundry treatment compositions |
GB0508882D0 (en) * | 2005-04-29 | 2005-06-08 | Unilever Plc | Polymers for laundry applications |
GB0508883D0 (en) * | 2005-04-29 | 2005-06-08 | Unilever Plc | Polymers for laundry applications |
SE529259C2 (en) | 2005-08-31 | 2007-06-12 | Ge Healthcare Bio Sciences Ab | Manufacture of chromatography matrices, a chromatography matrix, a liquid chromatography column, processes for isolating target compounds and the use of a chromatography matrix for liquid chromatography |
AR059389A1 (en) | 2005-10-28 | 2008-04-09 | Procter & Gamble | COMPOSITION CONTAINING ANIONICALLY MODIFIED CATECOL AND SUSPENSION POLYMERS |
PL1867708T3 (en) * | 2006-06-16 | 2017-10-31 | Procter & Gamble | Detergent compositions |
US9376648B2 (en) | 2008-04-07 | 2016-06-28 | The Procter & Gamble Company | Foam manipulation compositions containing fine particles |
WO2010105943A1 (en) | 2009-03-20 | 2010-09-23 | Henkel Ag & Co. Kgaa | Use of polymers comprising carboxyl groups in combination with bivalent cations for creating a protective layer |
DE102009001803A1 (en) | 2009-03-24 | 2010-09-30 | Henkel Ag & Co. Kgaa | Textile treatment agent, useful e.g. for the finishing of textile fabrics and for removing stains from textile fabrics, comprises polymers with carboxyl groups in a specific concentration and divalent cations in a specific concentration |
EP2501792A2 (en) | 2009-12-29 | 2012-09-26 | Novozymes A/S | Gh61 polypeptides having detergency enhancing effect |
JP5833576B2 (en) | 2010-02-25 | 2015-12-16 | ノボザイムス アクティーゼルスカブ | Variant of lysozyme and polynucleotide encoding the same |
EP2616483A1 (en) | 2010-09-16 | 2013-07-24 | Novozymes A/S | Lysozymes |
US20140024103A1 (en) | 2011-02-16 | 2014-01-23 | Astrid Benie | Detergent Compositions Comprising Metalloproteases |
WO2012110564A1 (en) | 2011-02-16 | 2012-08-23 | Novozymes A/S | Detergent compositions comprising m7 or m35 metalloproteases |
WO2012110563A1 (en) | 2011-02-16 | 2012-08-23 | Novozymes A/S | Detergent compositions comprising metalloproteases |
GB201103974D0 (en) | 2011-03-09 | 2011-04-20 | Reckitt Benckiser Nv | Composition |
MX349517B (en) | 2011-06-24 | 2017-08-02 | Novozymes As | Polypeptides having protease activity and polynucleotides encoding same. |
DK3543333T3 (en) | 2011-06-30 | 2022-02-14 | Novozymes As | METHOD FOR SCREENING ALFA AMYLASES |
US9000138B2 (en) | 2011-08-15 | 2015-04-07 | Novozymes A/S | Expression constructs comprising a Terebella lapidaria nucleic acid encoding a cellulase, host cells, and methods of making the cellulase |
ES2628190T3 (en) | 2011-09-22 | 2017-08-02 | Novozymes A/S | Polypeptides with protease activity and polynucleotides encoding them |
US9663775B2 (en) | 2011-11-25 | 2017-05-30 | Novozymes A/S | Polypeptides having lysozyme activity and polynucleotides encoding same |
WO2013076269A1 (en) | 2011-11-25 | 2013-05-30 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2013092635A1 (en) | 2011-12-20 | 2013-06-27 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
ES2887576T3 (en) | 2011-12-29 | 2021-12-23 | Novozymes As | Detergent compositions with lipase variants |
WO2013110766A1 (en) | 2012-01-26 | 2013-08-01 | Novozymes A/S | Use of polypeptides having protease activity in animal feed and detergents |
CN104114698A (en) | 2012-02-17 | 2014-10-22 | 诺维信公司 | Subtilisin variants and polynucleotides encoding same |
WO2013131964A1 (en) | 2012-03-07 | 2013-09-12 | Novozymes A/S | Detergent composition and substitution of optical brighteners in detergent compositions |
CN113201519A (en) | 2012-05-07 | 2021-08-03 | 诺维信公司 | Polypeptides having xanthan degrading activity and nucleotides encoding same |
EP2861749A1 (en) | 2012-06-19 | 2015-04-22 | Novozymes Bioag A/S | Enzymatic reduction of hydroperoxides |
AU2013279440B2 (en) | 2012-06-20 | 2016-10-06 | Novozymes A/S | Use of polypeptides having protease activity in animal feed and detergents |
CN104603265A (en) | 2012-08-22 | 2015-05-06 | 诺维信公司 | Detergent compositions comprising metalloproteases |
EP2888361A1 (en) | 2012-08-22 | 2015-07-01 | Novozymes A/S | Metalloprotease from exiguobacterium |
US9315791B2 (en) | 2012-08-22 | 2016-04-19 | Novozymes A/S | Metalloproteases from alicyclobacillus |
WO2014090940A1 (en) | 2012-12-14 | 2014-06-19 | Novozymes A/S | Removal of skin-derived body soils |
BR112015014396B1 (en) | 2012-12-21 | 2021-02-02 | Novozymes A/S | COMPOSITION, NUCLEIC ACID CONSTRUCTION OR EXPRESSION VECTOR, RECOMBINANT MICROORGANISM, METHODS OF IMPROVING THE NUTRITIONAL VALUE OF ANIMAL FEED, ANIMAL FEED ADDITIVE, AND USE OF ONE OR MORE PROTEASES |
EP2941485B1 (en) | 2013-01-03 | 2018-02-21 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
EP2970830B1 (en) | 2013-03-14 | 2017-12-13 | Novozymes A/S | Enzyme and inhibitor contained in water-soluble films |
EP2992076B1 (en) | 2013-05-03 | 2018-10-24 | Novozymes A/S | Microencapsulation of detergent enzymes |
US20160083703A1 (en) | 2013-05-17 | 2016-03-24 | Novozymes A/S | Polypeptides having alpha amylase activity |
EP3004315A2 (en) | 2013-06-06 | 2016-04-13 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
EP3013956B1 (en) | 2013-06-27 | 2023-03-01 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2014207224A1 (en) | 2013-06-27 | 2014-12-31 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
CN105358670A (en) | 2013-07-04 | 2016-02-24 | 诺维信公司 | Polypeptides with xanthan lyase activity having anti-redeposition effect and polynucleotides encoding same |
EP3309249B1 (en) | 2013-07-29 | 2019-09-18 | Novozymes A/S | Protease variants and polynucleotides encoding same |
CN105358686A (en) | 2013-07-29 | 2016-02-24 | 诺维信公司 | Protease variants and polynucleotides encoding same |
WO2015049370A1 (en) | 2013-10-03 | 2015-04-09 | Novozymes A/S | Detergent composition and use of detergent composition |
US10030239B2 (en) | 2013-12-20 | 2018-07-24 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
WO2015134729A1 (en) | 2014-03-05 | 2015-09-11 | Novozymes A/S | Compositions and methods for improving properties of non-cellulosic textile materials with xyloglucan endotransglycosylase |
US20160333292A1 (en) | 2014-03-05 | 2016-11-17 | Novozymes A/S | Compositions and Methods for Improving Properties of Cellulosic Textile Materials with Xyloglucan Endotransglycosylase |
CN106103708A (en) | 2014-04-01 | 2016-11-09 | 诺维信公司 | There is the polypeptide of alpha amylase activity |
EP3406697B1 (en) | 2014-04-11 | 2020-06-10 | Novozymes A/S | Detergent composition |
WO2015189371A1 (en) | 2014-06-12 | 2015-12-17 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2016001319A1 (en) | 2014-07-03 | 2016-01-07 | Novozymes A/S | Improved stabilization of non-protease enzyme |
CN106661566A (en) | 2014-07-04 | 2017-05-10 | 诺维信公司 | Subtilase variants and polynucleotides encoding same |
US10626388B2 (en) | 2014-07-04 | 2020-04-21 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
US10287562B2 (en) | 2014-11-20 | 2019-05-14 | Novoszymes A/S | Alicyclobacillus variants and polynucleotides encoding same |
CN107002057A (en) | 2014-12-04 | 2017-08-01 | 诺维信公司 | Liquid cleansing composition including ease variants |
EP3227444B1 (en) | 2014-12-04 | 2020-02-12 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
EP3608403A3 (en) | 2014-12-15 | 2020-03-25 | Henkel AG & Co. KGaA | Detergent composition comprising subtilase variants |
CN107002049A (en) | 2014-12-16 | 2017-08-01 | 诺维信公司 | Polypeptide with N acerylglucosamine oxidase actives |
US10400230B2 (en) | 2014-12-19 | 2019-09-03 | Novozymes A/S | Protease variants and polynucleotides encoding same |
US11518987B2 (en) | 2014-12-19 | 2022-12-06 | Novozymes A/S | Protease variants and polynucleotides encoding same |
EP3280791A1 (en) | 2015-04-10 | 2018-02-14 | Novozymes A/S | Laundry method, use of dnase and detergent composition |
CN108012544A (en) | 2015-06-18 | 2018-05-08 | 诺维信公司 | Subtilase variants and the polynucleotides for encoding them |
EP3106508B1 (en) | 2015-06-18 | 2019-11-20 | Henkel AG & Co. KGaA | Detergent composition comprising subtilase variants |
EP3317388B1 (en) | 2015-06-30 | 2019-11-13 | Novozymes A/S | Laundry detergent composition, method for washing and use of composition |
WO2017046260A1 (en) | 2015-09-17 | 2017-03-23 | Novozymes A/S | Polypeptides having xanthan degrading activity and polynucleotides encoding same |
EP3359658A2 (en) | 2015-10-07 | 2018-08-15 | Novozymes A/S | Polypeptides |
CN108291212A (en) | 2015-10-14 | 2018-07-17 | 诺维信公司 | Polypeptide variants |
US20180171318A1 (en) | 2015-10-14 | 2018-06-21 | Novozymes A/S | Polypeptides Having Protease Activity and Polynucleotides Encoding Same |
BR112018008454B1 (en) | 2015-10-28 | 2023-09-26 | Novozymes A/S | DETERGENT COMPOSITION COMPRISING VARIANTS OF AMYLASE AND PROTEASE, THEIR USE AND WASHING METHODS |
EP3380608A1 (en) | 2015-11-24 | 2018-10-03 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
CA3003536A1 (en) | 2015-12-07 | 2017-06-15 | Novozymes A/S | Polypeptides having beta-glucanase activity, polynucleotides encoding same and uses thereof in cleaning and detergent compositions |
WO2017129754A1 (en) | 2016-01-29 | 2017-08-03 | Novozymes A/S | Beta-glucanase variants and polynucleotides encoding same |
BR112018069220A2 (en) | 2016-03-23 | 2019-01-22 | Novozymes As | use of polypeptide that has dnase activity for tissue treatment |
WO2017174769A2 (en) | 2016-04-08 | 2017-10-12 | Novozymes A/S | Detergent compositions and uses of the same |
BR112018072282A2 (en) | 2016-04-29 | 2019-02-12 | Novozymes A/S | detergent compositions and uses thereof |
EP3464538A1 (en) | 2016-05-31 | 2019-04-10 | Novozymes A/S | Stabilized liquid peroxide compositions |
CA3024276A1 (en) | 2016-06-03 | 2017-12-07 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
US11203732B2 (en) | 2016-06-30 | 2021-12-21 | Novozymes A/S | Lipase variants and compositions comprising surfactant and lipase variant |
WO2018002261A1 (en) | 2016-07-01 | 2018-01-04 | Novozymes A/S | Detergent compositions |
EP3481949B1 (en) | 2016-07-05 | 2021-06-09 | Novozymes A/S | Pectate lyase variants and polynucleotides encoding same |
WO2018007573A1 (en) | 2016-07-08 | 2018-01-11 | Novozymes A/S | Detergent compositions with galactanase |
JP6858850B2 (en) | 2016-07-13 | 2021-04-14 | ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company | Bacillus CIBI DNase mutant and its use |
WO2018037062A1 (en) | 2016-08-24 | 2018-03-01 | Novozymes A/S | Gh9 endoglucanase variants and polynucleotides encoding same |
US11512300B2 (en) | 2016-08-24 | 2022-11-29 | Novozymes A/S | Xanthan lyase variants and polynucleotides encoding same |
CN109563451A (en) | 2016-08-24 | 2019-04-02 | 汉高股份有限及两合公司 | Detergent composition comprising GH9 endo-glucanase enzyme variants I |
AU2017317563B8 (en) | 2016-08-24 | 2023-03-23 | Henkel Ag & Co. Kgaa | Detergent compositions comprising xanthan lyase variants I |
EP3519547A1 (en) | 2016-09-29 | 2019-08-07 | Novozymes A/S | Spore containing granule |
US20210284933A1 (en) | 2016-10-25 | 2021-09-16 | Novozymes A/S | Detergent compositions |
CN110072986B (en) | 2016-11-01 | 2023-04-04 | 诺维信公司 | Multi-core particles |
EP3551740B1 (en) | 2016-12-12 | 2021-08-11 | Novozymes A/S | Use of polypeptides |
EP3601551A1 (en) | 2017-03-31 | 2020-02-05 | Novozymes A/S | Polypeptides having rnase activity |
US11208639B2 (en) | 2017-03-31 | 2021-12-28 | Novozymes A/S | Polypeptides having DNase activity |
US11053483B2 (en) | 2017-03-31 | 2021-07-06 | Novozymes A/S | Polypeptides having DNase activity |
US20200109352A1 (en) | 2017-04-04 | 2020-04-09 | Novozymes A/S | Polypeptide compositions and uses thereof |
CN114480034A (en) | 2017-04-04 | 2022-05-13 | 诺维信公司 | Glycosyl hydrolase |
EP3607039A1 (en) | 2017-04-04 | 2020-02-12 | Novozymes A/S | Polypeptides |
DK3385361T3 (en) | 2017-04-05 | 2019-06-03 | Ab Enzymes Gmbh | Detergent compositions comprising bacterial mannanases |
EP3385362A1 (en) | 2017-04-05 | 2018-10-10 | Henkel AG & Co. KGaA | Detergent compositions comprising fungal mannanases |
EP3607043A1 (en) | 2017-04-06 | 2020-02-12 | Novozymes A/S | Cleaning compositions and uses thereof |
US10968416B2 (en) | 2017-04-06 | 2021-04-06 | Novozymes A/S | Cleaning compositions and uses thereof |
CN110662829B (en) | 2017-04-06 | 2022-03-01 | 诺维信公司 | Cleaning composition and use thereof |
EP3607060B1 (en) | 2017-04-06 | 2021-08-11 | Novozymes A/S | Detergent compositions and uses thereof |
EP3607042A1 (en) | 2017-04-06 | 2020-02-12 | Novozymes A/S | Cleaning compositions and uses thereof |
EP3626809A1 (en) | 2017-04-06 | 2020-03-25 | Novozymes A/S | Cleaning compositions and uses thereof |
CA3058519A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions comprosing a dnase and a protease |
WO2018184818A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018206535A1 (en) | 2017-05-08 | 2018-11-15 | Novozymes A/S | Carbohydrate-binding domain and polynucleotides encoding the same |
EP3401385A1 (en) | 2017-05-08 | 2018-11-14 | Henkel AG & Co. KGaA | Detergent composition comprising polypeptide comprising carbohydrate-binding domain |
WO2018224544A1 (en) | 2017-06-08 | 2018-12-13 | Novozymes A/S | Compositions comprising polypeptides having cellulase activity and amylase activity, and uses thereof in cleaning and detergent compositions |
CN111108183A (en) | 2017-06-30 | 2020-05-05 | 诺维信公司 | Enzyme slurry composition |
WO2019038060A1 (en) | 2017-08-24 | 2019-02-28 | Henkel Ag & Co. Kgaa | Detergent composition comprising xanthan lyase variants ii |
CN111344404A (en) | 2017-08-24 | 2020-06-26 | 诺维信公司 | Xanthan gum lyase variants and polynucleotides encoding same |
US11624059B2 (en) | 2017-08-24 | 2023-04-11 | Henkel Ag & Co. Kgaa | Detergent compositions comprising GH9 endoglucanase variants II |
CA3070749A1 (en) | 2017-08-24 | 2019-02-28 | Novozymes A/S | Gh9 endoglucanase variants and polynucleotides encoding same |
US11414814B2 (en) | 2017-09-22 | 2022-08-16 | Novozymes A/S | Polypeptides |
US11286443B2 (en) | 2017-09-27 | 2022-03-29 | The Procter & Gamble Company | Detergent compositions comprising lipases |
US11746310B2 (en) | 2017-10-02 | 2023-09-05 | Novozymes A/S | Polypeptides having mannanase activity and polynucleotides encoding same |
BR112020006621A2 (en) | 2017-10-02 | 2020-10-06 | Novozymes A/S | polypeptides with mannanase activity and polynucleotides encoding the same |
WO2019076834A1 (en) | 2017-10-16 | 2019-04-25 | Novozymes A/S | Low dusting granules |
WO2019076833A1 (en) | 2017-10-16 | 2019-04-25 | Novozymes A/S | Low dusting granules |
WO2019076800A1 (en) | 2017-10-16 | 2019-04-25 | Novozymes A/S | Cleaning compositions and uses thereof |
US11866748B2 (en) | 2017-10-24 | 2024-01-09 | Novozymes A/S | Compositions comprising polypeptides having mannanase activity |
BR112020008251A2 (en) | 2017-10-27 | 2020-11-17 | Novozymes A/S | dnase variants |
CN111247245A (en) | 2017-10-27 | 2020-06-05 | 宝洁公司 | Detergent compositions comprising polypeptide variants |
DE102017125559A1 (en) | 2017-11-01 | 2019-05-02 | Henkel Ag & Co. Kgaa | CLEANSING COMPOSITIONS CONTAINING DISPERSINE II |
EP4379029A1 (en) | 2017-11-01 | 2024-06-05 | Novozymes A/S | Polypeptides and compositions comprising such polypeptides |
DE102017125560A1 (en) | 2017-11-01 | 2019-05-02 | Henkel Ag & Co. Kgaa | CLEANSING COMPOSITIONS CONTAINING DISPERSINE III |
WO2019086528A1 (en) | 2017-11-01 | 2019-05-09 | Novozymes A/S | Polypeptides and compositions comprising such polypeptides |
DE102017125558A1 (en) | 2017-11-01 | 2019-05-02 | Henkel Ag & Co. Kgaa | CLEANING COMPOSITIONS CONTAINING DISPERSINE I |
US11505767B2 (en) | 2017-11-01 | 2022-11-22 | Novozymes A/S | Methods for cleansing medical devices |
WO2019162000A1 (en) | 2018-02-23 | 2019-08-29 | Henkel Ag & Co. Kgaa | Detergent composition comprising xanthan lyase and endoglucanase variants |
CN111770788B (en) | 2018-03-13 | 2023-07-25 | 诺维信公司 | Microencapsulation using amino sugar oligomers |
US20210009979A1 (en) | 2018-03-23 | 2021-01-14 | Novozymes A/S | Subtilase variants and compositions comprising same |
CN112262207B (en) | 2018-04-17 | 2024-01-23 | 诺维信公司 | Polypeptides comprising carbohydrate binding activity in detergent compositions and their use for reducing wrinkles in textiles or fabrics |
EP3781680A1 (en) | 2018-04-19 | 2021-02-24 | Novozymes A/S | Stabilized cellulase variants |
CN112272701B (en) | 2018-04-19 | 2024-05-14 | 诺维信公司 | Stabilized cellulase variants |
US20210071115A1 (en) | 2018-06-28 | 2021-03-11 | Novozymes A/S | Detergent Compositions and Uses Thereof |
WO2020002608A1 (en) | 2018-06-29 | 2020-01-02 | Novozymes A/S | Detergent compositions and uses thereof |
US20210189297A1 (en) | 2018-06-29 | 2021-06-24 | Novozymes A/S | Subtilase variants and compositions comprising same |
US12012573B2 (en) | 2018-07-02 | 2024-06-18 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020007875A1 (en) | 2018-07-03 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020008024A1 (en) | 2018-07-06 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
EP3818140A1 (en) | 2018-07-06 | 2021-05-12 | Novozymes A/S | Cleaning compositions and uses thereof |
US20210340466A1 (en) | 2018-10-01 | 2021-11-04 | Novozymes A/S | Detergent compositions and uses thereof |
WO2020070014A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition comprising anionic surfactant and a polypeptide having rnase activity |
CN112969775A (en) | 2018-10-02 | 2021-06-15 | 诺维信公司 | Cleaning composition |
WO2020070209A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition |
WO2020070199A1 (en) | 2018-10-03 | 2020-04-09 | Novozymes A/S | Polypeptides having alpha-mannan degrading activity and polynucleotides encoding same |
WO2020070249A1 (en) | 2018-10-03 | 2020-04-09 | Novozymes A/S | Cleaning compositions |
WO2020074499A1 (en) | 2018-10-09 | 2020-04-16 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020074498A1 (en) | 2018-10-09 | 2020-04-16 | Novozymes A/S | Cleaning compositions and uses thereof |
US20220033739A1 (en) | 2018-10-11 | 2022-02-03 | Novozymes A/S | Cleaning compositions and uses thereof |
EP3647397A1 (en) | 2018-10-31 | 2020-05-06 | Henkel AG & Co. KGaA | Cleaning compositions containing dispersins iv |
EP3647398B1 (en) | 2018-10-31 | 2024-05-15 | Henkel AG & Co. KGaA | Cleaning compositions containing dispersins v |
US20220017844A1 (en) | 2018-12-03 | 2022-01-20 | Novozymes A/S | Low pH Powder Detergent Composition |
CN113302295A (en) | 2018-12-03 | 2021-08-24 | 诺维信公司 | Powder detergent composition |
CN113330101A (en) | 2018-12-21 | 2021-08-31 | 诺维信公司 | Detergent pouch comprising metalloprotease |
CN113366103A (en) | 2018-12-21 | 2021-09-07 | 诺维信公司 | Polypeptides having peptidoglycan degrading activity and polynucleotides encoding same |
EP3702452A1 (en) | 2019-03-01 | 2020-09-02 | Novozymes A/S | Detergent compositions comprising two proteases |
AU2020242303A1 (en) | 2019-03-21 | 2021-06-24 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
MX2021011981A (en) | 2019-04-03 | 2021-11-03 | Novozymes As | Polypeptides having beta-glucanase activity, polynucleotides encoding same and uses thereof in cleaning and detergent compositions. |
WO2020207944A1 (en) | 2019-04-10 | 2020-10-15 | Novozymes A/S | Polypeptide variants |
US20220186151A1 (en) | 2019-04-12 | 2022-06-16 | Novozymes A/S | Stabilized glycoside hydrolase variants |
EP3997202A1 (en) | 2019-07-12 | 2022-05-18 | Novozymes A/S | Enzymatic emulsions for detergents |
CN114787329A (en) | 2019-08-27 | 2022-07-22 | 诺维信公司 | Detergent composition |
CN114616312A (en) | 2019-09-19 | 2022-06-10 | 诺维信公司 | Detergent composition |
US20220340843A1 (en) | 2019-10-03 | 2022-10-27 | Novozymes A/S | Polypeptides comprising at least two carbohydrate binding domains |
AU2020405786A1 (en) | 2019-12-20 | 2022-08-11 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins IX |
WO2021122117A1 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning composition coprising a dispersin and a carbohydrase |
CN114929848A (en) | 2019-12-20 | 2022-08-19 | 诺维信公司 | Stable liquid boron-free enzyme compositions |
US20230048546A1 (en) | 2019-12-20 | 2023-02-16 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins vi |
CN114846128A (en) | 2019-12-20 | 2022-08-02 | 汉高股份有限及两合公司 | Cleaning compositions comprising disperse protein VIII |
EP4077656A2 (en) | 2019-12-20 | 2022-10-26 | Novozymes A/S | Polypeptides having proteolytic activity and use thereof |
WO2021130167A1 (en) | 2019-12-23 | 2021-07-01 | Novozymes A/S | Enzyme compositions and uses thereof |
US20230159861A1 (en) | 2020-01-23 | 2023-05-25 | Novozymes A/S | Enzyme compositions and uses thereof |
CN115052981A (en) | 2020-01-31 | 2022-09-13 | 诺维信公司 | Mannanase variants and polynucleotides encoding same |
WO2021152120A1 (en) | 2020-01-31 | 2021-08-05 | Novozymes A/S | Mannanase variants and polynucleotides encoding same |
DE102020201317A1 (en) | 2020-02-04 | 2021-08-05 | Henkel Ag & Co. Kgaa | Chitosan derivatives as dirt-releasing agents |
EP3892708A1 (en) | 2020-04-06 | 2021-10-13 | Henkel AG & Co. KGaA | Cleaning compositions comprising dispersin variants |
EP4133066A1 (en) | 2020-04-08 | 2023-02-15 | Novozymes A/S | Carbohydrate binding module variants |
US20230167384A1 (en) | 2020-04-21 | 2023-06-01 | Novozymes A/S | Cleaning compositions comprising polypeptides having fructan degrading activity |
WO2021239818A1 (en) | 2020-05-26 | 2021-12-02 | Novozymes A/S | Subtilase variants and compositions comprising same |
EP3936593A1 (en) | 2020-07-08 | 2022-01-12 | Henkel AG & Co. KGaA | Cleaning compositions and uses thereof |
JP2023538740A (en) | 2020-08-25 | 2023-09-11 | ノボザイムス アクティーゼルスカブ | Variants of family 44 xyloglucanase |
JP2023538773A (en) | 2020-08-28 | 2023-09-11 | ノボザイムス アクティーゼルスカブ | Protease variants with improved solubility |
CN116507725A (en) | 2020-10-07 | 2023-07-28 | 诺维信公司 | Alpha-amylase variants |
EP4232539A2 (en) | 2020-10-20 | 2023-08-30 | Novozymes A/S | Use of polypeptides having dnase activity |
EP4032966A1 (en) | 2021-01-22 | 2022-07-27 | Novozymes A/S | Liquid enzyme composition with sulfite scavenger |
EP4039806A1 (en) | 2021-02-04 | 2022-08-10 | Henkel AG & Co. KGaA | Detergent composition comprising xanthan lyase and endoglucanase variants with im-proved stability |
EP4291646A2 (en) | 2021-02-12 | 2023-12-20 | Novozymes A/S | Alpha-amylase variants |
CN117015592A (en) | 2021-02-12 | 2023-11-07 | 诺维信公司 | Stable biological detergents |
EP4305146A1 (en) | 2021-03-12 | 2024-01-17 | Novozymes A/S | Polypeptide variants |
EP4060036A1 (en) | 2021-03-15 | 2022-09-21 | Novozymes A/S | Polypeptide variants |
WO2022194673A1 (en) | 2021-03-15 | 2022-09-22 | Novozymes A/S | Dnase variants |
WO2022268885A1 (en) | 2021-06-23 | 2022-12-29 | Novozymes A/S | Alpha-amylase polypeptides |
EP4416257A1 (en) | 2021-10-12 | 2024-08-21 | Novozymes A/S | Endoglucanase with improved stability |
EP4206309A1 (en) | 2021-12-30 | 2023-07-05 | Novozymes A/S | Protein particles with improved whiteness |
AU2023228020A1 (en) | 2022-03-04 | 2024-07-11 | Novozymes A/S | Dnase variants and compositions |
WO2023194204A1 (en) | 2022-04-08 | 2023-10-12 | Novozymes A/S | Hexosaminidase variants and compositions |
WO2023247348A1 (en) | 2022-06-21 | 2023-12-28 | Novozymes A/S | Mannanase variants and polynucleotides encoding same |
WO2024083819A1 (en) | 2022-10-20 | 2024-04-25 | Novozymes A/S | Lipid removal in detergents |
WO2024110541A1 (en) | 2022-11-22 | 2024-05-30 | Novozymes A/S | Colored granules having improved colorant stability |
WO2024121070A1 (en) | 2022-12-05 | 2024-06-13 | Novozymes A/S | Protease variants and polynucleotides encoding same |
WO2024131880A2 (en) | 2022-12-23 | 2024-06-27 | Novozymes A/S | Detergent composition comprising catalase and amylase |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003010267A1 (en) * | 2001-07-20 | 2003-02-06 | Unilever Plc | Use of polymers in fabrics cleaning |
Family Cites Families (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB320842A (en) | 1928-04-18 | 1929-10-18 | Henry Dreyfus | The manufacture and treatment of cellulose derivatives |
FR702116A (en) | 1929-08-02 | 1931-03-30 | Kodak Pathe Soc | Process for the production of mixed cellulose esters |
SE1061757A (en) * | 1957-11-22 | |||
US3303051A (en) | 1963-04-05 | 1967-02-07 | United Merchants & Mfg | Process of conditioning cellulose acetate with hydroxyethylcellulose |
GB1243785A (en) | 1967-10-12 | 1971-08-25 | De La Rue Instr | Improvements in sheet counting apparatus |
US3756966A (en) * | 1971-09-28 | 1973-09-04 | Lever Brothers Ltd | Compositions sulfosuccinate derivatives of carbohydrates as builders for detergent |
US4020015A (en) * | 1971-10-12 | 1977-04-26 | Lever Brothers Company | Detergent compositions |
GB1437950A (en) | 1972-08-22 | 1976-06-03 | Unilever Ltd | Detergent compositions |
AT330930B (en) | 1973-04-13 | 1976-07-26 | Henkel & Cie Gmbh | PROCESS FOR THE PRODUCTION OF SOLID, SPILLABLE DETERGENTS OR CLEANING AGENTS WITH A CONTENT OF CALCIUM BINDING SUBSTANCES |
US4605509A (en) | 1973-05-11 | 1986-08-12 | The Procter & Gamble Company | Detergent compositions containing sodium aluminosilicate builders |
DE2433485A1 (en) | 1973-07-16 | 1975-02-06 | Procter & Gamble | ALUMINOSILICATE ION EXCHANGERS SUITABLE FOR USE IN DETERGENTS |
DE2613791A1 (en) * | 1975-04-02 | 1976-10-21 | Procter & Gamble | LAUNDRY DETERGENT |
GB1567947A (en) | 1976-07-02 | 1980-05-21 | Unilever Ltd | Esters of quaternised amino-alcohols for treating fabrics |
US4235735A (en) * | 1979-07-30 | 1980-11-25 | Milliken Research Corporation | Laundry detergent containing cellulose acetate anti-redeposition agent |
DE3163112D1 (en) * | 1980-12-17 | 1984-05-17 | Unilever Nv | Detergent composition with reduced soil-redeposition effect |
ES8503626A1 (en) | 1982-06-10 | 1985-03-01 | Kao Corp | Bleaching detergent composition |
DE3413571A1 (en) | 1984-04-11 | 1985-10-24 | Hoechst Ag, 6230 Frankfurt | USE OF CRYSTALLINE LAYERED SODIUM SILICATES FOR WATER SOFTENING AND METHOD FOR WATER SOFTENING |
GB8519046D0 (en) * | 1985-07-29 | 1985-09-04 | Unilever Plc | Detergent compositions |
US4686063A (en) | 1986-09-12 | 1987-08-11 | The Procter & Gamble Company | Fatty peroxyacids or salts thereof having amide moieties in the fatty chain and low levels of exotherm control agents |
US4751015A (en) | 1987-03-17 | 1988-06-14 | Lever Brothers Company | Quaternary ammonium or phosphonium substituted peroxy carbonic acid precursors and their use in detergent bleach compositions |
US4818426A (en) | 1987-03-17 | 1989-04-04 | Lever Brothers Company | Quaternary ammonium or phosphonium substituted peroxy carbonic acid precursors and their use in detergent bleach compositions |
US4933103A (en) | 1987-03-23 | 1990-06-12 | Kao Corporation | Bleaching composition |
US4915863A (en) | 1987-08-14 | 1990-04-10 | Kao Corporation | Bleaching composition |
IT1215739B (en) | 1988-01-20 | 1990-02-22 | Ausimont Spa | IMMIDO AROMATIC PEROXYCIDES AS WHITENING AGENTS. |
IT1233846B (en) | 1988-01-20 | 1992-04-21 | Ausimont Spa | IMMEDIATE AROMATIC PEROXIDES |
GB8810193D0 (en) | 1988-04-29 | 1988-06-02 | Unilever Plc | Detergent compositions & process for preparing them |
DE3823172C2 (en) | 1988-07-08 | 1998-01-22 | Hoechst Ag | Omega-phthalimidoperoxihexanoic acid, process for its preparation and its use |
CA2001535C (en) | 1988-11-02 | 1995-01-31 | Peter Willem Appel | Process for preparing a high bulk density granular detergent composition |
CA2001927C (en) | 1988-11-03 | 1999-12-21 | Graham Thomas Brown | Aluminosilicates and detergent compositions |
GB8907187D0 (en) | 1989-03-30 | 1989-05-10 | Unilever Plc | Detergent compositions and process for preparing them |
US4988451A (en) | 1989-06-14 | 1991-01-29 | Lever Brothers Company, Division Of Conopco, Inc. | Stabilization of particles containing quaternary ammonium bleach precursors |
GB8922018D0 (en) | 1989-09-29 | 1989-11-15 | Unilever Plc | Detergent compositions and process for preparing them |
US5142034A (en) | 1990-04-16 | 1992-08-25 | Eastman Kodak Company | Cellulose ester compositions and process for the preparation thereof |
EP0458397B1 (en) | 1990-05-21 | 1997-03-26 | Unilever N.V. | Bleach activation |
GB9108136D0 (en) | 1991-04-17 | 1991-06-05 | Unilever Plc | Concentrated detergent powder compositions |
US5397501A (en) | 1993-07-26 | 1995-03-14 | Lever Brothers Company, Division Of Conopco, Inc. | Amido peroxycarboxylic acids for bleaching |
EP0874802A1 (en) * | 1995-10-27 | 1998-11-04 | Basf Aktiengesellschaft | Fatty acid derivatives and the use thereof as surface active agents in washing and cleaning agents |
EP0948591B1 (en) | 1996-12-26 | 2003-07-16 | The Procter & Gamble Company | Laundry detergent compositions with cellulosic polymers to provide appearance and integrity benefits to fabrics laundered therewith |
CA2303560C (en) | 1997-09-15 | 2005-10-18 | The Procter & Gamble Company | Laundry detergent compositions with cellulosic based polymers to provide appearance and integrity benefits to fabrics laundered therewith |
DE19740558C2 (en) | 1997-09-15 | 2003-01-09 | Siemens Ag | Method for transmitting "MWI service" -specific messages in telecommunication networks, in particular in hybrid DECT / ISDN-specific telecommunication networks |
GB9821218D0 (en) | 1998-09-30 | 1998-11-25 | Unilever Plc | Treatment for fabrics |
GB9821217D0 (en) | 1998-09-30 | 1998-11-25 | Unilever Plc | Treatment for substrates |
GB9900150D0 (en) | 1999-01-05 | 1999-02-24 | Unilever Plc | Treatment for fabrics |
GB9900151D0 (en) | 1999-01-05 | 1999-02-24 | Unilever Plc | Treatment for fabrics |
DE69937841T2 (en) * | 1999-01-13 | 2008-12-11 | The Procter & Gamble Company, Cincinnati | CELLULOSEPOLYMER-CONTAINING DETERGENT |
AU4660700A (en) * | 1999-04-27 | 2000-11-10 | Procter & Gamble Company, The | Surface care compositions and methods for treating surfaces |
-
2001
- 2001-11-09 GB GB0127036A patent/GB0127036D0/en not_active Ceased
-
2002
- 2002-09-20 BR BRPI0213709-7A patent/BR0213709B1/en active IP Right Grant
- 2002-09-20 EP EP10183587.4A patent/EP2330178A3/en not_active Withdrawn
- 2002-09-20 ES ES02774634.6T patent/ES2675289T3/en not_active Expired - Lifetime
- 2002-09-20 WO PCT/EP2002/010586 patent/WO2003040279A1/en not_active Application Discontinuation
- 2002-09-20 EP EP02774634.6A patent/EP1442109B1/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003010267A1 (en) * | 2001-07-20 | 2003-02-06 | Unilever Plc | Use of polymers in fabrics cleaning |
Also Published As
Publication number | Publication date |
---|---|
EP1442109A1 (en) | 2004-08-04 |
EP2330178A2 (en) | 2011-06-08 |
WO2003040279A1 (en) | 2003-05-15 |
BR0213709A (en) | 2004-10-26 |
EP2330178A3 (en) | 2014-05-14 |
GB0127036D0 (en) | 2002-01-02 |
ES2675289T3 (en) | 2018-07-10 |
BR0213709B1 (en) | 2014-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1442109B1 (en) | Polymers for laundry applications | |
US7967871B2 (en) | Polymers for laundry applications | |
CA2599356A1 (en) | Polymers for laundry applications | |
US6288022B1 (en) | Treatment for fabrics | |
CA2402469C (en) | Laundry treatment for fabrics | |
EP1902121B1 (en) | Laundry treatment compositions | |
WO2005118761A1 (en) | Laundry treatment compositions | |
AU2002333459B2 (en) | Polymers and their use | |
WO2001072940A1 (en) | Laundry treatment for fabrics | |
US6358903B2 (en) | Laundry treatment for fabrics | |
CA2403435C (en) | Laundry treatment granule and detergent composition containing same | |
GB2360791A (en) | Softening treatment for fabrics | |
EP1902120A1 (en) | Laundry treatment compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040326 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: UNILEVER N.V. Owner name: UNILEVER PLC |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 60249393 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C11D0003220000 Ipc: C11D0003000000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C11D 3/00 20060101AFI20180118BHEP Ipc: C11D 3/22 20060101ALI20180118BHEP |
|
INTG | Intention to grant announced |
Effective date: 20180202 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 60249393 Country of ref document: DE Owner name: UNILEVER GLOBAL IP LIMITED, WIRRAL, GB Free format text: FORMER OWNERS: UNILEVER N.V., ROTTERDAM, NL; UNILEVER PLC, LONDON, GB |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 992917 Country of ref document: AT Kind code of ref document: T Effective date: 20180515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 60249393 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2675289 Country of ref document: ES Kind code of ref document: T3 Effective date: 20180710 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180425 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180726 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 992917 Country of ref document: AT Kind code of ref document: T Effective date: 20180425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180827 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 60249393 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180930 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180930 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180930 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 60249393 Country of ref document: DE Owner name: UNILEVER GLOBAL IP LIMITED, WIRRAL, GB Free format text: FORMER OWNER: UNILEVER N.V., ROTTERDAM, NL |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20210927 Year of fee payment: 20 Ref country code: FR Payment date: 20210921 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210920 Year of fee payment: 20 Ref country code: GB Payment date: 20210920 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: UNILEVER IP HOLDINGS B.V. Effective date: 20211228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20211119 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20220203 AND 20220209 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 60249393 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20220927 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20220919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20220919 Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20220921 |