EP1439437B1 - Verfahren zur aktiven Dämpfung niederfrequenter Schwingungen an numerisch gesteuerten Werkzeugmaschinen - Google Patents
Verfahren zur aktiven Dämpfung niederfrequenter Schwingungen an numerisch gesteuerten Werkzeugmaschinen Download PDFInfo
- Publication number
- EP1439437B1 EP1439437B1 EP03025543A EP03025543A EP1439437B1 EP 1439437 B1 EP1439437 B1 EP 1439437B1 EP 03025543 A EP03025543 A EP 03025543A EP 03025543 A EP03025543 A EP 03025543A EP 1439437 B1 EP1439437 B1 EP 1439437B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- speed
- integral part
- regulator
- structure according
- regulator structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000013016 damping Methods 0.000 title claims description 29
- 230000010355 oscillation Effects 0.000 title claims description 18
- 238000000034 method Methods 0.000 title 1
- 230000002452 interceptive effect Effects 0.000 claims abstract 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 230000003321 amplification Effects 0.000 claims description 2
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 2
- 230000010363 phase shift Effects 0.000 description 6
- 238000003754 machining Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B5/00—Anti-hunting arrangements
- G05B5/01—Anti-hunting arrangements electric
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/02—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0205—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
- G05B13/021—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a variable is automatically adjusted to optimise the performance
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/404—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/42—Servomotor, servo controller kind till VSS
- G05B2219/42034—Pi regulator
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/49—Nc machine tool, till multiple
- G05B2219/49048—Control of damping of vibration of machine base
Definitions
- the invention relates to a controller structure for damping low-frequency vibrations of numerically controlled machine tools according to the preamble of claim 1. Such vibrations significantly affect the surface quality of a machined workpiece.
- the numerical control of a machine tool controls the machining of a workpiece on the basis of a part program in which a precise machining process is defined in various machining cycles.
- a tool must follow as closely as possible a predetermined path, so that the shape of the finished workpiece meets the specifications.
- the various axes of the machine tool with their respective rotary or linear drives must be controlled accordingly.
- controller structures are used which calculate a setpoint speed (for linear drives) or setpoint speed (for rotary drives) in a position controller from the respectively specified setpoint position and the actual position of the tool, with which then possibly a position deviation to be corrected.
- the difference between the setpoint speed and the actual speed is converted in a speed controller into a setpoint current for the drive, which also corresponds to a setpoint torque via the motor constant of the drive.
- a nominal voltage is corrected from this nominal current after comparison with the actual current, which voltage is converted in the drive amplifier and applied to the phases of the motor.
- Suitable measuring systems check the actual position of the tool, from which the actual speed can be derived. Current sensors in the supply lines to the motor detect the actual current.
- connection between the drive and the tool is never completely rigid, but instead contains elastic, ie vibratory components. Therefore, mechanical resonance frequencies occur which, if the parameterization of the controller structure is unfavorable and / or the internal damping of the elastic components is low, can lead to undesired vibrations. Due to the demand for ever higher bandwidth of the controller structures, realized mainly by high gain factors in the position control loop, even such low-frequency resonance frequencies are amplified and superimposed on the tool path. Low-frequency vibrations in the range up to about 50 Hz are clearly visible as unwanted surface waviness in the machined workpiece.
- the WO 01/23967 A1 describes therefore the parameterization of a controller system in which the feedback of the actual speed is separated to the target speed before the speed controller to two addition points, and in the branch before the integrating element of the speed controller a reference model in the form of a proportional element with delay second order (PT2 element) is connected.
- This reference model is adapted to the behavior of the closed loop without integral part in the speed controller, so that the unfavorable influence of the integral part in the leadership behavior of the speed controller does not show. Because of the occurring in the integral part negative phase shift of 90 degrees, this unfavorable influence is particularly strong. With this arrangement, however, only resonance frequencies above about 20 Hz can be damped, and in the case of large machines with multiple resonances, this circuit can only have a positive effect on the respectively highest resonance frequency, while lower resonance frequencies may even be adversely affected.
- the object of the invention is therefore to provide a controller structure which can actively dampen especially deep resonances on a numerically controlled machine tool.
- a controller structure for active damping of disturbing low-frequency oscillations on a numerically controlled machine tool is proposed in which a controller structure with speed controller with proportional part and integral part of a summation before or after the integral part a phase-shifted to disturbing low-frequency oscillation and DC-free correction signal is switched on. This correction signal is formed in an active damping element.
- a possible embodiment of the invention is based on the fact that the disturbing low-frequency oscillation and the target speed is superimposed on the output of the position controller, since the position controller is fed to the difference of position setpoint and actual position, and a disturbing oscillation yes just reflected in a swinging actual position value.
- the correction signal thus obtained is suitable for connection to the integral part of the speed controller for active damping or cancellation of the disturbing low-frequency oscillation.
- An advantage of the invention is that a once parameterized active damping element operates very stably, even if e.g. results in a shift of the disturbing resonance frequency by load changes. Of course, this also means that the parameterization itself is easy to carry out.
- Figure 1 shows a section of the controller structure of a numerically controlled machine tool. From the data of a part program, an interpolator 1 calculates short segment pieces whose end points are output as position setpoint l_soll. At an addition point 4.1, the actual position value l_act is subtracted from this position setpoint I_setpoint. The position difference thus obtained is fed to the position controller 2, which, depending on the size of the position difference and the adjusted position controller gain, forms a setpoint speed n_setpoint with which the positional difference is to be compensated.
- the position controller 2 may be formed, for example, as a simple proportional controller, which multiplies the position difference by a factor and outputs as the target speed n_soll.
- the difference between the nominal rotational speed n_setpoint and the actual rotational speed n_actual is formed in each case, and this Deviation of the speed in each case to the proportional part 3.1 or integral part 3.2 of the speed controller 3 given.
- a target current i_soll available, which consists of the sum of the outputs of the proportional part 3.1 and the integral part of the speed controller 3 3.2.
- the setpoint current i_soll corresponds, multiplied by the motor constant, to a setpoint torque, and is converted into a setpoint voltage in a current controller (from here the control loop is no longer shown in the figure).
- phase shift refers to the phase position of the oscillation, which is coupled via the setpoint speed n_soll at the addition point 4.3 of the integral part 3.2 of the speed controller 3.
- the actual phase shift necessary for optimal damping or elimination will deviate somewhat from 180 degrees, since the proportional part 3.1 will also amplify the undesired phase shift Vibration takes place. This and other interactions in the control loop must be taken into account in the parameterization of the active damping element 5.
- the object of the active damping element 5, which is not detailed in FIG. 1, is therefore first to provide a suitable correction signal n_korr with which the described negative effect of the integral part 3.2 on the vibration behavior can be combated.
- the division of the difference formation from the setpoint rotational speed n_setpoint and the actual rotational speed n_act to the addition points 4.2 and 4.3 allows the targeted influencing of the integral part 3.2 in an elegant manner.
- FIG. 3 shows a possible embodiment of the invention. Elements corresponding to one another are denoted as in FIG. 1 and FIG. 2, respectively, so that these and their connection need not be explained again.
- the present embodiment is based on the finding that the disturbing low-frequency oscillation is also contained in the setpoint speed n_setpoint of the position controller 2. This fact can be used to form the correction signal n_korr.
- the difference between a derived speed n_ipo and the setpoint speed n_setpoint is formed at an addition point 4.5.
- the derived rotational speed n_ipo is formed in a differentiator 6, which differentiates the desired position values l_soll of the interpolator 1.
- This derived speed n_ipo contains no disturbing resonance vibrations and can also be used for speed precontrol. If the difference at the addition point 4.5 is formed in such a way that the derived rotational speed n_ipo is applied with a negative sign, then the result is a largely DC-free signal whose phase position corresponds to the oscillation of the nominal rotational speed.
- the output of the DT1 element 5.1 is fed in a shunt branch via a delay element (PT1 element) 5.3 and an addition point 4.6 to the branch of the setpoint speed n_soll directed to the integral part 3.2 of the speed controller 3.
- PT1 element delay element
- the correction signal n_korr generated in the active damping element 5 is thus an equal-component-free signal phase-shifted to the disturbing low-frequency oscillation and is additionally connected at the addition point 4.3 in front of the integral part 3.2 of the speed regulator.
- the disturbing resonance can be suppressed so effectively.
- a particularly stable controller structure can be achieved if the active damping element 5 is combined with a reference model 7 described in the introduction, which is indeed unsuitable for particularly deep resonances, but certainly has a justification for higher-frequency resonances.
- the reference model 7 is switched immediately before the addition point 4.3 in front of the integral part 3.2 of the speed controller 3.
- This reference model 7 is adapted to the behavior of the closed loop with disabled integral part 3.2 in the speed controller, so that can eliminate or minimize the unfavorable influence of the integral part 3.2 on the leadership behavior of the speed controller 3.
- the reference model 7 and the active damping element 5 do not interfere, but complement each other favorably.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Acoustics & Sound (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Manufacturing & Machinery (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Aviation & Aerospace Engineering (AREA)
- Human Computer Interaction (AREA)
- Mechanical Engineering (AREA)
- Feedback Control In General (AREA)
- Automatic Control Of Machine Tools (AREA)
- Vibration Prevention Devices (AREA)
- Control Of Electric Motors In General (AREA)
Description
- Die Erfindung betrifft eine Reglerstruktur zur Dämpfung niederfrequenter Schwingungen an numerisch gesteuerten Werkzeugmaschinen nach dem Oberbegriff des Anspruches 1. Solche Schwingungen beeinflussen die Oberflächenqualität eines bearbeiteten Werkstückes erheblich.
- Die Numerische Steuerung einer Werkzeugmaschine kontrolliert die Bearbeitung eines Werkstückes anhand eines Teileprogramms, in dem in verschiedensten Bearbeitungszyklen ein genauer Bearbeitungsvorgang festgelegt ist. Ein Werkzeug muß dabei möglichst genau einer vorgegebenen Bahn folgen, so daß die Form des fertigen Werkstücks den Vorgaben entspricht. Hierzu müssen die verschiedenen Achsen der Werkzeugmaschine mit ihren jeweiligen rotatorischen oder linearen Antrieben entsprechend angesteuert werden. Um eine vorgegebene Bearbeitungsbahn einhalten zu können, finden Reglerstrukturen Anwendung, die in einem Lageregler aus der jeweils vorgegebenen Sollposition und der tatsächlichen Position des Werkzeugs eine Sollgeschwindigkeit (für Linearantriebe) bzw. Solldrehzahl (für rotatorische Antriebe) berechnen, mit der dann ggf. eine Positionsabweichung korrigiert werden soll. Die Differenz zwischen der Solldrehzahl und der tatsächlichen Drehzahl wird in einem Drehzahlregler in einen Sollstrom für den Antrieb umgesetzt, der über die Motorkonstante des Antriebs auch einem Solldrehmoment entspricht. In einem Stromregler wird aus diesem Sollstrom nach Vergleich mit dem tatsächlichen Strom eine Sollspannung erregelt, die im Antriebsverstärker umgesetzt und an die Phasen des Motors angelegt wird. Geeignete Meßsysteme überprüfen die tatsächliche Lage des Werkzeugs, aus der die tatsächliche Geschwindigkeit abgeleitet werden kann. Stromsensoren in den Zuleitungen zum Motor erfassen den tatsächlichen Strom.
- Die Verbindung zwischen Antrieb und Werkzeug ist nie völlig starr, sondern enthält vielmehr elastische, also schwingungsfähige Komponenten. Es treten daher mechanische Resonanzfrequenzen auf, die bei ungünstiger Parametrierung der Reglerstruktur und/oder geringer Eigendämpfung der elastischen Komponenten zu unerwünschten Schwingungen führen können. Durch die Forderung nach immer höherer Bandbreite der Reglerstrukturen, realisiert vor allem durch hohe Verstärkungsfaktoren im Lageregelkreis, werden auch solche niederfrequenten Resonanzfrequenzen verstärkt und überlagern die Werkzeugbahn. Niederfrequente Schwingungen im Bereich bis etwa 50 Hz sind als unerwünschte Oberflächenwelligkeit im bearbeiteten Werkstück deutlich sichtbar.
- Besonders negativ wirkt sich bei der Bildung solcher Resonanzschwingungen eine negative Phasendrehung aus, wie sie insbesondere durch die Verzögerungen der Regelstrecke im Zusammenwirken mit dem Integralteil des Drehzahlreglers entsteht. Durch Reduzierung des entsprechenden Verstärkungsfaktors läßt sich der Integralanteil verringern und damit die Resonanzschwingung abschwächen, gleichzeitig nimmt aber auch die Steifheit der Werkzeugmaschine und die Qualität der Störausregelung ab.
- Die
WO 01/23967 A1 - Aufgabe der Erfindung ist es daher, eine Reglerstruktur zu schaffen, die insbesondere tiefe Resonanzen an einer numerisch gesteuerten Werkzeugmaschine aktiv dämpfen kann.
- Diese Aufgabe wird gelöst durch eine Vorrichtung mit den Merkmalen des Anspruches 1. Vorteilhafte Ausführungsformen ergeben sich aus den Merkmalen, die in den von Anspruch 1 abhängigen Ansprüchen aufgeführt sind.
- Es wird eine Reglerstruktur zur aktiven Dämpfung störender niederfrequenter Schwingungen an einer numerisch gesteuerten Werkzeugmaschine vorgeschlagen, bei der in einer Reglerstruktur mit Drehzahlregler mit Proportionalteil und Integralteil einer Additionsstelle vor oder nach dem Integralteil ein zur störenden niederfrequenten Schwingung phasenverschobenes und gleichanteilfreies Korrektursignal aufgeschaltet ist. Dieses Korrektursignal ist in einem aktiven Dämpfungselement gebildet.
- Eine mögliche Ausführungsform der Erfindung geht dabei davon aus, daß die störende niederfrequente Schwingung auch der Solldrehzahl am Ausgang des Lagereglers überlagert ist, da dem Lageregler die Differenz aus Lagesollwert und Lageistwert zugeführt wird, und sich eine störende Schwingung ja gerade in einem schwingenden Lageistwert niederschlägt.
- Befreit man daher die Solldrehzahl von ihrem Gleichanteil und stellt die Phasenlage richtig ein, so eignet sich das so erhaltene Korrektursignal bei Aufschaltung auf den Integralteil des Drehzahlreglers zur aktiven Dämpfung oder Auslöschung der störenden niederfrequenten Schwingung.
- Ein Vorteil der Erfindung besteht darin, daß ein einmal parametriertes aktives Dämpfungselement sehr stabil arbeitet, auch wenn sich z.B. durch Laständerungen eine Verschiebung der störenden Resonanzfrequenz ergibt. Dies bedeutet natürlich auch, daß die Parametrierung selbst einfach durchführbar ist.
- Weitere Vorteile sowie Einzelheiten der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsformen anhand der Figuren. Dabei zeigt
- Figur 1
- eine Reglerstruktur mit aktiver Dämpfung niederfrequenter Schwingungen,
- Figur 2
- eine entsprechend der Blockschaltalgebra gleichwertige Abwandlung der Reglerstruktur nach Figur 1,
- Figur 3
- eine spezielle Ausführung einer Reglerstruktur mit aktiver Dämpfung niederfrequenter Schwingungen.
- Figur 1 zeigt einen Ausschnitt aus der Reglerstruktur einer numerisch gesteuerten Werkzeugmaschine. Aus den Daten eines Teileprogramms berechnet ein Interpolator 1 kurze Segmentstücke, deren Endpunkte als Lagesollwert l_soll abgegeben werden. An einer Additionsstelle 4.1 wird von diesem Lagesollwert l_soll der Lageistwert l_ist abgezogen. Die so erhaltene Lagedifferenz wird dem Lageregler 2 zugeführt, der je nach Größe der Lagedifferenz und eingestellter Lagereglerverstärkung eine Solldrehzahl n_soll bildet, mit der die Lagedifferenz ausgeglichen werden soll. Der Lageregler 2 kann beispielsweise als einfacher Proportionalregler ausgebildet sein, der die Lagedifferenz mit einem Faktor multipliziert und als Solldrehzahl n_soll ausgibt.
- An separaten Additionsstellen 4.2 und 4.3 wird jeweils die Differenz zwischen der Solldrehzahl n_soll und der Istdrehzahl n_ist gebildet, und diese Abweichung der Drehzahl jeweils an den Proportionalteil 3.1 bzw. Integralteil 3.2 des Drehzahlreglers 3 gegeben. Am Ausgang des Drehzahlreglers 3 steht ein Sollstrom i_soll zur Verfügung, der aus der Summe der Ausgänge des Proportionalteils 3.1 und des Integralteils 3.2 des Drehzahlreglers 3 besteht. Der Sollstrom i_soll entspricht, multipliziert mit der Motorkonstante, einem Solldrehmoment, und wird in einem Stromregler (ab hier ist der Regelkreis nicht mehr in der Figur dargestellt) in eine Sollspannung umgesetzt. Hierzu dient wieder ein Regelkreis, dem ein Stromistwert zugeführt wird, der mittels Stromsensoren am Motor erfaßt wird. Ein Leistungsverstärker erzeugt die geforderte Spannung etwa über eine Ansteuerung der Motorphasen mittels Pulsweitenmodulation (PWM). Die resultierende Bewegung wird dann mit Positionsmeßsystemen erfaßt, die den Lageistwert l_ist, und abgeleitet davon, auch die Istdrehzahl n_ist liefern.
- Wird nun eine niederfrequente mechanische Resonanzfrequenz der Werkzeugmaschine angeregt, so beginnt die Werkzeugmaschine zu schwingen. Diese Schwingung pflanzt sich über den Lageistwert l_ist in den Regelkreis fort. In den verschiedenen Elementen des Regelkreises treten dabei frequenzabhängig unterschiedliche Phasenverschiebungen und Dämpfungen oder Verstärkungen auf. Einen besonders hohen Beitrag zur negativen Phasenverschiebung liefert hier der Integralteil 3.2 des Drehzahlreglers 3. Eine aktive Dämpfung einer störenden niederfrequenten Schwingung setzt daher hier besonders wirkungsvoll an. Die der Erfindung zugrundeliegende Idee beruht darauf, dem Integralteil 3.2 des Drehzahlreglers 3 ein Korrektursignal n_korr zukommen zu lassen, das die unerwünschte Schwingung dämpft oder sogar eliminiert. Vereinfacht dargestellt ist hierzu am Eingang des Integralteils 3.2 des Drehzahlreglers 3 ein gleichanteilfreies Signal mit der Frequenz der unerwünschten Schwingung nötig, das aber gegen diese um ca. 180 Grad phasenverschoben ist. Die Phasenverschiebung bezieht sich dabei auf die Phasenlage der Schwingung, die über die Solldrehzahl n_soll an der Additionsstelle 4.3 des Integralteils 3.2 des Drehzahlreglers 3 eingekoppelt wird. Die tatsächlich zur optimalen Dämpfung oder Eliminierung nötige Phasenverschiebung wird aber etwas von 180 Grad abweichen, da auch über den Proportionalteil 3.1 eine Verstärkung der unerwünschten Schwingung stattfindet. Dies und weitere Wechselwirkungen im Regelkreis ist bei der Parametrierung des aktiven Dämpfungselements 5 zu berücksichtigen.
- Die Aufgabe des in der Figur 1 nicht näher ausgeführten aktiven Dämpfungselements 5 besteht also zunächst darin, ein geeignetes Korrektursignal n_korr zur Verfügung zu stellen, mit dem die beschriebene negative Auswirkung des Integralteils 3.2 auf das Schwingungsverhalten bekämpft werden kann. Die Aufteilung der Differenzbildung aus Solldrehzahl n_soll und Istdrehzahl n_ist auf die Additionsstellen 4.2 und 4.3 erlaubt auf elegante Weise die gezielte Beeinflussung des Integralteils 3.2.
- Eine regelungstechnisch gleichwertige, aber aufwendigere Alternative der Schaltung nach Figur 1 ist in Figur 2 dargestellt. Das Korrektursignal n_korr ist nun nicht vor dem Integralteil 3.2, sondern erst nach dem Integralteil 3.2 an der Additionsstelle 4.4 eingekoppelt. Dies ist nach den Regeln der Blockschaltalgebra der Anordnung entsprechend Figur 1 dann völlig gleichwertig, wenn ein zusätzlicher Integralteil 3.2' zwischen das aktive Dämpfungselement 5 und die Additionsstelle 4.4 geschaltet wird. Der Integralteil 3.2 und der zusätzliche Integralteil 3.2' müssen sich dabei völlig entsprechen, was zumindest bei analoger Realisierung einen erheblichen Aufwand bedeutet. Die Differenzbildung aus Solldrehzahl n_soll und Istdrehzahl n_ist kann nun an nur einer einzigen Additionsstelle 4.7 erfolgen. Es gibt also zwei völlig gleichwertige (und im Sinne der Blockschaltalgebra tatsächlich identische) Möglichkeiten, das Korrektursignal n_korr aufzuschalten.
- Eine mögliche Ausgestaltung der Erfindung zeigt Figur 3. Einander entsprechende Elemente sind wie in Figur 1 bzw. Figur 2 bezeichnet, so daß diese und deren Verknüpfung nicht erneut erklärt werden müssen. Die vorliegende Ausgestaltung beruht auf der Erkenntnis, daß die störende niederfrequente Schwingung auch in der Solldrehzahl n_soll des Lagereglers 2 enthalten ist. Diese Tatsache läßt sich zur Bildung des Korrektursignals n_korr verwenden.
- Zur Eliminierung des Gleichanteils der Solldrehzahl n_soll wird an einer Additionsstelle 4.5 die Differenz aus einer abgeleiteten Drehzahl n_ipo und der Solldrehzahl n_soll gebildet. Die abgeleitete Drehzahl n_ipo ist dabei in einem Differenzierer 6 gebildet, der die Lagesollwerte l_soll des Interpolators 1 differenziert. Diese abgeleitete Drehzahl n_ipo enthält keine störenden Resonanzschwingungen und läßt sich auch zur Drehzahlvorsteuerung verwenden. Bildet man die Differenz an der Additionsstelle 4.5 so, daß die abgeleitete Drehzahl n_ipo mit einem negativen Vorzeichen aufgeschaltet wird, so erhält man ein weitgehend gleichanteilfreies Signal, dessen Phasenlage der Schwingung der Solldrehzahl entspricht.
- Im aktiven Dämpfungselement 5 befindet sich ein Verstärker mit einstellbarem Verstärkungsfaktor M. Dies ist in Figur 3 durch eine Multiplikationsstelle 5.4 dargestellt, an der die Differenz aus der abgeleiteten Drehzahl n_ipo und der Solldrehzahl n_soll mit dem Faktor M multipliziert wird. Dies erlaubt es, die aktive Dämpfung der niederfrequenten Schwingung stufenlos zu regulieren. Für M=0 ist das aktive Dämpfungselement 5 völlig deaktiviert.
- Es empfiehlt sich dann zusätzlich, den tieffrequenten Anteil der Differenz aus der Solldrehzahl n_soll und der abgeleiteten Drehzahl n_ipo weiter zu senken. Dies kann mittels eines Differentialelements mit Verzögerung erster Ordnung (DT1-Glied) 5.1 geschehen, durch das die Differenz aus der abgeleiteten Drehzahl n_ipo und der Solldrehzahl n_soll geführt wird. Das nun gleichanteilfreie Signal wird schließlich einem Verzögerungs-Element zweiter Ordnung (PT2-Glied) 5.2 zugeführt, das auf die störende Resonanzfrequenz abgestimmt ist. Zur Stabilisierung wird der Ausgang des DT1-Glieds 5.1 in einem Querzweig über ein Verzögerungselement (PT1-Glied) 5.3 und eine Additionsstelle 4.6 auch dem Zweig der auf den Integralteil 3.2 des Drehzahlreglers 3 geleiteten Solldrehzahl n_soll zugeführt.
- Das im aktiven Dämpfungselement 5 erzeugte Korrektursignal n_korr ist damit ein gleichanteilfreies, zur störenden niederfrequenten Schwingung phasenverschobenes Signal und wird an der Additionsstelle 4.3 vor dem Integralteil 3.2 des Drehzahlreglers zusätzlich aufgeschaltet. Die störende Resonanz läßt sich so wirkungsvoll unterdrücken.
- Zur Parametrierung des aktiven Dämpfungselements 5 wird die Dämpfungszeitkonstante T2 des PT2-Glieds 5.2 entsprechend der zu bedämpfenden Resonanzfrequenz Fres gewählt:
- Eine besonders stabile Reglerstruktur läßt sich erzielen, wenn das aktive Dämpfungselement 5 mit einem in der Einleitung beschriebenen Referenzmodell 7 kombiniert wird, das ja für besonders tiefe Resonanzen wenig geeignet ist, für höherfrequente Resonanzen aber durchaus eine Berechtigung hat. Das Referenzmodell 7 wird hierzu unmittelbar vor die Additionsstelle 4.3 vor dem Integralteil 3.2 des Drehzahlreglers 3 geschaltet. Dieses Referenzmodell 7 ist dem Verhalten des geschlossenen Regelkreises mit deaktiviertem Integralteil 3.2 im Drehzahlregler angepaßt, so daß sich der ungünstige Einfluß des Integralteils 3.2 auf das Führungsverhalten des Drehzahlreglers 3 eliminieren bzw. minimieren läßt. Das Referenzmodell 7 und das aktive Dämpfungselement 5 stören sich nicht, sondern ergänzen sich vorteilhaft.
- In dieser Beschreibung wurde von einem rotatorischen Antrieb ausgegangen. In der Praxis werden zunehmend auch Linearantriebe eingesetzt, für die statt Drehzahl Geschwindigkeit und statt Drehmoment Kraft passendere Bezeichnungen sind. Natürlich ist die erfindungsgemäße Reglerstruktur ganz genauso auch für Linearantriebe einsetzbar, weshalb die hier verwendeten Begriffe Drehzahl und Drehmoment synonym für Geschwindigkeit und Kraft zu verstehen sind. An Werkzeugmaschinen mit mehreren Achsen kann die Erfindung auch für jede Achse separat eingesetzt werden. Die Reglerstruktur läßt sich sowohl analog als auch digital realisieren, die Erfindung hängt von der Art der Realisierung natürlich nicht ab.
Claims (11)
- Reglerstruktur zur aktiven Dämpfung niederfrequenter Schwingungen an numerisch gesteuerten Werkzeugmaschinen, mit einem Drehzahlregler (3) mit einem Proportionalteil (3.1) und einem Integralteil (3.2), dadurch gekennzeichnet, daß ein zur störenden niederfrequenten Schwingung phasenverschobenes und gleichanteilfreies niederfrequentes Korrektursignal (n_korr), das in einem aktiven Dämpfungselement (5) gebildet ist, an einer Additionsstelle (4.3, 4.4) vor oder nach dem Integralteil (3.2) aufgeschaltet ist.
- Reglerstruktur nach Anspruch 1, dadurch gekennzeichnet, daß eine Abweichung der Istdrehzahl (n_ist) von der Solldrehzahl (n_soll) an zwei getrennten Additionsstellen (4.2, 4.3) für den Proportionalteil (3.1) und den Integralteil (3.2) separat gebildet ist, und daß das Korrektursignal (n_korr) an der Additionsstelle (4.3) vor dem Integralteil (3.2) aufgeschaltet ist.
- Reglerstruktur nach Anspruch 1, dadurch gekennzeichnet, daß das Korrektursignal (n_korr) zunächst auf einen zusätzlichen Integralteil (3.2') geschaltet ist, der dem Integralteil (3.2) des Drehzahlreglers entspricht, und daß der Ausgang des zusätzlichen Integralteils (3.2') der Additionsstelle (4.4) nach dem Integralteil (3.2) aufgeschaltet ist.
- Reglerstruktur nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß im Dämpfungselement (5) zur Erzeugung des Korrektursignals (n_korr) an einer Additionsstelle (4.5) eine Differenz aus der mit der störenden niederfrequenten Schwingung überlagerten Solldrehzahl (n_soll) des Lagereglers (2) und einer aus einem Lagesollwert (l_soll) abgeleiteten Drehzahl (n_ipo) gebildet ist.
- Reglerstruktur nach Anspruch 4, dadurch gekennzeichnet, daß im Dämpfungselement (5) die Differenz aus der Solldrehzahl (n_soll) und der abgeleiteten Drehzahl (n_ipo) durch ein DT1-Glied (5.1) geführt ist.
- Reglerstruktur nach Anspruch 5, dadurch gekennzeichnet, daß der Ausgang des DT1-Glieds (5.1) einem PT2-Glied (5.2) zugeführt ist.
- Reglerstruktur nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß der Ausgang des DT1-Glieds (5.1) über ein PT1-Glied (5.3) dem Zweig der auf den Integralteil (3.2) des Drehzahlreglers (3) geleiteten Solldrehzahl (n_soll) zugeführt ist.
- Reglerstruktur nach Anspruch 6, dadurch gekennzeichnet, daß die Dämpfungszeitkonstante (T2) des PT2-Glieds (5.2) entsprechend einer zu bedämpfenden Resonanzfrequenz (Fres) gewählt ist.
- Reglerstruktur nach einem der Ansprüche 4 - 8, dadurch gekennzeichnet, daß die Differenz aus der Solldrehzahl (n_soll) und der abgeleiteten Drehzahl (n_ipo) mit einem Verstärkungsfaktor (M) multipliziert ist.
- Reglerstruktur nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Solldrehzahl (n_soll) noch vor der Differenzbildung mit der Istdrehzahl (n_ist) an der Additionsstelle (4.3) des Interpolationsteils (3.2) des Drehzahlreglers (3) über ein Referenzmodell (7) einer Regelstrecke geführt ist.
- Reglerstruktur nach Anspruch 10, dadurch gekennzeichnet, daß das Referenzmodell (7) der Regelstrecke als ein die Regelstrecke nachbildendes, gegenphasig wirkendes PT2-Element ausgebildet ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10301765 | 2003-01-18 | ||
DE10301765A DE10301765A1 (de) | 2003-01-18 | 2003-01-18 | Reglerstruktur zur aktiven Dämpfung niederfrequenter Schwingungen an numerisch gesteuerten Werkzeugmaschinen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1439437A1 EP1439437A1 (de) | 2004-07-21 |
EP1439437B1 true EP1439437B1 (de) | 2007-08-08 |
Family
ID=32520024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03025543A Expired - Lifetime EP1439437B1 (de) | 2003-01-18 | 2003-11-08 | Verfahren zur aktiven Dämpfung niederfrequenter Schwingungen an numerisch gesteuerten Werkzeugmaschinen |
Country Status (5)
Country | Link |
---|---|
US (1) | US7031799B2 (de) |
EP (1) | EP1439437B1 (de) |
AT (1) | ATE369582T1 (de) |
DE (2) | DE10301765A1 (de) |
ES (1) | ES2291581T3 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2624089A2 (de) | 2012-02-02 | 2013-08-07 | Dr. Johannes Heidenhain GmbH | Reglerstruktur zur Dämpfung niederfrequenter Schwingungen |
DE102013202408A1 (de) | 2013-02-14 | 2014-08-14 | Dr. Johannes Heidenhain Gmbh | Verfahren zur Parametrierung einer Dämpfung von Ratterschwingungen im Regelkreis einer Numerischen Steuerung |
DE102013206973A1 (de) * | 2013-04-18 | 2014-10-23 | Robert Bosch Gmbh | Steueranordnung |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2487552A1 (de) * | 2011-02-14 | 2012-08-15 | Schneider GmbH & Co. KG | Verfahren und Vorrichtung zur Regelung eines Antriebs für ein Werkzeug oder Werkstück mit Anwendung einer Vorsteuerung |
DE102016010160A1 (de) | 2016-08-25 | 2018-03-01 | Rheinmetall Air Defence Ag | Verfahren zur Regelung des Antriebs eines militärischen Geräts, insbesondere einer Waffe oder eines Sensors |
EP3715049A1 (de) * | 2019-03-26 | 2020-09-30 | Siemens Aktiengesellschaft | Vibrationsdämpfung bei einer werkzeugmaschine mit mehrfacher vibrationserfassung |
CN111262244B (zh) * | 2020-03-06 | 2022-07-01 | 西南交通大学 | 基于自反馈校正装置模型控制的高铁低频振荡抑制方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US99475A (en) * | 1870-02-01 | Improved railway-car spring | ||
US40818A (en) * | 1863-12-08 | Improvement in filters | ||
US191661A (en) * | 1877-06-05 | Improvement in compositions for preserving, drying, and bleaching fruit | ||
US37338A (en) * | 1863-01-06 | Improvement in hot-air registers | ||
US22292A (en) * | 1858-12-14 | Car-spbing | ||
US20020099475A1 (en) | 2000-12-01 | 2002-07-25 | Ronald Spangler | Method and device for vibration control |
US20030040818A1 (en) | 1994-01-27 | 2003-02-27 | Baruch Pletner | Method and device for vibration control |
DE19634923C2 (de) * | 1996-08-29 | 1999-08-19 | Bruce Boye | Linearisierung nichtlinearer technischer Prozesse mit Hilfe eines Abweichungsbeobachter |
JP3564974B2 (ja) * | 1997-11-07 | 2004-09-15 | 東海ゴム工業株式会社 | 周期性信号の適応制御方法 |
US6296093B1 (en) * | 1998-11-09 | 2001-10-02 | Lord Corportion | Vibration-damped machine and control method therefor |
US6912426B1 (en) * | 1999-09-24 | 2005-06-28 | Dr. Johannes Heidenhain Gmbh | Method for determining time constants of a reference model in a cascade controlling circuit |
US7132123B2 (en) | 2000-06-09 | 2006-11-07 | Cymer, Inc. | High rep-rate laser with improved electrodes |
US6690706B2 (en) | 2000-06-09 | 2004-02-10 | Cymer, Inc. | High rep-rate laser with improved electrodes |
JP2004532517A (ja) * | 2001-03-26 | 2004-10-21 | サイマー, インコーポレイテッド | 振動制御の方法及び装置 |
-
2003
- 2003-01-18 DE DE10301765A patent/DE10301765A1/de not_active Withdrawn
- 2003-11-08 AT AT03025543T patent/ATE369582T1/de not_active IP Right Cessation
- 2003-11-08 EP EP03025543A patent/EP1439437B1/de not_active Expired - Lifetime
- 2003-11-08 ES ES03025543T patent/ES2291581T3/es not_active Expired - Lifetime
- 2003-11-08 DE DE50307867T patent/DE50307867D1/de not_active Expired - Lifetime
-
2004
- 2004-01-14 US US10/757,376 patent/US7031799B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2624089A2 (de) | 2012-02-02 | 2013-08-07 | Dr. Johannes Heidenhain GmbH | Reglerstruktur zur Dämpfung niederfrequenter Schwingungen |
DE102012201562A1 (de) | 2012-02-02 | 2013-08-08 | Dr. Johannes Heidenhain Gmbh | Reglerstruktur zur Dämpfung niederfrequenter Schwingungen |
EP2624089A3 (de) * | 2012-02-02 | 2016-10-12 | Dr. Johannes Heidenhain GmbH | Reglerstruktur zur Dämpfung niederfrequenter Schwingungen |
DE102013202408A1 (de) | 2013-02-14 | 2014-08-14 | Dr. Johannes Heidenhain Gmbh | Verfahren zur Parametrierung einer Dämpfung von Ratterschwingungen im Regelkreis einer Numerischen Steuerung |
DE102013202408B4 (de) | 2013-02-14 | 2023-09-14 | Dr. Johannes Heidenhain Gmbh | Verfahren zur Parametrierung einer Dämpfung von Ratterschwingungen im Regelkreis einer Numerischen Steuerung |
DE102013206973A1 (de) * | 2013-04-18 | 2014-10-23 | Robert Bosch Gmbh | Steueranordnung |
Also Published As
Publication number | Publication date |
---|---|
US20040172171A1 (en) | 2004-09-02 |
EP1439437A1 (de) | 2004-07-21 |
ATE369582T1 (de) | 2007-08-15 |
ES2291581T3 (es) | 2008-03-01 |
DE50307867D1 (de) | 2007-09-20 |
US7031799B2 (en) | 2006-04-18 |
DE10301765A1 (de) | 2004-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2624089B1 (de) | Reglerstruktur zur Dämpfung niederfrequenter Schwingungen | |
DE19749134B4 (de) | Vorrichtung zum aktiven Dämpfen einer Schwingung und Verfahren zum Identifizieren einer Übertragungsfunktion bei einer solchen Vorrichtung | |
DE102006049867B4 (de) | Werkzeugmaschine und Verfahren zur Unterdrückung von Ratterschwingungen | |
DE4340034C1 (de) | Lagerung | |
DE69212073T2 (de) | Vorrichtung zur Dämpfung der periodischen Schwingungen einer mechanischen Struktur | |
DE112005000681T5 (de) | Motorsteuereinrichtung | |
DE102016012756A1 (de) | Servosteuersystem mit Funktion zum automatischen Einstellen einer Lernsteuereinheit | |
DE102012110227B4 (de) | Motorsteuerungsvorrichtung mit Nullbereichsverarbeitung | |
DE69810150T2 (de) | Motorgeschwindigkeitsregler und verfahren zur einstellung der verstärkung des reglers | |
EP1439437B1 (de) | Verfahren zur aktiven Dämpfung niederfrequenter Schwingungen an numerisch gesteuerten Werkzeugmaschinen | |
EP0896263B1 (de) | Verfahren und Schaltungsanordnung zur Ermittlung optimaler Reglerparameter für eine Drehzahlregelung | |
DE102007003874A1 (de) | Verfahren zum geberlosen Betrieb einer stromrichtergespeisten unsymmetrischen Drehfeldmaschine mit einem Testsignal | |
EP3329335B1 (de) | Dämpfung von lastschwingungen ohne zusätzliche messmittel an der lastseite | |
DE102004043906A1 (de) | Positionsregelung einer Vorschubwelle | |
DE4104168C1 (de) | ||
WO2021239406A1 (de) | Verfahren zum betrieb eines antriebsstrangs und fahrzeugantriebsstrang mit elektromotorischem antrieb | |
EP1708058A1 (de) | Verfahren zur Kompensation von Überschwingern einer Hauptachse | |
EP0883463B1 (de) | Verfahren und vorrichtung zur kompensation dynamischer verlagerungen an spanabhebenden werkzeugmaschinen | |
DE19842729C1 (de) | Lagerung für ein schwingendes Bauteil | |
DE10359984B4 (de) | Verfahren und Einrichtung zur Bewegungsführung eines bewegbaren Maschinenelements einer Werkzeug- oder Produktionsmaschine | |
WO2023094136A1 (de) | Verfahren zum betrieb eines antriebsstrangs mit einem elektromotorischen antrieb | |
CH712842A2 (de) | Verfahren zur Regelung des Antriebs eines militärischen Geräts, insbesondere einer Waffe oder eines Sensors. | |
DE10220937A1 (de) | Verfahren und Vorrichtung zur Dämpfung einer auftretenden Ratterschwingung bei einer Bearbeitungsmaschine | |
DE102021100206A1 (de) | Schwingungssteuervorrichtung und schwingungssteuerverfahren | |
DE102007007791B4 (de) | Positionierungssteuersystem für ein bewegliches Element und Laserbohrmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20050121 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070808 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50307867 Country of ref document: DE Date of ref document: 20070920 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070808 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070808 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071108 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2291581 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070808 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080108 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070808 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070808 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070808 |
|
BERE | Be: lapsed |
Owner name: DR. JOHANNES HEIDENHAIN G.M.B.H. Effective date: 20071130 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071108 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071130 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070808 |
|
26N | No opposition filed |
Effective date: 20080509 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071130 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080209 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070808 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20161122 Year of fee payment: 14 Ref country code: FR Payment date: 20161118 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20171220 Year of fee payment: 15 Ref country code: IT Payment date: 20171124 Year of fee payment: 15 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20171108 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181108 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20200102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181109 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20211118 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50307867 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230601 |