EP1439437B1 - Verfahren zur aktiven Dämpfung niederfrequenter Schwingungen an numerisch gesteuerten Werkzeugmaschinen - Google Patents

Verfahren zur aktiven Dämpfung niederfrequenter Schwingungen an numerisch gesteuerten Werkzeugmaschinen Download PDF

Info

Publication number
EP1439437B1
EP1439437B1 EP03025543A EP03025543A EP1439437B1 EP 1439437 B1 EP1439437 B1 EP 1439437B1 EP 03025543 A EP03025543 A EP 03025543A EP 03025543 A EP03025543 A EP 03025543A EP 1439437 B1 EP1439437 B1 EP 1439437B1
Authority
EP
European Patent Office
Prior art keywords
speed
integral part
regulator
structure according
regulator structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03025543A
Other languages
English (en)
French (fr)
Other versions
EP1439437A1 (de
Inventor
Norbert Kerner
Hans Lengenfelder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Johannes Heidenhain GmbH
Original Assignee
Dr Johannes Heidenhain GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Johannes Heidenhain GmbH filed Critical Dr Johannes Heidenhain GmbH
Publication of EP1439437A1 publication Critical patent/EP1439437A1/de
Application granted granted Critical
Publication of EP1439437B1 publication Critical patent/EP1439437B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B5/00Anti-hunting arrangements
    • G05B5/01Anti-hunting arrangements electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/021Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a variable is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42034Pi regulator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49048Control of damping of vibration of machine base

Definitions

  • the invention relates to a controller structure for damping low-frequency vibrations of numerically controlled machine tools according to the preamble of claim 1. Such vibrations significantly affect the surface quality of a machined workpiece.
  • the numerical control of a machine tool controls the machining of a workpiece on the basis of a part program in which a precise machining process is defined in various machining cycles.
  • a tool must follow as closely as possible a predetermined path, so that the shape of the finished workpiece meets the specifications.
  • the various axes of the machine tool with their respective rotary or linear drives must be controlled accordingly.
  • controller structures are used which calculate a setpoint speed (for linear drives) or setpoint speed (for rotary drives) in a position controller from the respectively specified setpoint position and the actual position of the tool, with which then possibly a position deviation to be corrected.
  • the difference between the setpoint speed and the actual speed is converted in a speed controller into a setpoint current for the drive, which also corresponds to a setpoint torque via the motor constant of the drive.
  • a nominal voltage is corrected from this nominal current after comparison with the actual current, which voltage is converted in the drive amplifier and applied to the phases of the motor.
  • Suitable measuring systems check the actual position of the tool, from which the actual speed can be derived. Current sensors in the supply lines to the motor detect the actual current.
  • connection between the drive and the tool is never completely rigid, but instead contains elastic, ie vibratory components. Therefore, mechanical resonance frequencies occur which, if the parameterization of the controller structure is unfavorable and / or the internal damping of the elastic components is low, can lead to undesired vibrations. Due to the demand for ever higher bandwidth of the controller structures, realized mainly by high gain factors in the position control loop, even such low-frequency resonance frequencies are amplified and superimposed on the tool path. Low-frequency vibrations in the range up to about 50 Hz are clearly visible as unwanted surface waviness in the machined workpiece.
  • the WO 01/23967 A1 describes therefore the parameterization of a controller system in which the feedback of the actual speed is separated to the target speed before the speed controller to two addition points, and in the branch before the integrating element of the speed controller a reference model in the form of a proportional element with delay second order (PT2 element) is connected.
  • This reference model is adapted to the behavior of the closed loop without integral part in the speed controller, so that the unfavorable influence of the integral part in the leadership behavior of the speed controller does not show. Because of the occurring in the integral part negative phase shift of 90 degrees, this unfavorable influence is particularly strong. With this arrangement, however, only resonance frequencies above about 20 Hz can be damped, and in the case of large machines with multiple resonances, this circuit can only have a positive effect on the respectively highest resonance frequency, while lower resonance frequencies may even be adversely affected.
  • the object of the invention is therefore to provide a controller structure which can actively dampen especially deep resonances on a numerically controlled machine tool.
  • a controller structure for active damping of disturbing low-frequency oscillations on a numerically controlled machine tool is proposed in which a controller structure with speed controller with proportional part and integral part of a summation before or after the integral part a phase-shifted to disturbing low-frequency oscillation and DC-free correction signal is switched on. This correction signal is formed in an active damping element.
  • a possible embodiment of the invention is based on the fact that the disturbing low-frequency oscillation and the target speed is superimposed on the output of the position controller, since the position controller is fed to the difference of position setpoint and actual position, and a disturbing oscillation yes just reflected in a swinging actual position value.
  • the correction signal thus obtained is suitable for connection to the integral part of the speed controller for active damping or cancellation of the disturbing low-frequency oscillation.
  • An advantage of the invention is that a once parameterized active damping element operates very stably, even if e.g. results in a shift of the disturbing resonance frequency by load changes. Of course, this also means that the parameterization itself is easy to carry out.
  • Figure 1 shows a section of the controller structure of a numerically controlled machine tool. From the data of a part program, an interpolator 1 calculates short segment pieces whose end points are output as position setpoint l_soll. At an addition point 4.1, the actual position value l_act is subtracted from this position setpoint I_setpoint. The position difference thus obtained is fed to the position controller 2, which, depending on the size of the position difference and the adjusted position controller gain, forms a setpoint speed n_setpoint with which the positional difference is to be compensated.
  • the position controller 2 may be formed, for example, as a simple proportional controller, which multiplies the position difference by a factor and outputs as the target speed n_soll.
  • the difference between the nominal rotational speed n_setpoint and the actual rotational speed n_actual is formed in each case, and this Deviation of the speed in each case to the proportional part 3.1 or integral part 3.2 of the speed controller 3 given.
  • a target current i_soll available, which consists of the sum of the outputs of the proportional part 3.1 and the integral part of the speed controller 3 3.2.
  • the setpoint current i_soll corresponds, multiplied by the motor constant, to a setpoint torque, and is converted into a setpoint voltage in a current controller (from here the control loop is no longer shown in the figure).
  • phase shift refers to the phase position of the oscillation, which is coupled via the setpoint speed n_soll at the addition point 4.3 of the integral part 3.2 of the speed controller 3.
  • the actual phase shift necessary for optimal damping or elimination will deviate somewhat from 180 degrees, since the proportional part 3.1 will also amplify the undesired phase shift Vibration takes place. This and other interactions in the control loop must be taken into account in the parameterization of the active damping element 5.
  • the object of the active damping element 5, which is not detailed in FIG. 1, is therefore first to provide a suitable correction signal n_korr with which the described negative effect of the integral part 3.2 on the vibration behavior can be combated.
  • the division of the difference formation from the setpoint rotational speed n_setpoint and the actual rotational speed n_act to the addition points 4.2 and 4.3 allows the targeted influencing of the integral part 3.2 in an elegant manner.
  • FIG. 3 shows a possible embodiment of the invention. Elements corresponding to one another are denoted as in FIG. 1 and FIG. 2, respectively, so that these and their connection need not be explained again.
  • the present embodiment is based on the finding that the disturbing low-frequency oscillation is also contained in the setpoint speed n_setpoint of the position controller 2. This fact can be used to form the correction signal n_korr.
  • the difference between a derived speed n_ipo and the setpoint speed n_setpoint is formed at an addition point 4.5.
  • the derived rotational speed n_ipo is formed in a differentiator 6, which differentiates the desired position values l_soll of the interpolator 1.
  • This derived speed n_ipo contains no disturbing resonance vibrations and can also be used for speed precontrol. If the difference at the addition point 4.5 is formed in such a way that the derived rotational speed n_ipo is applied with a negative sign, then the result is a largely DC-free signal whose phase position corresponds to the oscillation of the nominal rotational speed.
  • the output of the DT1 element 5.1 is fed in a shunt branch via a delay element (PT1 element) 5.3 and an addition point 4.6 to the branch of the setpoint speed n_soll directed to the integral part 3.2 of the speed controller 3.
  • PT1 element delay element
  • the correction signal n_korr generated in the active damping element 5 is thus an equal-component-free signal phase-shifted to the disturbing low-frequency oscillation and is additionally connected at the addition point 4.3 in front of the integral part 3.2 of the speed regulator.
  • the disturbing resonance can be suppressed so effectively.
  • a particularly stable controller structure can be achieved if the active damping element 5 is combined with a reference model 7 described in the introduction, which is indeed unsuitable for particularly deep resonances, but certainly has a justification for higher-frequency resonances.
  • the reference model 7 is switched immediately before the addition point 4.3 in front of the integral part 3.2 of the speed controller 3.
  • This reference model 7 is adapted to the behavior of the closed loop with disabled integral part 3.2 in the speed controller, so that can eliminate or minimize the unfavorable influence of the integral part 3.2 on the leadership behavior of the speed controller 3.
  • the reference model 7 and the active damping element 5 do not interfere, but complement each other favorably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Acoustics & Sound (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Manufacturing & Machinery (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Mechanical Engineering (AREA)
  • Feedback Control In General (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Vibration Prevention Devices (AREA)
  • Control Of Electric Motors In General (AREA)

Description

  • Die Erfindung betrifft eine Reglerstruktur zur Dämpfung niederfrequenter Schwingungen an numerisch gesteuerten Werkzeugmaschinen nach dem Oberbegriff des Anspruches 1. Solche Schwingungen beeinflussen die Oberflächenqualität eines bearbeiteten Werkstückes erheblich.
  • Die Numerische Steuerung einer Werkzeugmaschine kontrolliert die Bearbeitung eines Werkstückes anhand eines Teileprogramms, in dem in verschiedensten Bearbeitungszyklen ein genauer Bearbeitungsvorgang festgelegt ist. Ein Werkzeug muß dabei möglichst genau einer vorgegebenen Bahn folgen, so daß die Form des fertigen Werkstücks den Vorgaben entspricht. Hierzu müssen die verschiedenen Achsen der Werkzeugmaschine mit ihren jeweiligen rotatorischen oder linearen Antrieben entsprechend angesteuert werden. Um eine vorgegebene Bearbeitungsbahn einhalten zu können, finden Reglerstrukturen Anwendung, die in einem Lageregler aus der jeweils vorgegebenen Sollposition und der tatsächlichen Position des Werkzeugs eine Sollgeschwindigkeit (für Linearantriebe) bzw. Solldrehzahl (für rotatorische Antriebe) berechnen, mit der dann ggf. eine Positionsabweichung korrigiert werden soll. Die Differenz zwischen der Solldrehzahl und der tatsächlichen Drehzahl wird in einem Drehzahlregler in einen Sollstrom für den Antrieb umgesetzt, der über die Motorkonstante des Antriebs auch einem Solldrehmoment entspricht. In einem Stromregler wird aus diesem Sollstrom nach Vergleich mit dem tatsächlichen Strom eine Sollspannung erregelt, die im Antriebsverstärker umgesetzt und an die Phasen des Motors angelegt wird. Geeignete Meßsysteme überprüfen die tatsächliche Lage des Werkzeugs, aus der die tatsächliche Geschwindigkeit abgeleitet werden kann. Stromsensoren in den Zuleitungen zum Motor erfassen den tatsächlichen Strom.
  • Die Verbindung zwischen Antrieb und Werkzeug ist nie völlig starr, sondern enthält vielmehr elastische, also schwingungsfähige Komponenten. Es treten daher mechanische Resonanzfrequenzen auf, die bei ungünstiger Parametrierung der Reglerstruktur und/oder geringer Eigendämpfung der elastischen Komponenten zu unerwünschten Schwingungen führen können. Durch die Forderung nach immer höherer Bandbreite der Reglerstrukturen, realisiert vor allem durch hohe Verstärkungsfaktoren im Lageregelkreis, werden auch solche niederfrequenten Resonanzfrequenzen verstärkt und überlagern die Werkzeugbahn. Niederfrequente Schwingungen im Bereich bis etwa 50 Hz sind als unerwünschte Oberflächenwelligkeit im bearbeiteten Werkstück deutlich sichtbar.
  • Besonders negativ wirkt sich bei der Bildung solcher Resonanzschwingungen eine negative Phasendrehung aus, wie sie insbesondere durch die Verzögerungen der Regelstrecke im Zusammenwirken mit dem Integralteil des Drehzahlreglers entsteht. Durch Reduzierung des entsprechenden Verstärkungsfaktors läßt sich der Integralanteil verringern und damit die Resonanzschwingung abschwächen, gleichzeitig nimmt aber auch die Steifheit der Werkzeugmaschine und die Qualität der Störausregelung ab.
  • Die WO 01/23967 A1 beschreibt daher die Parametrierung eines Reglersystems, bei dem die Rückkopplung der tatsächlichen Drehzahl auf die Solldrehzahl vor dem Drehzahlregler auf zwei Additionsstellen aufgetrennt ist, und bei dem in den Zweig vor dem integrierenden Element des Drehzahlreglers ein Referenzmodell in Form eines Proportional-Elements mit Verzögerung zweiter Ordnung (PT2-Glied) geschaltet ist. Dieses Referenzmodell ist dem Verhalten des geschlossenen Regelkreises ohne Integralteil im Drehzahlregler angepaßt, so daß sich der ungünstige Einfluß des Integralteils im Führungsverhalten des Drehzahlreglers nicht zeigt. Wegen der im Integralteil auftretenden negativen Phasenverschiebung von 90 Grad ist dieser ungünstige Einfluß besonders stark. Mit dieser Anordnung lassen sich aber nur Resonanzfrequenzen oberhalb etwa 20 Hz dämpfen, und bei großen Maschinen mit mehreren Resonanzen kann diese Schaltung nur auf die jeweils höchste Resonanzfrequenz positiv wirken, während niedrigere Resonanzfrequenzen unter Umständen sogar negativ beeinflußt werden.
  • Aufgabe der Erfindung ist es daher, eine Reglerstruktur zu schaffen, die insbesondere tiefe Resonanzen an einer numerisch gesteuerten Werkzeugmaschine aktiv dämpfen kann.
  • Diese Aufgabe wird gelöst durch eine Vorrichtung mit den Merkmalen des Anspruches 1. Vorteilhafte Ausführungsformen ergeben sich aus den Merkmalen, die in den von Anspruch 1 abhängigen Ansprüchen aufgeführt sind.
  • Es wird eine Reglerstruktur zur aktiven Dämpfung störender niederfrequenter Schwingungen an einer numerisch gesteuerten Werkzeugmaschine vorgeschlagen, bei der in einer Reglerstruktur mit Drehzahlregler mit Proportionalteil und Integralteil einer Additionsstelle vor oder nach dem Integralteil ein zur störenden niederfrequenten Schwingung phasenverschobenes und gleichanteilfreies Korrektursignal aufgeschaltet ist. Dieses Korrektursignal ist in einem aktiven Dämpfungselement gebildet.
  • Eine mögliche Ausführungsform der Erfindung geht dabei davon aus, daß die störende niederfrequente Schwingung auch der Solldrehzahl am Ausgang des Lagereglers überlagert ist, da dem Lageregler die Differenz aus Lagesollwert und Lageistwert zugeführt wird, und sich eine störende Schwingung ja gerade in einem schwingenden Lageistwert niederschlägt.
  • Befreit man daher die Solldrehzahl von ihrem Gleichanteil und stellt die Phasenlage richtig ein, so eignet sich das so erhaltene Korrektursignal bei Aufschaltung auf den Integralteil des Drehzahlreglers zur aktiven Dämpfung oder Auslöschung der störenden niederfrequenten Schwingung.
  • Ein Vorteil der Erfindung besteht darin, daß ein einmal parametriertes aktives Dämpfungselement sehr stabil arbeitet, auch wenn sich z.B. durch Laständerungen eine Verschiebung der störenden Resonanzfrequenz ergibt. Dies bedeutet natürlich auch, daß die Parametrierung selbst einfach durchführbar ist.
  • Weitere Vorteile sowie Einzelheiten der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsformen anhand der Figuren. Dabei zeigt
  • Figur 1
    eine Reglerstruktur mit aktiver Dämpfung niederfrequenter Schwingungen,
    Figur 2
    eine entsprechend der Blockschaltalgebra gleichwertige Abwandlung der Reglerstruktur nach Figur 1,
    Figur 3
    eine spezielle Ausführung einer Reglerstruktur mit aktiver Dämpfung niederfrequenter Schwingungen.
  • Figur 1 zeigt einen Ausschnitt aus der Reglerstruktur einer numerisch gesteuerten Werkzeugmaschine. Aus den Daten eines Teileprogramms berechnet ein Interpolator 1 kurze Segmentstücke, deren Endpunkte als Lagesollwert l_soll abgegeben werden. An einer Additionsstelle 4.1 wird von diesem Lagesollwert l_soll der Lageistwert l_ist abgezogen. Die so erhaltene Lagedifferenz wird dem Lageregler 2 zugeführt, der je nach Größe der Lagedifferenz und eingestellter Lagereglerverstärkung eine Solldrehzahl n_soll bildet, mit der die Lagedifferenz ausgeglichen werden soll. Der Lageregler 2 kann beispielsweise als einfacher Proportionalregler ausgebildet sein, der die Lagedifferenz mit einem Faktor multipliziert und als Solldrehzahl n_soll ausgibt.
  • An separaten Additionsstellen 4.2 und 4.3 wird jeweils die Differenz zwischen der Solldrehzahl n_soll und der Istdrehzahl n_ist gebildet, und diese Abweichung der Drehzahl jeweils an den Proportionalteil 3.1 bzw. Integralteil 3.2 des Drehzahlreglers 3 gegeben. Am Ausgang des Drehzahlreglers 3 steht ein Sollstrom i_soll zur Verfügung, der aus der Summe der Ausgänge des Proportionalteils 3.1 und des Integralteils 3.2 des Drehzahlreglers 3 besteht. Der Sollstrom i_soll entspricht, multipliziert mit der Motorkonstante, einem Solldrehmoment, und wird in einem Stromregler (ab hier ist der Regelkreis nicht mehr in der Figur dargestellt) in eine Sollspannung umgesetzt. Hierzu dient wieder ein Regelkreis, dem ein Stromistwert zugeführt wird, der mittels Stromsensoren am Motor erfaßt wird. Ein Leistungsverstärker erzeugt die geforderte Spannung etwa über eine Ansteuerung der Motorphasen mittels Pulsweitenmodulation (PWM). Die resultierende Bewegung wird dann mit Positionsmeßsystemen erfaßt, die den Lageistwert l_ist, und abgeleitet davon, auch die Istdrehzahl n_ist liefern.
  • Wird nun eine niederfrequente mechanische Resonanzfrequenz der Werkzeugmaschine angeregt, so beginnt die Werkzeugmaschine zu schwingen. Diese Schwingung pflanzt sich über den Lageistwert l_ist in den Regelkreis fort. In den verschiedenen Elementen des Regelkreises treten dabei frequenzabhängig unterschiedliche Phasenverschiebungen und Dämpfungen oder Verstärkungen auf. Einen besonders hohen Beitrag zur negativen Phasenverschiebung liefert hier der Integralteil 3.2 des Drehzahlreglers 3. Eine aktive Dämpfung einer störenden niederfrequenten Schwingung setzt daher hier besonders wirkungsvoll an. Die der Erfindung zugrundeliegende Idee beruht darauf, dem Integralteil 3.2 des Drehzahlreglers 3 ein Korrektursignal n_korr zukommen zu lassen, das die unerwünschte Schwingung dämpft oder sogar eliminiert. Vereinfacht dargestellt ist hierzu am Eingang des Integralteils 3.2 des Drehzahlreglers 3 ein gleichanteilfreies Signal mit der Frequenz der unerwünschten Schwingung nötig, das aber gegen diese um ca. 180 Grad phasenverschoben ist. Die Phasenverschiebung bezieht sich dabei auf die Phasenlage der Schwingung, die über die Solldrehzahl n_soll an der Additionsstelle 4.3 des Integralteils 3.2 des Drehzahlreglers 3 eingekoppelt wird. Die tatsächlich zur optimalen Dämpfung oder Eliminierung nötige Phasenverschiebung wird aber etwas von 180 Grad abweichen, da auch über den Proportionalteil 3.1 eine Verstärkung der unerwünschten Schwingung stattfindet. Dies und weitere Wechselwirkungen im Regelkreis ist bei der Parametrierung des aktiven Dämpfungselements 5 zu berücksichtigen.
  • Die Aufgabe des in der Figur 1 nicht näher ausgeführten aktiven Dämpfungselements 5 besteht also zunächst darin, ein geeignetes Korrektursignal n_korr zur Verfügung zu stellen, mit dem die beschriebene negative Auswirkung des Integralteils 3.2 auf das Schwingungsverhalten bekämpft werden kann. Die Aufteilung der Differenzbildung aus Solldrehzahl n_soll und Istdrehzahl n_ist auf die Additionsstellen 4.2 und 4.3 erlaubt auf elegante Weise die gezielte Beeinflussung des Integralteils 3.2.
  • Eine regelungstechnisch gleichwertige, aber aufwendigere Alternative der Schaltung nach Figur 1 ist in Figur 2 dargestellt. Das Korrektursignal n_korr ist nun nicht vor dem Integralteil 3.2, sondern erst nach dem Integralteil 3.2 an der Additionsstelle 4.4 eingekoppelt. Dies ist nach den Regeln der Blockschaltalgebra der Anordnung entsprechend Figur 1 dann völlig gleichwertig, wenn ein zusätzlicher Integralteil 3.2' zwischen das aktive Dämpfungselement 5 und die Additionsstelle 4.4 geschaltet wird. Der Integralteil 3.2 und der zusätzliche Integralteil 3.2' müssen sich dabei völlig entsprechen, was zumindest bei analoger Realisierung einen erheblichen Aufwand bedeutet. Die Differenzbildung aus Solldrehzahl n_soll und Istdrehzahl n_ist kann nun an nur einer einzigen Additionsstelle 4.7 erfolgen. Es gibt also zwei völlig gleichwertige (und im Sinne der Blockschaltalgebra tatsächlich identische) Möglichkeiten, das Korrektursignal n_korr aufzuschalten.
  • Eine mögliche Ausgestaltung der Erfindung zeigt Figur 3. Einander entsprechende Elemente sind wie in Figur 1 bzw. Figur 2 bezeichnet, so daß diese und deren Verknüpfung nicht erneut erklärt werden müssen. Die vorliegende Ausgestaltung beruht auf der Erkenntnis, daß die störende niederfrequente Schwingung auch in der Solldrehzahl n_soll des Lagereglers 2 enthalten ist. Diese Tatsache läßt sich zur Bildung des Korrektursignals n_korr verwenden.
  • Zur Eliminierung des Gleichanteils der Solldrehzahl n_soll wird an einer Additionsstelle 4.5 die Differenz aus einer abgeleiteten Drehzahl n_ipo und der Solldrehzahl n_soll gebildet. Die abgeleitete Drehzahl n_ipo ist dabei in einem Differenzierer 6 gebildet, der die Lagesollwerte l_soll des Interpolators 1 differenziert. Diese abgeleitete Drehzahl n_ipo enthält keine störenden Resonanzschwingungen und läßt sich auch zur Drehzahlvorsteuerung verwenden. Bildet man die Differenz an der Additionsstelle 4.5 so, daß die abgeleitete Drehzahl n_ipo mit einem negativen Vorzeichen aufgeschaltet wird, so erhält man ein weitgehend gleichanteilfreies Signal, dessen Phasenlage der Schwingung der Solldrehzahl entspricht.
  • Im aktiven Dämpfungselement 5 befindet sich ein Verstärker mit einstellbarem Verstärkungsfaktor M. Dies ist in Figur 3 durch eine Multiplikationsstelle 5.4 dargestellt, an der die Differenz aus der abgeleiteten Drehzahl n_ipo und der Solldrehzahl n_soll mit dem Faktor M multipliziert wird. Dies erlaubt es, die aktive Dämpfung der niederfrequenten Schwingung stufenlos zu regulieren. Für M=0 ist das aktive Dämpfungselement 5 völlig deaktiviert.
  • Es empfiehlt sich dann zusätzlich, den tieffrequenten Anteil der Differenz aus der Solldrehzahl n_soll und der abgeleiteten Drehzahl n_ipo weiter zu senken. Dies kann mittels eines Differentialelements mit Verzögerung erster Ordnung (DT1-Glied) 5.1 geschehen, durch das die Differenz aus der abgeleiteten Drehzahl n_ipo und der Solldrehzahl n_soll geführt wird. Das nun gleichanteilfreie Signal wird schließlich einem Verzögerungs-Element zweiter Ordnung (PT2-Glied) 5.2 zugeführt, das auf die störende Resonanzfrequenz abgestimmt ist. Zur Stabilisierung wird der Ausgang des DT1-Glieds 5.1 in einem Querzweig über ein Verzögerungselement (PT1-Glied) 5.3 und eine Additionsstelle 4.6 auch dem Zweig der auf den Integralteil 3.2 des Drehzahlreglers 3 geleiteten Solldrehzahl n_soll zugeführt.
  • Das im aktiven Dämpfungselement 5 erzeugte Korrektursignal n_korr ist damit ein gleichanteilfreies, zur störenden niederfrequenten Schwingung phasenverschobenes Signal und wird an der Additionsstelle 4.3 vor dem Integralteil 3.2 des Drehzahlreglers zusätzlich aufgeschaltet. Die störende Resonanz läßt sich so wirkungsvoll unterdrücken.
  • Zur Parametrierung des aktiven Dämpfungselements 5 wird die Dämpfungszeitkonstante T2 des PT2-Glieds 5.2 entsprechend der zu bedämpfenden Resonanzfrequenz Fres gewählt: T 2 = k / 2 * π * Fres
    Figure imgb0001
    mit einem Zeitkonstantenverschiebefaktor k, der sich in der Praxis zwischen 0.8 und 1.0 bewegt. Der Zeitkonstantenverschiebefaktor k erlaubt ein Verstimmen des PT2-Elemtents 5.2, was bei der Parametrierung der Reglerstruktur Vorteile bringen kann. Für eine Resonanzfrequenz von 10 Hz erhält man so z.B. (für k = 1) eine Zeitkonstante T2 von 0.016s. Für eine optimale Dämpfung von D = 0.35 ergibt sich dann (aus der für PT2-Elemente gültigen Beziehung D = T2/(2*T1)) beispielsweise eine T1-Zeitkonstante von T 1 = T 2 / 0.7
    Figure imgb0002
    für das PT2-Glied 5.2. Die Zeitkonstante des DT1-Gliedes 5.3 sollte dann deutlich höher, z.B. ca. das Zehnfache von T2 betragen, die Zeitkonstante des PT1-Gliedes sollte niedriger, z.B. bei ca. einem Dreiviertel von T2 liegen. Die angegebenen Zahlenwerte liefern natürlich nur eine ungefähre Größenordnung für einen speziellen Anwendungsfall, die genaue Parametrierung des aktiven Dämpfungselements 5 wird sich von Fall zu Fall unterscheiden.
  • Eine besonders stabile Reglerstruktur läßt sich erzielen, wenn das aktive Dämpfungselement 5 mit einem in der Einleitung beschriebenen Referenzmodell 7 kombiniert wird, das ja für besonders tiefe Resonanzen wenig geeignet ist, für höherfrequente Resonanzen aber durchaus eine Berechtigung hat. Das Referenzmodell 7 wird hierzu unmittelbar vor die Additionsstelle 4.3 vor dem Integralteil 3.2 des Drehzahlreglers 3 geschaltet. Dieses Referenzmodell 7 ist dem Verhalten des geschlossenen Regelkreises mit deaktiviertem Integralteil 3.2 im Drehzahlregler angepaßt, so daß sich der ungünstige Einfluß des Integralteils 3.2 auf das Führungsverhalten des Drehzahlreglers 3 eliminieren bzw. minimieren läßt. Das Referenzmodell 7 und das aktive Dämpfungselement 5 stören sich nicht, sondern ergänzen sich vorteilhaft.
  • In dieser Beschreibung wurde von einem rotatorischen Antrieb ausgegangen. In der Praxis werden zunehmend auch Linearantriebe eingesetzt, für die statt Drehzahl Geschwindigkeit und statt Drehmoment Kraft passendere Bezeichnungen sind. Natürlich ist die erfindungsgemäße Reglerstruktur ganz genauso auch für Linearantriebe einsetzbar, weshalb die hier verwendeten Begriffe Drehzahl und Drehmoment synonym für Geschwindigkeit und Kraft zu verstehen sind. An Werkzeugmaschinen mit mehreren Achsen kann die Erfindung auch für jede Achse separat eingesetzt werden. Die Reglerstruktur läßt sich sowohl analog als auch digital realisieren, die Erfindung hängt von der Art der Realisierung natürlich nicht ab.

Claims (11)

  1. Reglerstruktur zur aktiven Dämpfung niederfrequenter Schwingungen an numerisch gesteuerten Werkzeugmaschinen, mit einem Drehzahlregler (3) mit einem Proportionalteil (3.1) und einem Integralteil (3.2), dadurch gekennzeichnet, daß ein zur störenden niederfrequenten Schwingung phasenverschobenes und gleichanteilfreies niederfrequentes Korrektursignal (n_korr), das in einem aktiven Dämpfungselement (5) gebildet ist, an einer Additionsstelle (4.3, 4.4) vor oder nach dem Integralteil (3.2) aufgeschaltet ist.
  2. Reglerstruktur nach Anspruch 1, dadurch gekennzeichnet, daß eine Abweichung der Istdrehzahl (n_ist) von der Solldrehzahl (n_soll) an zwei getrennten Additionsstellen (4.2, 4.3) für den Proportionalteil (3.1) und den Integralteil (3.2) separat gebildet ist, und daß das Korrektursignal (n_korr) an der Additionsstelle (4.3) vor dem Integralteil (3.2) aufgeschaltet ist.
  3. Reglerstruktur nach Anspruch 1, dadurch gekennzeichnet, daß das Korrektursignal (n_korr) zunächst auf einen zusätzlichen Integralteil (3.2') geschaltet ist, der dem Integralteil (3.2) des Drehzahlreglers entspricht, und daß der Ausgang des zusätzlichen Integralteils (3.2') der Additionsstelle (4.4) nach dem Integralteil (3.2) aufgeschaltet ist.
  4. Reglerstruktur nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß im Dämpfungselement (5) zur Erzeugung des Korrektursignals (n_korr) an einer Additionsstelle (4.5) eine Differenz aus der mit der störenden niederfrequenten Schwingung überlagerten Solldrehzahl (n_soll) des Lagereglers (2) und einer aus einem Lagesollwert (l_soll) abgeleiteten Drehzahl (n_ipo) gebildet ist.
  5. Reglerstruktur nach Anspruch 4, dadurch gekennzeichnet, daß im Dämpfungselement (5) die Differenz aus der Solldrehzahl (n_soll) und der abgeleiteten Drehzahl (n_ipo) durch ein DT1-Glied (5.1) geführt ist.
  6. Reglerstruktur nach Anspruch 5, dadurch gekennzeichnet, daß der Ausgang des DT1-Glieds (5.1) einem PT2-Glied (5.2) zugeführt ist.
  7. Reglerstruktur nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß der Ausgang des DT1-Glieds (5.1) über ein PT1-Glied (5.3) dem Zweig der auf den Integralteil (3.2) des Drehzahlreglers (3) geleiteten Solldrehzahl (n_soll) zugeführt ist.
  8. Reglerstruktur nach Anspruch 6, dadurch gekennzeichnet, daß die Dämpfungszeitkonstante (T2) des PT2-Glieds (5.2) entsprechend einer zu bedämpfenden Resonanzfrequenz (Fres) gewählt ist.
  9. Reglerstruktur nach einem der Ansprüche 4 - 8, dadurch gekennzeichnet, daß die Differenz aus der Solldrehzahl (n_soll) und der abgeleiteten Drehzahl (n_ipo) mit einem Verstärkungsfaktor (M) multipliziert ist.
  10. Reglerstruktur nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Solldrehzahl (n_soll) noch vor der Differenzbildung mit der Istdrehzahl (n_ist) an der Additionsstelle (4.3) des Interpolationsteils (3.2) des Drehzahlreglers (3) über ein Referenzmodell (7) einer Regelstrecke geführt ist.
  11. Reglerstruktur nach Anspruch 10, dadurch gekennzeichnet, daß das Referenzmodell (7) der Regelstrecke als ein die Regelstrecke nachbildendes, gegenphasig wirkendes PT2-Element ausgebildet ist.
EP03025543A 2003-01-18 2003-11-08 Verfahren zur aktiven Dämpfung niederfrequenter Schwingungen an numerisch gesteuerten Werkzeugmaschinen Expired - Lifetime EP1439437B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10301765 2003-01-18
DE10301765A DE10301765A1 (de) 2003-01-18 2003-01-18 Reglerstruktur zur aktiven Dämpfung niederfrequenter Schwingungen an numerisch gesteuerten Werkzeugmaschinen

Publications (2)

Publication Number Publication Date
EP1439437A1 EP1439437A1 (de) 2004-07-21
EP1439437B1 true EP1439437B1 (de) 2007-08-08

Family

ID=32520024

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03025543A Expired - Lifetime EP1439437B1 (de) 2003-01-18 2003-11-08 Verfahren zur aktiven Dämpfung niederfrequenter Schwingungen an numerisch gesteuerten Werkzeugmaschinen

Country Status (5)

Country Link
US (1) US7031799B2 (de)
EP (1) EP1439437B1 (de)
AT (1) ATE369582T1 (de)
DE (2) DE10301765A1 (de)
ES (1) ES2291581T3 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2624089A2 (de) 2012-02-02 2013-08-07 Dr. Johannes Heidenhain GmbH Reglerstruktur zur Dämpfung niederfrequenter Schwingungen
DE102013202408A1 (de) 2013-02-14 2014-08-14 Dr. Johannes Heidenhain Gmbh Verfahren zur Parametrierung einer Dämpfung von Ratterschwingungen im Regelkreis einer Numerischen Steuerung
DE102013206973A1 (de) * 2013-04-18 2014-10-23 Robert Bosch Gmbh Steueranordnung

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2487552A1 (de) * 2011-02-14 2012-08-15 Schneider GmbH & Co. KG Verfahren und Vorrichtung zur Regelung eines Antriebs für ein Werkzeug oder Werkstück mit Anwendung einer Vorsteuerung
DE102016010160A1 (de) 2016-08-25 2018-03-01 Rheinmetall Air Defence Ag Verfahren zur Regelung des Antriebs eines militärischen Geräts, insbesondere einer Waffe oder eines Sensors
EP3715049A1 (de) * 2019-03-26 2020-09-30 Siemens Aktiengesellschaft Vibrationsdämpfung bei einer werkzeugmaschine mit mehrfacher vibrationserfassung
CN111262244B (zh) * 2020-03-06 2022-07-01 西南交通大学 基于自反馈校正装置模型控制的高铁低频振荡抑制方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US99475A (en) * 1870-02-01 Improved railway-car spring
US40818A (en) * 1863-12-08 Improvement in filters
US191661A (en) * 1877-06-05 Improvement in compositions for preserving, drying, and bleaching fruit
US37338A (en) * 1863-01-06 Improvement in hot-air registers
US22292A (en) * 1858-12-14 Car-spbing
US20020099475A1 (en) 2000-12-01 2002-07-25 Ronald Spangler Method and device for vibration control
US20030040818A1 (en) 1994-01-27 2003-02-27 Baruch Pletner Method and device for vibration control
DE19634923C2 (de) * 1996-08-29 1999-08-19 Bruce Boye Linearisierung nichtlinearer technischer Prozesse mit Hilfe eines Abweichungsbeobachter
JP3564974B2 (ja) * 1997-11-07 2004-09-15 東海ゴム工業株式会社 周期性信号の適応制御方法
US6296093B1 (en) * 1998-11-09 2001-10-02 Lord Corportion Vibration-damped machine and control method therefor
US6912426B1 (en) * 1999-09-24 2005-06-28 Dr. Johannes Heidenhain Gmbh Method for determining time constants of a reference model in a cascade controlling circuit
US7132123B2 (en) 2000-06-09 2006-11-07 Cymer, Inc. High rep-rate laser with improved electrodes
US6690706B2 (en) 2000-06-09 2004-02-10 Cymer, Inc. High rep-rate laser with improved electrodes
JP2004532517A (ja) * 2001-03-26 2004-10-21 サイマー, インコーポレイテッド 振動制御の方法及び装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2624089A2 (de) 2012-02-02 2013-08-07 Dr. Johannes Heidenhain GmbH Reglerstruktur zur Dämpfung niederfrequenter Schwingungen
DE102012201562A1 (de) 2012-02-02 2013-08-08 Dr. Johannes Heidenhain Gmbh Reglerstruktur zur Dämpfung niederfrequenter Schwingungen
EP2624089A3 (de) * 2012-02-02 2016-10-12 Dr. Johannes Heidenhain GmbH Reglerstruktur zur Dämpfung niederfrequenter Schwingungen
DE102013202408A1 (de) 2013-02-14 2014-08-14 Dr. Johannes Heidenhain Gmbh Verfahren zur Parametrierung einer Dämpfung von Ratterschwingungen im Regelkreis einer Numerischen Steuerung
DE102013202408B4 (de) 2013-02-14 2023-09-14 Dr. Johannes Heidenhain Gmbh Verfahren zur Parametrierung einer Dämpfung von Ratterschwingungen im Regelkreis einer Numerischen Steuerung
DE102013206973A1 (de) * 2013-04-18 2014-10-23 Robert Bosch Gmbh Steueranordnung

Also Published As

Publication number Publication date
US20040172171A1 (en) 2004-09-02
EP1439437A1 (de) 2004-07-21
ATE369582T1 (de) 2007-08-15
ES2291581T3 (es) 2008-03-01
DE50307867D1 (de) 2007-09-20
US7031799B2 (en) 2006-04-18
DE10301765A1 (de) 2004-07-29

Similar Documents

Publication Publication Date Title
EP2624089B1 (de) Reglerstruktur zur Dämpfung niederfrequenter Schwingungen
DE19749134B4 (de) Vorrichtung zum aktiven Dämpfen einer Schwingung und Verfahren zum Identifizieren einer Übertragungsfunktion bei einer solchen Vorrichtung
DE102006049867B4 (de) Werkzeugmaschine und Verfahren zur Unterdrückung von Ratterschwingungen
DE4340034C1 (de) Lagerung
DE69212073T2 (de) Vorrichtung zur Dämpfung der periodischen Schwingungen einer mechanischen Struktur
DE112005000681T5 (de) Motorsteuereinrichtung
DE102016012756A1 (de) Servosteuersystem mit Funktion zum automatischen Einstellen einer Lernsteuereinheit
DE102012110227B4 (de) Motorsteuerungsvorrichtung mit Nullbereichsverarbeitung
DE69810150T2 (de) Motorgeschwindigkeitsregler und verfahren zur einstellung der verstärkung des reglers
EP1439437B1 (de) Verfahren zur aktiven Dämpfung niederfrequenter Schwingungen an numerisch gesteuerten Werkzeugmaschinen
EP0896263B1 (de) Verfahren und Schaltungsanordnung zur Ermittlung optimaler Reglerparameter für eine Drehzahlregelung
DE102007003874A1 (de) Verfahren zum geberlosen Betrieb einer stromrichtergespeisten unsymmetrischen Drehfeldmaschine mit einem Testsignal
EP3329335B1 (de) Dämpfung von lastschwingungen ohne zusätzliche messmittel an der lastseite
DE102004043906A1 (de) Positionsregelung einer Vorschubwelle
DE4104168C1 (de)
WO2021239406A1 (de) Verfahren zum betrieb eines antriebsstrangs und fahrzeugantriebsstrang mit elektromotorischem antrieb
EP1708058A1 (de) Verfahren zur Kompensation von Überschwingern einer Hauptachse
EP0883463B1 (de) Verfahren und vorrichtung zur kompensation dynamischer verlagerungen an spanabhebenden werkzeugmaschinen
DE19842729C1 (de) Lagerung für ein schwingendes Bauteil
DE10359984B4 (de) Verfahren und Einrichtung zur Bewegungsführung eines bewegbaren Maschinenelements einer Werkzeug- oder Produktionsmaschine
WO2023094136A1 (de) Verfahren zum betrieb eines antriebsstrangs mit einem elektromotorischen antrieb
CH712842A2 (de) Verfahren zur Regelung des Antriebs eines militärischen Geräts, insbesondere einer Waffe oder eines Sensors.
DE10220937A1 (de) Verfahren und Vorrichtung zur Dämpfung einer auftretenden Ratterschwingung bei einer Bearbeitungsmaschine
DE102021100206A1 (de) Schwingungssteuervorrichtung und schwingungssteuerverfahren
DE102007007791B4 (de) Positionierungssteuersystem für ein bewegliches Element und Laserbohrmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050121

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070808

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50307867

Country of ref document: DE

Date of ref document: 20070920

Kind code of ref document: P

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070808

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070808

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071108

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2291581

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070808

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080108

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070808

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070808

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070808

BERE Be: lapsed

Owner name: DR. JOHANNES HEIDENHAIN G.M.B.H.

Effective date: 20071130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071108

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070808

26N No opposition filed

Effective date: 20080509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080209

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070808

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161122

Year of fee payment: 14

Ref country code: FR

Payment date: 20161118

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20171220

Year of fee payment: 15

Ref country code: IT

Payment date: 20171124

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171108

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181108

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211118

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50307867

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601