EP1435892A4 - External counter pulsation apparatus - Google Patents

External counter pulsation apparatus

Info

Publication number
EP1435892A4
EP1435892A4 EP02775893A EP02775893A EP1435892A4 EP 1435892 A4 EP1435892 A4 EP 1435892A4 EP 02775893 A EP02775893 A EP 02775893A EP 02775893 A EP02775893 A EP 02775893A EP 1435892 A4 EP1435892 A4 EP 1435892A4
Authority
EP
European Patent Office
Prior art keywords
counter pulsation
fluid medium
patient
fluid
pulsation apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP02775893A
Other languages
German (de)
French (fr)
Other versions
EP1435892A2 (en
Inventor
Jun Ma
Xichang Li
Ji Ma
Chunlei Han
Chenyuan Yang
Yuqing Zhu
Zhengyao Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIVING DATA TECHNOLOGY Corp
Original Assignee
LIVING DATA TECHNOLOGY CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LIVING DATA TECHNOLOGY CORP filed Critical LIVING DATA TECHNOLOGY CORP
Publication of EP1435892A2 publication Critical patent/EP1435892A2/en
Publication of EP1435892A4 publication Critical patent/EP1435892A4/en
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H31/00Artificial respiration or heart stimulation, e.g. heart massage
    • A61H31/004Heart stimulation
    • A61H31/005Heart stimulation with feedback for the user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/33Heart-related electrical modalities, e.g. electrocardiography [ECG] specially adapted for cooperation with other devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H31/00Artificial respiration or heart stimulation, e.g. heart massage
    • A61H31/004Heart stimulation
    • A61H31/006Power driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H31/00Artificial respiration or heart stimulation, e.g. heart massage
    • A61H31/008Supine patient supports or bases, e.g. improving air-way access to the lungs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H9/00Pneumatic or hydraulic massage
    • A61H9/005Pneumatic massage
    • A61H9/0078Pneumatic massage with intermittent or alternately inflated bladders or cuffs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/01Constructive details
    • A61H2201/0103Constructive details inflatable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1238Driving means with hydraulic or pneumatic drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/165Wearable interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5007Control means thereof computer controlled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2230/00Measuring physical parameters of the user
    • A61H2230/04Heartbeat characteristics, e.g. E.G.C., blood pressure modulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2230/00Measuring physical parameters of the user
    • A61H2230/08Other bio-electrical signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2209/00Ancillary equipment
    • A61M2209/08Supports for equipment
    • A61M2209/082Mounting brackets, arm supports for equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2209/00Ancillary equipment
    • A61M2209/08Supports for equipment
    • A61M2209/084Supporting bases, stands for equipment

Definitions

  • the present invention relates generally to a counter pulsation apparatus.
  • the present invention relates to an external counter pulsation apparatus that is capable of reducing the energy consumed or noise or heat generated during the operation and improving the effectiveness of the counter pulsation treatment.
  • the present invention relates to a compact, mobile external counter pulsation apparatus that can be conveniently transported to the patient's location for carrying out the counter pulsation treatment.
  • External counter pulsation devices have been used as non-invasive, safe, and effective means to treat various ischemic diseases, such as cardiac diseases caused by cardiac ischemia and stroke and paralysis caused by cerebral ischemia.
  • ischemic diseases such as cardiac diseases caused by cardiac ischemia and stroke and paralysis caused by cerebral ischemia.
  • external counter pulsation devices There are two types of external counter pulsation devices: fixed and mobile.
  • Fixed counter pulsation devices are pre-installed and include a specially designed treatment bed installed in a treatment room, a control unit, and a pump house. The patient is treated in the treatment room on the treatment bed. Due to their immobility, fixed type counter pulsation devices are limited in their use. For example, fixed type counter pulsation devices are inconvenient for or incapable of treating patients with acute condition right after CT diagnosis in emergency rooms.
  • a mobile counter pulsation device In a mobile counter pulsation device, the control computer, the pump, and the counter pulsation valve set are carried by a mobile cart. Accordingly, mobile counter pulsation devices can be conveniently transported to a patient's location, such as a regular patient room, for count pulsation treatment. However, mobile counter pulsation devices tend to generate high noise and/or heat, which not only wastes energy but also disturbs the patients.
  • an external counter pulsation device that has a reduced energy consumption and/or noise and/or heat during the operation. It is also desirable to provide an external counter pulsation device that has an increased mobility for convenient transportation to a patient's location for counter pulsation treatment. It is further desirable to provide an external counter pulsation device of a compact size to increase the mobility.
  • the present invention provides such an external counter pulsation device.
  • the counter pulsation apparatus can comprise a pump member for supplying a fluid medium and a valve member for selectively allowing the fluid medium to inflate or deflate a fluid pouch, which is adapted to be mounted onto a body portion of the patient.
  • An output variation device can be provided to maintain the fluid medium at a predetermined pressure value prior to the pouch inflation.
  • the counter pulsation apparatus can comprise a control device for generating a control signal to control the valve member operation in accordance with a physical signal of the patient.
  • the external counter pulsation apparatus of the invention can reduce energy consumed and/or minimize heat and/or noise generated by the pump member.
  • the present invention also relates to an external counter pulsation apparatus that can have an increased mobility.
  • an external counter pulsation apparatus that can have an increased mobility.
  • either the entire or a part of the external counter pulsation apparatus can be movable to the patient's location to carry out the external counter pulsation treatment.
  • a carrier member can be provided to facilitate the transportation of one or more of the pump member, the valve member, the control device, the output variation device, and the physical signal receiver.
  • the external counter pulsation apparatus can have a compact size to facilitate the mobility.
  • Fig. 1 illustrates the control diagram of the external counter pulsation apparatus of the invention
  • Fig. 2 is a side view of an external counter pulsation apparatus of the invention.
  • Fig. 3 is a top view of the external counter pulsation apparatus as shown in
  • the counter pulsation apparatus of the invention can comprise a pump member adapted to supply a fluid medium, which can be used to inflate a fluid pouch to be wrapped onto a patient's body for a counter pulsation treatment.
  • the fluid medium output from the pump member can be varied, such as by an output variation device, to thereby maintain the fluid medium at a predetermined pressure prior to the pouch inflation process.
  • the output variation device can operate to increase the output of the pump member. Additionally or alternatively, when the fluid medium pressure exceeds the predetermined value, the output of the pump member can be reduced accordingly.
  • the counter pulsation apparatus is capable of reducing energy consumed and minimizing heat and/or noise generated by the pump member.
  • the counter pulsation apparatus of the invention can have a compact structure and be entirely or partially movable.
  • a carrier member can be provided to move one or more components of the counter pulsation apparatus. Accordingly, the counter pulsation apparatus can be conveniently transported to the patient's location to carry out the counter pulsation treatment.
  • the external counter pulsation apparatus 10 can comprise a control device 20.
  • the control device 20 can be adapted to generate one or more control signals to control the operation of the counter pulsation apparatus 10.
  • the control device 20 can generate a control signal to vary the output of the pump member as will be described below.
  • the control device 20 can generate a control signal, such as in accordance with the patient's physical condition, to control the operation of a valve member as will be described below.
  • control device 20 can comprise a computer device.
  • the computer device 20 can comprise a program enabling the computer device 20 to generate one or more control signals as will be described below.
  • the computer device 20 can comprise a monitor 22 for displaying one or more of the physical signals, the control signals, and other patient and treatment information. It will be appreciated that various alternate embodiments of the control device 20 are also within the scope of the invention.
  • Various physical signals can be used for controlling the operation of the counter pulsation apparatus 10.
  • Such physical signals can include those that can indicate the physical condition of the patient.
  • the physical signal can be an electrographic signal, such as an electrocardiographic signal, of the patient.
  • the physical signal can be a pulse signal, such as the temporal arterial pulse signal, of the patient.
  • both electrographic and pulse signals of the patient can be used by the control device 20 to generate control signals.
  • a receiver 30 can be used for receiving a physical signal of the patient and transmitting the same to the control device 20. Depending on the type of the physical signal used in the counter pulsation treatment, the receiver 30 can be adapted accordingly.
  • the receiver 30 can be an electrographic receiver for receiving an electrographic signal of the patient.
  • the receiver 30 can be an electrocardiographic receiver for receiving an electrocardiographic signal of the patient.
  • the receiver 30 can be formed as a telemetry receiver or a wireless receiver, such as an electrocardiograph telemeter. It will be appreciated that various alternate embodiments of the receiver 30 are also within the scope of the invention.
  • a detection device 40 can be provided to obtain one or more physical signals from the patient.
  • the detection device 40 can comprise one or more electrodes or probes 42 for measuring one or more physical signals from the patient.
  • an electrode 42 is provided to measure the patient's electrographic signal, such as an electrocardiographic signal.
  • a probe 42 can be provided to measure the patient's temporal arterial pressure.
  • the detection device 40 can comprise a transmitter 44 for transmitting the detected physical signal to the receiver 30.
  • the transmitter 44 can comprise one or more lead members 46 for transmitting the measured physical signal to the receiver 30.
  • a telemeter transmitter 44 can be used to transmit the physical signal in a wireless manner. It will be appreciated that various alternate embodiments of the detection device 40, the electrode or probe 42, and/or the transmitter 40 are also within the scope of the invention.
  • the pump member 50 can be of various types for supplying a fluid medium to be used for inflating a fluid pouch.
  • the pump member 50 can comprise an air compressor.
  • the fluid medium produced can be gas.
  • the pump member 50 can be adapted to be capable of operating in more than one mode to thus vary the fluid medium output as described below. It will be appreciated that various alternate embodiments of the pump member 50 are also within the scope of the invention.
  • the fluid medium supplied by the pump member 50 can have a pressure value.
  • the value of the fluid medium pressure can be affected by the amount of the fluid medium produced by the pump member 50 and/or the amount of fluid medium used for inflating the valve member. For example, when conducting an external counter pulsation treatment for a patient with a high heart rate, a more frequent pouch inflation and deflation can be needed. Consequently, the fluid medium pressure can fall below the predetermined pressure value.
  • the fluid medium produced by the pump member 50 can be accumulated and kept in a fluid storage member prior to the pouch inflation process.
  • the fluid medium pressure can be the pressure value inside the fluid storage member.
  • the fluid medium pressure can be maintained within a range of a predetermined pressure value prior to the pouch inflation process.
  • the predetermined pressure value can be determined based on the patient conditions (e.g., age, health condition, etc.), types of treatment (e.g., cardiac ischemia, cerebral ischemia, etc.), or other factors.
  • Such predetermined pressure value can be within a range and still suitable for the external counter pulsation treatment.
  • the predetermined pressure value can be in the range of about 0.035 to about 0.040 MPa.
  • a pressure adjustment member 60 can be provided so that a user can change the value of the predetermined pressure value.
  • Various pressure adjustment member 60 can be provided so that a user can change the value of the predetermined pressure value.
  • the output of the pump member 50 can be varied to adjust the fluid medium pressure.
  • the pump member 50 is capable of changing its operation mode to vary the fluid medium output.
  • an output variation device 70 can be employed to vary the fluid medium output from the pump member 50.
  • the output variation device 70 can increase the fluid medium production when the fluid medium pressure falls under a predetermined pressure value.
  • the output variation device 70 can reduce the fluid medium production when the fluid medium pressure exceeds the predetermined value. Accordingly, the output variation device 70 is capable of reducing energy consumed and/or minimizing heat and/or noise generated during the operation, such as by the pump member 50.
  • the output variation device 70 can operate in accordance with a control signal generated by the control device 20.
  • the control device 20 can detect the difference between the fluid medium pressure and the predetermined pressure value and generate a control signal.
  • the output variation device 70 can be adapted to receive such control signal and adjust the fluid medium output of the pump member 50 accordingly.
  • the output variation device 70 can be various conventional devices that are capable of varying the pump output.
  • the output variation device 70 can be determined in accordance with the type of the pump member 50.
  • the output variation device 70 can be adapted to change the rotation speed of the compressor 50. Accordingly, the air pressure can be adjusted to a desired value.
  • the output variation device 70 can comprise a frequency variation device.
  • Such frequency variation device 70 can be adapted to control the operation of the pump member 50 to vary its fluid medium output.
  • the frequency variation device 70 can vary the frequency of a pump motor.
  • the frequency variation device 70 can comprise an AC drive and an electric motor regulated by such AC drive. It will be appreciated that various alternate embodiments of the output variation device or the frequency variation device 70 are also within the scope of the invention.
  • a noise reduction device such as a muffler
  • a cooling device such as a radiator, (not shown) can be incorporated in the counter pulsation apparatus 10 to reduce the temperature of the fluid medium output from the pump member 50.
  • the cooling process can be carried out prior to the inflation of the fluid pouch.
  • a valve member 80 can be provided to control the pouch inflation process.
  • the valve member 80 can be adapted to selectively allow the fluid medium to flow from the pump member 50 to one or more fluid pouches.
  • the valve member 80 can comprise a plurality of valve outlets to allow the fluid medium to enter the corresponding fluid pouches.
  • the valve member 80 can comprise a plurality of valve elements, each corresponding to a fluid pouch. It will be appreciated that various alternate embodiments of valve member 80 are also within the scope of the invention.
  • the operation of the valve member 80 can be regulated by the control device 20.
  • the valve member 80 can be adapted to receive a control signal generated by the control device 20 for controlling the pouch inflation process.
  • such control signal can be generated in accordance with the patient's physical condition, such as indicated by one or more physical signals as described above.
  • the control signal for the valve member 80 can be generated in accordance with an electrographic signal of the patient.
  • the control signal for the valve member 80 can be generated in accordance with a pulse signal of the patient.
  • the valve member 80 can be adapted to receive a control signal generated in accordance with both electrocardiographic and temporal arterial pulse signals of the patient.
  • the control signal generated by the control device 20 can regulate the timing, frequency, and duration of the pouch inflation process. For example, when the patient's physical signal indicates an increased heart rate condition, the control device 20 can generate a corresponding control signal for an increased pouch inflation/deflation frequency.
  • such control signal can be transmitted to the valve member 80 to increase the frequency of its inflation/deflation operation and adjust the inflation timing and duration accordingly.
  • the valve member 80 can receive the control signal and accelerate the pouch inflation/deflation sequence.
  • the counter pulsation apparatus 10 can be either entirely or partially movable.
  • one or more of the control device 20, the receiver 30, the pump member 50, the output variation device 70, the noise/temperate reduction device, and the valve member 80 can be movable. Thus, it is possible and convenient to carry out the counter pulsation treatment at the patient's location.
  • a carrier member 90 can be provided to facilitate the transportation of one or more of the control device 20, the receiver 30, the pump member 50, the output variation device 70, the noise/temperature reduction device, and the valve member 80.
  • the carrier member 90 can be formed in various manners to accomplish the above task.
  • the carrier member 90 can comprise a movable cart member, on which a part of or the entire counter pulsation apparatus 10 can be supported. It will be appreciated that various alternate embodiments of carrier member 90 are also within the scope of the invention.
  • the external counter pulsation apparatus 10 can be formed to have a compact structure thus increasing its mobility and facilitating the transportation to the patient's location.
  • a control cabin member 92 can be provided for housing one or more of the control device 20, the receiver 30, and the output variation device 70.
  • the control cabin member 92 can be supported on the cart member 90.
  • the control cabin member 92 can be positioned next to the pump member 50. It will be appreciated that various alternate embodiments of the control cabin member 92 are also within the scope of the invention.
  • the external counter pulsation apparatus 10 can comprise a fluid storage member 94 for storing the fluid medium output from the pump member 50.
  • the fluid storage member 94 can comprise a gas column member.
  • the fluid storage member 94 can be vertically supported on the cart member 90. It will be appreciated that various alternate embodiments of the fluid storage member 94 are also within the scope of the invention.
  • the counter pulsation apparatus 10 can comprise an adjustable arm member 96 for movably supporting the valve member 80.
  • the adjustable arm member 96 can have one end movably supported on the cart member 90.
  • the adjustable arm member 96 can have one end movably mounted on an upper portion of the fluid storage member 94.
  • the arm member 96 can join with the fluid storage member 94 in such a manner that the arm member 96 is capable of rotating in a horizontal plane, such as for 90 degrees or more.
  • the arm member 96 can join with the fluid storage member 94 in such a manner that the arm member 96 is capable of rotating in a vertical plane, such as for 90 degrees or more.
  • the other end of the arm member 96 can be adapted to extend away from the fluid storage member 94.
  • the valve member 80 can be mounted on the free end of the arm member 96 for proximal access to the fluid pouch mounted on the patient. It will be appreciated that various alternate embodiments of the adjustable arm member 96 are also within the scope of the invention.
  • an external counter pulsation treatment can be carried out to treat various ischemic diseases of a patient.
  • one or more fluid pouches can be wrapped around a body portion of the patient, such as around calves, lower tights, upper thighs, and/or buttocks of the patient. Additionally or alternatively, one or more fluid pouches can be wrapped around the patient's lower arms and/or upper arms.
  • a predetermined pressure value can be set, such as in accordance with the patient's physical condition. If desired, the predetermined pressure value can be adjusted for different counter pulsation treatment results.
  • a fluid medium can be produced and supplied to one or more of the fluid pouches mounted on the patient.
  • the pressure of the fluid medium can be maintained in the range of about 0.035 to about 0.040 MPa.
  • the fluid pouches when the diastole begins, can be inflated sequentially from the calves, to lower thighs, to upper thighs, and to lower buttocks. In another exemplary embodiment, the fluid pouches can be inflated sequentially from the lower arms to upper arms.
  • Such inflation sequence can generate and impel a counter pulsation wave or a retrograde pulse that increases the coronary perfusion pressure during diastole.
  • the external counter pulsation treatment is thus capable of increasing venous return and cardiac output.
  • the fluid medium pressure can be maintained within a range of the predetermined pressure value prior to the pouch inflation process.
  • the above maintenance can be carried out by varying the fluid medium output from the pump member 50.
  • the fluid medium output can be increased or reduced to thereby maintain its pressure.
  • the fluid medium output can be increased when the fluid medium pressure falls below the predetermined pressure value.
  • the fluid medium output can be reduced when the fluid medium pressure exceeds the predetermined pressure value.
  • the fluid medium supply can thus be provided in accordance with the need of the external counter pulsation treatment.
  • the counter pulsation treatment of the invention is capable of reducing energy consumed and/or minimizing the heat and/or noise generated during the counter pulsation treatment.
  • the fluid pouches can be deflated.
  • the vasculature of the lower extremities can accordingly regain conformity to accept cardiac output, thereby reducing the workload of the heart.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pain & Pain Management (AREA)
  • Rehabilitation Therapy (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Epidemiology (AREA)
  • Pulmonology (AREA)
  • Emergency Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Percussion Or Vibration Massage (AREA)
  • External Artificial Organs (AREA)
  • Reciprocating Pumps (AREA)
  • Massaging Devices (AREA)

Abstract

The present invention relates to an external counter pulsation apparatus (10) that provides an improved treatment result while having a reduced energy consumption, noise, and/or heat during operation and/or increased mobility. The apparatus can have a pump member (50) for producing a fluid medium and a valve member (80) for selectively allowing the fluid medium to inflate and deflate a fluid pouch adapted to be mounted on a patient. A control device can control the inflation/deflation in accordance with a physical signal of the patient.

Description

EXTERNAL COUNTERPULSATIONAPPARATUS
FIELD OF THE INVENTION
The present invention relates generally to a counter pulsation apparatus. In particular, the present invention relates to an external counter pulsation apparatus that is capable of reducing the energy consumed or noise or heat generated during the operation and improving the effectiveness of the counter pulsation treatment. Moreover, the present invention relates to a compact, mobile external counter pulsation apparatus that can be conveniently transported to the patient's location for carrying out the counter pulsation treatment.
BACKGROUND OF THE INVENTION External counter pulsation devices have been used as non-invasive, safe, and effective means to treat various ischemic diseases, such as cardiac diseases caused by cardiac ischemia and stroke and paralysis caused by cerebral ischemia. There are two types of external counter pulsation devices: fixed and mobile. Fixed counter pulsation devices are pre-installed and include a specially designed treatment bed installed in a treatment room, a control unit, and a pump house. The patient is treated in the treatment room on the treatment bed. Due to their immobility, fixed type counter pulsation devices are limited in their use. For example, fixed type counter pulsation devices are inconvenient for or incapable of treating patients with acute condition right after CT diagnosis in emergency rooms. In a mobile counter pulsation device, the control computer, the pump, and the counter pulsation valve set are carried by a mobile cart. Accordingly, mobile counter pulsation devices can be conveniently transported to a patient's location, such as a regular patient room, for count pulsation treatment. However, mobile counter pulsation devices tend to generate high noise and/or heat, which not only wastes energy but also disturbs the patients.
Therefore, it is desirable to provide an external counter pulsation device that has a reduced energy consumption and/or noise and/or heat during the operation. It is also desirable to provide an external counter pulsation device that has an increased mobility for convenient transportation to a patient's location for counter pulsation treatment. It is further desirable to provide an external counter pulsation device of a compact size to increase the mobility. The present invention provides such an external counter pulsation device. SUMMARY OF THE INVENTION The present invention relates to an external counter pulsation apparatus. According to the invention, the counter pulsation apparatus can comprise a pump member for supplying a fluid medium and a valve member for selectively allowing the fluid medium to inflate or deflate a fluid pouch, which is adapted to be mounted onto a body portion of the patient. An output variation device can be provided to maintain the fluid medium at a predetermined pressure value prior to the pouch inflation. Moreover, the counter pulsation apparatus can comprise a control device for generating a control signal to control the valve member operation in accordance with a physical signal of the patient. The external counter pulsation apparatus of the invention can reduce energy consumed and/or minimize heat and/or noise generated by the pump member.
The present invention also relates to an external counter pulsation apparatus that can have an increased mobility. According to the invention, either the entire or a part of the external counter pulsation apparatus can be movable to the patient's location to carry out the external counter pulsation treatment. A carrier member can be provided to facilitate the transportation of one or more of the pump member, the valve member, the control device, the output variation device, and the physical signal receiver. Additionally or alternatively, the external counter pulsation apparatus can have a compact size to facilitate the mobility.
BRIEF DESCRIPTION OF THE DRAWINGS
The detailed description of the present invention will be better understood in conjunction with the accompanying drawings, wherein like reference numbers represent like elements, as follows:
Fig. 1 illustrates the control diagram of the external counter pulsation apparatus of the invention;
Fig. 2 is a side view of an external counter pulsation apparatus of the invention; and
Fig. 3 is a top view of the external counter pulsation apparatus as shown in
Fig. 2.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Exemplary counter pulsation apparatuses embodying the principles of the present invention are shown throughout the drawings. In the following description of various embodiments of the counter pulsation apparatus, similar elements or components thereof are designated with same reference numbers and redundant description is omitted. The counter pulsation apparatus of the invention can comprise a pump member adapted to supply a fluid medium, which can be used to inflate a fluid pouch to be wrapped onto a patient's body for a counter pulsation treatment. In the counter pulsation apparatus, the fluid medium output from the pump member can be varied, such as by an output variation device, to thereby maintain the fluid medium at a predetermined pressure prior to the pouch inflation process. When the fluid medium pressure falls below the predetermined value, the output variation device can operate to increase the output of the pump member. Additionally or alternatively, when the fluid medium pressure exceeds the predetermined value, the output of the pump member can be reduced accordingly. The counter pulsation apparatus is capable of reducing energy consumed and minimizing heat and/or noise generated by the pump member.
Additionally or alternatively, the counter pulsation apparatus of the invention can have a compact structure and be entirely or partially movable. A carrier member can be provided to move one or more components of the counter pulsation apparatus. Accordingly, the counter pulsation apparatus can be conveniently transported to the patient's location to carry out the counter pulsation treatment.
In one embodiment, such as shown in Fig. 1 , the external counter pulsation apparatus 10 can comprise a control device 20. The control device 20 can be adapted to generate one or more control signals to control the operation of the counter pulsation apparatus 10. In an exemplary embodiment, the control device 20 can generate a control signal to vary the output of the pump member as will be described below. In another exemplary embodiment, the control device 20 can generate a control signal, such as in accordance with the patient's physical condition, to control the operation of a valve member as will be described below.
In another embodiment, the control device 20 can comprise a computer device. In an exemplary embodiment, the computer device 20 can comprise a program enabling the computer device 20 to generate one or more control signals as will be described below. In another exemplary embodiment, the computer device 20 can comprise a monitor 22 for displaying one or more of the physical signals, the control signals, and other patient and treatment information. It will be appreciated that various alternate embodiments of the control device 20 are also within the scope of the invention.
Various physical signals can be used for controlling the operation of the counter pulsation apparatus 10. Such physical signals can include those that can indicate the physical condition of the patient. For example, the physical signal can be an electrographic signal, such as an electrocardiographic signal, of the patient. Additionally or alternatively, the physical signal can be a pulse signal, such as the temporal arterial pulse signal, of the patient. In an exemplary embodiment, both electrographic and pulse signals of the patient can be used by the control device 20 to generate control signals.
In a further embodiment, such as shown in Fig. 1, a receiver 30 can be used for receiving a physical signal of the patient and transmitting the same to the control device 20. Depending on the type of the physical signal used in the counter pulsation treatment, the receiver 30 can be adapted accordingly. In one exemplary embodiment, the receiver 30 can be an electrographic receiver for receiving an electrographic signal of the patient. In another exemplary embodiment, the receiver 30 can be an electrocardiographic receiver for receiving an electrocardiographic signal of the patient. If desired, the receiver 30 can be formed as a telemetry receiver or a wireless receiver, such as an electrocardiograph telemeter. It will be appreciated that various alternate embodiments of the receiver 30 are also within the scope of the invention.
A detection device 40 can be provided to obtain one or more physical signals from the patient. In one embodiment, the detection device 40 can comprise one or more electrodes or probes 42 for measuring one or more physical signals from the patient. In an exemplary embodiment, an electrode 42 is provided to measure the patient's electrographic signal, such as an electrocardiographic signal. In another exemplary embodiment, a probe 42 can be provided to measure the patient's temporal arterial pressure.
In another embodiment, the detection device 40 can comprise a transmitter 44 for transmitting the detected physical signal to the receiver 30. In an exemplary embodiment, the transmitter 44 can comprise one or more lead members 46 for transmitting the measured physical signal to the receiver 30. In the above embodiment where a telemeter receiver 30 is used, a telemeter transmitter 44 can be used to transmit the physical signal in a wireless manner. It will be appreciated that various alternate embodiments of the detection device 40, the electrode or probe 42, and/or the transmitter 40 are also within the scope of the invention.
In an embodiment, such as shown in Fig. 1, the pump member 50 can be of various types for supplying a fluid medium to be used for inflating a fluid pouch. In an exemplary embodiment, the pump member 50 can comprise an air compressor. Accordingly, the fluid medium produced can be gas. In another exemplary embodiment, the pump member 50 can be adapted to be capable of operating in more than one mode to thus vary the fluid medium output as described below. It will be appreciated that various alternate embodiments of the pump member 50 are also within the scope of the invention.
The fluid medium supplied by the pump member 50 can have a pressure value. The value of the fluid medium pressure can be affected by the amount of the fluid medium produced by the pump member 50 and/or the amount of fluid medium used for inflating the valve member. For example, when conducting an external counter pulsation treatment for a patient with a high heart rate, a more frequent pouch inflation and deflation can be needed. Consequently, the fluid medium pressure can fall below the predetermined pressure value. In an exemplary embodiment, such as shown in Figs. 2 and 3, the fluid medium produced by the pump member 50 can be accumulated and kept in a fluid storage member prior to the pouch inflation process. The fluid medium pressure can be the pressure value inside the fluid storage member.
In the present invention, the fluid medium pressure can be maintained within a range of a predetermined pressure value prior to the pouch inflation process. The predetermined pressure value can be determined based on the patient conditions (e.g., age, health condition, etc.), types of treatment (e.g., cardiac ischemia, cerebral ischemia, etc.), or other factors. Such predetermined pressure value can be within a range and still suitable for the external counter pulsation treatment. For example, the predetermined pressure value can be in the range of about 0.035 to about 0.040 MPa. In an exemplary embodiment, such as shown in Fig. 2, a pressure adjustment member 60 can be provided so that a user can change the value of the predetermined pressure value. Various pressure adjustment member
60 can be used for this purpose.
When the fluid medium pressure departs from a predetermined pressure value, the output of the pump member 50 can be varied to adjust the fluid medium pressure. For example, the pump member 50 is capable of changing its operation mode to vary the fluid medium output. In one embodiment, such as shown in Fig. 1, an output variation device 70 can be employed to vary the fluid medium output from the pump member 50. In an exemplary embodiment, the output variation device 70 can increase the fluid medium production when the fluid medium pressure falls under a predetermined pressure value. In another exemplary embodiment, the output variation device 70 can reduce the fluid medium production when the fluid medium pressure exceeds the predetermined value. Accordingly, the output variation device 70 is capable of reducing energy consumed and/or minimizing heat and/or noise generated during the operation, such as by the pump member 50.
In another embodiment, the output variation device 70 can operate in accordance with a control signal generated by the control device 20. In an exemplary embodiment, the control device 20 can detect the difference between the fluid medium pressure and the predetermined pressure value and generate a control signal. The output variation device 70 can be adapted to receive such control signal and adjust the fluid medium output of the pump member 50 accordingly.
The output variation device 70 can be various conventional devices that are capable of varying the pump output. In one exemplary embodiment, the output variation device 70 can be determined in accordance with the type of the pump member 50. For example, in the embodiment where a compressor 50 is used for producing the fluid medium, the output variation device 70 can be adapted to change the rotation speed of the compressor 50. Accordingly, the air pressure can be adjusted to a desired value. In another exemplary embodiment, the output variation device 70 can comprise a frequency variation device. Such frequency variation device 70 can be adapted to control the operation of the pump member 50 to vary its fluid medium output. In one exemplary embodiment, the frequency variation device 70 can vary the frequency of a pump motor. In a further exemplary embodiment, the frequency variation device 70 can comprise an AC drive and an electric motor regulated by such AC drive. It will be appreciated that various alternate embodiments of the output variation device or the frequency variation device 70 are also within the scope of the invention.
Optionally, a noise reduction device, such as a muffler, can be used to further reduce the noise generated during the operation of the pump member 50. Additionally or alternatively, a cooling device, such as a radiator, (not shown) can be incorporated in the counter pulsation apparatus 10 to reduce the temperature of the fluid medium output from the pump member 50. In an exemplary embodiment, the cooling process can be carried out prior to the inflation of the fluid pouch.
A valve member 80 can be provided to control the pouch inflation process. For example, the valve member 80 can be adapted to selectively allow the fluid medium to flow from the pump member 50 to one or more fluid pouches. In an exemplary embodiment, the valve member 80 can comprise a plurality of valve outlets to allow the fluid medium to enter the corresponding fluid pouches. In another exemplary embodiment, the valve member 80 can comprise a plurality of valve elements, each corresponding to a fluid pouch. It will be appreciated that various alternate embodiments of valve member 80 are also within the scope of the invention.
The operation of the valve member 80 can be regulated by the control device 20. In one embodiment, the valve member 80 can be adapted to receive a control signal generated by the control device 20 for controlling the pouch inflation process. In another embodiment, such control signal can be generated in accordance with the patient's physical condition, such as indicated by one or more physical signals as described above. In an exemplary embodiment, the control signal for the valve member 80 can be generated in accordance with an electrographic signal of the patient. In another exemplary embodiment, the control signal for the valve member 80 can be generated in accordance with a pulse signal of the patient. In a further exemplary embodiment, the valve member 80 can be adapted to receive a control signal generated in accordance with both electrocardiographic and temporal arterial pulse signals of the patient.
The control signal generated by the control device 20 can regulate the timing, frequency, and duration of the pouch inflation process. For example, when the patient's physical signal indicates an increased heart rate condition, the control device 20 can generate a corresponding control signal for an increased pouch inflation/deflation frequency.
In one exemplary embodiment, such control signal can be transmitted to the valve member 80 to increase the frequency of its inflation/deflation operation and adjust the inflation timing and duration accordingly. In another exemplary embodiment, the valve member 80 can receive the control signal and accelerate the pouch inflation/deflation sequence. Additionally or alternatively, the counter pulsation apparatus 10 can be either entirely or partially movable. For example, one or more of the control device 20, the receiver 30, the pump member 50, the output variation device 70, the noise/temperate reduction device, and the valve member 80, can be movable. Thus, it is possible and convenient to carry out the counter pulsation treatment at the patient's location. In one embodiment, a carrier member 90 can be provided to facilitate the transportation of one or more of the control device 20, the receiver 30, the pump member 50, the output variation device 70, the noise/temperature reduction device, and the valve member 80. The carrier member 90 can be formed in various manners to accomplish the above task. In an exemplary embodiment, the carrier member 90 can comprise a movable cart member, on which a part of or the entire counter pulsation apparatus 10 can be supported. It will be appreciated that various alternate embodiments of carrier member 90 are also within the scope of the invention.
In an embodiment such as shown in Figs. 2 and 3, the external counter pulsation apparatus 10 can be formed to have a compact structure thus increasing its mobility and facilitating the transportation to the patient's location. In one embodiment, a control cabin member 92 can be provided for housing one or more of the control device 20, the receiver 30, and the output variation device 70. In one exemplary embodiment, the control cabin member 92 can be supported on the cart member 90. In another exemplary embodiment, the control cabin member 92 can be positioned next to the pump member 50. It will be appreciated that various alternate embodiments of the control cabin member 92 are also within the scope of the invention.
In another embodiment such as shown in Figs. 2 and 3, the external counter pulsation apparatus 10 can comprise a fluid storage member 94 for storing the fluid medium output from the pump member 50. In an exemplary embodiment, the fluid storage member 94 can comprise a gas column member. In another exemplary embodiment, the fluid storage member 94 can be vertically supported on the cart member 90. It will be appreciated that various alternate embodiments of the fluid storage member 94 are also within the scope of the invention.
In a further embodiment, the counter pulsation apparatus 10 can comprise an adjustable arm member 96 for movably supporting the valve member 80. In one embodiment, the adjustable arm member 96 can have one end movably supported on the cart member 90. In another embodiment such as shown in Figs. 2 and 3, the adjustable arm member 96 can have one end movably mounted on an upper portion of the fluid storage member 94. In an exemplary embodiment, the arm member 96 can join with the fluid storage member 94 in such a manner that the arm member 96 is capable of rotating in a horizontal plane, such as for 90 degrees or more. In another exemplary embodiment, the arm member 96 can join with the fluid storage member 94 in such a manner that the arm member 96 is capable of rotating in a vertical plane, such as for 90 degrees or more.
The other end of the arm member 96 can be adapted to extend away from the fluid storage member 94. In an exemplary embodiment, the valve member 80 can be mounted on the free end of the arm member 96 for proximal access to the fluid pouch mounted on the patient. It will be appreciated that various alternate embodiments of the adjustable arm member 96 are also within the scope of the invention.
According to the invention, an external counter pulsation treatment can be carried out to treat various ischemic diseases of a patient. In an exemplary embodiment, such as shown in Fig. 1, one or more fluid pouches can be wrapped around a body portion of the patient, such as around calves, lower tights, upper thighs, and/or buttocks of the patient. Additionally or alternatively, one or more fluid pouches can be wrapped around the patient's lower arms and/or upper arms. In another exemplary embodiment, a predetermined pressure value can be set, such as in accordance with the patient's physical condition. If desired, the predetermined pressure value can be adjusted for different counter pulsation treatment results.
When conducting the external counter pulsation treatment, a fluid medium can be produced and supplied to one or more of the fluid pouches mounted on the patient. In one embodiment, the pressure of the fluid medium can be maintained in the range of about 0.035 to about 0.040 MPa. In an exemplary embodiment, when the diastole begins, the fluid pouches can be inflated sequentially from the calves, to lower thighs, to upper thighs, and to lower buttocks. In another exemplary embodiment, the fluid pouches can be inflated sequentially from the lower arms to upper arms. Such inflation sequence can generate and impel a counter pulsation wave or a retrograde pulse that increases the coronary perfusion pressure during diastole. The external counter pulsation treatment is thus capable of increasing venous return and cardiac output.
The fluid medium pressure can be maintained within a range of the predetermined pressure value prior to the pouch inflation process. In one embodiment, the above maintenance can be carried out by varying the fluid medium output from the pump member 50. When the fluid medium pressure departs from the predetermined pressure value, the fluid medium output can be increased or reduced to thereby maintain its pressure. In an exemplary embodiment, the fluid medium output can be increased when the fluid medium pressure falls below the predetermined pressure value. In another exemplary embodiment, the fluid medium output can be reduced when the fluid medium pressure exceeds the predetermined pressure value. The fluid medium supply can thus be provided in accordance with the need of the external counter pulsation treatment. The counter pulsation treatment of the invention is capable of reducing energy consumed and/or minimizing the heat and/or noise generated during the counter pulsation treatment.
At the end of diastole, the fluid pouches can be deflated. The vasculature of the lower extremities can accordingly regain conformity to accept cardiac output, thereby reducing the workload of the heart.
It will be appreciated that the various features described herein may be used singly or in any combination thereof. Therefore, the present invention is not limited to only the embodiments specifically described herein. While the foregoing description and drawings represent a preferred embodiment of the present invention, it will be understood that various additions, modifications, and substitutions may be made therein without departing from the spirit and scope of the present invention as defined in the accompanying claims. In particular, it will be clear to those skilled in the art that the present invention may be embodied in other specific forms, structures, arrangements, proportions, and with other elements, materials, and components, without departing from the spirit or essential characteristics thereof. One skilled in the art will appreciate that the invention may be used with many modifications of structure, arrangement, proportions, materials, and components and otherwise, used in the practice of the invention, which are particularly adapted to specific environments and operative requirements without departing from the principles of the present invention. The presently disclosed embodiment is therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims, and not limited to the foregoing description.

Claims

What is claimed is:
1. A counter pulsation apparatus comprising: a pump member for producing a fluid medium; a valve member for selectively allowing the fluid medium to inflate and deflate a fluid pouch adapted to be mounted onto a body portion of the patient; a control device for controlling the inflation and deflation of the valve member in accordance with a physical signal of a patient; and an output variation device for varying the fluid medium output from the pump member to maintain the fluid medium pressure at a predetermined value.
2. The counter pulsation apparatus of claim 1 further comprising a receiver for receiving the physical signal and transmitting the same to the control device.
3. The counter pulsation apparatus of claim 1 further comprising a telemetry receiver and a telemetry transmitter for transmitting the physical signal.
4. The counter pulsation apparatus of claim 1, wherein the control device transmits the control signal to both the output variation device and the valve member to control their operation.
5. The counter pulsation apparatus of claim 1, wherein the control device comprises a computer.
6. The counter pulsation apparatus of claim 1, wherein the output variation device comprises a frequency variation device.
7. The counter pulsation apparatus of claim 1 , wherein one or more of the pump member, the valve member, the control device, and the output variation device are movable to the patient's location to carry out the counter pulsation treatment.
8. The counter pulsation apparatus of claim 1 further comprising a carrier member for transporting one or more of the control device, the pump member, the valve member, and the output variation device to the patient's location for the counter pulsation treatment.
9. The counter pulsation apparatus of claim 8 further comprising an adjustable arm member movably supported on the carrier member, wherein the valve member is mounted on the arm member for proximal access to the fluid pouch mounted on the patient.
10. The counter pulsation apparatus of claim 8 further comprising a fluid storage member for storing the fluid medium produced by the pump member.
11. The counter pulsation apparatus of claim 10, wherein the fluid storage member comprises a gas column member supported on the carrier member.
12. The counter pulsation apparatus of claim 10 further comprising an adjustable arm member having one end movably supported on the fluid storage member and the other end extending away from the fluid storage member, wherein the valve member is mounted on the free end of the arm member and capable of moving both vertically and horizontally for proximal access to the fluid pouch mounted on the patient.
13. The counter pulsation apparatus of claim 12, wherein the adjustable arm member comprises an internal chamber in fluid communication with the gas column member, the internal chamber constituting a portion of the fluid storage member.
14. The counter pulsation apparatus of claim 8 further comprising a control cabin member supported on the carrier member for at least partially housing the control device.
15. A counter pulsation apparatus comprising: a pump member for producing a fluid medium; a valve member for selectively allowing the fluid medium to inflate and deflate a fluid pouch adapted to be mounted onto a body portion of the patient; a control device for generating a first control signal to control the production of the fluid medium to maintain the fluid medium pressure at a predetermined value.
16. The counter pulsation apparatus of claim 16, wherein the control device for generating a second control signal in accordance with a physical signal of the patient and controls the inflation and deflation of the valve member.
17. The counter pulsation apparatus of claim 15 further comprising an output variation device for varying the fluid medium output from the pump member in accordance with the first control signal.
18. The counter pulsation apparatus of claim 17, wherein the output variation device is a frequency variation device and the frequency variation device varies the rotation of a pump motor.
19. A method for carrying out an external counter pulsation treatment, comprising: producing a fluid medium; supplying the fluid medium to a fluid pouch adapted to be mounted on a body portion of the patient; and varying the fluid medium production to maintain the fluid medium pressure at a predetermined value.
20. The method of claim 19, further comprising adjusting the predetermined fluid medium pressure in accordance with the physical condition of the patient.
EP02775893A 2001-09-20 2002-09-20 External counter pulsation apparatus Ceased EP1435892A4 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN01253791U CN2536221Y (en) 2001-09-20 2001-09-20 Frequency varying movable extrinsic counterpulsation device
CN01253791 2001-09-20
PCT/US2002/029871 WO2003024315A2 (en) 2001-09-20 2002-09-20 External counter pulsation apparatus

Publications (2)

Publication Number Publication Date
EP1435892A2 EP1435892A2 (en) 2004-07-14
EP1435892A4 true EP1435892A4 (en) 2008-03-05

Family

ID=4719067

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02775893A Ceased EP1435892A4 (en) 2001-09-20 2002-09-20 External counter pulsation apparatus

Country Status (6)

Country Link
US (1) US20050111996A1 (en)
EP (1) EP1435892A4 (en)
CN (1) CN2536221Y (en)
AU (1) AU2002341744A1 (en)
CA (1) CA2460165A1 (en)
WO (1) WO2003024315A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101589986B (en) * 2009-06-22 2011-01-05 卢健 External counterpulsation device with precision control and actions
WO2012005630A2 (en) * 2010-07-06 2012-01-12 Aleksey Monesovich Sudarev Method and devices proposed for the impact on the cardiovascular system
ES2696236T3 (en) 2013-03-27 2019-01-14 Renew Group Private Ltd Portable oscillating compression system
CN103948495A (en) * 2014-03-28 2014-07-30 吴江市搏华医疗器械有限公司 Synchronous air pressure wave therapeutic apparatus and use method thereof
US10258536B2 (en) * 2014-08-27 2019-04-16 Matthew Thomas OBERDIER External peripheral vascular occlusion for enhanced cardiopulmonary resuscitation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3835845A (en) * 1972-10-24 1974-09-17 Medical Innovations Inc Cardiac synchronization system and method
US4077402A (en) * 1976-06-25 1978-03-07 Benjamin Jr J Malvern Apparatus for promoting blood circulation
EP0109627A1 (en) * 1982-11-19 1984-05-30 Siemens-Elema AB Respiration apparatus for ventilating a patient synchronously with his heartbeat and for assisting his blood circulation
EP0203310A2 (en) * 1985-04-01 1986-12-03 Biomedical Engineering Development Center, Of Sun Yat-Sen University Of Medical Sciences Apparatus combining external counterpulsation massage and external cardiac massage
US5830164A (en) * 1994-06-17 1998-11-03 World, Inc. Method and apparatus for applying pressure to a body limb for treating edema
US5891065A (en) * 1996-07-31 1999-04-06 Spinal Cord Society Mobile extremity pumping apparatus
WO1999036028A1 (en) * 1998-01-14 1999-07-22 Cardiologic Systems, Inc. Cardiac assist method using an inflatable vest
US5997540A (en) * 1992-05-07 1999-12-07 Vasomedical, Inc. High efficiency external counterpulsation apparatus and method for controlling same
US20010000262A1 (en) * 1998-08-12 2001-04-12 Mcewen James A. Apparatus and method for applying an adaptable pressure waveform to a limb

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528141A (en) * 1997-08-18 2002-09-03 スィーピースィー オブ アメリカ インコーポレイテッド Counter pulsation device using uncompressed air
AU4645099A (en) * 1998-07-09 2000-02-01 Yoram Harth Apparatus and method for efficient high energy photodynamic therapy of acne vulgaris and seborrhea
AU7596501A (en) * 2000-07-18 2002-01-30 Motorola Inc Wireless electrocardiograph system and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3835845A (en) * 1972-10-24 1974-09-17 Medical Innovations Inc Cardiac synchronization system and method
US4077402A (en) * 1976-06-25 1978-03-07 Benjamin Jr J Malvern Apparatus for promoting blood circulation
EP0109627A1 (en) * 1982-11-19 1984-05-30 Siemens-Elema AB Respiration apparatus for ventilating a patient synchronously with his heartbeat and for assisting his blood circulation
EP0203310A2 (en) * 1985-04-01 1986-12-03 Biomedical Engineering Development Center, Of Sun Yat-Sen University Of Medical Sciences Apparatus combining external counterpulsation massage and external cardiac massage
US5997540A (en) * 1992-05-07 1999-12-07 Vasomedical, Inc. High efficiency external counterpulsation apparatus and method for controlling same
US5830164A (en) * 1994-06-17 1998-11-03 World, Inc. Method and apparatus for applying pressure to a body limb for treating edema
US5891065A (en) * 1996-07-31 1999-04-06 Spinal Cord Society Mobile extremity pumping apparatus
WO1999036028A1 (en) * 1998-01-14 1999-07-22 Cardiologic Systems, Inc. Cardiac assist method using an inflatable vest
US20010000262A1 (en) * 1998-08-12 2001-04-12 Mcewen James A. Apparatus and method for applying an adaptable pressure waveform to a limb

Also Published As

Publication number Publication date
CA2460165A1 (en) 2003-03-27
EP1435892A2 (en) 2004-07-14
WO2003024315A2 (en) 2003-03-27
US20050111996A1 (en) 2005-05-26
AU2002341744A1 (en) 2003-04-01
CN2536221Y (en) 2003-02-19
WO2003024315A3 (en) 2003-10-30

Similar Documents

Publication Publication Date Title
US6962599B2 (en) High efficiency external counterpulsation apparatus and method for controlling same
US7322947B2 (en) Vibrational and pulsating cushioning device
AU725610B2 (en) Patient supports and methods of operating them
US6863670B2 (en) High efficiency external counterpulsation apparatus and method for controlling same
JPH06292721A (en) External counter pulsation device of high efficiency and its control method
EP3888543A1 (en) Patient body monitoring using radar
EP1465574B1 (en) Improvements in and relating to calf compression devices
CN110279574B (en) Local vibration device for preventing and treating sarcopenia
CN114209303A (en) Human body pressure monitoring and self-adaptive adjusting system
US20050111996A1 (en) External counter pulsation apparatus
CA2722429C (en) Percussion therapy system and apparatus
AU2003209483A1 (en) Inflatable support
CN114795785A (en) Physical rehabilitation equipment with multiple air bags for inclined vibration physiotherapy couch
EP2698141A1 (en) Apparatus for assisting cardiopulmonary resuscitation
CN210493442U (en) Intelligent pressure sore prevention cushion
CN209915976U (en) Continuous dynamic blood pressure instrument
AU2021100414A4 (en) Local Vibrating Device for Prevention and Treatment of Sarcopenia
CN214968092U (en) Pulse type inflatable pressure sore prevention pad
AU2021100404A4 (en) Mechanical Stimulation Kit and Adaptive Capsule for Treatment of Sarcopenia
CN114948587B (en) Flexible intelligent cervical vertebra traction device based on multi-sensor fusion
AU2017254954B2 (en) Percussion therapy system and apparatus
KR20190123114A (en) Capsule type enhanced external counter pulsation machine with high concentrated oxygen supply chamber
CN110897845A (en) Air wave pressure massage treatment system
CN116439741A (en) Wearable multifunctional ultrasonic diagnosis and treatment equipment and use method thereof
CN118304074A (en) Lumbar traction device, setting method, bedding and use method thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040419

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

A4 Supplementary search report drawn up and despatched

Effective date: 20080206

RIC1 Information provided on ipc code assigned before grant

Ipc: A61H 31/00 20060101ALI20080131BHEP

Ipc: A61H 23/04 20060101AFI20080131BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20080905