EP1434300A2 - Breitband-Antenne mit einem 3-dimensionalen Gussteil - Google Patents
Breitband-Antenne mit einem 3-dimensionalen Gussteil Download PDFInfo
- Publication number
- EP1434300A2 EP1434300A2 EP03028038A EP03028038A EP1434300A2 EP 1434300 A2 EP1434300 A2 EP 1434300A2 EP 03028038 A EP03028038 A EP 03028038A EP 03028038 A EP03028038 A EP 03028038A EP 1434300 A2 EP1434300 A2 EP 1434300A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- antenna according
- reflector
- supply
- antenna
- conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/1207—Supports; Mounting means for fastening a rigid aerial element
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/24—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
- H01Q21/26—Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q7/00—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
- H01Q9/26—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
- H01Q9/26—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
- H01Q9/265—Open ring dipoles; Circular dipoles
Definitions
- the present invention relates to antennas that include a Include radiation element, which is arranged in front of a reflector surface.
- Crossed dipole antennas for generating linear or circular Polarizations are known.
- a crossed dipole antenna is from the article "A wide-band aerial system for circularly polarized waves, suitable for ionospheric research ", G.J. Phillips, IEE Proc., Vol. 98 III, 1951, pp. 237-239.
- Turnstile antennas are described in various U.S. patents. An example is shown in U.S. Patent No. 2,086,976, issued in 1935. The one shown Antenna comprises a mast on which several crossed antennas are arranged are. There are also numerous textbooks dealing with turnstile antennas deal.
- the antenna elements often arranged in front of a metallic reflector surface. This approach is known and is used in the following two antennas.
- Polarized dipole antenna is US Pat. No. 6,313,809 (corresponds essentially to German Offenlegungsschrift DE 198 60 121 A1) from Kathrein. This distinguishes this dipole antenna from that it consists of a number of individual dipole elements that precede a reflector are arranged. The dipole elements are in plan view as Arranged dipole square and each dipole element is symmetrical Line fed individually.
- a dual polarized multi-range dipole antenna is the US patent US 6,333,720 from Kathrein.
- the bandwidth of a dipole antenna can be improved by thick dipoles or so-called bow-tie dipole structures used.
- Such a broadband dipole antenna is from the article "Broadband half-wave dipole ", M.C. Bailey, IEEE Trans. Antennas Prop., Vol. 32, 1984, Pp. 410 - 412 known.
- a broadband antenna with a thick dipole structure is in the Antenna Engineering Handbook, R.C. Johnson and H. Jasik, editors, 2. Edition, McGraw Hill, 1984, mentioned on pp. 28-11.
- an antenna with a radiation element is prepared placed in front of a conductive reflector and a three-dimensional Casting includes.
- the casting has at least two Levels of symmetry, is conductive and has a closed Circular structure with alternating constrictions and Bulges.
- the orbital structure preferably spans an imaginary surface that is intersected by the planes of symmetry of the casting.
- There are at least two fasteners are present, which are essentially extend perpendicular to the surface of the conductive reflector and at two Bases - which are preferably but not necessarily on intersection lines the planes of symmetry with the imaginary surface lie - the circular structure wear.
- the at least two fastening elements run essentially parallel to each other and lie in the cylinder surface of an imaginary cylinder, the longitudinal axis of the cylinder perpendicular to the surface of the conductive reflector stands.
- the planes of symmetry intersect in one common straight line that coincides with the longitudinal axis of the cylinder.
- the fastening elements are preferably symmetrical Reference to the planes of symmetry, or in the limit in the planes of symmetry. On their (lower) ends are the fasteners with the conductive Connected reflector, at least one of the fastening elements for electrical excitation of the beam element is used.
- plastic injection molding compounds can be used to manufacture the molded parts.
- plastics are listed below: PA (polyamide); POM (Polyacetal); PET (polyethylene terephthalate); PS (polystyrene); TPE (thermoplastic polyester elastomer); LCP (Liquid Crystal Polymer); PBT (Polybutylene terephthalate); SB (styrene / butadiene); SAN (styrene acrylonitrile); SECTION (Acrylic Buadien styrene); PPE (modified polyether); PVC (polyvinyl chloride); CA (Cellulose acetate); CAB (cellulose acetate butyrate); CP (cellulose propionate); PE (Polyethylene); PP (polypropylene); PMMA (polymethyl methacrylate); PC (Polycarbonate); PSO (polyarylsulfone); PES (polyether sulf
- Polymer blends can also be used. This is what it is about are combinations of two or more miscible polymers. blending is a process, a mixture, or a reaction of two or more Polymers to get improved product properties.
- Modified plastics with filler particles can also be used be used, which are the construction of adhesive or electrodeless easier galvanically deposited metal layers.
- the filler particles can be made from electrically conductive metals (e.g. palladium) or from electrically non-conductive metal pigments exist, as in spray paints for electromagnetic shielding can be used. These metal pigments serve as a catalyst for the electrodeless deposition of a metallic Starting layer, which can then be galvanically reinforced.
- the Spray paint reaches only a limited and strong of the plastic material dependent adhesive strength. By embedding the particles in the plastic mass a significant improvement in the adhesive strength is achieved by the particles are only superficially exposed through a short pickling process, otherwise but remain enclosed by the plastic mass.
- metals can also be used to manufacture the cast parts be used.
- Aluminum is particularly suitable Aluminum injection molding process can be processed.
- Molded parts made of zinc, magnesium (e.g. producible using thixo injection molding), or made of titanium aluminum.
- Plastic injection molded parts can also be used or contain several metals.
- the molded parts are characterized by the fact that a minimum of Postprocessing effort is necessary. In addition, the dimensions of the Moldings very precise.
- Reflectors can be used, preferably one have conductive surface. This conductive surface can be grounded.
- the reflector surface can be flat or curved.
- An antenna 10 according to the invention comprises a three-dimensional one Beam element, which is arranged in front of a conductive reflector 13.
- the The blasting element is a cast part.
- the casting is designed to be conductive Antenna can be used.
- the casting can be made with either be provided metallic layer that completely or partially covers the casting.
- the cast part can comprise electrically conductive particles, which are thus integrated into one Guest material are embedded that the casting at least in the Surface area is electrically conductive.
- the casting can also be made from Be made of material that is conductive in itself. Metals or are well suited Metal alloys.
- the cast part also includes a closed circulation structure 11 alternating constrictions and bulges.
- the Circular structure 11 has the shape of a cross in the example shown an imaginary surface 14 spanned by at least two planes of symmetry is cut. The planes of symmetry intersect the imaginary surface 14 and thus form intersection lines 15.1 and 15.3, as shown in FIG. 1B with dashed lines Lines shown.
- the actual circulation structure 11 points in addition to the two intersection lines 15.1 and 15.3 also two axes of symmetry on the are designated in Fig. 1B with 15.2 and 15.4.
- fastening elements 12.1, 12.2 There are at least two fastening elements 12.1, 12.2 provided which is substantially perpendicular to the surface of the conductive Extend reflector 13.
- the fastening elements 12.1, 12.2 are on two Bases - those on the intersection line in the embodiment shown 15.1 lie - connected to the circulation structure 11.
- the at least two Fastening elements 12.1, 12.2 run essentially parallel to one another and lie in the cylindrical surface of an imaginary cylinder 9, the Longitudinal cylinder axis 8 is perpendicular to the surface of the conductive reflector 13.
- the mentioned planes of symmetry 15.1 and 15.3 intersect in one common line of intersection, which coincides with the cylinder longitudinal axis 8.
- the fastening elements 12.1, 12.2 are on two Bases that lie on the intersection line 15.1 with the circular structure 11 connected and carry the circulation structure 11. At their other ends 16 are the fasteners 12.1, 12.2 connected to the reflector 13. additionally at least one of the fastening elements 12.1, 12.2 serves for the supporting function for electrical excitation of the beam element.
- the radiating element has a mushroom-like shape in which the area 14 spanned by the circular structure 11 the mushroom hat and the imaginary cylinder 9 form the foot of the mushroom.
- the comparison of the Beam element with a mushroom-like shape only serves the better Illustration of the invention.
- Fastening elements which are a particularly suitable have a columnar structure.
- the fastening elements are preferably one integral part of the circulation structure 11. In this case, both the Circumferential structure 11 as well as the fastening elements in one piece and thus without additional assembly steps and assembly tolerances are produced.
- the fasteners are preferably cylindrical Shape with a round cross-section, but can also have other cross-sectional shapes exhibit.
- the fasteners 12.1, 12.2 for example with a snap mechanism or one Be provided connector that allow the fasteners Insert 12.1, 12.2 into holes in the reflector 13 and snap them into place.
- a snap connection screw, solder or other - connections are provided. Connections that are next to one are ideal mechanical connection also establish an electrically conductive connection.
- the reflector 13 on the front 17.2 i.e. on the side of the reflector 13 which faces the circulating structure 11
- the reflector 13 on the front 17.2 is made conductive, as indicated in Fig. 1C.
- At least one of the Fastening elements 12.1 must thus be able to be fastened in the reflector 13, that there is no conductive connection to the conductive side 17.2 of the reflector 13 forms. Otherwise, both fasteners 12.1, 12.2 would be over the conductive reflector 13 shorted and the antenna could not can be controlled.
- the fastener 12.1 comprises a cylinder, the wall 19.1 of which has a conductive layer 18 is provided.
- the reflector 13 is made of an electrically conductive layer 17.4 formed on the front 17.2 of a dielectric plate 17.5.
- the Reflector 13 has a hole in which the lower end 16 of the Fastening element 12.1 is performed.
- a falling out of the Fastening element 12.1 is prevented by nose-like projections 19.2, which enable the assembly process by compression.
- a distance between the conductive surface 17.4 and the fastening element 12.1 prevents one Short circuit of the supply signal.
- the feed signal is, for example, by a strip line is created on the back of the reflector 13, which in is electrically conductive connection to the conductive layer 18.
- the fastening element 12.1 comprises a cylinder, the wall 19.1 of which a conductive layer 18 is provided.
- the reflector 13 is made from a electrically conductive layer 17.4 on the front 17.2 of a dielectric Plate 17.5 formed.
- the reflector 13 has a hole in which the lower End 16 of the fastener 12.1 is guided, a mechanical Stop is formed by a gradation 19.3 of the cylinder diameter.
- On Falling out of the fastener 12.1 is by nose-like projections 19.2 prevented, which allow the assembly process by compression. A prevents annular recess 17.7 of the electrically conductive layer 17.4 a short circuit in the supply signal.
- the feed signal is given by a Strip line 17.6 formed on the back of the reflector 13, which in is electrically conductive connection to the conductive layer 18.
- the particularly advantageous embodiment shown is the stripline 17.6 and by the annular recess 17.7 of the electrically conductive Layer 17.4 separated area 17.8 by a by the reflector 13th passing electrically conductive layer 17.9, a so-called Vias, interconnected.
- this is the casting facing side 17.2 of the reflector 13 made conductive. It can also do that rear side 17.1 be made conductive.
- the leading side of the reflector 13 completely or partially covered with a non-conductive layer be to protect the reflector 13 from environmental influences.
- This non-conductive Layer can be a plastic layer that is used for the electromagnetic fields is transparent.
- Some of the antennas according to the invention are characterized by that the imaginary surface 14 spanned by the circular structure 11 in the Extends substantially parallel to the reflector 13.
- the imaginary surface 14 can be flat or curved.
- the reflector 13 can be slightly curved.
- a Has supply circuit This supply circuit can be used for dining the antenna.
- the Supply circuit include a network, which has a supply input connects with the two fasteners 12.1, 12.2 so that they can be controlled in opposite phases.
- FIG. 2A Such an antiphase control is schematic in FIG. 2A shown.
- the antenna 20 comprises a circular structure 21 similar to that in FIG. 1A and 1B, however, four fastening elements 22.1 to 22.4 are provided. Both the two fasteners 22.1 and 22.3 as well as the two Fastening elements 22.2 and 22.4 are driven in opposite phases. The two fastening elements 22.1 and 22.2 are excited in phase. As indicated by the three arrows in Fig. 2A, arises from the symmetrical design of the beam element 21 an E-field in the x-direction is linearly polarized (vertical polarization).
- FIG. 2B Another control is shown schematically in FIG. 2B. Again, both the fasteners 22.1 and 22.3 as also the two fasteners 22.2 and 22.4 each in opposite phase driven. Now, however, the two fasteners 22.1 and 22.4 excited in phase. As indicated by the three arrows in Fig. 2B, an E field is created due to the symmetrical design of the beam element 21, which is linearly polarized in the y direction (horizontal polarization).
- FIG. 2C A simplified control is shown schematically in FIG. 2C.
- the fastener 22.4 becomes out of phase with the fastener 22.2 excited, as indicated by the arrow in Fig. 2C.
- the Symmetrical design of the beam element 21 creates an E-field that is -45 ° is linearly polarized (-45 ° slant polarization).
- the fasteners 22.1 and 22.3 without essential effects on the antenna function are omitted, however, which may affect mechanical stability.
- the Fastening elements 22.1 and 22.3 can in a further modification of the Excitation to be electrically connected to the reflector 13 or 23.
- Polarizations for example analogous to Fig. 2A or 2B by phase-shifted excitation of the fastener pairs 22.1, 22.3 and 22.2, 22.4 can be achieved.
- a network 30 according to the invention is shown in FIG. 3A as an example.
- the network shown is on the back of a reflector surface and has two supply inputs 32.1 and 32.2.
- There are four goals 31.1 to 31.4 provided with the fasteners (not shown in Fig. 3A) of the Beam element are connected.
- Between the feed input 32.1 and A 180 ° hybrid 33.1 is arranged in the two ports 31.4 and 31.2.
- the 180 ° hybrid 33.2 includes a ⁇ / 4 Delay line between points A and C and a 3 ⁇ / 4 Delay line between points A and B.
- the line between B and C in turn represents a ⁇ / 2 delay line.
- the delay lines are designed for the center frequency of the feed signals.
- Ports 31.1 to 31.4 are via line sections with the two 180 ° hybrids 33.1 and 33.2 connected, each causing the same phase shift.
- the network 30 ensures that the diagonally opposite ports are 180 ° out of phase, that is, out of phase, are controlled, whereby the the other two ports are each in a virtual short circuit level.
- the Feed inputs 32.1 and 32.2 thus have a high mutual Decoupling on. This gives a particularly pure polarization of the radiated wave, or a strongly suppressed Cross-polarization component.
- 180 ° power dividers for feeding those lying on the corners of a square Supply inputs 31.1 to 31.4 of FIG.
- connection point B on the 31.1 through the supply inputs and 31.4 given straight line.
- the position of the connection point C can be chosen freely.
- the Network input corresponding to the connection point A of the 180 ° hybrid in FIG. 3A can be positioned anywhere.
- the second's stripline layout The 180 ° power divider can now be obtained by two mirror images: in the first Step mirrors the layout of the first 180 ° power divider on the Axis of symmetry, which feed points 31.1 and 31.2 in the feed points 31.4 and 31.3 transferred. In the second step you just mirror the layout of the Connection line between the feed point 31.4 and connection point B of the second 180 ° power divider around the axis 31.1 - 31.4.
- the two Power inputs 32.1 and 32.2 controlled so that S1 (t) compared to S2 (t) is phase shifted by + 90 ° or -90 °. They can also be elliptical Generate polarizations if the phase shift occurs at + 90 ° or - 90 ° Amplitude of S1 (t) is different from the amplitude of S2 (t) or / and Phase shift deviates from 0 °, + 90 °, -90 ° and 180 °.
- the control of the beam element can also be done by others Supply circuits, for example (combination) networks and Delay lines.
- the supply circuit can be in planar, coaxial or waveguide line technology.
- the supply circuit can be designed so that it is off one signal (e.g. S1 (t)) up to four different control signals for Driving the radiation element generated.
- FIG. 3B Another example of a supply circuit is in Fig. 3B shown.
- the supply circuit has a supply input 34, the a signal S1 (t) is supplied.
- a divider 35 follows, the first of which Output signal is applied to a gate 37.4.
- the second output signal of the Divider 35 is phase shifted via a 180 ° phase shifter 36 and then a gate 37.2 fed.
- the two ports 37.1 and 37.3 are grounded.
- the Supply circuit in Fig. 3B enables a single linear polarization.
- a third example of a supply circuit is in Fig. 3C shown.
- the supply circuit has a supply input 34, the a signal S1 (t) is supplied.
- a 180 ° hybrid 39 feeds two Connecting lines 40a, 40b in push-pull.
- Connecting line 40a connects the neighboring gates 38.1 and 38.2, connecting line 40b the neighboring ones Goals 38.3 and 38.4.
- the connecting lines 40a and 40b each of two identical, mirror-symmetrical to the connection point of the 180 ° hybrids 39 arranged arms and are identical.
- Each dipole element of the crossed dipole antenna is preferred fed symmetrically.
- FIGS. 4A to 4D Various regular circulation structures are shown in FIGS. 4A to 4D schematically indicated, it should be noted that there are numerous others There are shapes that are also suitable as a circular structure. This regular Orbital structures have four levels of symmetry.
- FIG. 4E Further circulation structures according to the invention, now with three Planes of symmetry are shown in Figures 4E and 4F.
- the orbital structure of Fig. 4E has three wing elements, which are rotated by 120 ° against each other are arranged.
- 4F also shows a Generation of circularly polarized radiation suitable circulation structure.
- FIGS. 5A and 5B Various irregular orbital structures are in the figures 5A and 5B schematically indicated. These irregular circulation structures have at least two planes of symmetry and are preferred with one Circuit driven according to Fig. 3C. Another beneficial one The use of the circulation structures in FIGS. 5A and 5B is the simplified one Generation of circular polarization by applying phase signals in phase opposition two opposing constrictions.
- the circulation structure is preferably designed such that Wing elements are present which result in at least one resonance circuit, which is burdened by the radiation.
- the fastening elements are preferably designed such that transformers from the excitation impedances to the Result in resonator impedances.
- the fasteners designed as a transformer have in an advantageous design on such a large diameter that it against the conductive reflector surface represent an interfering capacitive load.
- Example fasteners are used, which are towards the reflector rejuvenate that there is an inductive initial stage.
- An example of one such fastener is in Fig. 6 in a schematic side view shown.
- a fastener is shown having a first cylindrical Has area 62 which has a first diameter.
- a second cylindrical area 61 is provided in the first area 62 thereof Diameter is smaller than the diameter of the first area 62.
- the first The area does not necessarily have to be centered on the second area be arranged.
- the fastener shown is designed so that it is easy to remove from the mold after casting.
- the radiation characteristic is essentially determined by the distance of the beam element from the reflector.
- the distance of the beam element from the reflector is preferred chosen between 1/10 and 1/3 of the emitted wavelength in air.
- a metallic screen arrangement can be provided, all, part or not at all with the senior Reflector surface is connected.
- the screen arrangement preferably has the same planes of symmetry as the beam element surrounded by them. she can be in one piece or taking into account the planes of symmetry from a corresponding number of individual elements.
- a special one advantageous arrangement consists of a circumferential electrically conductive Wall, which depending on the desired beam concentration below or above the point of the most distant from the reflector surface 23 Beam element ends.
- the screen arrangement can also be used to the mutual coupling between neighboring Reduce beam elements in a group antenna.
- a group antenna according to the invention is characterized in that that several antennas are arranged in rows and columns.
- a exemplary array antenna 70 is shown in FIG. 7.
- the group antenna 70 comprises two columns with three antennas 71 each.
- the antenna radiation elements 71 are arranged rotated 45 degrees in the example shown.
- the Beam elements can also have any other orientation.
- the horizontal distance may be necessary or useful to choose between the individual antennas other than the vertical distance.
- a reflector surface 73 is arranged behind the steel elements. It is one Supply matrix (not visible in Fig. 7) available, which allows the Combine antennas in rows and / or columns.
- each antenna 71 comprises a beam element and an individual one Supply circuit.
- the supply matrix mentioned then represents the necessary connections between total inputs of the group antenna and the supply inputs of the supply circuits.
- the Supply matrix, the supply circuit and the supply signal is in the example shown so that there is a linear polarization in vertical direction results, as indicated by the E-fields.
- the antennas described and shown are particularly suitable for operation in the gigahertz frequency range, with the supply inputs Signals are applied that have a center frequency that is greater than Is 1 GHz.
- the antennas are particularly suitable for mobile radio and others Communication systems.
- the upper frequency limit can be about 25 GHz, where the diameter of the beam elements according to the invention is about 5 millimeters assumes and the distance between the circulation structure and the reflector plane can be smaller than 3 millimeters.
- the beam elements can be designed as SMD (Surface Mounted Device), which is directly connected to a dielectric boards carrying the supply circuits are soldered on.
- the lower ends 16 of the fasteners 12.1 to 12.4 are therefor preferably with a galvanic that is easily wettable by the solder used Provided surface, whereas the remaining three-dimensional structure of the Beam element is preferably covered by a solder-repellent layer.
- This can be done, for example, by dip painting, plasma coating with a dielectric layer or by selectively depositing one from the used solder wettable metal are generated.
- the reflector surface is preferably by a large-area conductive layer on the Beam elements facing away from the dielectric plate is formed.
- a particularly advantageous method for solder assembly is the use of Solder balls with low mechanical tolerances, which with professional, from the Ball Grid Array (BGA) technology known dimensioning a reliable Cause self-centering of the blasting element.
- BGA Ball Grid Array
- the beam elements are large Number of pieces can be produced, whereby great shape accuracy is guaranteed.
- shape retention expresses that a low tolerance representation of the Tool cavity can be achieved through the molded part.
- the beneficial one-piece design of the casting forming the blasting element guaranteed in particular, the exact adherence to achieve a high Cross polarization decoupling necessary mirror symmetries.
- Beam element made up of several (preferably identical) parts composed this property is due to the assembly tolerances harder to achieve.
- the weight of a radiating element very low. Depending on the material and frequency range, a weight can be achieved be that for use at cellular frequencies below 20g lies.
- the single and group antennas described are very good compact. If the supply circuit is provided on the reflector, the wiring effort is significantly reduced.
Landscapes
- Aerials With Secondary Devices (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Details Of Aerials (AREA)
Abstract
Description
- Fig. 1A
- eine Antenne gemäss Erfindung in einer schematischen Seitenansicht;
- Fig. 1B
- die Antenne gemäss Fig. 1A in einer schematischen Draufsicht;
- Fig. 1C
- einen Ausschnitt der Antenne gemäss Fig. 1A in einer schematischen Schnittansicht;
- Fig. 1D
- einen Ausschnitt eines weiteren Befestigungselements gemäss Erfindung in einer schematischen Schnittansicht;
- Fig. 2A
- eine weitere Antenne gemäss Erfindung in einer schematischen Draufsicht, wobei die Abstrahlung vertikal linear polarisiert ist;
- Fig. 2B
- eine weitere Antenne gemäss Erfindung in einer schematischen Draufsicht, wobei die Abstrahlung horizontal linear polarisiert ist;
- Fig. 2C
- eine weitere Antenne gemäss Erfindung in einer schematischen Draufsicht, wobei die Abstrahlung 45° linear polarisiert ist;
- Fig. 3A
- eine Versorgungsschaltung gemäss Erfindung, die sich auf der Rückseite eines Reflektors befindet;
- Fig. 3B
- eine weitere Versorgungsschaltung gemäss Erfindung, in schematischer Blockansicht;
- Fig. 3C
- eine weitere Versorgungsschaltung gemäss Erfindung, in schematischer Blockansicht;
- Fig. 4A-4F
- verschiedene regelmässige Umlaufstrukturen, gemäss Erfindung;
- Fig. 5A-5B
- verschiedene unregelmässige Umlaufstrukturen, gemäss Erfindung;
- Fig. 6
- einen Ausschnitt eines Befestigungselements gemäss Erfindung in einer schematischen Seitenansicht;
- Fig. 7
- eine Gruppenantenne gemäss Erfindung in einer schematischen Draufsicht.
- Die Umlaufstruktur ist eine geschlossene Umlaufstruktur mit einander abwechselnden Einschnürungen und Ausbuchtungen.
- Die Umlaufstruktur spannt eine imaginäre Fläche auf, die durch mindestens zwei Symmetrieebenen des Gussteils geschnitten wird.
- Die Symmetrieebenen schneiden sich in einer gemeinsamen Schnittgerade, die in etwa senkrecht zum Reflektor verläuft.
Claims (16)
- Antenne (10; 20; 70) mit einem Strahlelement, das vor einem leitenden Reflektor (13; 23; 73) angeordnet ist, dadurch gekennzeichnet, dass das Strahlelement ein drei-dimensionales Gussteil umfasst,das mindestens zwei Symmetrieebene (15.1, 15.3) aufweist,das leitend ausgeführt ist und eine geschlossene Umlaufstruktur (11; 21; 71) mit einander abwechselnden Einschnürungen und Ausbuchtungen aufweist, wobei die Umlaufstruktur (11; 21; 71) eine imaginäre Fläche (14) aufspannt, die von den mindestens zwei Symmetrieebenen (15.1, 15.3) geschnitten wird, unddas mindestens zwei Befestigungselemente (12.1 bis 12.4) aufweist, die sich im Wesentlichen senkrecht zu der imaginären Fläche (14) erstrecken und an Punkten, die auf mindestens einer der Symmetrieebenen (15.1, 15.3) liegen die Umlaufstruktur (11; 21; 71) tragen und an deren Enden (16) mit dem Reflektor (13) verbunden sind, wobei mindestens eines der zwei Befestigungselemente (12.1, 12.2) zum elektrischen Anregen des Strahlelements dient.
- Antenne nach Anspruch 1 dadurch gekennzeichnet, dass der Reflektor (13; 23; 73) eine ebene Fläche umfasst, die eine leitende Seite (17.2) hat, die zu dem Gussteil hingewandt ist.
- Antenne nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass sich die durch die Umlaufstruktur (11; 21; 71) aufgespannt imaginäre Fläche (14) im Wesentlichen parallel zu dem Reflektor (13; 23; 73) erstreckt.
- Antenne nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass die durch die Umlaufstruktur (11; 21; 71) aufgespannt imaginäre Fläche (14) eben oder gekrümmt ist.
- Antenne nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass das Gussteil ein Kunststoffgussteil ist, das ganz oder teilweise mit einer leitenden Schicht versehen ist, oder dass das Gussteil ein metallisiertes Kunststoffspritzgussteil ist.
- Antenne nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Gussteil ein Metallgussteil ist.
- Antenne nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass der Reflektor (13; 23; 73) auf der Seite (17.1), die von dem Gussteil abgewandt ist eine Versorgungsschaltung (30) aufweist.
- Antenne nach Anspruch 7 dadurch gekennzeichnet, dass die Versorgungsschaltung ein Netzwerk umfasst, um zwei Speisungseingänge mit den zwei Befestigungselementen (12.1, 12.2) so zu verbinden, dass diese gegenphasig ansteuerbar sind.
- Antenne nach Anspruch 8 dadurch gekennzeichnet, dass die Versorgungsschaltung so ausgelegt ist, dass je nach Speisung an den Speisungseingängen die Polarisierung der von dem Strahlelement abgestrahlten Signale beeinflussbar ist.
- Antenne nach Anspruch 7 dadurch gekennzeichnet, dass die Versorgungsschaltung aus zwei jeweils benachbarte Befestigungselemente (22.1, 22.2 bzw. 22.4, 22.3 oder 22.1, 22.4 bzw. 22.2, 22.3) verbindenden inphase Leistungsteilern besteht, welche ihrerseits durch ein Symmetrierglied (33.1, 33.2) gegenphasig ansteuerbar sind.
- Antenne nach Anspruch 7 dadurch gekennzeichnet, dass die Versorgungsschaltung in planarer, koaxialer oder Hohlleiter-Leitungstechnik auf der Seite (17.1) ausgeführt ist.
- Antenne nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass das Gussteil durch eine Schirmanordnung umgeben ist, die vorzugsweise metallisiert ist.
- Antenne nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die mindestens zwei Befestigungselement in der Zylinderfläche eines imaginäre Zylinders (9) liegen, dessen Zylinderlängsachse (8) senkrecht auf dem leitenden Reflektor (13; 23; 73) steht.
- Gruppenantenne mit mehreren Antennen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Antennen in Zeilen und Spalten angeordnet sind und eine Versorgungsmatrix vorhanden ist, durch welche die Antennen zeilen- und/oder spaltenweise zusammenfassbar sind.
- Gruppenantenne nach Anspruch 14, dadurch gekennzeichnet, dass jede der Antennen eine Versorgungsschaltung mit Speisungseingängen aufweist.
- Gruppenantenne nach Anspruch 15, dadurch gekennzeichnet, dass durch die Versorgungsmatrix Verbindungen zwischen Gesamteingängen der Gruppenantenne und den Speisungseingängen der Versorgungsschaltungen herstellbar sind.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH22102002 | 2002-12-23 | ||
CH22102002 | 2002-12-23 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1434300A2 true EP1434300A2 (de) | 2004-06-30 |
EP1434300A3 EP1434300A3 (de) | 2004-09-22 |
EP1434300B1 EP1434300B1 (de) | 2007-04-18 |
Family
ID=32399982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03028038A Expired - Lifetime EP1434300B1 (de) | 2002-12-23 | 2003-12-06 | Breitband-Antenne mit einem 3-dimensionalen Gussteil |
Country Status (5)
Country | Link |
---|---|
US (1) | US6995732B2 (de) |
EP (1) | EP1434300B1 (de) |
AT (1) | ATE360268T1 (de) |
DE (1) | DE50307071D1 (de) |
HK (1) | HK1067793A1 (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1906491A1 (de) * | 2006-09-26 | 2008-04-02 | Ace Antenna Corp. | Gebogene Faltdipolantenne zur Verringerung der Strahlbreitenabweichung |
EP1983606A1 (de) * | 2007-04-16 | 2008-10-22 | Research In Motion Limited | Dualpolarisierte multiple Band-Schleifenantenne und entsprechendes Verfahren für ein Funkgerät |
EP2013941A1 (de) * | 2006-04-03 | 2009-01-14 | Ace Antenna Corp. | Breitbandantenne mit dualer polarisation und einzelstruktur |
EP2378610A4 (de) * | 2009-01-12 | 2015-08-12 | Comba Telecom System China Ltd | Doppelpolarisationsstrahlungseinheit und planarer dipol |
WO2023025382A1 (en) | 2021-08-25 | 2023-03-02 | Telefonaktiebolaget Lm Ericsson (Publ) | Mobile communication antenna |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10333704B4 (de) * | 2003-07-23 | 2009-12-17 | Ovd Kinegram Ag | Sicherheitselement zur RF-Identifikation |
US7868843B2 (en) * | 2004-08-31 | 2011-01-11 | Fractus, S.A. | Slim multi-band antenna array for cellular base stations |
DE102004045707A1 (de) * | 2004-09-21 | 2006-03-30 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Antenne |
WO2007042938A2 (en) * | 2005-10-14 | 2007-04-19 | Fractus, Sa | Slim triple band antenna array for cellular base stations |
FI120522B (fi) * | 2006-03-02 | 2009-11-13 | Filtronic Comtek Oy | Uudenlainen antennirakenne ja menetelmä sen valmistamiseksi |
US20100321251A1 (en) * | 2006-09-28 | 2010-12-23 | Jan Hesselbarth | Antenna elements, arrays and base stations including mast-mounted antenna arrays |
FR2909486A1 (fr) * | 2006-12-01 | 2008-06-06 | Thomson Licensing Sas | Antenne multi secteurs |
JP5320635B2 (ja) * | 2007-05-31 | 2013-10-23 | 国立大学法人愛媛大学 | アンテナ |
US8854277B2 (en) * | 2008-11-19 | 2014-10-07 | Nxp, B.V. | Millimetre-wave radio antenna module |
JP4988017B2 (ja) * | 2010-07-23 | 2012-08-01 | 株式会社東芝 | カプラ装置および情報処理装置 |
EP2804260B1 (de) * | 2012-01-13 | 2018-03-21 | Comba Telecom System (China) Ltd. | Steuerungssystem für antennenanlage und gemeinsame mehrfrequenz-antennenanlage |
EP3236531B1 (de) * | 2016-04-20 | 2019-01-30 | Huawei Technologies Co., Ltd. | Zweiteiliges antennenelement |
US10290930B2 (en) * | 2017-07-18 | 2019-05-14 | Honeywell International Inc. | Crossed dipole with enhanced gain at low elevation |
JP7331163B2 (ja) * | 2022-01-21 | 2023-08-22 | 電気興業株式会社 | 偏波共用折り返しダイポール素子及びアンテナ |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2166750A (en) * | 1936-02-15 | 1939-07-18 | Rca Corp | Antenna |
US4804965A (en) * | 1985-07-09 | 1989-02-14 | Agence Spatiale Europeenne | Flat wide-band antenna |
US5285210A (en) * | 1990-05-08 | 1994-02-08 | Nippon Sheet Glass Co., Ltd. | Double loop antenna with reactance elements |
US6034645A (en) * | 1997-02-24 | 2000-03-07 | Alcatel | Miniature annular microstrip resonant antenna |
AU723272B2 (en) * | 1993-04-02 | 2000-08-24 | Alcatel Australia Limited | Low profile linear polarised antenna |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2086976A (en) | 1935-09-20 | 1937-07-13 | Rca Corp | Antenna system |
US4510501A (en) * | 1983-05-19 | 1985-04-09 | Rca Corporation | Broadband loop antenna with low wind resistance |
US5563616A (en) * | 1994-03-18 | 1996-10-08 | California Microwave | Antenna design using a high index, low loss material |
DE19722742C2 (de) * | 1997-05-30 | 2002-07-18 | Kathrein Werke Kg | Dualpolarisierte Antennenanordnung |
US6057802A (en) * | 1997-06-30 | 2000-05-02 | Virginia Tech Intellectual Properties, Inc. | Trimmed foursquare antenna radiating element |
DE19823749C2 (de) * | 1998-05-27 | 2002-07-11 | Kathrein Werke Kg | Dualpolarisierte Mehrbereichsantenne |
DE19860121A1 (de) | 1998-12-23 | 2000-07-13 | Kathrein Werke Kg | Dualpolarisierter Dipolstrahler |
US6275181B1 (en) * | 1999-04-19 | 2001-08-14 | Advantest Corporation | Radio hologram observation apparatus and method therefor |
DE19931907C2 (de) * | 1999-07-08 | 2001-08-09 | Kathrein Werke Kg | Antenne |
BR0116985A (pt) * | 2001-04-16 | 2004-12-21 | Fractus Sa | Disposição de antena de banda dupla e de polarização dupla |
US6762729B2 (en) * | 2001-09-03 | 2004-07-13 | Houkou Electric Co., Ltd. | Slotted bow tie antenna with parasitic element, and slotted bow tie array antenna with parasitic element |
US6583766B1 (en) * | 2002-01-03 | 2003-06-24 | Harris Corporation | Suppression of mutual coupling in an array of planar antenna elements |
US6697019B1 (en) * | 2002-09-13 | 2004-02-24 | Kiryung Electronics Co., Ltd. | Low-profile dual-antenna system |
DE10316564B4 (de) * | 2003-04-10 | 2006-03-09 | Kathrein-Werke Kg | Antenne mit zumindest einem Dipol oder einer dipolähnlichen Strahleranordnung |
-
2003
- 2003-12-06 EP EP03028038A patent/EP1434300B1/de not_active Expired - Lifetime
- 2003-12-06 DE DE50307071T patent/DE50307071D1/de not_active Expired - Lifetime
- 2003-12-06 AT AT03028038T patent/ATE360268T1/de not_active IP Right Cessation
- 2003-12-22 US US10/744,233 patent/US6995732B2/en not_active Expired - Fee Related
-
2004
- 2004-12-22 HK HK04110136A patent/HK1067793A1/xx not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2166750A (en) * | 1936-02-15 | 1939-07-18 | Rca Corp | Antenna |
US4804965A (en) * | 1985-07-09 | 1989-02-14 | Agence Spatiale Europeenne | Flat wide-band antenna |
US5285210A (en) * | 1990-05-08 | 1994-02-08 | Nippon Sheet Glass Co., Ltd. | Double loop antenna with reactance elements |
AU723272B2 (en) * | 1993-04-02 | 2000-08-24 | Alcatel Australia Limited | Low profile linear polarised antenna |
US6034645A (en) * | 1997-02-24 | 2000-03-07 | Alcatel | Miniature annular microstrip resonant antenna |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2013941A1 (de) * | 2006-04-03 | 2009-01-14 | Ace Antenna Corp. | Breitbandantenne mit dualer polarisation und einzelstruktur |
EP2013941A4 (de) * | 2006-04-03 | 2010-11-10 | Ace Antenna Corp | Breitbandantenne mit dualer polarisation und einzelstruktur |
US8395561B2 (en) | 2006-04-03 | 2013-03-12 | Ace Antenna Corp. | Dual polarization broadband antenna having with single pattern |
EP1906491A1 (de) * | 2006-09-26 | 2008-04-02 | Ace Antenna Corp. | Gebogene Faltdipolantenne zur Verringerung der Strahlbreitenabweichung |
EP1983606A1 (de) * | 2007-04-16 | 2008-10-22 | Research In Motion Limited | Dualpolarisierte multiple Band-Schleifenantenne und entsprechendes Verfahren für ein Funkgerät |
EP2299537A3 (de) * | 2007-04-16 | 2011-06-29 | Research In Motion Limited | Dualpolarisierte multiple Band-Schleifenantenne und entsprechendes Verfahren für ein Funkgerät |
CN101388493B (zh) * | 2007-04-16 | 2014-04-16 | 黑莓有限公司 | 无线电设备的双极化、多带环天线及相关方法 |
EP2378610A4 (de) * | 2009-01-12 | 2015-08-12 | Comba Telecom System China Ltd | Doppelpolarisationsstrahlungseinheit und planarer dipol |
WO2023025382A1 (en) | 2021-08-25 | 2023-03-02 | Telefonaktiebolaget Lm Ericsson (Publ) | Mobile communication antenna |
Also Published As
Publication number | Publication date |
---|---|
US6995732B2 (en) | 2006-02-07 |
HK1067793A1 (en) | 2005-04-15 |
EP1434300B1 (de) | 2007-04-18 |
EP1434300A3 (de) | 2004-09-22 |
US20040155831A1 (en) | 2004-08-12 |
DE50307071D1 (de) | 2007-05-31 |
ATE360268T1 (de) | 2007-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1434300B1 (de) | Breitband-Antenne mit einem 3-dimensionalen Gussteil | |
DE69014607T2 (de) | Gruppenantennen. | |
EP3411921B1 (de) | Dual polarisierte antenne | |
DE69604583T2 (de) | Gedruckte mehrband-monopolantenne | |
DE69008116T2 (de) | Ebene Antenne. | |
DE3889027T2 (de) | Mikrowellenantenne. | |
DE69602052T2 (de) | Phasengesteuerte Gruppenantenne für Mehrbandbetrieb unter wechselseitiger Verwendung von Strahlern aus Hohlleitern und sich verjüngten Elementen | |
DE69931663T2 (de) | Aktive phasengesteuerte gruppenantenne und einheit zur steuerung der antenne | |
DE112004000077B4 (de) | Verdrillter Wellenleiter und drahtlose Vorrichtung | |
DE69801540T2 (de) | Antennen-Vorrichtung und Radarmodul | |
DE69823591T2 (de) | Geschichtete Aperturantenne und mehrschichtige Leiterplatte damit | |
EP3104455B1 (de) | Dipolförmige strahleranordnung | |
DE102007003388A1 (de) | Rundhohlleiter-Antenne und Rundhohlleiter-Array-Antenne | |
DE69828848T2 (de) | Richtantennensystem mit gekreuzter Polarisation | |
EP2654125B1 (de) | Ringschlitzantenne | |
WO2008017385A1 (de) | Antennenanordnung, insbesondere für eine mobilfunk-basisstation | |
DE112018007422B4 (de) | Wellenleiter-schlitzgruppenantenne | |
EP3244483B1 (de) | Schirmgehäuse für hf-anwendungen | |
DE102017113255A1 (de) | Kreuzförmiges Antennenarray | |
EP3465817A1 (de) | Antennenvorrichtung für einen radardetektor mit mindestens zwei strahlungsrichtungen und kraftfahrzeug mit zumindest einem radardetektor | |
DE4120521C2 (de) | Mikrowellen-Flachantenne für zwei orthogonale Polarisationen mit einem Paar von orthogonalen Strahlerschlitzen | |
DE102019134670A1 (de) | Wellenleitervorrichtung, antennenvorrichtung und kommunikationsvorrichtung | |
DE69833070T2 (de) | Gruppenantennen mit grosser Bandbreite | |
DE112020002163T5 (de) | Vorrichtung, die Mikrowellen mit physikalisch voreingestelltem Strahlungsmuster abstrahlen und empfangen, und Radarvorrichtung, die eine solche Vorrichtung umfasst | |
DE102020102791A1 (de) | Schlitz-Array-Antenne |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20041202 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1067793 Country of ref document: HK |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AXX | Extension fees paid |
Extension state: LV Payment date: 20041202 |
|
17Q | First examination report despatched |
Effective date: 20050603 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: HUBER & SUHNER AG |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: LV |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070418 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070418 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50307071 Country of ref document: DE Date of ref document: 20070531 Kind code of ref document: P |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: HUBER + SUHNER AG |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1067793 Country of ref document: HK |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070729 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070711 |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: HUBER + SUHNER AG Effective date: 20070613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070918 |
|
ET | Fr: translation filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070418 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070418 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070418 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070718 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070418 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070418 |
|
26N | No opposition filed |
Effective date: 20080121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070418 |
|
BERE | Be: lapsed |
Owner name: HUBER & SUHNER A.G. Effective date: 20071231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071231 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070418 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070418 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070418 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071019 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20131219 Year of fee payment: 11 Ref country code: GB Payment date: 20131219 Year of fee payment: 11 Ref country code: DE Payment date: 20131220 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20131213 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20131220 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50307071 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141207 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20141206 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141206 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141206 |