EP1430275A1 - Procede de surveillance de dispositif de mesure de debit massique de coriolis - Google Patents

Procede de surveillance de dispositif de mesure de debit massique de coriolis

Info

Publication number
EP1430275A1
EP1430275A1 EP02767497A EP02767497A EP1430275A1 EP 1430275 A1 EP1430275 A1 EP 1430275A1 EP 02767497 A EP02767497 A EP 02767497A EP 02767497 A EP02767497 A EP 02767497A EP 1430275 A1 EP1430275 A1 EP 1430275A1
Authority
EP
European Patent Office
Prior art keywords
signal
vibration
error
mass flow
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02767497A
Other languages
German (de)
English (en)
Inventor
Christian Matt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Flowtec AG
Original Assignee
Endress and Hauser Flowtec AG
Flowtec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Flowtec AG, Flowtec AG filed Critical Endress and Hauser Flowtec AG
Priority to EP02767497A priority Critical patent/EP1430275A1/fr
Publication of EP1430275A1 publication Critical patent/EP1430275A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8422Coriolis or gyroscopic mass flowmeters constructional details exciters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8427Coriolis or gyroscopic mass flowmeters constructional details detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8431Coriolis or gyroscopic mass flowmeters constructional details electronic circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • G01F1/8477Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane with multiple measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/849Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/849Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits
    • G01F1/8495Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits with multiple measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters

Definitions

  • the invention relates to a method for monitoring a Coriolis mass flow meter.
  • Coriolis mass flow meters are widely used in process automation technology to determine the mass flow of a fluid in a pipe section.
  • a measuring tube in which the fluid flows is set in vibration.
  • the oscillating movement of the measuring tube is influenced by the flowing fluid.
  • the vibration movement is normally detected with the help of two vibration sensors.
  • the sensor signals are evaluated in a measuring and operating circuit. They have the same frequency as the tube vibration of the measuring tube, but they are out of phase with each other.
  • the phase shift is a measure of the mass flow of the fluid in the measuring tube.
  • the sensor signals are evaluated in the measuring and operating circuit and their phase shift is determined.
  • the measuring tube and fluid together form an oscillatory system. That is normally excited at its resonance frequency.
  • the resonance frequency depends on the one hand on the material of the measuring tube and on the other hand on the density of the fluid.
  • US-A 4801897 describes an exciter subcircuit which is constructed in the manner of an analog phase lock loop control.
  • the excitation frequency adjusts itself automatically to the resonance frequency of the oscillatory system even with variable fluid density.
  • EP-A 698 783 describes a measuring circuit which has an analog control circuit which regulates the two sensor signals to the same amplitude.
  • a further measuring and operating circuit is known from EP A 866 319. With this circuit, the two sensor signals are amplified before further processing, an amplification factor of an amplifier being variable.
  • Coriolis mass flow meters are mostly connected to a bus
  • the data connection is based on international standards, e.g.
  • the measured values are transferred to the control system and processed there. from
  • the entire process control takes place from the control system.
  • the invention has for its object to propose a Coriolis mass flow meter that enables safe process control.
  • the essential idea of the invention is to monitor the input or output signals of the signal processor and to store a corresponding error message in the event of an error. Because the fault occurs on the one hand Device errors and, on the other hand, caused by poor operating conditions, the error messages are classified into two classes, device-related and operational.
  • a sensor 1 for a Coriolis mass flow meter is shown in a schematic representation.
  • the sensor 1 is arranged in a pipe, not shown, in which a fluid F flows, the mass flow of which is one of the variables of interest.
  • the connection to the pipeline is made via the two flanges 2, 3.
  • the sensor 1 has a single straight measuring tube 4, which is fixed on the inlet side via an end plate 13 to the flange 2 and on the outlet side via an end plate 14 on the flange 3.
  • the method according to the invention is not limited to this special measuring sensor 1 with a single straight measuring tube. It can also be used in conjunction with other known sensors. Examples include sensors with a measuring tube with cantilever mass, as described, for example, in EP 97 81 0559, sensors with a curved measuring tube (EP 96 10 9242) and sensors with two parallel straight or curved measuring tubes (US 4793191 or US 41 27 028) ). The flanges 2, 3 and the end plates are attached to or in a support tube 15.
  • the vibration exciter 16 can e.g. around an electromagnetic
  • Act drive consisting of a permanent magnet 161 and a coil 162.
  • the coil 162 is fixed on the support tube 15 and the permanent magnet 161 on the measuring tube 4.
  • the amplitude and frequency of the bending vibration of the measuring tube 4, which runs in the plane of the drawing, can be controlled via the current flowing in the coil 162.
  • the Coriolis forces also occur in the plane of the drawing, which cause all points along the measuring tube 4 to no longer oscillate in phase.
  • the vibration movement of the measuring tube 4 is recorded with the aid of two vibration sensors 17 and 18, which are arranged approximately symmetrically to the vibration exciter 16, also on the support tube 15.
  • the vibration sensors 17 and 18 can e.g. are electromagnetic transducers which are constructed similarly to the arrangement of the permanent magnet coil of the vibration exciter 16.
  • the two permanent magnets 171, 181 are fixed on the measuring tube 4 and the two coils 172, 182 on the support tube 15.
  • the movement of the measuring tube 4 causes an induction voltage in the respective coil 172, 182 via the magnets 171, 181, which is picked up as an analog sensor signal X17 or X18.
  • several temperature sensors 19, 20 are provided.
  • Fig. 2 shows the measuring and operating circuit as a block diagram.
  • the vibration sensors 17, 18 are each connected to two amplifiers V1, V2, each of which is followed by an analog-digital converter A / D1, A / D2.
  • the two converters A / D1 and A / D2 are each connected to an input of a digital signal processor DSP.
  • the output A1 supplies the mass flow signal m.
  • This signal m is calculated according to one of the known methods, measuring the Phase shift of the two sensor signals, measurement of the time shift of the two sensor signals.
  • the output A2 supplies a control signal which is implemented in a D / A converter DW1 and regulates the gain of the amplifier V2.
  • An output A3 supplies a control signal for the vibration exciter 16.
  • the output A3 is connected via a D / A converter D / A3 to a U / I converter U / I3.
  • the U / I converter U / I3 supplies the excitation signal for the vibration exciter 16.
  • the outputs A4, A5 deliver a density signal or a viscosity signal.
  • the digital signal processor DPS is connected to a control system via a digital interface (not shown) and a data bus line.
  • the digital interface can be designed for Hart, RS485, RS232, FF, PA, DP, Interbus S, TCP / IP, Internet.
  • the digital signal processor has an error and alarm memory FA, in which each detected state, which leads to a reduced accuracy of the
  • Measurement result m or lead to an impending failure of the device is saved chronologically with date and time.
  • the essential idea of the invention is to monitor the input or the output signals of the signal processor and to store a corresponding error message in the event of an error. Since the fault case can be caused on the one hand by device errors and on the other hand by poor operating conditions, the error messages are classified into two classes, device-related and operating-related. In the event of a device-related error, it is very important for the user to localize the cause of the error.
  • the individual components of the mass flow meter are therefore subjected to a function test subjected and / or the instantaneous measured variables compared with reference measured variables obtained at an earlier point in time.
  • the vibration frequency, the control signal for the vibration exciter 16 and the signals of the vibration sensors 17, 18 serve as input signals.
  • the oscillation frequency of the oscillation system measuring tube with fluid is within characteristic limits with a faultless Coriolis mass flow meter. These limits depend on the device type and the density range of the application. They are stored in a permanent memory in the device itself when the device is delivered.
  • a corresponding message is sent to the control system.
  • the oscillation frequency and the amplitude of the oscillation must be stable over time.
  • Frequency control and amplitude control take place in the digital storage unit.
  • the control deviations in frequency and in amplitude provide information about other properties of the fluid (gas loading, solids content, compressibility, etc.). These measured values must also be within certain measured value limits. If the measured values lie outside these measured value limits, this indicates a malfunction. A corresponding message is sent to the control system.
  • the vibration amplitude of the measuring tube vibration is controlled via the excitation power.
  • the required viscosity increases with increasing fluid viscosity
  • Vibration amplitude can no longer be kept at the setpoint. As long as the
  • Vibration amplitude is still above a certain limit value, a limited measuring operation is possible.
  • two vibration sensors 17, 18 are arranged on the measuring tube 4, which record the vibration movement of the measuring tube 4. Since the sensors 17, 18 are constructed identically, the measured values of the vibration amplitudes should not differ greatly from one another. With fault-free sensors, the measured values are within a specified range. If the measured values deviate more, this is an indication that the sensors are no longer functioning properly. In this case, a corresponding message is sent to the control system.
  • test signal is added to each of the sensor signals and routed via the preamplifier section and the AD converter to the DSP. These test signals are used to monitor the entire measuring circuit. If the processed test signals are outside specified limits, e.g. determined by amplification factors of analog amplifiers, this is an indication that the measuring circuit is no longer working correctly.
  • the noise level is also measured on the analog input signals. If the interference level exceeds a certain predetermined limit value, the amplification factor of the analog amplifier is reduced. The accuracy of the measurement is reduced. A corresponding message is sent to the control system.
  • Malfunctions can have different causes, on the one hand they can be caused by poor operating conditions or by defects
  • the characteristic values (impedance, internal resistance etc.) of the sensors are determined or measured and compared with the target values.
  • test signals are fed to the inputs of the signal processor DSP. This makes it possible to differentiate whether the sensors are faulty or whether the signal processor is faulty.
  • the cause of the error is localized without reference conditions.
  • Vibration frequency, excitation power, vibration amplitude, mass flow is, mass flow is, zero point is static, density is, density is, measuring tube temperatures is, measuring tube temperatures is, viscosity is, viscosity is, control deviation frequency control, control deviation amplitude control, sensor amplitude symmetry, test signal amplitude, interference level analog signals.
  • Deviations can indicate existing or impending device defects (abrasion, corrosion, cavitation, etc.).

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

La présente invention concerne un procédé de surveillance de dispositif de mesure de débit massique de Coriolis, dans lequel des signaux d'entrée et de sortie du processeur de signal DSP sont vérifiés et un message d'erreur correspondant est enregistré en cas d'erreur. Comme l'erreur peut provenir d'une part du matériel et d'autre part d'une mauvaise utilisation, les messages d'erreur sont répartis en deux catégories, selon s'ils s'ont d'origine matérielle ou dus à l'utilisation. Lorsqu'il s'agit d'une erreur liée au matériel, il est important pour l'utilisateur de localiser plus précisément l'origine de l'erreur. Ainsi, les composants individuels du dispositif de mesure de débit massique sont soumis à un test fonctionnel et/ou les grandeurs de mesure instantanées sont comparées à des grandeurs de référence acquises préalablement.
EP02767497A 2001-09-27 2002-09-25 Procede de surveillance de dispositif de mesure de debit massique de coriolis Withdrawn EP1430275A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02767497A EP1430275A1 (fr) 2001-09-27 2002-09-25 Procede de surveillance de dispositif de mesure de debit massique de coriolis

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP01123127 2001-09-27
EP01123127A EP1298421A1 (fr) 2001-09-27 2001-09-27 Procédé de contrôle d'un débitmètre à effet Coriolis
EP02767497A EP1430275A1 (fr) 2001-09-27 2002-09-25 Procede de surveillance de dispositif de mesure de debit massique de coriolis
PCT/EP2002/010745 WO2003029760A1 (fr) 2001-09-27 2002-09-25 Procede de surveillance de dispositif de mesure de debit massique de coriolis

Publications (1)

Publication Number Publication Date
EP1430275A1 true EP1430275A1 (fr) 2004-06-23

Family

ID=8178744

Family Applications (2)

Application Number Title Priority Date Filing Date
EP01123127A Withdrawn EP1298421A1 (fr) 2001-09-27 2001-09-27 Procédé de contrôle d'un débitmètre à effet Coriolis
EP02767497A Withdrawn EP1430275A1 (fr) 2001-09-27 2002-09-25 Procede de surveillance de dispositif de mesure de debit massique de coriolis

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP01123127A Withdrawn EP1298421A1 (fr) 2001-09-27 2001-09-27 Procédé de contrôle d'un débitmètre à effet Coriolis

Country Status (2)

Country Link
EP (2) EP1298421A1 (fr)
WO (1) WO2003029760A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA05012412A (es) * 2003-05-21 2006-02-13 Micro Motion Inc Sistema de registro de datos y monitoreo de medidor de flujo.
DE102005025395A1 (de) * 2005-05-31 2006-12-07 Endress + Hauser Flowtec Ag Coriolis Durchflussmesser und Verfahren zur Durchflussmessung
US7555397B2 (en) 2005-05-31 2009-06-30 Endress + Hauser Flowtec Ag Coriolis mass flow meter and method for compensation of transmission errors of its input circuit
DE102005025354A1 (de) * 2005-05-31 2006-12-07 Endress + Hauser Flowtec Ag Coriolis Massendurchflussmesser und Verfahren zur Kompensation von Übertragungsfehlern von dessen Eingangsschaltung
US7289917B2 (en) 2005-05-31 2007-10-30 Endress +Hasuer Flowtec Ag Coriolis flow meter and method for flow measurement
DE102005050898A1 (de) * 2005-10-21 2007-05-03 Endress + Hauser Flowtec Ag In-Line-Meßgerät
US7562586B2 (en) 2005-10-21 2009-07-21 Endress + Hauser Flowtec Ag Method for monitoring an operating condition of a tube wall contacted by a flowing medium and inline measuring device therefore
DE102008023056A1 (de) 2008-05-09 2009-11-12 Endress + Hauser Flowtec Ag Coriolis Massendurchflussmessaufnehmer
DE102013021136B3 (de) * 2013-12-13 2014-12-18 Abb Technology Ag Verfahren zur Laufzeitermittlung der Signale in den Signalpfaden bei einem Coriolis Durchflussmesser
DE102018131686A1 (de) 2018-12-11 2020-06-18 Endress + Hauser Flowtec Ag Verfahren zum Überwachen des Zustands eines Messaufnehmers
DE102022129037A1 (de) 2022-11-03 2024-05-08 Krohne Messtechnik Gmbh Verfahren zum Testen eines Coriolis-Massedurchflussmessgeräts

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3829063C3 (de) * 1988-08-26 1998-01-29 Danfoss As Verfahren zur Drift-Erkennung eines Meßwertumformers bei magnetisch-induktiver Durchflußmessung und magnetisch-induktiver Durchflußmesser
US5231884A (en) * 1991-07-11 1993-08-03 Micro Motion, Inc. Technique for substantially eliminating temperature induced measurement errors from a coriolis meter
US5594180A (en) * 1994-08-12 1997-01-14 Micro Motion, Inc. Method and apparatus for fault detection and correction in Coriolis effect mass flowmeters
US6092409A (en) * 1998-01-29 2000-07-25 Micro Motion, Inc. System for validating calibration of a coriolis flowmeter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03029760A1 *

Also Published As

Publication number Publication date
EP1298421A1 (fr) 2003-04-02
WO2003029760A1 (fr) 2003-04-10

Similar Documents

Publication Publication Date Title
DE4229834C2 (de) Verfahren und Einrichtung zum elektrischen Verarbeiten von Vakuumdruckinformation für eine Vakuumeinheit
EP1216375B2 (fr) Systeme et procede de diagnostic, notamment pour soupape
EP1217337B1 (fr) Méthode pour vérifier le fonctionnement d'un dispositif de mesure du débit
WO2011072711A1 (fr) Procédé pour faire fonctionner un débitmètre massique coriolis ainsi que débitmètre massique coriolis
EP4147015B1 (fr) Procédé de mise en service d'un débitmètre coriolis
EP1430275A1 (fr) Procede de surveillance de dispositif de mesure de debit massique de coriolis
WO2007033697A1 (fr) Procede pour faire fonctionner un dispositif electromagnetique de mesure de debit, et dispositif electromagnetique de mesure de debit correspondant
EP1651931B1 (fr) Debitmetre massique
DE102021113360A1 (de) Vibronisches Meßsystem
DE102019009024A1 (de) Vibronisches Meßsystem
EP3628983B1 (fr) Procédé de détermination de la teneur en gaz dans un milieu traversant un appareil de mesure de débit massique du type coriolis et appareil de mesure de débit massique du type coriolis
EP2687826A2 (fr) Débitmètre à noyau magnétique
WO2002023137A1 (fr) Circuit de mesure et de service pour un debitmetre massique a force de coriolis
DE102005025354A1 (de) Coriolis Massendurchflussmesser und Verfahren zur Kompensation von Übertragungsfehlern von dessen Eingangsschaltung
EP1819988A2 (fr) Procede pour determiner le debit massique d'un debitmetre massique coriolis
EP1202031A1 (fr) Procédé et appareil pour le contrôle de processus avec un capteur par induction magnétique
EP4127612B1 (fr) Procédé de fonctionnement d'un dispositif de mesure à effet coriolis
EP4042111A1 (fr) Procédé de surveillance d'un système de dispositif de mesure
DE102020133850A1 (de) Verfahren zum Betreiben eines Durchfluss-Messgeräts und Messsystem
DE102021208598A1 (de) Verfahren zur störungsbeaufschlagten Durchflussmessung, magnetisch-induktiver Durchflussmesser und Computerprogrammprodukt
EP1134562B1 (fr) Procédé de transmission d'un signal de mesure entre une unité de mesure et une unité de contrôle
WO2010108805A2 (fr) Dispositif magnéto-inductif de mesure du débit, ainsi que procédé de fonctionnement de celui-ci
EP1197732A1 (fr) Dispositif de test pour débitmètre massique de Coriolis
DE102022132794A1 (de) Verfahren zur Online-Überprüfung eines Feldgeräts der Automatisierungstechnik
WO2010091700A1 (fr) Procédé pour faire fonctionner un débitmètre massique à effet coriolis et débitmètre massique à effet coriolis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040330

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20100119

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100401