EP1430081A2 - Complexes moleculaires brca1/acc alpha, applications diagnostiques et therapeutiques - Google Patents

Complexes moleculaires brca1/acc alpha, applications diagnostiques et therapeutiques

Info

Publication number
EP1430081A2
EP1430081A2 EP02745520A EP02745520A EP1430081A2 EP 1430081 A2 EP1430081 A2 EP 1430081A2 EP 02745520 A EP02745520 A EP 02745520A EP 02745520 A EP02745520 A EP 02745520A EP 1430081 A2 EP1430081 A2 EP 1430081A2
Authority
EP
European Patent Office
Prior art keywords
brca1
acc
protein
interaction
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02745520A
Other languages
German (de)
English (en)
Inventor
Nicole Dalla Venezia
Clémence MAGNARD
Gilbert Lenoir
Olga Sinilnikova-Erard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite Claude Bernard Lyon 1 UCBL
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite Claude Bernard Lyon 1 UCBL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0107740A external-priority patent/FR2826012B1/fr
Priority claimed from FR0202789A external-priority patent/FR2836919B1/fr
Application filed by Centre National de la Recherche Scientifique CNRS, Universite Claude Bernard Lyon 1 UCBL filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1430081A2 publication Critical patent/EP1430081A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57415Specifically defined cancers of breast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57449Specifically defined cancers of ovaries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/02Screening involving studying the effect of compounds C on the interaction between interacting molecules A and B (e.g. A = enzyme and B = substrate for A, or A = receptor and B = ligand for the receptor)

Definitions

  • the invention relates to a protein-protein complex involved in the predisposition to breast and ovarian cancer. More particularly, this protein-protein interaction has applications for the screening of molecules having a therapeutic activity in the treatment and prevention of cancer, as well as diagnostic applications.
  • Breast cancer is a very common condition, affecting almost 10% of women in the western world. There are two forms of this cancer: a sporadic majority form and a familial form affecting 5 to 10% of cases.
  • risk transmission takes place in an autosomal dominant mode (Ford D. et al., 1998), and mammary tumors are frequently associated with other cancers, notably ovarian cancer.
  • BRCA1 Breast Cancer 1
  • BRCA2 located in 17q21 (Miki Y. et al., 1994)
  • BRCA2 located in 13q12-13 ( Wooster R. et al., 1995).
  • the BRCA1 gene spans almost 81 kb (Smith TM et al., 1996) and codes for a ubiquitous transcript of 7.8 kb translated into a protein of 1,863 amino acids.
  • the BRCA1 gene is very conserved, its murine counterpart codes for a protein of 1812 amino acids identical for 58% to the human BRCA1 protein (Bennett LM et al., 1995).
  • the function of the BRCA1 protein is still poorly understood and the study of its cellular localization has been the subject of controversy.
  • BRCA1 is a nuclear protein of 220 kDa (Scully R. et al., 1997a).
  • the shortened spliced form of exon 1 is a cytoplasmic protein of 1 10 kDa.
  • a zinc finger domain at the amino-terminal end (Miki Y. et al., 1994)
  • a BRCT domain BRCA1 C- terminus at the carboxy-terminal end
  • BRCA1 is a transcription activator (Chapman MS and Verma IM, 1996; Monteiro A. ⁇ .A. et al., 1996) and is associated with AR ⁇ polymerase II (Scully R. et al., 1997b) ;
  • BRCA1 is implicated in AD ⁇ repair pathways (Scully R. et al., 1997c; Hakem R. et al., 1997; Ouchi T. et al., 1998) and cell cycle control (Larson JS et al., 1997);
  • BRCA1 (Wu LC et al., 1996), p53 (Zhang H. et al., 1998a), c-Myc (Wang Q. et al. ., 1998), Rad 51 (Scully R. et al., 1997a), BRCA2 (Chen J. et al., 1998), CtlP (Yu X. et al., 1998), AR ⁇ helicase A within the AR ⁇ polymerase II holoenzyme complex (Anderson SF et al., 1998), histone deacetylase complex (Yarden R. et al., 1999), or the BACH1 protein (Cantor SB et al., 2001); their interaction regions are distributed over the entire BRCAL protein
  • the BRCT module seems to play a major role in mediating protein interactions (complex
  • BRCA1 protein partners interacting specifically with its C-terminal end containing the BRCT domain have already been identified: BRCA2, CtlP, RNA helicase A and the histone deacetylase complex, the protein BACH1.
  • the inventors carried out a co-sedimentation test in a murine fibroblast lysate, with a GST fusion protein containing amino acids 1583 to 1812 of Murine brcal, named GST-BRCT. Analysis of the protein co-sedimentation complexes showed that a major band of 210 kDa was visible only in the GST-BRCT sample. The inventors have shown that the tandem of the two BRCT domains is necessary and sufficient for training of this complex. In addition, the inventors have shown that the formation of this complex is conserved in human cells, using a GST-BRCThuman fusion protein in co-sedimentation experiments similar to those mentioned above. The inventors' work on the functional role of
  • BRCA1 thus made it possible to highlight a new protein-protein interaction involving on the one hand the protein BRCA1 and more particularly the BRCT domain located at the carboxy-terminal end thereof and, on the other hand, a known protein , acetyl-Coenzyme A-carboxylase, form ⁇ (ACC- ⁇ ).
  • the BRCA1 protein and the gene coding for this protein are described in particular in patent applications EP 699 754 and EP 705 902.
  • the sequence SEQ ID No. 13 corresponds to the cDNA of the murine Brcal gene (Genebank: MMU31625), SEQ ID No. 14 to the amino acid sequence of murine Brcal, SEQ ID No. 15 corresponds to the cDNA of the human BRCA1 gene (Genebank: HSU14680), and SEQ ID No. 16 to the amino acid sequence of human BRCA1 .
  • ACC- ⁇ is a 265 kDa cytoplasmic protein whose enzymatic activity plays a key role in the synthesis pathway of long chain fatty acids.
  • the human ACC- ⁇ cDNA (SEQ ID No. 17) was cloned in 1995 by
  • Abu-Elheiga et al. Its sequence is very conserved in humans, rats, chicken and yeast, in particular at the sites of binding to biotin, ATP and coenzyme A.
  • the protein sequence of human ACC- ⁇ is indicated by SEQ ID No. 18.
  • Co-immunoprecipitation experiments, with an anti-Brcal antibody, on Bosc cell lysates transfected with the wild form of the murine Brcal protein or its spliced form ⁇ 1 1 were carried out. They have made it possible to confirm that the two forms of the murine protein associate with ACC- ⁇ in vivo. Similarly, the entire human BRCA1 protein coprecipitates with the endogenous ACC- ⁇ of transfected Bosc cells.
  • a polyclonal antibody directed against the amino-terminal ends (MDEPSPLAQPLELNQ) (SEQ ID n ° 1) and carboxy-terminal (AEVIRILSTMDSPST) (SEQ ID No. 2) of the human ACC- ⁇ protein was prepared in rabbits and immunopurified against these two peptide sequences.
  • the mutations A1708E, P1749R, and M1775R creating an amino acid substitution in the BRCT A domain, in the binding sequence of the two BRCT domains and in the BRCT B domain respectively, annihilate the binding of human BRCA1 to ACC- ⁇ .
  • the interaction BRCA1 / ACC- ⁇ can be advantageously used for the development of molecules for therapeutic purposes .
  • the subject of the invention is therefore a molecular complex comprising:
  • a first polypeptide comprising the amino acid sequence 1640 to 1863 of the human BRCA1 protein or the same amino acid sequence of the BRCA1 protein in another animal species, and
  • a second polypeptide comprising a fragment of the ACC- ⁇ protein capable of binding said first polypeptide.
  • the region defined by amino acid residues 1640 to 1863 of the human BRCA1 protein is called "minimal domain of BRCA1".
  • the same amino acid sequence of the protein is used
  • BRCA1 in another animal species an ortholog of the domain defined by amino acids 1640 to 1863 of the human BRCA1 protein.
  • said same amino acid sequence of the BRCA1 protein in another animal species is a sequence from a non-human mammal, and in particular the amino acid sequence 1583-1812 of the murine BRCA1 protein.
  • the domain defined by amino acids 1583 to 1812 of the murine BRCA1 protein thus constitutes an ortholog of the minimal domain of the human BRCA1 protein.
  • ACC- ⁇ protein is meant the human ACC- ⁇ protein or the corresponding protein of an animal species, in particular of a non-human mammal, in particular the mouse.
  • a fragment of the ACC- ⁇ protein capable of binding the minimal domain of human BRCA1 or the corresponding domain of an animal species, or a polypeptide comprising said domain constitutes a "minimal domain of the ACC- ⁇ protein".
  • the identification of the minimum domain of the ACC- ⁇ protein is part of the routine work of a person skilled in the art. This domain can be identified by conventional techniques such as the production of truncated forms of the ACC- ⁇ protein and co-immunoprecipitation experiments, for example in the presence of the amino acid domain 1640 to 1863 of the human BRCA1 protein.
  • a minimal domain of the ACC- ⁇ protein notably includes the entire ACC- ⁇ protein.
  • the subject of the invention is also a method for screening molecules capable of modulating the interaction between BRCA1 and ACC- ⁇ , that is to say preventing or promoting the formation of the complex, or even dissociating, in whole or in part, the complex form.
  • the invention therefore relates to a method of screening, in particular in vitro, of molecules useful for the prevention or treatment of breast and / or ovarian cancer in which the molecules are tested for their ability to modulate the interaction between BRCA1 and ACC- ⁇ proteins.
  • a screening method comprises: a) bringing, in any order, two partners or three different partners selected from the group consisting of a first polypeptide comprising the amino acid sequence 1640 to 1863 of human BRCA1 protein or the same amino acid sequence of the BRCA1 protein, a second polypeptide comprising a fragment of the ACC- ⁇ protein capable of binding said first polypeptide and a candidate molecule; b) the incubation of said partners for a sufficient time to allow their possible interaction; c) in the case where only two different partners have been selected in step a), the addition of the third partner selected from said group and the incubation for a time sufficient to allow possible interaction; d) determining the capacity of the candidate molecule to modulate the interaction between BRCA1 and ACC- ⁇ . More particularly, such a method makes it possible to identify molecules capable of modulating the interaction between BRCA1 and ACC- ⁇ .
  • the determination of the capacity of the candidate molecule to modulate the interaction between BRCA1 and ACC- ⁇ can be carried out using appropriate separation and / or detection means, well known to those skilled in the art.
  • detectable markers such as fluorescent, isotopic or chromogenic markers.
  • a polypeptide comprising the minimum domain of BRCA1 a polypeptide comprising the minimum domain of ACC- ⁇ and at least one candidate molecule can be brought into contact and incubated for a sufficient time to allow their interaction, including possibly the formation or dissociation of the BRCA1 / ACC- ⁇ complex.
  • At least one candidate molecule and a polypeptide comprising the minimum domain of BRCA1 or ACC- ⁇ are brought into contact and incubated for a time sufficient to allow their possible interaction.
  • the missing minimum domain of BRCA1 or ACC- ⁇ is then added and the whole is incubated for a time sufficient to allow the interaction of all the elements, including possibly the formation of the BRCA1 / ACC- ⁇ complex.
  • a polypeptide comprising the minimum domain of BRCA1 and a polypeptide comprising the minimum domain of ACC- ⁇ are preincubated so as to allow the formation of the BRCA1 / ACC- ⁇ complex before the addition of at least one molecule candidate and incubation of the whole for a time sufficient to allow their interaction and possibly the dissociation of the BRCA1 / ACC- ⁇ complex.
  • a preferred embodiment of this method comprises the following steps: a) bringing into contact a first polypeptide comprising the amino acid sequence 1640 to 1863 of the human BRCA1 protein or the same amino acid sequence of the protein BRCA1 with a second polypeptide comprising a fragment of the ACC- ⁇ protein capable of binding said first polypeptide, at least one of the polypeptides being detectably labeled; b) adding a candidate molecule capable of modulating the interaction; c) incubating said polypeptides in the presence of the candidate molecule under conditions and for a period of time sufficient for the bond between said polypeptides to take place; d) quantifying the number of labeled molecules bound in the presence of increasing concentrations of the candidate molecule.
  • the present invention therefore provides a method for screening molecules capable of modulating the interaction between BRCA1 and ACC- ⁇ , characterized in that said molecule is an antagonist of the interaction BRCA1 / ACC- ⁇ .
  • the present invention provides a method for screening molecules capable of modulating the interaction between BRCA1 and ACC- ⁇ , characterized in that said molecule is an agonist of the BRCA1 / ACC- ⁇ interaction.
  • antagonist is meant a molecule whose action is opposed to the formation or maintenance of the BRCA1 / ACC- ⁇ complex.
  • the antagonistic molecules according to the invention include, for example, inhibitors capable of preventing or limiting the interaction between BRCA1 and ACC- ⁇ or molecules capable of dissociating the complex when it is formed.
  • agonist is meant a molecule whose action contributes to, or increases the formation of the BRCA1 / ACC- ⁇ complex.
  • the present invention relates to a method of ex vivo identification of molecules constituting endogenous ligands of the BRCA1 / ACC- ⁇ complex.
  • the term ligand has the common sense of a molecule capable of interacting with the BRCA1 / ACC- ⁇ complex. More particularly, a ligand can constitute an effector of the biological activity of the BRCA1 / ACC- ⁇ complex. In this sense, a cellular receptor of the BRCA1 / ACC- ⁇ complex constitutes an example of an endogenous ligand for the complex.
  • the identification of ligands of the complex can be carried out by conventional methods well known to those skilled in the art, such as immunoprecipitation, the double hybrid method, immunohistochemistry.
  • the identification method according to the invention comprises: a) bringing the BRCA1 / ACC- ⁇ complex into contact with a biological sample under conditions allowing the formation of interactions between the complex and possible ligands; b) the detection of interactions between the BRCA1 / ACC- ⁇ complex and said ligands; and c) identifying the ligands interacting with the complex.
  • the BRCA1 / ACC- ⁇ complex brought into contact with the biological sample can advantageously be marked using detectable markers, such as fluorescent markers or by a radioisotopic.
  • the candidate molecules or ligands of the screening or identification methods described above include peptide compounds, peptidomimetics or other organic compounds. These molecules can be endogenous, natural or synthetic or even be mixtures of compounds.
  • the candidate molecules can be structurally defined or not, as is generally the case when it comes to extracts.
  • peptidomimetics is meant here an organic molecule which mimics certain properties of the peptides, for example their specificity of binding and / or their physiological activity. Peptidomimetics are generally obtained by modifying the structure of a peptide. These modifications tend in particular to improve the resistance to enzymatic degradation, the bioavailability of the compound or even its pharmacokinetic properties.
  • antibodies or aptamers constitute examples of candidate molecules.
  • the aptamers constitute a class of molecules which represent an alternative to antibodies in terms of molecular recognition.
  • Aptamers are sequences of oligonucleotides with the ability to recognize virtually any class of target molecules with high affinity and specificity.
  • Such ligands can be isolated by a screening called SELEX (Systematic Evolution of Ligands by EXponential enrichment) from a bank of random sequences, as described in Tuerk and Gold (1990).
  • SELEX Systematic Evolution of Ligands by EXponential enrichment
  • the random sequence library can be obtained by DNA synthesis by combinatorial chemistry. In such a library, each member is a linear oligomer, optionally chemically modified, corresponding to a unique sequence.
  • Candidate molecules thus identified capable of modulating the interaction between BRCA1 and ACC- ⁇ or of constituting a ligand of the complex, can be used for the treatment and / or prevention of breast and / or ovarian cancers, in particular familial forms of breast and / or ovarian cancer.
  • a subject of the invention is also a method of in vitro diagnosis of a predisposition to breast and / or ovarian cancer, comprising the determination of a modification of the BRCA1 / ACC- ⁇ interaction in a subject. compared to a control population, the modification of the BRCA1 / ACC- ⁇ interaction being associated with a variation in the risk of developing breast and / or ovarian cancer.
  • modification of the BRCA1 / ACC- ⁇ interaction is meant in particular the absence or the presence of detectable BRCA1 / ACC- ⁇ complex in said subject, or else a quantitative or qualitative difference of the BRCA1 / ACC- ⁇ complex by compared to a control population.
  • the presence of the BRCA1 / ACC- ⁇ complex may for example be detected by a method such as co-immunoprecipitation, for example using the antibody D16 (Santa Cruz Biotechnology, California, USA) directed against BRCA1, and d a polyclonal rabbit antibody directed against the amino-terminal (MEDPSPLAQPLELNQ, SEQ ID No. 1) and carboxy-terminal (AEVIRILSTMDSPST, SEQ ID No. 2) ends of the human ACC- ⁇ protein.
  • Quantitative difference is meant a variation in the amount of BRCA1 / ACC- ⁇ complexes detectable.
  • qualifying difference is meant in particular a variation capable of modifying the biological activity of the complex, such as for example increased or decreased stability, or a modification of the specificity of binding of the complex.
  • the invention relates to an anti-human ACC- ⁇ antibody, directed against the peptides of sequence SEQ ID No. 1 and SEQ ID No. 2 of the human ACC- ⁇ protein.
  • Such an antibody is particularly useful for detecting the presence of a BRCA1 / ACC- ⁇ complex, for example by immunoprecipitation.
  • the use of such an anti-ACC- ⁇ antibody can also allow the cellular localization of the ACC- ⁇ protein as well as the localization of the ACC- ⁇ -BRCA1 complex in the same cells, by immunochemical technique or by immunofluorescence for example.
  • a diagnostic application may include observation of cells under the microscope in order to detect the existence of this complex and the expected localization of this complex.
  • the present invention therefore also provides a method of ex vivo detection of a BRCA1 / ACC- ⁇ complex comprising bringing an antibody according to the invention into contact with a biological sample under conditions allowing the immunoprecipitation of ACC- ⁇ , and the detection of BRCA1 in the precipitate, the presence of BRCA1 in the precipitate being indicative of the formation of a BRCA1 / ACC- ⁇ complex.
  • the present invention also relates to antibodies directed against the molecular complex BRCA1 / ACC- ⁇ , characterized in that they do not interact with the proteins BRCA1 or ACC- ⁇ alone.
  • the selectivity of such antibodies with respect to the BRCA1 / ACC- ⁇ complex can in particular be obtained by producing antibodies recognizing the BRCA1 / ACC- ⁇ complex, by immunization in animals for example, and by carrying out a negative selection step, that is to say by eliminating the antibodies produced having cross-reactivity with the isolated BRCA1 protein and the isolated ACC- ⁇ protein.
  • Such negative selection can be made by immunoaffinity chromatography.
  • They may be poly- or monoclonal antibodies or their fragments, chimeric antibodies, in particular humanized or immunoconjugated.
  • Polyclonal antibodies can be obtained from the serum of an animal immunized against a protein according to the usual procedures.
  • an appropriate peptide complex can be used as the antigen, such as a complex associating the minimum domain of BRCA1 and ACC- ⁇ , which can be coupled via a reactive residue to a protein (such as keyhole limpet hemocyanin KLH) or another peptide.
  • Rabbits are immunized with the equivalent of 1 mg of the peptide antigen according to the procedure described by Benoit et al. (1982). At four-week intervals, the animals are treated with injections of 200 ⁇ g of antigen and bled 10-14 days later.
  • the antiserum is examined to determine its ability to bind to the radiolabelled iodine antigen peptide, prepared by the method chloramine-T and is then purified by chromatography on a column of carboxymethyl cellulose ion exchange (CMC).
  • CMC carboxymethyl cellulose ion exchange
  • the antibody molecules are then collected in mammals and isolated to the desired concentration by methods well known to those skilled in the art, for example, using DEAE Sephadex to obtain the IgG fraction.
  • the antibodies can be purified by immunoaffinity chromatography using solid phase immunizing polypeptides.
  • the antibody is brought into contact with the immunizing polypeptide in solid phase for a sufficient time so as to make the polypeptide immunoreact with the antibody molecule in order to form an immunological complex in solid phase.
  • the monoclonal antibodies can be obtained according to the conventional method of culture of hybridomas described by Kôhler and Milstein (1975).
  • the antibodies or antibody fragments of the invention can be, for example, chimeric antibodies, humanized antibodies, Fab and F (ab ') 2 fragments. They can also be in the form of immunoconjugates or labeled antibodies.
  • the antibodies of the invention in particular the monoclonal antibodies, can in particular be used for the ex vivo detection by immunochemistry of the BRCA1 / ACC- ⁇ complex, for example by immunofluorescence, gold labeling, immunoperoxidase, in particular in the methods of screening described above.
  • the pUHD 10.3 plasmids expressing either wild-type Brcal or the ⁇ 1 1 form were prepared as described in Bachelier, R et al. (2000).
  • the plasmid pcDNA3 ⁇ -BRCA1wt expressing the human form of BRCA1 has been previously described (6).
  • the plasmid pGEX-BRCT was obtained by amplification by polymerase chain reaction (PCR) of Brcal nucleotides 4747 to 5436 using the cloned murine Brcal cDNA as a template, and the following primers: 5'-GCGAATTCACATCTTCAGAAGAAAGAGC-3 '(SEQ ID No. 3) and 5'-GCGTCGACTTAATCATTGGAGTCTTGTGG-3' (SEQ ID No. 4).
  • the 0.7 kb chain polymerization reaction product was cloned into EcoRI / Sa / l sites of pGEX-4T-1 (Amersham Pharmacia Biotech). Shorter constructions with the first or second modules of the BRCT tandem were obtained with the following primers 5'-
  • a longer form pGEX-BRCT L containing the nucleotides 4534 to 5436 of Brcal was also prepared using the following primers: 5'- GCGAATTCGAAGGAACCCCATACCTG-3 '(SEQ ID No. 9) and ⁇ '-GCGTCGACTTAATCATTGGAGTCTTGTGG-S' (SEQ ID No. 10).
  • a pGEX-BRCT (M) mutant was produced with the same primers as those used for wild-type GST-BRCT using a Brcal cDNA having the nonsense mutation 1777X, as a template.
  • the plasmid pGEX- BRCTh expressing the human form of the BRCT tandem was obtained by amplification of nucleotides 4917 to 5592 using the cDNA of BRCA1 inserted in pCDNA3 ⁇ , and the following primers: 5'-
  • PGEX-BRCTh mutants were produced with the same primers as those used for wild type GST-BRCTh using a BRCA1 cDNA having the nonsense mutation R1835X or Y1853 X, or the missense mutations A1708E, P1749R, or M1775R , as a matrix.
  • BRCA1 cDNA having the nonsense mutation R1835X or Y1853 X, or the missense mutations A1708E, P1749R, or M1775R , as a matrix.
  • the cells were cultured in DMEM medium supplemented with 10% fetal calf serum. MCF7 cells were grown in the same medium with 5 mg / ml insulin. For radiolabelling, the cells were cultured for one hour in a DMEM medium without methionine, then for three hours in a DMEM medium without methionine containing 250 ⁇ Ci of [ 35 S] labeled methionine.
  • the standard method of precipitation with calcium phosphate was used (Gibco BRL) with 5 ⁇ g of total plasmid DNA. Cells were harvested 48 hours after transfection.
  • the fusion proteins with GST were synthesized in Escherichia coli, strain JM 109 (Promega) transformed with pGEX-4T-1, pGEX-BRCT, pGEX-BRCT A, pGEX-BRCT B, pGEX-BRCT L, pGEX-BRCT M or pGEX-BRCTh as well as the mutated forms of BRCTh (A1708E, P1749R, M1775R, R1835X and Y1853X). They were purified by affinity chromatography on Glutathione-Sepharose.
  • the co-sedimentation binding test was carried out in vitro by incubating cell lysates, in the presence of non-recombinant GST proteins or of fusion proteins-GST and of Glutathione-Sepharose beads. 10 ⁇ g of GST or GST-fusion were used in each binding test. The protein complexes were carefully washed (50 mM Tris HCl pH 7.6, 100 mKCI, 0.05% Tween 20, 1 mM DTT, 0.2 mM PMSF) to remove non-specific protein interactions and released by heating to 100 ° C in a loading buffer 5X SDS-PAGE and 100 mM DTT. The proteins were analyzed by SDS-PAGE and visualized by autoradiography, staining with silver (Bio-Rad SilverStain) or staining with Bleu de Comassie depending on the nature of the lysate used.
  • Immunoprecipitations of endogenous or overexpressed proteins in vivo were carried out in a lysis buffer with 1 ⁇ g of specific antibody (anti-BRCA1 OP92, Oncogene Research Products; anti-Brcal D16, Santa Cruz Biotechnology ; anti-ACC- ⁇ L3J74) and the protein G-sepharose for two hours at 4 ° C. After precipitation, the beads were washed three times with the lysis buffer and the proteins were eluted by heating for five minutes in the SDS loading buffer.
  • specific antibody anti-BRCA1 OP92, Oncogene Research Products; anti-Brcal D16, Santa Cruz Biotechnology ; anti-ACC- ⁇ L3J74
  • the proteins were separated on 6 to 10% polyacrylamide gels containing SDS (SDS-PAGE) and loaded on poly (vinylidene difluoride) (PVDF) membranes (Immobilon-P, Millipore).
  • the membranes were saturated in TBS containing 0.05% Tween 20 and 5% milk powder.
  • Incubations with primary and secondary antibodies were carried out in TBS containing 0.05% Tween 20 and 2% milk powder, and the proteins were detected by chemiluminescence (ECL, Amersham Pharmacia Biotech or Super Signal West Dura Extended , Pierce).
  • the cytosolic fraction was obtained after incubation of the cells for 10 minutes on ice in RYMO buffer (10 mM Tris HCI pH 7.6, 1 mM MgCI 2 , 0.5 mM CaCl 2 , 0.25M sucrose, 0, 6% NP40), and centrifugation (2,000 rpm, 5 minutes).
  • the nuclear pellet was then clarified for 10 minutes on ice in RIPA buffer (137 mM NaCl, 2.7 mM KCI, 25 mM Tris pH 8, 1% NP 40) and centrifuged at 13,000 rpm for five minutes to remove insoluble matter.
  • the 210 kDa protein of interest stained with Comassie Blue was excised from the SDS-PAGE gel and then washed with 50 mM ammonium acetate buffer, pH 7 for one hour. The supernatant was discarded and the gel slice washed in a 50/50% (v / v) solution of acetonitrile / 25 mM ammonium acetate, pH 7.5 for one hour and finally with water pure before complete dehydration in a vacuum centrifuge. The gel pieces were rehydrated with a minimum amount of a modified porcine trypsin solution (PROMEGA Madison, Wl, USA) containing 0.25 ⁇ g of protease. If necessary, additional buffer was added until the gel patch was completely rehydrated. Digestion took place at 37 ° C for four hours.
  • a modified porcine trypsin solution PROMEGA Madison, Wl, USA
  • SM-MALDI The mass spectra of the tryptic digestion products were obtained on a MALDI-TOF Voyager Elite X1 mass spectrometer (Perspective Biosystems), equipped with delayed extraction. The instrument was used in reflectron mode. 1 ⁇ l of the digestion product was deposited directly on the sample support and mixed with 1 ⁇ l of a saturated solution of 2,5-dihydrobenzoic acid. A list of peptide masses was obtained for each protein digestion product. This peptide mass profile was then processed with appropriate software in order to identify the proteins (MS-
  • the tryptic peptides of the 210 kDa protein were identified from the mass map of the tryptic fragments.
  • the tryptic digestion products were extracted twice with a 50/50% (v / v) solution of acetonitrile / 25 mM ammonium acetate pH 7.5.
  • the digestion solution and the extracts were pooled, dried in a vacuum centrifuge and desalted with ZipTip C18 (Millipore, Bedford, Ma, USA) before SM / SM analysis.
  • a Q-TOF instrument (Micromass, Manchester, United Kingdom) was used with a Z-Spray ion source operating in "nanospray" mode. About 3 to 5 ⁇ l of each desalinated sample was introduced into a needle (medium sampling needle, PROTAN Inc., Odense, Denmark) for carrying out the SM / SM experiments. The capillary voltage was set to an average voltage of 1000 volts and the sample cone to 50 volts. Glufibrinopeptide was used to calibrate the instrument for SM / SM mode.
  • the SM / SM spectra were transformed using MaxEnt3 (MassLynx, Micromass Ltd), and the amino acid sequences were analyzed using PepSeq (BioLynx, Micromass Ltd). Amino acid sequences, sequence fragments or ionic peptide fragments that could be determined were used to screen protein and TSE libraries using appropriate Pepfrag software
  • the endolytic peptides were separated by HPLC on a DEAE-C18 column with a 0.1% acetonitrile / TFA gradient.
  • the sequencing of the isolated peptides was carried out in accordance with the Dman degradation on a Procise sequencer from Applied Biosystems. Amino acid sequences were used to screen the protein database for the search for BLAST homologies
  • GST-BRCT A GST fusion protein containing amino acids 1583 to 1812 from murine Brcal, named GST-BRCT, was constructed, expressed in Escherichia coli, and purified on glutathione sepharose beads.
  • Whole cell lysates were prepared from 7.10 6 NIH3T3 cells labeled with 35 S methionine. The lysates were pre-purified using glutathione-Sepharose beads.
  • NIH3T3 cells were separated into nuclear and cytoplasmic fractions. A co-sedimentation test carried out on these two fractions was analyzed by SDS-PAGE followed by silver staining. The results showed that the interaction protein was predominantly cytoplasmic. The correct fractionation of these cells was checked using antibodies directed against nuclear p300 and cytoplasmic ⁇ -tubulin.
  • the protein was digested into several peptides enzymatically by trypsin, then the mixture was analyzed by MALDI-SM using the reflectron mode.
  • the mono-isotopic masses of peptides from proteolytic digestion were compared with the masses of a peptide database, calculated from the protein database nr of NCBI with mass tolerances of ⁇ 0.2 Da and with partially oxidized methionine residues (m / z values listed in deep and sm-fit programs (see experimental procedure): 920.47, 931.52, 938.49, 948.51, 1034.51, 1045.62, 1065.63, 1084.51, 1087.66, 1092.59, 1097.66, 1165.73, 1179.76, 1199.73, 1232.77, 1235.68, 1267.70, 1300.64, 1308.75, 1322.72, 1365.71, 1438.79, 1493.77, 1571.72, 1791.77).
  • the other parameters were as follows: range of variation of the protein mass of 100-300 kDa; unmodified cysteines, maximum of three cleavage sites not taken into account.
  • the leading protein was Rattus norvegicus acetyl-CoA carboxylase (EC 6.4.1.2; swiss prot access code P 11497) with 16 possible peptides out of the 25 peptides listed had a probability close to 1 (9.9e-1 ) and was clearly distinguished from the candidate coming in second position found during the research (homo sapiens protein KIAA 1286; probability of 4.0e-3).
  • a microsequencing of the peptide was also carried out.
  • a preparative co-sedimentation test of GST using 5.10 7 NIH3T3 cells was carried out to obtain 25 pmol of protein intended to be digested and sequenced.
  • a slice of polyacrylamide gel containing 5 ⁇ g of the 210 kDa band of interest (approximately 25 pmol) was excised.
  • the protein was digested enzymatically into peptides by endolysin, then the peptides were separated by chromatography on DEAE-C18 and sequenced.
  • the sequences 298 KAAEEVGYP 306 AND 2267 KDLVEWLEK 2275 were obtained. As expected, they showed 100% homology with Rattus norvegicus acetyl-CoA carboxylase (EC 6.4.1.2; swiss prot access number P 11497).
  • ACC- ⁇ of 265 kDa and ACC- ⁇ of 280 kDa Two major forms of ACC of animal origin have been described so far: ACC- ⁇ of 265 kDa and ACC- ⁇ of 280 kDa.
  • the 5 peptide sequences obtained here have 100% homology with the ACC- ⁇ of the rat.
  • the murine ACC- ⁇ gene has not been cloned.
  • the coding sequence of the ⁇ gene is well conserved in the different species.
  • the rat ACC- ⁇ cDNA sequence (Lopez-Casillas et al., 1988) is highly similar (90%) to the human ACC- ⁇ sequence (Abu-Elheiga L. et al. ., 1995).
  • the highly conserved biotin binding site and the putative ATP and coenzyme A binding sites are identical in humans, rats and yeast.
  • the inventors have demonstrated that the BRCT tandem of Brcal binds to endogenous ACC- ⁇ in murine fibroblasts. Since the BRCA1 gene is associated with a familial form of breast cancer, the inventors have sought the interaction between the BRCT and ACC- ⁇ tandem in the mammary gland.
  • the GST co-sedimentation tests were carried out with four mammary murine epithelial cell lines, namely Be4a, I3G2, Tac-2 and J3B1, and the bound proteins were detected using peroxidase coupled to streptavidin. The ability of the BRCT tandem to bind ACC- ⁇ is conserved in all these cell lines.
  • the rat ACC- ⁇ cDNA sequence (Lopez-Casillas et al., 1988) is highly similar (90%) with the human ACC- ⁇ sequence (Abu-Elheiga L. et al. ., 1995).
  • the results represented here indicate that the murine tandem BRCT binds as well to the human ACC- ⁇ form as to the murine form. Consequently, to further characterize this interaction, the inventors sought the capacity of the human BRCT tandem to bind the murine and human forms of ACC- ⁇ . Co-sedimentation tests have been carried out on murine NIH3T3 fibroblast cell lines and the human mammary epithelial line HBL 100.
  • the GST-BRCT A fragment which lacks the sequences of the B domain of BRCT is incapable of associating with ACC- ⁇ .
  • the GST-BRCT B fragment which lacks the sequences of the BRCT A domain does not bind ACC- ⁇ .
  • GST-Brca1 N containing the 220 N-terminal residues of Brcal, as well as GST alone, were not able to capture ACC- ⁇ , which demonstrates the specificity of the interaction between ACC- ⁇ and the carboxy region -terminal of Brcal.
  • the corresponding truncated GST-BRCTh fusion protein does not bind ACC- ⁇ .
  • the study of other family mutations such as the A1708E, P1749R, or M1775R mutations, which create an amino acid substitution in the BRCT A domain, in the binding sequence of the two BRCT domains or in the BRCT B domain respectively, or the nonsense mutation Y1853X which leads to a truncated BRCT B domain, shows that these mutations also abolish the binding of BRCA1 to ACC- ⁇ .
  • Bosc cells were transfected with expression plasmids coding for full-length Brcal or the short form Brca1- ⁇ 1 1.
  • the lysates prepared from these transfected cells were immunoprecipitated with the antibody D16 (Santa Cruz Biotechnology) directed against BRCA1 and each immunoprecipitate was fractionated by SDS-PAGE. The presence of endogenous ACC- ⁇ in these immuno-precipitates was then determined by Western blot using peroxidase coupled to streptavidin.
  • the endogenous ACC- ⁇ was co-immunoprecipitated from cells expressing Brcal and cells expressing the short form Brcal - ⁇ 1 1.
  • Bosc cells were transfected with a plasmid expressing the BRCAL protein Lysates were immunoprecipitated with the antibody OP92 (Oncogene Research Products) directed against BRCA1 and the presence of endogenous ACC- ⁇ in the co-immunoprecipitates was analyzed by Western blot using peroxidase coupled with streptavidin. As expected, human BRCA1 co-precipitates with endogenous ACC- ⁇ .
  • BRCA1 is mainly a nuclear protein
  • the results obtained in co-sedimentation tests and the results concerning the cytoplasmic localization of ACC- ⁇ raise the question of the physiological significance of the interaction between BRCA1 and ACC- ⁇ .
  • the inventors have re-examined the subcellular localization of BRCA1 and of the murine isoform Brca1- ⁇ l 1 transiently expressed in Bosc cells.
  • fractionation techniques have been used to study the sub-cellular localization of BRCA1 and of the murine Brcal - ⁇ 1 1 form. (Bachelor, R et al., 2000). After cell fractionation, nuclear and cytoplasmic extracts from the transfected cells were separated by SDS-PAGE and subjected to analysis by Western Blot.
  • L3J74 The specificity of this anti-ACC- ⁇ antibody called L3J74, was tested by Western Blot technique in several cell lines (human lines: HBL100, MCF7, BT20, Bosc, HCC1937; murine line: NIH3T3) and several tissue lysates (breast , ovary, pancreas), under experimental conditions making it possible to clearly distinguish the ⁇ and ⁇ forms of ACC.
  • the results showed that L3J74 was specific for the ⁇ form of ACC, and that its affinity for the human form was much higher than that observed for the murine form of the protein.
  • This antibody was then tested by immunoprecipitation technique on different cell lysates (HBL100, Bosc, NIH3T3).
  • BRCA1 is required for embryonic cellular proliferation in the mouse.
  • the tumor suppressor BRCA 1 gene is required for embryonic cellular proliferation in the mouse.
  • BRCA1 is a component of the R ⁇ A polymerase II holoenzyme. Proc. Natl. Acad. Sci. USA. 94: 5605-5610. Scully R. et al. (1997c). Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell. 90: 425-435.
  • BRCA1 interacts with components of the histone deacetylase complex. Proc. Natl. Acad. Sci. USA. 96: 4983-4988.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Oncology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Hospice & Palliative Care (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Cette invention concerne un complexe moléculaire comprenant: un premier polypeptide comprenant la séquence d'acides aminés 1640 à 1863 de la protéine BRCA1 humaine ou une même séquence d'acides aminés de la protéine BRCA1 chez une autre espèce animale, et un deuxième polypeptide comprenant un fragment de la protéine ACC-α capable de lier ledit premier polypeptide.

Description

Complexes moléculaires BRCA1/ACC alpha, applications diagnostiques et thérapeutiques
L'invention concerne un complexe protéine-protéine impliqué dans la prédisposition aux cancers du sein et de l'ovaire. Plus particulièrement cette interaction protéine-protéine présente des applications pour le criblage de molécules ayant une activité thérapeutique dans le traitement et la prévention du cancer, ainsi que des applications diagnostiques.
Le cancer du sein est une affection très fréquente, qui touche près de 10 % des femmes du monde occidental. Il existe deux formes de ce cancer : une forme sporadique majoritaire et une forme familiale concernant 5 à 10 % des cas. Dans les familles prédisposées, la transmission du risque se fait selon un mode autosomal dominant (Ford D. et al., 1998), et les tumeurs mammaires sont fréquemment associées à d'autres cancers, notamment le cancer de l'ovaire. L'étude de familles prédisposées a permis d'identifier deux gènes majeurs de prédisposition au cancer du sein : BRCA1 (Breast Cancer 1 ), localisé en 17q21 (Miki Y. et al., 1994) et BRCA2, localisé en 13q12-13 (Wooster R. et al., 1995). La majorité des cas familiaux de cancers du sein et/ou de l'ovaire sont liés à des mutations du gène BRCA1 (Ford D. et al., 1998). Le gène BRCA1 s'étend sur près de 81 kb (Smith T.M. et al., 1996) et code pour un transcrit ubiquitaire de 7,8 kb traduit en une protéine de 1 863 acides aminés. Le gène BRCA1 est très conservé, son homologue murin code pour une protéine de 1812 acides aminés identique pour 58 % à la protéine BRCA1 humaine (Bennett L.M. et al., 1995). La fonction de la protéine BRCA1 est encore mal connue et l'étude de sa localisation cellulaire a fait l'objet de controverses. D'après les études les plus récentes, BRCA1 est une protéine nucléaire de 220 kDa (Scully R. et al., 1997a). La forme raccourcie par épissage de l'exon 1 1 , exon qui contient deux séquences codant pour des signaux de localisation nucléaire, est, elle, une protéine cytoplasmique de 1 10 kDa. Malgré la grande taille de cette protéine, seuls deux domaines remarquables ont été mis en évidence : un domaine en doigts de zinc à l'extrémité amino-terminale (Miki Y. et al., 1994), et un domaine BRCT (BRCA1 C-terminus) à l'extrémité carboxy-terminale (Koonin EN. et al., 1996 ; Callebaut I. et Mornon J.P., 1997 ; Bork P. et al., 1997).
Les données actuelles sur la fonction de la protéine BRCA1 suggèrent un rôle dans différents mécanismes biologiques : 1 ) une fréquente perte d'hétérozygotie concernant Pallèle sauvage BRCA1 a été mise en évidence dans les tumeurs mammaires (Smith A.A. et al., 1992), suggérant que BRCA1 puisse agir comme un suppresseur de tumeur ;
2) la protéine BRCA1 semble jouer un rôle essentiel au cours du développement embryonnaire et de la différenciation de la glande mammaire chez la souris (Hakem R. et al., 1995), et aussi chez l'homme (Magdinier F. ét al., 1999) ;
3) BRCA1 serait un transactivateur de la transcription (Chapman M. S. et Verma I.M., 1996 ; Monteiro A.Ν.A. et al., 1996) et serait associée à l'ARΝ polymérase II (Scully R. et al., 1997b) ;
4) BRCA1 serait impliquée dans les voies de réparation de l'ADΝ (Scully R. et al., 1997c; Hakem R. et al., 1997; Ouchi T. et al., 1998) et le contrôle du cycle cellulaire (Larson J.S. et al., 1997) ;
5) Enfin, plusieurs protéines connues ont été identifiées comme étant des partenaires de BRCA1 , dont BARD1 (Wu L.C. et al., 1996), p53 (Zhang H. et al., 1998a), c-Myc (Wang Q. et al., 1998), Rad 51 (Scully R. et al., 1997a), BRCA2 (Chen J. et al., 1998), CtlP (Yu X. et al., 1998), l'ARΝ hélicase A au sein du complexe ARΝ polymérase II holoenzyme (Anderson S. F. et al., 1998), le complexe histone déacétylase (Yarden R. et al., 1999), ou la protéine BACH1 (Cantor S.B. et al., 2001 ) ; leurs régions d'interaction sont réparties sur l'ensemble de la protéine BRCAL
En 1996, une recherche de similitudes de séquence entre la protéine BRCA1 et les protéines connues des banques de données a permis de mettre en évidence une région d'intérêt située à l'extrémité C-terminale de la protéine BRCA1 : le domaine BRCT (BRCA1 C-terminal) (Koonin EN. et al., 1996). Une étude plus approfondie de cette région par la technique "Hydrophobic Cluster Analysis" (HCA) (Callebaut I. et Mornon J.P., 1997) a permis de caractériser le domaine BRCT. Il est constitué par la duplication d'un module d'une centaine d'acides aminés comportant des séquences très conservées. Ce module BRCT est retrouvé au sein d'une quarantaine de protéines présentes dans diverses espèces (Bork P. et al., 1997). Parmi les protéines à BRCT dont la fonction est caractérisée, la plupart sont impliquées dans les mécanismes de réparation de l'ADN et de contrôle du cycle cellulaire.
Dans certaines de ces protéines, le module BRCT semble jouer un rôle majeur dans la médiation d'interactions protéiques (complexes
XRCCA/ADN ligase IV (Critchlow S.E. et al., 1997), XRCC1/ADN ligase III
(Nash R. et al., 1997) et XRCC1/PARP (Masson M. et al., 1998)). Il serait aussi responsable de l'homodimérisation de la protéine XRCC1 (Zhang X. et al., 1998b). Dans la protéine BRCA1 , le domaine BRCT est particulièrement bien conservé: l'identité de séquence avec la forme murine est de 72 % pour cette région contre seulement 58 % pour la protéine totale (Bennett L.M. et al., 1995), et sa structure globulaire est conservée. La majorité des mutations germinales délétères, ne permettent pas la synthèse de cette région de BRCA1 . De plus, un grand nombre de mutations faux-sens affectent directement ce domaine. Cette partie C-terminale semble par ailleurs essentielle à la fonction normale de la protéine : sa suppression conduit à retirer à BRCA1 sa capacité à inhiber la croissance des cellules cancéreuses, ainsi que sa fonction de transactivateur de la transcription. Enfin, des partenaires protéiques de BRCA1 interagissant spécifiquement avec son extrémité C-terminale contenant le domaine BRCT ont déjà pu être identifiés : BRCA2, CtlP, l'ARN hélicase A et le complexe histone déacétylase, la protéine BACH1.
Pour identifier des protéines qui interagissent avec le tandem formé des deux modules BRCT de Brcal , les inventeurs ont réalisé un essai de co-sédimentation dans un lysat de fibroblastes murins, avec une protéine de fusion à la GST contenant les acides aminés 1583 à 1812 de Brcal murin, nommée GST-BRCT. L'analyse des complexes protéiques de co- sédimentation a montré qu'une bande majeure de 210 kDa était visible uniquement dans l'échantillon GST-BRCT. Les inventeurs ont montré que le tandem des deux domaines BRCT était nécessaire et suffisant à la formation de ce complexe. De plus, les inventeurs ont montré que la formation de ce complexe était conservée dans les cellules humaines, en utilisant une protéine de fusion GST-BRCThumain dans des expériences de cosédimentation similaires à celles citées ci-dessus. Les travaux des inventeurs portant sur le rôle fonctionnel de
BRCA1 ont ainsi permis de mettre en lumière une nouvelle interaction protéine- protéine impliquant d'une part la protéine BRCA1 et plus particulièrement le domaine BRCT situé à l'extrémité carboxy-terminale de celle-ci et, d'autre part, une protéine connue, l'acétyl-Coenzyme A-carboxylase, forme α (ACC-α). La protéine BRCA1 et le gène codant pour cette protéine sont notamment décrits dans les demandes de brevet EP 699 754 et EP 705 902. La séquence SEQ ID n°13 correspond à l'ADNc du gène Brcal murin (Genebank : MMU31625), SEQ ID n°14 à la séquence d'acides aminés de Brcal murine, SEQ ID n°15 correspond à l'ADNc du gène BRCA1 humain (Genebank : HSU14680), et SEQ ID n°16 à la séquence d'acides aminés de BRCA1 humaine.
L'ACC-α est une protéine cytoplasmique de 265 kDa dont l'activité enzymatique joue un rôle clef dans la voie de synthèse des acides gras à chaîne longue. L'ADNc de ACC-α humain (SEQ ID n°17) a été clone en 1995 par
Abu-Elheiga et al. Sa séquence est très conservée chez l'homme, le rat, le poulet et la levure, en particulier au niveau des sites de liaison à la biotine, à l'ATP et au coenzyme A. La séquence protéique de ACC-α humaine est indiquée par SEQ ID n°18. Des expériences de co-immunoprécipitation, avec un anticorps anti-Brcal , sur des lysats cellulaires Bosc transfectés par la forme sauvage de la protéine Brcal murine ou sa forme épissée Δ1 1 ont été réalisées. Elles ont permis de confirmer que les deux formes de la protéine murine s'associent à l'ACC-α in vivo. De la même façon, la protéine BRCA1 entière humaine coprécipite avec l'ACC-α endogène de cellules Bosc transfectées.
Un anticorps polyclonal dirigé contre les extrémités amino- terminale (MDEPSPLAQPLELNQ) (SEQ ID n° 1 ) et carboxy-terminale (AEVIRILSTMDSPST) (SEQ ID n° 2) de la protéine ACC-α humaine a été préparé chez le lapin et immunopurifié contre ces deux séquences peptidiques. Des expériences de coimmunoprécipitation avec cet anticorps anti-ACC-α, appelé L3J74, sur des lysats de cellules épithéliales mammaires humaines HBL100, ont montré in vivo, dans des conditions physiologiques, l'existence du complexe endogène BRCA1 /ACC-α.
Afin de préciser le domaine d'interaction de l'ACC-α sur BRCA1 , différentes protéines de fusion GST-BRCT ont été préparées et testées par co- sédimentation sur des lysats de fibroblastes murins NIH3T3, et ont permis de montrer qu'une forme plus longue du domaine BRCT murin (résidus 1512-1812 de SEQ ID n°14), comme le domaine BRCT complet testé en premier lieu (résidus 1583-1812 de SEQ ID n°14), interagissent avec l'ACC-α. En revanche, des protéines de fusion à la GST contenant, soit le module BRCT A seul, soit le module BRCT B seul, sont incapables de s'associer à l'ACC-α. Une protéine de fusion à la GST exprimant les 220 résidus amino-terminaux de la protéine Brcal murine a permis de confirmer la spécificité de l'interaction de l'ACC-α avec l'extrémité carboxy-terminale de BRCA1.
De nombreuses mutations familiales prédisposant au cancer du sein ont été localisées au niveau de la région carboxy-terminale de BRCA1. Afin de mesurer l'incidence de telles mutations sur l'interaction ACC-α/BRCA1 , des protéines de fusion ont été préparées et testées en co-sédimentation. Les premières mutations choisies dans la protéine BRCA1 humaine, R1835X et Y1853X, sont situées dans le domaine BRCT le plus distal. Elles introduisent un codon stop empêchant la synthèse des 29 et 11 derniers acides aminés respectivement de la protéine humaine qui présente donc un domaine BRCT incomplet. La protéine de fusion à la GST contenant la mutation W1777X, qui mime la mutation germinale humaine R1835X sur la protéine murine, abolit également l'interaction de Brcal murine avec l'ACC-α. De façon similaire, les mutations A1708E, P1749R, et M1775R, créant une substitution d'acide aminé dans le domaine BRCT A, dans la séquence de liaison des deux domaines BRCT et dans le domaine BRCT B respectivement, annihilent la liaison de BRCA1 humaine à l'ACC-α. Compte tenu du rôle important de l'extrémité C-terminale de la protéine BRCA1 dans la prédisposition au cancer du sein, l'interaction BRCA1/ACC-α peut être mise à profit de façon avantageuse pour la mise au point de molécules à visée thérapeutique.
L'invention a donc pour objet un complexe moléculaire comprenant :
- un premier polypeptide comprenant la séquence d'acides aminés 1640 à 1863 de la protéine BRCA1 humaine ou une même séquence d'acides aminés de la protéine BRCA1 chez une autre espèce animale, et
- un deuxième polypeptide comprenant un fragment de la protéine ACC-α capable de lier ledit premier polypeptide.
La région définie par les résidus d'acides aminés 1640 à 1863 de la protéine BRCA1 humaine est appelée "domaine minimal de BRCA1 ". On désigne par "même séquence d'acides aminés de la protéine
BRCA1 chez une autre espèce animale", un orthologue du domaine défini par les acides aminés 1640 à 1863 de la protéine BRCA1 humaine.
Classiquement, deux gènes ou deux protéines orthologues sont des homologues apparus par spécification, c'est-à-dire qu'il s'agit d'un même gène ou d'une même protéine dans deux espèces différentes.
Préférentiellement, ladite même séquence d'acides aminés de la protéine BRCA1 chez une autre espèce animale est une séquence d'un mammifère non humain, et notamment la séquence d'acides aminés 1583- 1812 de la protéine BRCA1 murine. Le domaine défini par les acides aminés 1583 à 1812 de la protéine BRCA1 murine constitue ainsi un orthologue du domaine minimal de la protéine BRCA1 humaine.
Par "protéine ACC-α", on entend la protéine ACC-α humaine ou la protéine correspondante d'une espèce animale, notamment d'un mammifère non humain, en particulier la souris. Un fragment de la protéine ACC-α capable de lier le domaine minimal de BRCA1 humaine ou le domaine correspondant d'une espèce animale, ou un polypeptide comprenant ledit domaine, constitue un "domaine minimal de la protéine ACC-α". L'identification du domaine minimal de la protéine ACC-α relève du travail de routine de l'homme du métier. Ce domaine peut-être identifié par des techniques classiques telles que la production de formes tronquées de la protéine ACC-α et des expériences de co- immunoprécipitation, par exemple en présence du domaine d'acides aminés 1640 à 1863 de la protéine BRCA1 humaine. Un domaine minimal de la protéine ACC-α inclut notamment la protéine ACC-α entière.
L'invention a également pour objet une méthode de criblage de molécules capables de moduler l'interaction entre BRCA1 et ACC-α, c'est à dire empêcher ou favoriser la formation du complexe, ou encore dissocier, en tout ou partie, le complexe formé.
L'invention concerne donc une méthode de criblage, notamment in vitro, de molécules utiles pour la prévention ou le traitement du cancer du sein et/ou de l'ovaire dans laquelle les molécules sont testées pour leur capacité à moduler l'interaction entre les protéines BRCA1 et ACC-α.
Une méthode de criblage selon la présente invention comprend : a) la mise en contact, dans un ordre quelconque, de deux partenaires ou trois partenaires différents sélectionnés parmi le groupe constitué d'un premier polypeptide comprenant la séquence d'acides aminés 1640 à 1863 de la protéine BRCA1 humaine ou une même séquence d'acides aminés de la protéine BRCA1 , un deuxième polypeptide comprenant un fragment de la protéine ACC-α capable de lier ledit premier polypeptide et une molécule candidate ; b) l'incubation desdits partenaires pendant un temps suffisant pour permettre leur éventuelle interaction ; c) dans le cas où seuls deux partenaires différents ont été sélectionnés à l'étape a), l'ajout du troisième partenaire sélectionné dans ledit groupe et l'incubation pendant un temps suffisant pour permettre une éventuelle interaction ; d) la détermination de la capacité de la molécule candidate à moduler l'interaction entre BRCA1 et ACC-α. Une telle méthode permet plus particulièrement d'identifier des molécules capables de moduler l'interaction entre BRCA1 et ACC-α.
La détermination de la capacité de la molécule candidate à moduler l'interaction entre BRCA1 et ACC-α peut être réalisée à l'aide de moyens de séparation et/ou de détection appropriés, biens connus de l'homme de l'art. On pourra par exemple quantifier le nombre de complexes formés en présence de concentrations croissantes de la molécule candidate. Ceci peut notamment être mis en œuvre à l'aide de techniques classiques d'analyse telles que la chromatographie, l'électrophorèse, le marquage immunologique éventuellement en association avec des marqueurs détectables tels que des marqueurs fluorescents, isotopiques, ou chromogéniques. On pourra par exemple se référer à Current Protocols in Molecular Biology, Edited by F. M. Ausubel et al. (John Wiley and Sons).
Selon cette méthode, un polypeptide comprenant le domaine minimal de BRCA1 , un polypeptide comprenant le domaine minimal de ACC-α et au moins une molécule candidate peuvent être mis en contact et incubés pendant un temps suffisant pour permettre leur interaction, dont éventuellement la formation ou la dissociation du complexe BRCA1 /ACC-α.
Selon un autre aspect, au moins une molécule candidate et un polypeptide comprenant le domaine minimal de BRCA1 ou de ACC-α sont mis en contact et incubés pendant un temps suffisant pour permettre leur éventuelle interaction. Le domaine minimal de BRCA1 ou de ACC-α manquant est ensuite ajouté et l'ensemble est incubé pendant un temps suffisant pour permettre l'interaction de l'ensemble des éléments, dont éventuellement la formation du complexe BRCA1 /ACC-α.
Selon une autre variante encore, un polypeptide comprenant le domaine minimal de BRCA1 et un polypeptide comprenant le domaine minimal de ACC-α sont préincubés de manière à permettre la formation du complexe BRCA1 /ACC-α avant l'ajout d'au moins une molécule candidate et l'incubation de l'ensemble pendant un temps suffisant pour permettre leur interaction et éventuellement la dissociation du complexe BRCA1 /ACC-α. Un mode de réalisation préféré de cette méthode comprend les étapes suivantes : a) la mise en présence d'un premier polypeptide comprenant la séquence d'acides aminés 1640 à 1863 de la protéine BRCA1 humaine ou une même séquence d'acides aminés de la protéine BRCA1 avec un deuxième polypeptide comprenant un fragment de la protéine ACC-α capable de lier ledit premier polypeptide, un des polypeptides au moins étant marqué de manière détectable ; b) l'addition d'une molécule candidate capable de moduler l'interaction ; c) l'incubation desdits polypeptides en présence de la molécule candidate dans des conditions et pour une période de temps suffisante pour que la liaison entre lesdits polypeptides ait lieu ; d) la quantification du nombre de molécules marquées liées en présence de concentrations croissantes de la molécule candidate.
Parmi ces molécules, certaines sont des agonistes, d'autres des antagonistes de l'interaction BRCA1/ ACC-α.
La présente invention propose donc une méthode de criblage de molécules capables de moduler l'interaction entre BRCA1 et ACC-α, caractérisée en ce que ladite molécule est un antagoniste de l'interaction BRCA1 /ACC-α.
Selon un autre aspect, la présente invention propose une méthode de criblage de molécules capables de moduler l'interaction entre BRCA1 et ACC-α, caractérisée en ce que ladite molécule est un agoniste de l'interaction BRCA1 /ACC-α.
Par "antagoniste", on entend une molécule dont l'action s'oppose à la formation ou au maintien du complexe BRCA1 /ACC-α. En d'autres termes, les molécules antagonistes selon l'invention incluent par exemples des inhibiteurs capables d'empêcher ou de limiter l'interaction entre BRCA1 et ACC-α ou des molécules capables de dissocier le complexe lorsque celui-ci est formé. Par "agoniste", on entend une molécule dont l'action concourt à, ou accroît la formation du complexe BRCA1 /ACC-α.
Selon un autre aspect, la présente invention concerne une méthode d'identification ex vivo de molécules constituant des ligands endogènes du complexe BRCA1 /ACC-α. Le terme ligand possède le sens commun de molécule capable d'interagir avec le complexe BRCA1 /ACC-α. Plus particulièrement, un ligand peut constituer un effecteur de l'activité biologique du complexe BRCA1 /ACC-α. Dans ce sens, un récepteur cellulaire du complexe BRCA1 /ACC-α constitue un exemple de ligand endogène pour le complexe.
L'identification de ligands du complexe peut être réalisée par les méthodes classiques bien connues de l'homme de l'art, telles que l'immunoprécipitation, la méthode de double hybride, l'immunohistochimie. De manière préférentielle, la méthode d'identification selon l'invention comprend : a) la mise en contact du complexe BRCA1 /ACC-α avec un échantillon biologique dans des conditions permettant la formation d'interactions entre le complexe et d'éventuels ligands ; b) la détection d'interactions entre le complexe BRCA1 /ACC-α et lesdits ligands ; et c) l'identification des ligands interagissant avec le complexe. Le complexe BRCA1 /ACC-α mis au contact de l'échantillon biologique peut être avantageusement être marqué à l'aide de marqueurs détectables, tels que des marqueurs fluorescents ou par un radioisotopique.
Les molécules candidates ou ligands des méthodes de criblage ou d'identification décrites ci-dessus incluent des composés peptidiques, des peptidomimétiques ou d'autres composés organiques. Ces molécules peuvent être endogènes, naturelles ou synthétiques ou encore être des mélanges de composés. Les molécules candidates peuvent être structurellement définies ou non, comme c'est le cas généralement lorsqu'il s'agit d'extraits.
Par "peptidomimétiques", on entend ici une molécule organique qui mime certaines propriétés des peptides, par exemple leur spécificité de liaison et/ou leur activité physiologique. Des peptidomimétiques sont généralement obtenus par modification de la structure d'un peptide. Ces modifications tendent notamment à améliorer la résistance à la dégradation enzymatique, la biodisponibilité du composé ou encore ses propriétés pharmacocinétiques. Dans le cadre de la présente invention, des anticorps ou des aptamères constituent des exemples de molécules candidates.
Les aptamères constituent une classe de molécules qui représentent une alternative aux anticorps en terme de reconnaissance moléculaire. Les aptamères sont des séquences d'oligonucléotides ayant la capacité de reconnaître virtuellement n'importe quelle classe de molécules cibles avec une haute affinité et spécificité. De tels ligands peuvent être isolés par un criblage appelé SELEX (Systematic Evolution of Ligands by EXponential enrichment) d'une banque de séquences aléatoires, comme décrit dans Tuerk et Gold (1990). La banque de séquence aléatoire peut être obtenue par synthèse d'ADN par chimie combinatoire. Dans une telle banque, chaque membre est un oligomère linéaire, éventuellement chimiquement modifié, correspondant à une séquence unique. Les possibles modifications, applications et avantages de cette classe de molécules ont fait l'objet d'une revue par Jayasena (1999). Des molécules candidates ainsi identifiées, capables de moduler l'interaction entre BRCA1 et ACC-α ou de constituer un ligand du complexe, peuvent être utilisées pour le traitement et/ou la prévention de cancers du sein et/ou de l'ovaire, notamment des formes familiales du cancer du sein et/ou de l'ovaire.
L'invention a également pour objet une méthode de diagnostic in vitro d'une prédisposition au cancer du sein et/ou de l'ovaire, comprenant la détermination d'une modification de l'interaction BRCA1 /ACC-α chez un sujet par rapport à une population témoin, la modification de l'interaction BRCA1 /ACC-α étant associée à une variation du risque de développer un cancer du sein et/ou de l'ovaire.
Par "modification de l'interaction BRCA1 /ACC-α", on entend notamment l'absence ou la présence de complexe BRCA1 /ACC-α détectable chez ledit sujet, ou encore une différence quantitative ou qualitative du complexe BRCA1 /ACC-α par rapport à une population témoin. La présence du complexe BRCA1 /ACC-α pourra par exemple être détectée par une méthode telle que la co-immunoprécipitation, par exemple à l'aide de l'anticorps D16 (Santa Cruz Biotechnology, California, USA) dirigé contre BRCA1 , et d'un anticorps polyclonal de lapin dirigé contre les extrémités amino-terminale (MEDPSPLAQPLELNQ, SEQ ID n° 1 ) et carboxy-terminale (AEVIRILSTMDSPST, SEQ ID n° 2) de la protéine ACC-α humaine.
Par "différence quantitative", on entend une variation de la quantité de complexes BRCA1 /ACC-α détectable.
Par "différence qualitative", on entend notamment une variation susceptible de modifier l'activité biologique du complexe, comme par exemple une stabilité accrue ou décrue, ou une modification de la spécificité de liaison du complexe.
Selon un autre aspect, l'invention concerne un anticorps anti- ACC-α humaine, dirigés contre les peptides de séquence SEQ ID n° 1 et SEQ ID n° 2 de la protéine ACC-α humaine.
Un tel anticorps est particulièrement utile pour détecter la présence d'un complexe BRCA1/ACC-α, par immunoprécipitation par exemple. L'utilisation d'un tel anticorps anti-ACC-α peut également permettre la localisation cellulaire de la protéine ACC-α ainsi que la localisation du complexe ACC-α-BRCA1 dans les même cellules, par technique immunochimique ou par immunofluorescence par exemple. Une application diagnostic peut comprendre l'observation au microscope de cellules afin de détecter l'existence de ce complexe et la localisation attendue de ce complexe. La présente invention propose donc également une méthode de détection ex vivo d'un complexe BRCA1 /ACC-α comprenant la mise en contact d'un anticorps selon l'invention avec un échantillon biologique dans des conditions permettant l'immunoprécipitation d'ACC-α, et la détection de BRCA1 dans le précipité, la présence de BRCA1 dans le précipité étant indicatrice de la formation d'un complexe BRCA1 /ACC-α.
La présente invention vise également des anticorps dirigés contre le complexe moléculaire BRCA1 /ACC-α, caractérisés en ce qu'ils n'interagissent pas avec les protéines BRCA1 ou ACC-α seules. La sélectivité de tels anticorps vis à vis du complexe BRCA1/ ACC-α peut notamment être obtenue en produisant des anticorps reconnaissant le complexe BRCA1/ ACC- α, par immunisation chez l'animal par exemple, et en réalisant une étape de sélection négative, c'est à dire en éliminant les anticorps produits ayant une réactivité croisée avec la protéine BRCA1 isolée et la protéine ACC-α isolée. Une telle sélection négative peut être réalisée par chromatographie d'immuno- affinité.
Il peut s'agir d'anticorps poly- ou monoclonaux ou de leurs fragments, d'anticorps chimériques, notamment humanisés ou immunoconjugués.
Les anticorps polyclonaux peuvent être obtenus à partir du sérum d'un animal immunisé contre une protéine selon les modes opératoires usuels. Selon un mode de réalisation de l'invention, on peut utiliser comme antigène un complexe peptidique approprié, tel qu'un complexe associant le domaine minimal de BRCA1 et de ACC-α, pouvant être couplé par l'intermédiaire d'un résidu réactif à une protéine (telle que l'hémocyanine de patelle KLH) ou un autre peptide. Des lapins sont immunisés avec l'équivalent de 1 mg de l'antigène peptidique selon la procédure décrite par Benoit et ai. (1982). A des intervalles de quatre semaines, les animaux sont traités par des injections de 200 μg d'antigène et saignés 10 à 14 jours plus tard. Après la troisième injection, l'anti-sérum est examiné pour déterminer sa capacité à se lier au peptide antigène radiomarqué à l'iode, préparé par la méthode chloramine-T et est ensuite purifié par une chromatographie sur colonne échangeuse d'ion carboxyméthyl cellulose (CMC). Les molécules d'anticorps sont ensuite recueillies dans les mammifères et isolées jusqu'à la concentration souhaitée par les méthodes bien connues de l'homme de l'art, par exemple, en utilisant DEAE Sephadex pour obtenir la fraction IgG.
Afin d'augmenter la spécificité du sérum polyclonal, les anticorps peuvent être purifiés par une chromatographie d'immuno-affinité en utilisant des polypeptides immunisants en phase solide. L'anticorps est mis en contact avec le polypeptide immunisant en phase solide pendant une durée suffisante de façon à faire immuno-réagir le polypeptide avec la molécule d'anticorps afin de former un complexe immunologique en phase solide.
Les anticorps monoclonaux peuvent être obtenus selon la méthode classique de culture d'hybridomes décrite par Kôhler et Milstein (1975). Les anticorps ou fragments d'anticorps de l'invention peuvent être par exemple des anticorps chimériques, des anticorps humanisés, des fragments Fab et F(ab')2. Ils peuvent également se présenter sous forme d'immunoconjugués ou d'anticorps marqués.
Les anticorps de l'invention, en particulier les anticorps monoclonaux, peuvent notamment être utilisés pour la détection ex vivo par immunochimie du complexe BRCA1 /ACC-α, par exemple par immunofluorescence, marquage à l'or, immunoperoxydase, notamment dans les méthodes de criblage décrites ci-dessus.
Les exemples suivants illustrent l'invention :
PROCEDURE EXPERIMENTALE
- Constructions plasmidiques - Vecteurs d'expression eucaryotes :
Les plasmides pUHD 10,3 exprimant soit Brcal de type sauvage, soit la forme Δ1 1 , ont été préparés comme décrit dans Bachelier, R et al. (2000). Le plasmide pcDNA3β-BRCA1wt exprimant la forme humaine de BRCA1 a été précédemment décrite (6).
-Vecteurs d'expression dans les bactéries Le plasmide pGEX-BRCT a été obtenu par amplification par réaction de polymérisation en chaîne (PCR) des nucléotides 4747 à 5436 de Brcal en utilisant l'ADNc de Brcal murin clone en tant que matrice, et les amorces suivantes : 5'-GCGAATTCACATCTTCAGAAGAAAGAGC-3' (SEQ ID n° 3) et 5'-GCGTCGACTTAATCATTGGAGTCTTGTGG-3'(SEQ ID n° 4). Le produit de réaction de polymérisation en chaîne de 0,7 kb a été clone dans les sites EcoRI/Sa/l de pGEX-4T-1 (Amersham Pharmacia Biotech). Des constructions plus courtes avec les premier ou second modules du tandem BRCT ont été obtenues avec les amorces suivantes 5'-
GCGAATTCACATCTTCAGAAGAAAGAGC-3' (SEQ ID n° 5) et 5'- GCGTCGACTCAGCCCTTGAAGAGCTTTTCC-3' (SEQ ID n° 6) pour la construction pGEX-BRCT A, 5'-GCGAATTCCGGGAAAAGCTCTTCAAGG-3' (SEQ ID n° 7) et 5'-GCGTCGACπAATCATTGGAGTCTTGTGG-3' (SEQ ID n° 8) pour la construction pGEX-BRCT B. Une forme plus longue pGEX-BRCT L contenant les nucléotides 4534 à 5436 de Brcal a également été préparée en utilisant les amorces suivantes : 5'-GCGAATTCGAAGGAACCCCATACCTG-3' (SEQ ID n° 9) et δ'-GCGTCGACTTAATCATTGGAGTCTTGTGG-S' (SEQ ID n° 10). Un mutant pGEX-BRCT (M) a été produit avec les mêmes amorces que celles utilisées pour GST-BRCT de type sauvage en utilisant un ADNc Brcal ayant la mutation non-sens 1777X, en tant que matrice. Le plasmide pGEX- BRCTh exprimant la forme humaine du tandem BRCT a été obtenu par amplification des nucléotides 4917 à 5592 en utilisant l'ADNc de BRCA1 inséré dans pCDNA3β, et les amorces suivantes : 5'-
GCGGATCCACAGCTTCAACAGAAAGGG-3' (SEQ ID n° 11 ) et 5'- GCGTCGACTCAGTAGTGGCTGTGGGG-3' (SEQ ID n° 12). Des mutants pGEX-BRCTh ont été produits avec les mêmes amorces que celles utilisées pour GST-BRCTh de type sauvage en utilisant un ADNc BRCA1 ayant la mutation non-sens R1835X ou Y1853 X, ou les mutations faux-sens A1708E, P1749R, ou M1775R, en tant que matrice. - Culture cellulaire :
Les cellules ont été cultivées dans un milieu DMEM additionné de 10 % de sérum fœtal de veau. Les cellules MCF7 ont été cultivées dans le même milieu avec 5 mg/ml d'insuline. Pour le radiomarquage, les cellules ont été cultivées pendant une heure dans un milieu DMEM sans méthionine, puis pendant trois heures dans un milieu DMEM sans méthionine contenant 250 μCi de méthionine marquée au [35S].
Pour la transfection, la méthode standard de précipitation au phosphate de calcium a été utilisée (Gibco BRL) avec 5 μg d'ADN plasmidique total. Des cellules ont été récoltées 48 heures après la transfection.
- Essais de co-sédimentation avec GST :
Les protéines de fusion avec GST ont été synthétisées dans Escherichia coli, souche JM 109 (Promega) transformées avec pGEX-4T-1 , pGEX-BRCT, pGEX-BRCT A, pGEX-BRCT B, pGEX-BRCT L, pGEX-BRCT M ou pGEX-BRCTh ainsi que les formes mutées de BRCTh (A1708E, P1749R, M1775R, R1835X et Y1853X). Elles ont été purifiées par chromatographie d'affinité sur Glutathione -Sepharose. L'essai de liaison par co-sédimentation a été réalisé in vitro en incubant des lysats cellulaires, en présence de protéines GST non recombinantes ou de protéines de fusion-GST et de billes Glutathione-Sepharose. 10 μg de GST ou GST-fusion ont été utilisés dans chaque essai de liaison. Les complexes protéiques ont été soigneusement lavés (50 mM Tris HCI pH 7,6, 100 mKCI, 0,05% Tween 20, 1 mM DTT, 0,2 mM PMSF) pour éliminer les interactions protéiques non spécifiques et libérés par un chauffage à 100°C dans un tampon de charge 5X SDS-PAGE et 100 mM DTT. Les protéines ont été analysées par SDS-PAGE et visualisées par autoradiographie, coloration à l'argent (Bio-Rad SilverStain) ou coloration au Bleu de Comassie selon la nature du lysat utilisé.
- Préparation des extraits cellulaires totaux : Les cellules ont été lysées de manière douce par choc thermique (azote/37°C) dans le tampon suivant : 25 mM Tris HCI pH 7,6, 1 mM EDTA, 1 mM EGTA, 0,2 mM PMSF, 10 μg/ml de leupeptine, pepstatine A et aprotinine.
- Immunoprécipitation et analyse en Western Blot : Les immunoprécipitations de protéines endogènes ou surexprimées in vivo ont été réalisées dans un tampon de lyse avec 1 μg d'anticorps spécifique (anti-BRCA1 OP92, Oncogene Research Products ; anti- Brcal D16, Santa Cruz Biotechnology ; anti- ACC-α L3J74) et la protéine G- sépharose pendant deux heures à 4°C. Après précipitation, les billes ont été lavées à trois reprises avec le tampon de lyse et les protéines ont été éluées par chauffage pendant cinq minutes dans le tampon de charge SDS. Les protéines ont été séparées sur des gels de polyacrylamide de 6 à 10 % contenant du SDS (SDS-PAGE) et chargées sur des membranes de poly(difluorure de vinylidène) (PVDF) (Immobilon-P, Millipore). Les membranes ont été saturées dans du TBS contenant 0,05 % de Tween 20 et 5 % de poudre de lait. Les incubations avec les anticorps primaires et secondaires ont été réalisées dans du TBS contenant 0,05 % de Tween 20 et 2 % de poudre de lait, et les protéines ont été détectées par chimioluminescence (ECL, Amersham Pharmacia Biotech ou Super Signal West Dura Extended, Pierce).
- Fractionnement subcellulaire :
La fraction cytosolique a été obtenue après incubation des cellules pendant 10 minutes sur de la glace dans un tampon RYMO (10 mM Tris HCI pH 7,6, 1 mM MgCI2, 0,5 mM de CaCI2, 0.25M saccharose, 0,6 % NP40), et centrifugation (2 000 rpm, 5 minutes). Le culot nucléaire a ensuite été clarifié pendant 10 minutes sur de la glace dans un tampon RIPA (137 mM NaCI, 2,7 mM KCI, 25 mM Tris pH 8, 1 % NP 40) et centrifugé à 13 000 rpm pendant cinq minutes pour éliminer les matières insolubles. Toutes les fractions ont été ajustées à 150 mM NaCI, 25 mM Tris pH 7,6 et des inhibiteurs de protease ont été ajoutés (2 mM PMSF, 10 μg/ml de leupeptine, pepstatine A et aprotinine). Des fractions ont été testées pour leur concentration en protéines par la méthode de Bradford (Bio-Rad Protein Assay), et soumises à des analyses par Western Blot avec des anticorps dirigés contre la β-tubuline (KMX-1 , Roche Molecular Biochemicals) ou p300 (N-15, Santa Cruz Biotechnology).
- Séquençage peptidique par spectrométrie de masse - digestion sur gel :
La protéine de 210 kDa d'intérêt colorée au Bleu de Comassie a été excisée du gel SDS-PAGE puis lavée avec 50 mM de tampon d'acétate d'ammonium, pH 7 pendant une heure. Le surnageant a été jeté et la tranche de gel lavée dans une solution 50/50 % (v/v) d'acétonitrile/25 mM d'acétate d'ammonium, pH 7,5 pendant une heure et enfin avec de l'eau pure avant déshydratation complète dans une centrifugeuse sous vide. Les pièces de gel ont été réhydratées avec une quantité minimale d'une solution de trypsine porcine modifiée (PROMEGA Madison, Wl, USA) contenant 0,25 μg de protease. Si nécessaire, du tampon supplémentaire a été ajouté jusqu'à ce que la pièce de gel ait été complètement réhydratée. La digestion a eu lieu à 37°C pendant quatre heures.
- Spectrométrie de masse : SM-MALDI : Les spectres de masse des produits de digestion tryptique ont été obtenus sur un spectromètre de masse MALDI-TOF Voyager Elite X1 (Perspective Biosystems), équipé d'une extraction différée. L'instrument a été utilisé en mode reflectron. 1 μl du produit de digestion a été déposé directement sur le support d'échantillon et mélangé avec 1 μl d'une solution saturée d'acide 2,5-dihydrobenzoïque. Une liste de masses de peptides a été obtenue pour chaque produit de digestion protéique. Ce profil de masses peptidiques a ensuite été traité avec un logiciel approprié dans le but d'identifier les protéines (MS-
FIT:http://prospector.ucsf.edu/ucsfhtml3.2/msfit.htm, ou
PROFOUND:http://129.85.19.192/prowlcgi/ProFound.ex). Les peptides tryptiques de la protéine de 210 kDa ont été identifiés à partir de la carte de masse des fragments tryptiques. Les produits de digestion tryptiques ont été extraits à deux reprises avec une solution à 50/50 % (v/v) d'acétronitrile/25 mM d'acétate d'ammonium pH 7,5. La solution de digestion et les extraits ont été rassemblés, séchés dans une centrifugeuse sous vide et dessalés avec ZipTip C18 (Millipore, Bedford, Ma, USA) avant analyse SM/SM.
- SM/SM-nanospray : Un instrument Q-TOF (Micromass, Manchester, Royaume Uni) a été utilisé avec une source ionique Z-Spray fonctionnant en mode "nanospray". Environ 3 à 5 μl de chaque échantillon dessalé ont été introduits dans une aiguille (aiguille de prélèvement moyenne, PROTAN Inc., Odense, Danemark) pour la réalisation des expérimentations SM/SM. Le voltage capillaire a été réglé à un voltage moyen de 1 000 volts et le cône échantillon à 50 volts. Du glufibrinopeptide a été utilisé pour calibrer l'instrument pour le mode SM/SM. Les spectres SM/SM ont été transformés en utilisant MaxEnt3 (MassLynx, Micromass Ltd), et les séquences d'acides aminés ont été analysées à l'aide de PepSeq (BioLynx, Micromass Ltd). Les séquences d'acides aminés, les fragments de séquences ou les fragments ioniques peptidiques qui ont pu être déterminés ont été utilisés pour cribler des banques de protéines et d'EST à l'aide des logiciels appropriés Pepfrag
(http://prowl1.rockefeller.edu/prowl/pepfragch.html),
Scan(http://dna. standford.edu/scan) ou BLAST pour les recherches d'homologies (http://www.ncbi.nlm.nih.gov/blast/blast).
- Séquençage peptidique par dégradation dΕdman : L'essai de co-sédimentation préparatif a été réalisé à partir de 5.107 cellules NIH3T3 et séparé par SDS-PAGE suivi d'une coloration au noir amido. Dans ces conditions, la bande d'intérêt contenait une quantité suffisante de protéines (25 pmoles correspondant à 5 μg de la protéine 210 kDa) pour être analysée par séquençage peptidique. La tranche de gel de polyacrylamide correspondant à la bande de 210 kDa a été excisée et incubée avec une solution de 0,05 M Tris HCI pH 8,6/0,03 % SDS contenant 0,4 μg d'endolysine à 35°C pendant 18 heures. Les peptides endolytiques ont été séparés par HPLC sur une colonne DEAE-C18 avec un gradient acétonitrile/TFA à 0,1%. Le séquençage des peptides isolés a été réalisé conformément à la dégradation dΕdman sur un séquenceur Procise d'Applied Biosystems. Les séquences d'acides aminés ont servi à cribler la banque de données protéique pour la recherche d'homologies BLAST
(http://www.ncbi.nlm.nih.gov/blast/blast), ExPASy
(http://www.expasy.org/tools/).
RESULTATS :
- Essais de co-sédimentation avec GST et isolement de la protéine cytoplasmique interagissant avec Brcal :
Pour identifier des protéines qui interagissent avec le tandem formé des deux modules BRCT de Brcal , les inventeurs ont réalisé un essai de co-sédimentation avec GST à l'aide de la lignée cellulaire de fibroblastes murins NIH3T3. Une protéine de fusion à la GST contenant les acides aminés 1583 à 1812 de Brcal murin, nommée GST-BRCT, a été construite, exprimée dans Escherichia coli, et purifiée sur des billes de glutathione-sepharose. Des lysats de cellules entières ont été préparés à partir de 7.106 cellules NIH3T3 marquées à la 35S méthionine. Les lysats ont été pré-purifiés à l'aide de billes de glutathione-Sépharose. Ils ont été ensuite mis en contact avec soit des billes de glutathione seules, soit des billes de glutathione additionnées de GST, soit des billes de glutathione additionnées de GST-BRCT. Après plusieurs lavages, les complexes de co-sédimentation ont été séparés par SDS-PAGE et visualisés par auto-radiographie. Une bande majeure de 210 kDa était visible uniquement dans l'échantillon GST-BRCT.
Pour déterminer la localisation subcellulaire de la protéine interagissant avec le tandem BRCT, des cellules NIH3T3 ont été séparées en fractions nucléaire et cytoplasmique. Un essai de cosédimentation réalisé sur ces deux fractions a été analysé par SDS-PAGE suivi d'une coloration par l'argent. Les résultats ont montré que la protéine d'interaction était majoritairement cytoplasmique. Le bon fractionnement de ces cellules a été contrôlé à l'aide d'anticorps dirigés contre p300 nucléaire et la β-tubuline cytoplasmique.
- ACC-α identifiée comme étant la protéine interagissant avec Brcal : Pour identifier la protéine qui interagit avec le tandem BRCT de Brcal , un essai de co-sédimentation préparatif a été réalisé à partir de 5.107 cellules NIH3T3 (représentant approximativement 10 essais de cosédimentation analytique avec GST, décrits ci-dessus) et séparés par SDS- PAGE. Dans ces conditions, la bande de 210 kDa pouvait être détectée par coloration au Bleu de Coomassie. Ceci indique que cette bande contient une quantité suffisante de protéines pour être analysée par spectrométrie de masse. Des tranches de gel de polyacrylamide correspondant à la bande de 210 kDa ont été excisées. La protéine a été digérée en plusieurs peptides de façon enzymatique par la trypsine, puis le mélange a été analysé par MALDI- SM en utilisant le mode reflectron. Les masses mono-isotopiques de peptides provenant de la digestion protéolytique ont été comparées aux masses d'une banque de données peptidique, calculée à partir de la banque de donnée protéique nr de NCBI avec des tolérances de masse de± 0,2 Da et avec des restes de méthionine partiellement oxydés (valeurs m/z listées dans des programmes profound et sm-fit (voir procédure expérimentale) : 920.47, 931.52, 938.49, 948.51 , 1034.51 , 1045.62, 1065.63, 1084.51 , 1087.66, 1092.59, 1097.66, 1165.73, 1179.76, 1199.73, 1232.77, 1235.68, 1267.70, 1300.64, 1308.75, 1322.72, 1365.71 , 1438.79, 1493.77, 1571.72, 1791.77). Les autres paramètres étaient les suivants : domaine de variation de la masse protéique de 100-300 kDa ; cystéines non modifiées, maximum de trois sites de clivage non pris en compte. La protéine arrivant en tête était l'acétyl-CoA carboxylase de Rattus norvegicus (EC 6.4.1.2 ; swiss prot code d'accès P 11497) avec 16 peptides possibles sur les 25 peptides listés avait une probabilité proche de 1 (9.9e-1 ) et se distinguait nettement du candidat venant en deuxième position trouvé lors de la recherche (protéine KIAA 1286 d'homo sapiens ; probabilité de 4.0e-3).
Ce résultat a été confirmé par des expérimentations sm/sm sur des ions m/z 634.32, 720.36 et 786.33 correspondant aux ions doublement chargés de peptides 1266.7, 1438.79 et 1570.7 Da réalisés avec un Q-TOF. Les séquences peptidiques déduites des ions b et y ont été utilisées pour cribler le programme BLAST. Les séquences 1409VEVGTEVTDYR1419, 1435EASFEYLQNEGER1447 et la séquence partielle du peptide 1438.79 (98DFTVASP104) ont montré 100 % d'homologie avec l'acétyl-CoA carboxylase de Rattus norvegicus et confirmé les résultats précédents.
Pour confirmer l'identité de la protéine interagissant avec BRCT, un microséquençage du peptide a également été réalisé. Un essai de co- sédimentation préparatif du GST utilisant 5.107 cellules NIH3T3 a été réalisé pour obtenir 25 pmoles de protéine destinés à être digérés et séquences. Une tranche de gel de polyacrylamide contenant 5 μg de la bande de 210 kDa d'intérêt (approximativement 25 pmoles) a été excisée. La protéine a été digérée enzymatiquement en peptides par l'endolysine, puis les peptides ont été séparés par chromatographie sur DEAE-C18 et séquences. Les séquences 298KAAEEVGYP306 ET 2267KDLVEWLEK2275 ont été obtenues. Comme attendu, elles ont montré 100 % d'homologie avec l'acétyl-CoA carboxylase de Rattus norvegicus (EC 6.4.1.2 ; swiss prot numéro d'accès P 11497).
Deux formes majeures d'ACC d'origine animale ont été décrites jusqu'à présent : l'ACC-α de 265 kDa et l'ACC-β de 280 kDa. Les 5 séquences peptidiques obtenues ici présentent 100 % d'homologie avec l'ACC-α du rat. Le gène ACC-α murin n'a pas été clone. Néanmoins, la séquence codante du gène α est bien conservée chez les différentes espèces. Ainsi, la séquence d'ADNc de l'ACC-α de rat (Lopez-Casillas et al., 1988) est hautement similaire (90 %) à la séquence de l'ACC-α humaine (Abu-Elheiga L. et al., 1995). Le site de liaison à la biotine hautement conservé et les sites de liaison putatifs à l'ATP et au coenzyme A sont identiques chez l'homme, le rat et la levure.
- ACC-α se lie au tandem de modules BRCT dans les cellules épithéliales de glande mammaire :
Les inventeurs ont démontré que le tandem BRCT de Brcal se liait à l'ACC-α endogène dans des fibroblast.es murins. Etant donné que le gène BRCA1 est associé à une forme familiale du cancer du sein, les inventeurs ont recherché l'interaction entre le tandem BRCT et ACC-α dans la glande mammaire. Les essais de co-sédimentation GST ont été réalisés avec quatre lignées cellulaires épithéliales murines mammaires, à savoir Be4a, I3G2, Tac-2 et J3B1 , et les protéines liées ont été détectées à l'aide de peroxydase couplée à la streptavidine. La capacité du tandem BRCT à lier l'ACC-α est conservée dans toutes ces lignées cellulaires.
Un essai a été réalisé pour examiner si le tandem BRCT de BRCA1 murin pouvait également s'associer avec la forme humaine de l'ACC-α présente dans la glande mammaire. A cet effet, ils ont réalisé un essai de cosédimentation avec deux lignées cellulaires d'épithélium mammaire humain (HBL 100 et MCF 7). Une étude par Western Blot, à l'aide de peroxydase couplée à la streptavidine, a montré que la capacité du tandem BRCT murin à lier l'ACC-α était conservée dans les cellules épithéliales mammaires humaine. Les séquences des deux domaines BRCT de BRCA1 murin partagent 75 % et 58 % d'identité avec ceux de la protéine BRCA1 humaine, respectivement (Callebaut I. et Mornon J.P., 1997). De plus, la séquence d'ADNc de l'ACC-α de rat (Lopez-Casillas et al., 1988) est hautement similaire (90 %) avec la séquence d'ACC-α humaine (Abu-Elheiga L. et al., 1995). Les résultats représentés ici indiquent que le tandem murin BRCT se lie aussi bien à la forme ACC-α humaine qu'à la forme murine. En conséquence, pour caractériser davantage cette interaction, les inventeurs ont recherché la capacité du tandem BRCT humain à lier les formes murines et humaines de l'ACC-α. Des essais de co-sédimentation ont été réalisés sur les lignées cellulaires de fibroblastes NIH3T3 murin et la lignée epithéliale mammaire humaine HBL 100. Les résultats démontent que l'interaction entre le tandem BRCT humain et l'ACC-α est maintenue dans les espèces murine et humaine. Ensemble, ces données démontrent une interaction protéine- protéine bien conservée entre le tandem BRCT de BRCA1 et la protéine ACC- α dans les espèces murines et humaines.
- LACC-a interagit spécifiquement avec l'intégralité du tandem des modules BRCT de Brcal :
De façon à cartographier le domaine d'interaction de ACC-α sur le tandem BRCT de Brcal , des essais de co-sédimentation avec six protéines de fusion distinctes ont été réalisés. Les complexes protéiques de cosédimentation ont été résolus par SDS-PAGE et visualisés par Westem-Blot. La protéine ACC contenant la biotine a été détectée en utilisant de la peroxydase couplée à la streptavidine, la streptavidine ayant une haute affinité pour la biotine est ainsi une sonde très sensible pour détecter l'ACC-α (Witters, L.A et al., 1994). Les résultats montrent que le fragment GST-BRCT L contenant les résidus 1512-1812 de Brcal , de même que GST-BRCT, interagissent avec ACC-α. Toutefois, le fragment GST-BRCT A auquel manquent les séquences du domaine B de BRCT est incapable de s'associer avec l'ACC-α. De même, le fragment GST-BRCT B auquel manquent les séquences du domaine BRCT A ne lie pas ACC-α. GST-Brca1 N contenant les 220 résidus N-terminaux de Brcal , de même que GST tout seul, n'ont pas été capables de capturer ACC-α, ce qui démontre la spécificité de l'interaction entre ACC-α et la région carboxy-terminale de Brcal .
De nombreuses mutations familiales ont été retrouvées dans le segment carboxy terminal de BRCA L'une d'entre elles, R1835X, localisée dans le domaine distal de BRCT, introduit un codon non-sens qui supprime les 29 derniers acides aminés de Brcal et rompt ainsi le second domaine BRCT. Pour déterminer si cette mutation pouvait abolir l'interaction du tandem BRCT avec ACC-α, la mutation W1777X qui mime la mutation humaine R1835X a été introduite sur l'ADNc murin de Brcal et un essai de co-sédimentation a été réalisé avec le tandem muté (GST-BRCT M). La mutation germinale abolit l'interaction avec ACC-α. L'effet de cette mutation a par ailleurs été confirmé par introduction de la mutation R1835X dans l'ADNc humain de BRCAL La protéine de fusion GST-BRCTh tronquée correspondante ne lie pas l'ACC-α. L'étude d'autres mutations familiales telles que les mutations A1708E, P1749R, ou M1775R, qui créent une substitution d'acide aminé dans le domaine BRCT A, dans la séquence de liaison des deux domaines BRCT ou dans le domaine BRCT B respectivement, ou encore la mutation non sens Y1853X qui conduit à un domaine BRCT B tronqué, montre que ces mutations abolissent également la liaison de BRCA1 à l'ACC-α.
L'ensemble de ces données indique que la séquence minimale BRCA1 requise pour l'association avec ACC-α correspond précisément au tandem des domaines BRCT, ce qui signifie que les deux motifs BRCT sont impliqués dans l'interaction avec ACC-α.
BRCA1 et sa forme courte Brcal -Δ11 s'associent in vivo à I CC-α :
Afin de déterminer si la protéine BRCA1 peut interagir avec ACC-α in vivo, des expériences de co-immunoprécipitation ont été réalisées avec des lysats de cellules Bosc transfectées. A cet effet, les cellules Bosc ont été transfectées avec des plasmides d'expression codant pour Brcal de longueur totale ou la forme courte Brca1-Δ1 1. Les lysats préparés à partir de ces cellules transfectées ont été immunoprécipités avec l'anticorps D16 (Santa Cruz Biotechnology) dirigé contre BRCA1 et chaque immuno-précipité a été fractionné par SDS-PAGE. La présence de l'ACC-α endogène dans ces immuno-précipités a alors été déterminée par Western blot à l'aide de peroxydase couplée à la streptavidine. L'ACC-α endogène a été co- immunoprécipitée à partir de cellules exprimant Brcal et de cellules exprimant la forme courte Brcal -Δ1 1. Pour étudier plus avant si la forme humaine de BRCA1 pouvait s'associer avec l'ACC-α endogène, des cellules Bosc ont été transfectées avec un plasmide exprimant la protéine BRCAL Des lysats ont été immunoprécipités avec l'anticorps OP92 (Oncogene Research Products) dirigé contre BRCA1 et la présence d'ACC-α endogène dans les co- immunoprécipités a été analysée par Western Blot à l'aide de peroxydase couplée à la streptavidine. Comme attendu, BRCA1 humain coprécipite avec l'ACC-α endogène. Parce que BRCA1 est majoritairement une protéine nucléaire, les résultats obtenus dans les essais de co-sédimentation et les résultats concernant la localisation cytoplasmique de ACC-α soulèvent la question de la signification physiologique de l'interaction entre BRCA1 et ACC-α. Les inventeurs ont réexaminé la localisation sub-cellulaire de BRCA1 et de l'isoforme murine Brca1-Δl 1 exprimé de façon transitoire dans des cellules Bosc. A cet effet, des techniques de fractionnement ont été utilisées pour étudier la localisation sub-cellulaire de BRCA1 et de la forme Brcal -Δ1 1 murine (Bachelier, R et al., 2000). Après fractionnement cellulaire, des extraits nucléaires et cytoplasmiques des cellules transfectées ont été séparés par SDS-PAGE et soumis à une analyse par Western Blot. Comme attendu, la protéine BRCA1 humaine endogène a été détectée majoritairement dans la fraction nucléaire tandis que BRCA1 exprimée de façon ectopique était majoritairement cytoplasmique. Ces résultats sont en accord avec les observations précédentes (Bachelier, R et al., 2000). En outre, l'isoforme Brcal -Δ11 murine exogène était majoritairement présente dans la fraction cytoplasmique. Pris ensemble, ces résultats indiquent que l'ACC-α qui est localisée dans le cytoplasme lie les protéines BRCA1 de longueur totale et la forme courte BRCA1-Δ11 exprimées de façon ectopique, via le tandem des domaines BRCT présents à la fois dans les formes humaines et murines.
Aucun anticorps dirigé contre la forme humaine d'ACC-α n'étant disponible sur le marché, les inventeurs ont préparé, chez le lapin un anticorps polyclonal dirigé contre les extrémités amino-terminale (MEDPSPLAQPLELNQ, SEQ ID n° 1 ) et carboxy-terminale (AEVIRILSTMDSPST, SEQ ID n°2) de la protéine ACC-α humaine. Cet anticorps a ensuite été immunopurifié contre ces deux deux séquences peptidiques. La spécificité de cet anticorps anti-ACC-α appelé L3J74, a été testée par technique de Western Blot dans plusieurs lignées cellulaires (lignées humaines : HBL100, MCF7, BT20, Bosc, HCC1937; lignée murine : NIH3T3) et plusieurs lysats tissulaires (sein, ovaire, pancréas), dans des conditions expérimentales permettant de distinguer clairement les formes α et β de l'ACC. Les résultats ont montré que L3J74 était spécifique de la forme α d'ACC, et que son affinité pour la forme humaine était très supérieure à celle observée pour la forme murine de la protéine. Cet anticorps a été ensuite testé par technique d'immunoprécipitation sur différents lysats cellulaires (HBL100, Bosc, NIH3T3). Deux cents nanogrammes de cet anticorps permettent, dans un lysat de 5 x 106 cellules, l'immunoprécipitation d'ACC-α. Dans le but de montrer que la protéine ACC-α s'associe à BRCA1 in vivo, dans des conditions physiologiques, des expériences de coimunopréciptation ont été menées sur des cellules épithéliales de glande mammaire humaines de lignée cellulaire HBL100. L'immunoprécipitation de BRCA1 résulte en la coprécipitation d'ACC-α. Réciproquement, l'immunoprécipitation d'ACC-α avec l'anticorps L3J74 résulte en la coprécipitation de BRCAL Ces résultats montrent clairement que BRCA1 et ACC-α forment in vivo un complexe endogène.
BIBLIOGRAPHIE
Abu-Elheiga L. et al. (1995). Human acetyl-CoA carboxylase : characterization, molecular cloning, and évidence for two isoforms. Proc. Natl. Acad. Sci. USA. 92: 401 1-4015.
Anderson S. F. et al. (1998). BRCA1 protein is linked to the RNA polymérase II holoenzyme complex via RNA helicase A. Nat. Genêt. 19: 254-256.
Bachelier, R. et al. (2000) Int J Cancer, 88, 519-524. - Bennett L.M. et al (1995) Genomics, 29, 576-581.
Benoit et al., (1982) PNAS USA, 79, 917-921.
Bork P. et al. (1997). A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. The FASEB J. 11 : 68-76. - Callebaut I. et Mornon J.P. (1997). From BRCA1 to RAPL a widespread BRCT module closely associated with DNA repair. FEBS. 400: 25-30.
Cantor S.B. et al (2001 ) Cell, 105, 149-160.
Chapman M. S. et Verma I.M. (1996). Transcriptional activation by BRCA1. Nature. 382: 678-679.
Chen J. et al. (1998). Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor gènes in mitotic and meiotic cells. Mol. Cell. 2: 317-328.
Critchlow S.E. et al. (1997). Mammalian DNA double- strand break repair protein XRCC4 interacts with DNA ligase IV. Current Biol. 7: 588-598.
Ford D. et al. (1998). Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 gènes in breast cancer families. Am. J. Hum. Genêt. 62: 676-689. - Hakem R. et al. (1995). The tumor suppressor gène
BRCA1 is required for embryonic cellular prolifération in the mouse. Cell.. 85: 1009-1023. Hakem R. et al. (1997). The tumor suppressor gène BRCA 1 is required for embryonic cellular prolifération in the mouse. Cell. 85: 1009-1023.
Jayasena (1999) Aptamers: an emerging class of molécules that rival antibodies in diagnostics. Clin. Chem. 45(9):1628-50.
Kόhler et Milstein (1975) Nature, 256, 495-497.
Koonin EN. et al. (1996). BRCA1 protein products: Functionnal motifs. Nat. Genêt. 13: 267-269.
Larson J.S. et al. (1997). A BRCA1 mutant alters G2-M cell cycle control in human mammary epithelial cells. Cancer Res. 57: 3351-3355.
Lopez-Casillas, F., Bai, D.H., Luo, X., Kong, I.S., Hermodson, M.A. &Kim, K.H. (1988) Proc. Natl. Acad. Sci. USA 85, 5784- 5788.
Magdinier F. et al. (1999). BRCA1 expression during prénatal development of the human mammary gland. Oncogene.18: 4039- 4043.
Masson M. et al. (1998). XRCC1 is specifically associated with poly(ADP-Ribose) polymérase and negatively régulâtes its activity following DΝA damage. Mol. Cell. Biol. 18: 3563-3571. - Miki Y. et al. (1994). A strong candidate for the breast and ovarian cancer susceptibility gène BRCAL Science. 266: 66-71.
Monteiro A.Ν.A. et al. (1996). Evidence for a transcriptional activation function of BRCA1 C-terminal région. Proc. Natl. Acad. Sci. USA. 93: 13595-13599. - Νash R. et al. (1997). XRCC1 protein interacts with one of two distinct forms of DΝA ligase III. Biochemistry. 36: 5207-521 1.
Ouchi T. et al. (1998). BRCA1 régulâtes p53-dependent gène expression. Proc. Natl. Acad. Sci. USA. 95: 2302-2306.
Scully R. et al. (1997a). Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell. 88: 265-275.
Scully R. et al. (1997b). BRCA1 is a component of the RΝA polymérase II holoenzyme. Proc. Natl. Acad. Sci. USA. 94: 5605-5610. Scully R. et al. (1997c). Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell. 90: 425-435.
Smith A.A. et al. (1992). Alleles losses in the région 17q12- 21 in familial breast and ovarian cancer involve the wild-type chromosome. Nat. Genêt. 2: 128-131.
Smith T.M. et al. (1996). Complète genomic séquence and analysis of 117 kb of human DNA containing the gène BRCAL Génome Research. 6: 1029-1049. - Tuerk et Gold (1990) Systematic évolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymérase. Science, 3:249(4968):505-10.
Wang Q. et al. (1998). BRCA1 binds c-Myc and inhibits its transcriptional and transforming activity in cells. Oncogene. 17: 1939-1948. - Witters, LA, Widmer, J., King, A.N., Fassihi, K. & Kuhajda,
F. (1994) Int. J. Biochem. 26, 589-594.
Wooster R. et al. (1995). Identification of the breast cancer susceptibility gène BRCA2. Nature. 378: 789-792.
Wu L.C. et al. (1996). Identification of a RING protein that can interact in vivo with the BRCA1 gène product. Nat. Genêt. 14: 430-440.
Yarden R. et al. (1999). BRCA1 interacts with components of the histone deacetylase complex. Proc. Natl. Acad. Sci. USA. 96: 4983- 4988.
Yu X. et al. (1998). The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtlP, a protein implicated in the CtBP pathway of transcriptional repression. J. Biol. Chem. 273: 25388-25392.
Zhang H. et al. (1998a). BRCA1 physically associâtes with p53 and stimulâtes its transcriptional activity. Oncogene. 16: 1713-1721.
Zhang X. et al. (1998b). Structure of an XRCC1 BRCT domain: a new protein-protein interaction module. The EMBO J. 17: 6404- 6411.

Claims

REVENDICATIONS
1. Complexe moléculaire comprenant :
- un premier polypeptide comprenant la séquence d'acides aminés 1640 à 1863 de la protéine BRCA1 humaine ou une même séquence d'acides aminés de la protéine BRCA1 chez une autre espèce animale, et
- un deuxième polypeptide comprenant un fragment de la protéine ACC-α capable de lier ledit premier polypeptide.
2. Méthode de criblage in vitro de molécules utiles pour la prévention ou le traitement du cancer du sein et/ou de l'ovaire dans laquelle les molécules sont testées pour leur capacité à moduler l'interaction entre les protéines BRCA1 et ACC-α.
3. Méthode de criblage selon la revendication 2, comprenant : a) la mise en contact, dans un ordre quelconque, de deux partenaires ou trois partenaires différents sélectionnés parmi le groupe constitué d'un premier polypeptide comprenant la séquence d'acides aminés 1640 à 1863 de la protéine BRCA1 humaine ou une même séquence d'acides aminés de la protéine BRCA1 , un deuxième polypeptide comprenant un fragment de la protéine ACC-α capable de lier ledit premier polypeptide et une molécule candidate ; b) l'incubation desdits partenaires pendant un temps suffisant pour permettre leur éventuelle interaction ; c) dans le cas où seuls deux partenaires différents ont été sélectionnés à l'étape a), l'ajout du troisième partenaire sélectionné dans ledit groupe et l'incubation pendant un temps suffisant pour permettre une éventuelle interaction ; d) la détermination de la capacité de la molécule candidate à moduler l'interaction entre BRCA1 et ACC-α.
4. Méthode de criblage selon la revendication 2 ou 3, comprenant : a) la mise en présence d'un premier polypeptide comprenant la séquence d'acides aminés 1640 à 1863 de la protéine BRCA1 humaine ou une même séquence d'acides aminés de la protéine BRCA1 avec un deuxième polypeptide comprenant un fragment de la protéine ACC-α capable de lier ledit premier polypeptide, un des polypeptides au moins étant marqué de manière détectable ; b) l'addition d'une molécule candidate capable de moduler l'interaction ; c) l'incubation desdits polypeptides en présence de la molécule candidate dans des conditions et pour une période de temps suffisante pour que la liaison entre lesdits polypeptides ait lieu ; d) la quantification du nombre de molécules marquées liées en présence de concentrations croissantes de la molécule candidate.
5. Méthode de criblage selon l'une des revendications 2 à 4, caractérisée en ce que ladite molécule capable de moduler l'interaction BRCA1 /ACC-α est un agoniste.
6. Méthode de criblage selon l'une des revendications 2 à 4, caractérisée en ce que ladite molécule capable de moduler l'interaction
BRCA1 /ACC-α est un antagoniste.
7. Méthode d'identification ex vivo de molécules constituant des ligands endogènes du complexe BRCA1 /ACC-α comprenant : a) la mise en contact du complexe BRCA1 /ACC-α avec un échantillon biologique dans des conditions permettant la formation d'interactions entre le complexe et d'éventuels ligands ; b) la détection d'interactions entre le complexe BRCA1 /ACC-α et lesdits ligands ; et c) l'identification des ligands interagissant avec le complexe.
8. Méthode de diagnostic in vitro d'une prédisposition au cancer du sein et/ou de l'ovaire, comprenant la détermination d'une modification de l'interaction BRCA1 /ACC-α chez un sujet par rapport à une population témoin, la modification de l'interaction BRCA1/ACC-α étant associée à une variation du risque de développer un cancer du sein et/ou de l'ovaire.
9. Anticorps anti-ACC-α humaine, dirigé contre les peptides de séquence SEQ ID n° 1 et SEQ ID n° 2.
10. Anticorps dirigé contre complexe moléculaire BRCA1 /ACC-α, caractérisé en ce qu'il n'interagit pas avec les protéines BRCA1 ou ACC-α seules.
EP02745520A 2001-06-13 2002-06-12 Complexes moleculaires brca1/acc alpha, applications diagnostiques et therapeutiques Withdrawn EP1430081A2 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR0107740 2001-06-13
FR0107740A FR2826012B1 (fr) 2001-06-13 2001-06-13 Complexes moleculaires brca1/accalpha, applications diagnostiques et therapeutiques
FR0202789 2002-03-05
FR0202789A FR2836919B1 (fr) 2002-03-05 2002-03-05 Complexes moleculaires brca1/accalpha, applications diagnostiques et therapeutiques
PCT/FR2002/002016 WO2002100897A2 (fr) 2001-06-13 2002-06-12 Complexes moleculaires brca1/acc alpha, applications diagnostiques et therapeutiques

Publications (1)

Publication Number Publication Date
EP1430081A2 true EP1430081A2 (fr) 2004-06-23

Family

ID=26213047

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02745520A Withdrawn EP1430081A2 (fr) 2001-06-13 2002-06-12 Complexes moleculaires brca1/acc alpha, applications diagnostiques et therapeutiques

Country Status (5)

Country Link
US (1) US20060105403A1 (fr)
EP (1) EP1430081A2 (fr)
AU (1) AU2002317247A1 (fr)
CA (1) CA2450663A1 (fr)
WO (1) WO2002100897A2 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0785216B2 (fr) 1995-12-18 2006-06-07 The University of Utah Research Foundation Gène BRCA2 lié au chromosome 13, de la susceptibilité au cancer du sein
JP2008503239A (ja) * 2004-06-21 2008-02-07 エクセリクシス, インク. IGF経路のモディファイヤーとしてのACACsおよび使用方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2196790C (fr) * 1994-08-12 2000-10-10 Mark H. Skolnick Gene de susceptibilite du cancer du sein et des ovaires, lie a 17q

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02100897A2 *

Also Published As

Publication number Publication date
US20060105403A1 (en) 2006-05-18
CA2450663A1 (fr) 2002-12-19
WO2002100897A3 (fr) 2004-04-22
AU2002317247A1 (en) 2002-12-23
WO2002100897A2 (fr) 2002-12-19

Similar Documents

Publication Publication Date Title
Salazar et al. Tuba, a novel protein containing bin/amphiphysin/Rvs and Dbl homology domains, links dynamin to regulation of the actin cytoskeleton
Mizushima et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate
Gentil et al. The giant protein AHNAK is a specific target for the calcium-and zinc-binding S100B protein: potential implications for Ca2+ homeostasis regulation by S100B
Okamoto et al. Dynamin isoform-specific interaction with the shank/ProSAP scaffolding proteins of the postsynaptic density and actin cytoskeleton
FR2788783A1 (fr) Proteines entrant en interaction avec le recepteur d'igf (iip),acides nucleiques codant pour ces proteines et leur utilisation
WO1999018989A1 (fr) Proteines et genes a sequence f
US20080220455A1 (en) p53-DEPENDENT APOPTOSIS-INDUCING PROTEIN AND METHOD OF SCREENING FOR APOPTOSIS REGULATOR
Ishikawa et al. Identification of DRG family regulatory proteins (DFRPs): specific regulation of DRG1 and DRG2
US20050074762A1 (en) Adiponectin-associated protein
Faitar et al. EVI5 is a novel centrosomal protein that binds to α-and γ-tubulin
CA2452628A1 (fr) Methylation de l'histone h4 au niveau de l'arginine 3
Luo et al. The MORN domain of Junctophilin2 regulates functional interactions with small‐conductance Ca2+‐activated potassium channel subtype2 (SK2)
EP1430081A2 (fr) Complexes moleculaires brca1/acc alpha, applications diagnostiques et therapeutiques
FR2836919A1 (fr) Complexes moleculaires brca1/accalpha, applications diagnostiques et therapeutiques
FR2807437A1 (fr) Gene codant pour l'erbin, proteine qui interagit avec le recepteur erbb2/her-2, et utilisations diagnostiques et therapeutiques
FR2826012A1 (fr) Complexes moleculaires brca1/accalpha, applications diagnostiques et therapeutiques
US20040115682A1 (en) Novel scavenger receptor class a protein
EP1408049A2 (fr) Nouvelle protéine associée au récepteur de l'inositol 1,4,5-trisphosphate (IP3) et un IP3 indicateur
US20060252677A1 (en) Postsynaptic proteins
JP4472534B2 (ja) 細胞内Caイオンの機能制御
KR100460227B1 (ko) Src-타입 타이로신 키나제와 결합하는 신규한 어댑터단백질, LAST 및 그의 유전자
FR2840905A1 (fr) Anticorps monoclonal anti-aurora-a, son procede d'obtention, et ses utilisations dans le diagnostic et le traitement des cancers
KR20040047674A (ko) HIF-1α의 분해를 촉진시키기 위한 약제학적 조성물
WO2004047852A1 (fr) Composition pharmaceutique pour maitriser la stabilite de hif-1$g(a)
WO2006135762A1 (fr) Identification d'une nouvelle proteine de liaison fnip1

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031212

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20051010