EP1421393B1 - Optical current sensors - Google Patents

Optical current sensors Download PDF

Info

Publication number
EP1421393B1
EP1421393B1 EP02806845A EP02806845A EP1421393B1 EP 1421393 B1 EP1421393 B1 EP 1421393B1 EP 02806845 A EP02806845 A EP 02806845A EP 02806845 A EP02806845 A EP 02806845A EP 1421393 B1 EP1421393 B1 EP 1421393B1
Authority
EP
European Patent Office
Prior art keywords
phase delay
angle
light waves
polarized light
delay element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02806845A
Other languages
German (de)
French (fr)
Other versions
EP1421393A1 (en
Inventor
Klaus Bohnert
Juergen Nehring
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Priority to EP02806845A priority Critical patent/EP1421393B1/en
Publication of EP1421393A1 publication Critical patent/EP1421393A1/en
Application granted granted Critical
Publication of EP1421393B1 publication Critical patent/EP1421393B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/245Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect
    • G01R15/246Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect based on the Faraday, i.e. linear magneto-optic, effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • G01R33/0322Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect using the Faraday or Voigt effect

Definitions

  • An optical current sensor is known from EP 0 856 737 A1. He has a coil-shaped, magneto-optically active sensor fiber, which encloses a conductor. At least at one end is the sensor fiber via a phase delay element with a further optical Fiber, a so-called supply or return fiber, connected, via which light can be coupled into or out of the sensor fiber leaves.
  • the feed or return fibers are preferably an elliptical core cross-section. In them propagate linearly polarized Light waves.
  • phase delay element acts according to a phase delay angle of an odd multiple of 90 °. As a result, it transforms the aforementioned linearly polarized light waves of the feed and return fibers in circularly polarized light waves, which propagate in the sensor fiber.
  • phase delay element For the mentioned angle between the main axes and for the phase delay angle the phase delay element are in the mentioned EP 0 856 737 A1 tolerance angle indicated.
  • the sensor fiber is used either as a Sagnac interferometer or, if one their ends is mirrored, operated as a reflection interferometer. In both Cases spread in the sensor fiber two circularly polarized light waves out. The waves are opposite in the case of the Sagnac interferometer, in the case of the reflection interferometer, they run in the same direction. In the Sagnac interferometer both waves have the same polarization sense, where they are either left or right circularly polarized. In the reflection interferometer they have an opposite polarization sense on.
  • a fiber optic current sensor is described, the influence suppresses the temperature dependence of the Verdet constant V, in that a phase delay element is used whose temperature dependence the temperature dependence of the Verdet constant V compensated.
  • the phase delay element a Phase delay angle, which by an angle ⁇ ⁇ 0 ° of the phase delay angle of an ideal phase delay element differs.
  • the phase delay angle is instead of 90 ° then 90 ° + ⁇ , corresponding phase delay angles typically 95 ° to 105 °.
  • the Verdet constants V are also negative angles ⁇ possible.
  • phase delay elements are preferably as birefringent Fiber segments formed with elliptical core cross-section, wherein the phase delay angle then by appropriate choice of the length of the fiber segment can be easily adjusted.
  • the main axes of the supply fiber include an angle of 45 ° with those of the phase delay element, so slightly elliptically polarized in the sensor fiber Light waves off.
  • a problem with this type of compensation of the temperature dependence of the Verdet constant V is that it results in a deviation from a linear relationship between the current to be measured and a measurement signal, the measurement signal being generally proportional to ⁇ S or ⁇ R is.
  • Such nonlinearities of the ratio between the current to be measured and a measurement signal typically have a magnitude of 0.1% to 1% and cause measurement inaccuracies or complicate the evaluation of the measurement, if greater measurement accuracy is required. With the help of a complex signal processing such nonlinearities can be compensated.
  • the sensor should solve the above mentioned disadvantages. Especially the sensor should have a greater accuracy of measurement and / or facilitate the evaluation of the measurement and the use of a unnecessary signal processing.
  • This object triggers a method for producing a optical current or magnetic field sensor having the features of the claim 1, an optical current or magnetic field sensor according to claim 10 and a method for measuring an electric current or a magnetic field with the features of claim 11.
  • the optical current or magnetic field sensor has a sensor head with a sensor element and two phase delay elements as well two light pipe elements.
  • the components of the sensor head are in the Sequence first light pipe element, first phase delay element, Sensor element, second phase delay element, second light pipe element arranged along a light path and optically interconnected.
  • the phase delay angles ⁇ , ⁇ 'of the phase delay elements soft by angle ⁇ , ⁇ ' ⁇ 0 ° with -90 ° ⁇ , ⁇ ' ⁇ 90 ° of an odd multiple of 90 °.
  • a major axis of the first light pipe element closes with a Main axis of the adjacent first phase delay element a Angle of 45 ° ⁇ ⁇ with ⁇ ⁇ 0 ° and 0 ° ⁇ ⁇ 45 °, which depends on is selected from the angles ⁇ , ⁇ '.
  • Nonlinearities between an immediate measurement signal and an electrical current to be measured Current or magnetic field, which result from ⁇ , ⁇ ' ⁇ 0 °, can by a corresponding ⁇ , ⁇ '-dependent choice of the angle ⁇ at least approximately be compensated. This creates an at least approximate linear relationship between the immediate measurement signal and the electric current or magnetic field to be measured. This has the advantage of a to allow easy evaluation of the measurement, and greater measurement accuracy reach without consuming a complex signal processing.
  • a Sagnac-configured sensor is inexpensive can be produced, since a commercially available detection unit without consuming Adjustments can be used.
  • both have phase delay elements a non-zero deviation ⁇ , ⁇ 'of their Phase delay angle ⁇ , ⁇ 'of odd multiples of 90 °, and both phase delay elements together have a temperature dependence on that the temperature dependence of the Verdet constants V of the sensor element at least approximately compensated.
  • the means, the two phase delay elements together provide one such contribution to the temperature dependence of the instantaneous measurement signal, that the temperature dependence of the Verdet constant V of the sensor element is at least approximately compensated.
  • the ones from the combination the two phase delay elements resulting temperature dependence is thus chosen in the described way. In this way, the Sensor not only an at least approximately linear relationship between the immediate measurement signal and the electrical to be measured Current or magnetic field, but also improved temperature stability.
  • phase delay elements In another preferred embodiment of the subject invention is at least one of the two phase delay elements, preferably both phase delay elements, as fiber piece with elliptical core formed, which has a phase delay angle of 90 ° + ⁇ (or 90 ° + ⁇ ').
  • phase delay elements are simple and inexpensive to produce.
  • the sensor element so that it has a current conductor can include coil-shaped, because so can the measurement accuracy and sensitivity of the sensor can be increased.
  • FIG. 1 shows schematically a part of a sensor head 1 for an optical current or magnetic field sensor.
  • a first light pipe element 11, which is used as a polarization-maintaining optical fiber with elliptical Core cross-section is formed, with a first end 131 of a first phase delay element 13 optically connected, i. light waves can from the light pipe element 11 in the first end 131 of first phase delay element 13 are coupled and vice versa.
  • a second end 132 of the first phase delay element 13 is optically connected to a sensor element 15, which is preferably a magneto-optically active fiber with a round core cross-section.
  • the main axis y 'of the first light-conducting element 11 encloses an angle of 45 ° + ⁇ with a main axis y of the first phase-delay element 13, where ⁇ ⁇ 0 ° is an angle that is selected as a function of the angle ⁇ .
  • the two graphs in the lower part of Figure 1 schematically illustrate the second linearly polarized light waves 4 in the first phase delay element 13.
  • the second linearly polarized light waves polarized along the slow main axis y of the first phase delay element 13 are 4 y with the second linearly polarized light waves 4 x in phase polarized along the fast main axis x of the first phase delay element 13.
  • FIG. 2 shows a current or magnetic field sensor according to the invention has a Sagnac configuration. On the basic structure and on the operation of the sensor will not be discussed in detail here. The cited prior art can provide appropriate information be removed.
  • the sensor head 1 has the current or Magnetic field sensor still has a transmitter-evaluation unit 2. This includes In the example shown, a light source 20, a fiber coupler 21, a Fiber polarizer 22, a second fiber coupler 24 and a phase modulator 25, and a detector 26, a signal processor 27 and a measured value output 28.
  • the transmitter-evaluation unit 2 is used to generate and Detection of light and the evaluation and output of measured data.
  • the directions of propagation are those of the operation shown in FIG Current or magnetic field sensor in the sensor head 1 capable of propagation Light waves shown. Give the open arrows by the reference sign the propagation direction. In FIG. 2, for reasons of clarity only a few of the light waves and propagation directions are shown. For the following explanations, reference is made to FIGS. 2 and 3.
  • the transmitter-evaluation unit 2 Via the first light-conducting element 11 and a second light-conducting element 12 or entprechende extensions or connections is the transmitter-evaluation unit 2 connected to the sensor head 1.
  • the latter shows beside the first phase delay element 13 nor a second phase delay element 14, which is analogous to the first phase delay element 13 at a first end 141 with the second light pipe element 12 is optically connected, and at a second end 142 with a second end of the sensor element 15 is optically connected.
  • the sensor element 15 is formed as a magneto-optically active fiber, the coil-shaped a current conductor S encloses.
  • the light pipe elements 11 and 12 are polarization-maintaining fibers with an elliptical core cross-section educated.
  • linearly polarized light is generated, from Which then in the two light pipe elements 11 and 12, the first linear polarized light waves 3 and 3 'are.
  • the graphics in the middle of Figure 2 symbolize these light waves 3,3 'as thick arrows.
  • the open Arrows indicate the propagation direction of the light waves 3,3 '.
  • the elliptically polarized light waves 6 experience a magneto-optically induced phase shift due to the Faraday effect.
  • the elliptically polarized light waves 6 couple into the second end 142 of the second phase retarding element 14 where they are converted to third linearly polarized lightwaves 5 comprising linearly polarized lightwaves 5 x and 5 y .
  • These third linearly polarized light waves 5 excite fourth linearly polarized light waves 5 a in the second light conduction element 12, which are then supplied via the second light conduction element 12 to the transmit-evaluation unit 2. There, the light waves are detected.
  • Third light waves 5a whose polarization axis is oriented perpendicular to the polarization axis of the first linearly polarized light waves 3, can be blocked in the fiber polarizer 22 so that they are not detected.
  • the first linearly polarized light waves 3 ' are detected by means of the second phase delay element 14 converted into elliptically polarized light waves 6 ', which then in the sensor element 15 propagate, with a propagation direction, that of the elliptically polarized light waves 6 is opposite.
  • a main axis of the second light-conducting element 12 includes a major axis of the second phase retarding element 14 an angle 45 ° + ⁇ ', with an angle ⁇ ', for which 0 ° ⁇ ⁇ ' ⁇ 45 °.
  • a magnetic field which arises due to an electric current I flowing in the current conductor S, causes a magneto-optically induced phase shift of the elliptically polarized light waves 6 'via the Faraday effect.
  • the elliptically polarized light waves 6 ' After passing through the sensor element 15, the elliptically polarized light waves 6 'couple into the second end 132 of the first phase delay element 13.
  • Third linearly polarized light waves 5 ' are generated, which comprise third linearly polarized light waves 5 x ' and 5 y ', and there is a phase shift of 90 ° + ⁇ between these third linearly polarized light waves 5 x ' and 5 y '.
  • the magneto-optically induced phase shift from the elliptically polarized light waves 6 or from the elliptically polarized light waves 6 'propagating in opposite directions in the sensor element 15 can serve as an immediate measurement signal for determining the electrical current I.
  • the term "immediate" measurement signal is intended to mean that no signal conditioning has taken place in order to generate a signal which is at least approximately proportional to the electrical current I from the measurement signal.
  • the signal of one elliptically polarized lightwave 6 is preferably used in a sensor in Sagnac configuration as a reference signal for the other counter-rotating elliptically polarized lightwaves 6 '.
  • a differential phase shift ⁇ S of the two elliptically polarized light waves 6 and 6 ' is taken. This direct measurement signal is exactly twice as large as the magneto-optically induced phase shift, which experiences each of the elliptically polarized light waves 6 and 6 'individually.
  • is the angle between the fast axes of the two phase delay elements 13 and 14.
  • a mathematically complete compensation of the nonlinearity is not possible because of the difference in the functional relationships for the angles ⁇ , ⁇ 'and for the angles ⁇ , ⁇ '. But nonlinearity can be reduced and compensated for enough to make it meaningless in practice.
  • nonlinearity increases for larger angles ⁇ .
  • the light pipe elements 11, 12 can also be used as other types of polarization preserving optical Be formed fibers such as so-called panda fibers, Bowtie fibers or fibers with an additional, inner, elliptical Cladding (fiber coat).
  • the first linearly polarized Light waves 3,3 ' directly or by means of a lens or an optical Module in the phase delay elements 13,14 initiate. Then you would be the light pipe elements 11,12 air or vacuum, or the lens or the optical assembly.
  • main axes of the light guide elements 11,12 always the axes are referred to, by the polarization vectors of the first linearly polarized light waves 3,3 'are given.
  • the optical connections between the phase delay elements 13,14 and the light pipe elements 11,12 or the sensor element 15 can be direct connections, as for example created by welding together using a so-called Splice device become. Or they are connections via an intermediate medium, for example a gel, glue or piece of fiber or an optical assembly. Or the coupling of light waves takes place through a vacuum or through a gas instead.
  • the phase delay elements 13, 14 may be optical fiber pieces with geometrically induced birefringence, for example by an elliptical one Core, or with stress-induced birefringence, such as Bowtie or panda fibers or fibers with an inner elliptical Coat. They can also be used as loops of ordinary single-mode fibers be formed with a round core.
  • the phase delay generated via the birefringence which is caused by the fiber curvature becomes.
  • ⁇ / 4 plates are also conceivable.
  • the phase delay angle ⁇ , ⁇ ' can be subtended by angles ⁇ , ⁇ ' from any odd number Multiples of 90 °.
  • angles ⁇ , ⁇ ' are preferably given that they are just so big that the temperature dependence the Verdet constants of the sensor element 15 by the temperature dependence the phase delay elements 13,14 compensated becomes. This can result in positive as well as negative angles ⁇ , ⁇ '.
  • angles ⁇ and ⁇ ' can be of different sizes. There is still one for you given angle ⁇ in general many different pairs of angles ⁇ , ⁇ ', which leads to an at least approximate compensation of ⁇ ⁇ 0 ° and / or ⁇ ' ⁇ 0 ° resulting nonlinearities. Nevertheless, it is the choice of ⁇ then still depends on ⁇ , but ⁇ then depends in addition from ⁇ 'and ⁇ ' and from ⁇ . One can also say that ⁇ and ⁇ 'in Depending on at least the angles ⁇ and ⁇ 'are selected. Of the Angle ⁇ is still added as an influence.
  • the sensor element 15 may, as indicated above coil-shaped, preferably in several turns, the current conductor S include. However, fractions of a turn are also possible, and differently curved or non-curved sensor elements 15 can also be used.
  • the sensor element 15 consists of an optical fiber which is free of mechanical stresses, as described in EP 0 856 737 A1. Particularly advantageous is the use of such a stress-free sensor fiber 15 together with a temperature-dependence-compensating phase delay element 13, 14, as described in EP 1 115 000.
  • Such a current or magnetic field sensor according to the invention has virtually no temperature dependence, but has a linear relationship between a current I to be measured and the instantaneous measurement signal ⁇ S.
  • magneto-optically active fibers and solid glasses or magneto-optical crystals such as yttrium-iron garnet, Y 3 Fe 5 O 12
  • the sensor element 15 must be operatively connected to the magnetic field to be measured, preferably at a location where the magnetic field is large, so that the elliptically polarized light waves 6, 6 'experience the greatest possible magneto-optically induced phase shift due to the magnetic field.
  • angles ⁇ of up to about 10 ° result.
  • ⁇ ⁇ ⁇ ' it is possible to have different pairs ⁇ , ⁇ 'to choose according to the invention, so that at ⁇ ⁇ 30 ° and inventive Angle ⁇ greater than 10 ° are possible.
  • transmitter-evaluation unit 2 are interferometric as well as polarimetric Detecting variants possible. From the prior art are various Possibilities for evaluating the immediate measurement signals known. In the example of FIG. 2, each one was elliptically polarized Light waves 6 as a reference signal for the other elliptically polarized Light waves 6 'used, both of which are influenced by the electric Electricity I or the magnetic field were exposed. But it is also possible to measure the magneto-optically induced phase shift without each other to use different elliptically polarized light waves 6 and 6 '.
  • linear polarized light waves are generated, which induced no magneto-optically Phase shift, and opposite to which the magneto-optically induced phase shifts of the elliptically polarized light waves 6 or 6 'determine.
  • the light source 20 is typically a low-coherence semiconductor source used, such as a superluminescent diode, a multimode laser diode, a laser diode operated below the laser threshold, or a luminescent diode (LED), preferably with wavelengths around 800 nm, 1300 nm or 1550 nm. But different wavelengths, for Example from the ultraviolet, the visible or the infrared range are usable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measuring Magnetic Variables (AREA)
  • Glass Compositions (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

An optical current or magnetic field sensor has a sensor head which has a first phase delay element (13), a second phase delay element and a sensor fiber (15) The two phase delay elements (13) are optically connected to opposite ends of the sensor element (15), and the phase delay angle rho on at least one of the phase delay elements (13) deviates by an angle epsilon, with epsilon<>0°, from 90°. Linearly polarized light waves (3) are injected into the first phase delay element (13), with a polarization axis (y') of these linearly polarized light waves (3) including an angle which deviates from 45° by an angle Deltaalpha, with Deltaalpha<>0°, with a principal axis (y) of the first phase delay element (13). The angle Deltaalpha is selected as a function of at least the angle epsilon. This choice of the angle Deltaalpha makes it possible to compensate for non-linearities between a direct measurement signal and an electrical current or magnetic field to be measured which occur because of the angle epsilon<>0°.

Description

Die vorliegende Erfindung betrifft das Gebiet der optischen Strom- oder Magnetfeldsensorik. Sie bezieht sich auf

  • ein Verfahren zur Herstellung eines Sensors gemäss dem Oberbegriff des Patentanspruchs 1,
  • auf einen optischen Strom- oder Magnetfeldsensor gemäss dem Oberbegriff des Patentanspruchs 10 und
  • auf ein Verfahren zur Messung eines elektrischen Stroms oder Magnetfeldes gemäss dem Oberbegriff des Patentanspruchs 11.
The present invention relates to the field of optical current or magnetic field sensors. It refers to
  • a method for producing a sensor according to the preamble of patent claim 1,
  • to an optical current or magnetic field sensor according to the preamble of patent claim 10 and
  • to a method for measuring an electric current or magnetic field according to the preamble of patent claim 11.

Stand der TechnikState of the art

Ein optischer Stromsensor ist aus EP 0 856 737 A1 bekannt. Er weist eine spulenförmig gewickelte, magnetooptisch aktive Sensorfaser auf, welche einen Stromleiter umschliesst. Mindestens an einem Ende ist die Sensorfaser über ein Phasenverzögerungselement mit einer weiteren optischen Faser, einer sogenannten Zu- beziehungsweise Rückleitungsfaser, verbunden, über welche sich Licht in die Sensorfaser ein- beziehungsweise auskoppeln lässt. Die Zu- beziehungsweise Rückleitungsfasern haben vorzugsweise einen elliptischen Kernquerschnitt. In ihnen propagieren linear polarisierte Lichtwellen. Als Phasenverzögerungselement wirkt ein doppelbrechendes Fasersegment, welches zwischen Sensorfaser und Zuleitungsfaser angeordnet ist. Dieses Fasersegment weist zwei optische Hauptachsen auf, eine schnelle (kurze) und eine langsame (lange) Hauptachse. Diese sind unter 45° zu den zwei Hauptachsen der Zu- beziehungsweise Rückleitungsfasern ausgerichtet. Üblicherweise ist seine Länge so gewählt, dass es als λ/4-Phasenverzögerungselement wirkt, entsprechend einem Phasenverzögerungswinkel von einem ungeradzahligen Vielfachen von 90°. Dadurch wandelt es die genannten linear polarisierten Lichtwellen der Zu- und Rückleitungsfasern in zirkular polarisierte Lichtwellen um, welche sich in der Sensorfaser ausbreiten. Für den genannten Winkel zwischen den Hauptachsen und für den Phasenverzögerungswinkel des Phasenverzögerungselementes sind in der genannten EP 0 856 737 A1 Toleranzwinkel angegeben.An optical current sensor is known from EP 0 856 737 A1. He has a coil-shaped, magneto-optically active sensor fiber, which encloses a conductor. At least at one end is the sensor fiber via a phase delay element with a further optical Fiber, a so-called supply or return fiber, connected, via which light can be coupled into or out of the sensor fiber leaves. The feed or return fibers are preferably an elliptical core cross-section. In them propagate linearly polarized Light waves. As a phase delay element acts a birefringent Fiber segment, which is arranged between sensor fiber and supply fiber is. This fiber segment has two main optical axes, one fast (short) and slow (long) main axis. These are below 45 ° aligned to the two main axes of the supply and return fibers. Typically, its length is chosen to function as a λ / 4 phase delay element acts according to a phase delay angle of an odd multiple of 90 °. As a result, it transforms the aforementioned linearly polarized light waves of the feed and return fibers in circularly polarized light waves, which propagate in the sensor fiber. For the mentioned angle between the main axes and for the phase delay angle the phase delay element are in the mentioned EP 0 856 737 A1 tolerance angle indicated.

Die Sensorfaser wird entweder als Sagnac-Interferometer oder, wenn eines ihrer Enden verspiegelt ist, als Reflexions-Interferometer betrieben. In beiden Fällen breiten sich in der Sensorfaser zwei zirkular polarisierte Lichtwellen aus. Die Wellen sind dabei im Falle des Sagnac-Interferometers gegenläufig, im Falle des Reflexions-Interferometers laufen sie in gleicher Richtung. Im Sagnac-Interferometer haben beide Wellen denselben Polarisationssinn, wobei sie entweder links- oder rechts-zirkular polarisiert sind. Im Reflexions-Interferometer weisen sie einen entgegengesetzten Polarisationssinn auf.The sensor fiber is used either as a Sagnac interferometer or, if one their ends is mirrored, operated as a reflection interferometer. In both Cases spread in the sensor fiber two circularly polarized light waves out. The waves are opposite in the case of the Sagnac interferometer, in the case of the reflection interferometer, they run in the same direction. In the Sagnac interferometer both waves have the same polarization sense, where they are either left or right circularly polarized. In the reflection interferometer they have an opposite polarization sense on.

Ist der Stromleiter von einem elektrischen Strom I durchflossen, so erzeugt der Strom I ein Magnetfeld, welches zu einer differentiellen Phasenverschiebung zwischen diesen zwei gegenläufigen bzw. gleichlaufenden Lichtwellen führt. Dieser Effekt wird magneto-optischer Effekt oder Farraday-Effekt genannt. Für zirkular polarisierte Lichtwellen in der Sensorfaser ist die entstandene Phasenverschiebung dabei proportional zum Strom und beträgt in der Sagnac-Konfiguration ΔS = 2 ϕF und in der Reflexionskonfiguration ΔR = 4 ϕF, wobei die sogenannte Faraday-Phasenverschiebung ϕF als ϕF = V N I , definiert ist, und wobei V die Verdet-Konstante der Sensorfaser, N die Anzahl der Faserwindungen der Spule und I die Stromstärke bezeichnet.If the current conductor is traversed by an electric current I, then the current I generates a magnetic field which leads to a differential phase shift between these two countercurrent light waves. This effect is called magneto-optic effect or Farraday effect. For circularly polarized light waves in the sensor fiber, the resulting phase shift is proportional to the current and is in the Sagnac configuration Δ S = 2 φ F and in the reflection configuration Δ R = 4 φ F . wherein the so-called Faraday phase shift φ F as φ F = VNI, where V is the Verdet constant of the sensor fiber, N is the number of turns of the coil and I is the current.

In der genannten EP 0 856 737 A1 ist eine Sensorfaser beschrieben, die frei von mechanischen Spannungen ist, so dass das erhaltene Mess-Signal nicht von einer temperaturabhängigen, stress-induzierten linearen Doppelbrechung gestört wird. Die Verdet-Konstante V der Sensorfaser weist jedoch ebenfalls eine Temperaturabhängigkeit auf, welche selbst bei einer idealen, stressfreien Faserspule bemerkbar ist.In the cited EP 0 856 737 A1 a sensor fiber is described which free of mechanical stresses, so that the received measuring signal not from a temperature-dependent, stress-induced linear birefringence is disturbed. However, the Verdet constant V of the sensor fiber has also a temperature dependence which, even with an ideal, stress-free fiber coil is noticeable.

In EP 1 115 000 ist ein faseroptischer Stromsensor beschrieben, der den Einfluss der Temperaturabhängigkeit der Verdet-Konstanten V dadurch aufhebt, dass ein Phasenverzögerungselement verwendet wird, dessen Temperaturabhängigkeit die Temperaturabhängigkeit der Verdet-Konstanten V kompensiert. Dies wird erreicht, indem das Phasenverzögerungselement einen Phasenverzögerungswinkel aufweist, welcher um einen Winkel ε ≠ 0° von dem Phasenverzögerungswinkel eines idealen Phasenverzögerungselements abweicht. Bei einem λ/4-Phasenverzögerungselement beträgt der Phasenverzögerungswinkel statt 90° dann 90° + ε, entsprechend Phasenverzögerungswinkeln von typischerweise 95° bis 105°. Je nach Vorzeichens der Temperaturabhängigkeit der Verdet-Konstanten V sind auch negative Winkel ε möglich.In EP 1 115 000, a fiber optic current sensor is described, the influence suppresses the temperature dependence of the Verdet constant V, in that a phase delay element is used whose temperature dependence the temperature dependence of the Verdet constant V compensated. This is achieved by the phase delay element a Phase delay angle, which by an angle ε ≠ 0 ° of the phase delay angle of an ideal phase delay element differs. For a λ / 4 phase delay element, the phase delay angle is instead of 90 ° then 90 ° + ε, corresponding phase delay angles typically 95 ° to 105 °. Depending on the sign of the temperature dependence The Verdet constants V are also negative angles ε possible.

Derartige Phasenverzögerungselemente werden vorzugsweise als doppelbrechende Fasersegmente mit elliptischem Kernquerschnitt ausgebildet, wobei der Phasenverzögerungswinkel dann durch entsprechende Wahl der Länge des Fasersegments einfach eingestellt werden kann. Werden einem solchen Phasenverzögerungselement mit ε ≠ 0° über die Zuleitungsfaser linear polarisierte Lichtwellen zugeführt, wobei die Hauptachsen der Zuleitungsfaser mit denen des Phasenverzögerungselements einen Winkel von 45° einschliessen, so breiten sich in der Sensorfaser leicht elliptisch polarisierte Lichtwellen aus.Such phase delay elements are preferably as birefringent Fiber segments formed with elliptical core cross-section, wherein the phase delay angle then by appropriate choice of the length of the fiber segment can be easily adjusted. Become one Phase delay element with ε ≠ 0 ° linearly polarized over the supply fiber Light waves supplied, the main axes of the supply fiber include an angle of 45 ° with those of the phase delay element, so slightly elliptically polarized in the sensor fiber Light waves off.

Problematisch bei dieser Art der Kompensation der Temperaturabhängigkeit der Verdet-Konstanten V ist, dass sich durch sie eine Abweichung von einem linearen Zusammenhang zwischen dem zu messenden Strom und einem Mess-Signal ergibt, wobei das Mess-Signal im allgemeinen proportional zu ΔS beziehungsweise ΔR ist. Das heisst, die für zirkular polarisierte Lichtwellen gültigen linearen Beziehungen ΔS = 2 V N I und ΔR = 4 V N I sind für elliptische Lichtwellen nicht mehr gültig. Solche Nichtlinearitäten des Verhältnisses zwischen dem zu messenden Strom und einem Mess-Signal haben typischerweise eine Grössenordnung von 0.1% bis 1% und verursachen Messungenauigkeiten beziehungsweise komplizieren die Auswertung der Messung, sofern eine grössere Messgenauigkeit erforderlich ist. Mit Hilfe einer aufwendigen Signalverarbeitung können solche Nichtlinearitäten kompensiert werden.A problem with this type of compensation of the temperature dependence of the Verdet constant V is that it results in a deviation from a linear relationship between the current to be measured and a measurement signal, the measurement signal being generally proportional to Δ S or Δ R is. This means that the valid linear relationships for circularly polarized light waves Δ S = 2 VNI and Δ R = 4 VNI are no longer valid for elliptical light waves. Such nonlinearities of the ratio between the current to be measured and a measurement signal typically have a magnitude of 0.1% to 1% and cause measurement inaccuracies or complicate the evaluation of the measurement, if greater measurement accuracy is required. With the help of a complex signal processing such nonlinearities can be compensated.

Darstellung der ErfindungPresentation of the invention

Es ist Aufgabe der Erfindung, einen verbesserten Strom- oder Magnetfeld-Sensor der eingangs genannten Art, ein entsprechendes Herstellungsverfahren und ein entsprechendes Messverfahren zu schaffen. Der Sensor soll die oben genannten Nachteile beheben. Insbesondere soll der Sensor eine grössere Messgenauigkeit aufweisen und/oder die Auswertung der Messung vereinfachen und den Einsatz einer aufwendigen Signalverarbeitung erübrigen.It is an object of the invention to provide an improved current or magnetic field sensor of the type mentioned, a corresponding manufacturing process and a corresponding measurement method to accomplish. The sensor should solve the above mentioned disadvantages. Especially the sensor should have a greater accuracy of measurement and / or facilitate the evaluation of the measurement and the use of a unnecessary signal processing.

Diese Aufgabe löst ein Verfahren zur Herstellung eines optischen Strom- oder Magnetfeldsensors mit den Merkmalen des Patentanspruchs 1, ein optischer Strom- oder Magnetfeldsensor nach Patentanspruch 10 und ein Verfahren zur Messung eines elektrischen Stroms oder eines Magnetfeldes mit den Merkmalen des Patentanspruches 11.This object triggers a method for producing a optical current or magnetic field sensor having the features of the claim 1, an optical current or magnetic field sensor according to claim 10 and a method for measuring an electric current or a magnetic field with the features of claim 11.

Der optische Strom- oder Magnetfeldsensor verfügt über einen Sensorkopf mit einem Sensorelement und zwei Phasenverzögerungselementen sowie zwei Lichtleitungselementen. Die Bestandteile des Sensorkopfes sind in der Reihenfolge erstes Lichtleitungselement, erstes Phasenverzögerungselement, Sensorelement, zweites Phasenverzögerungselement, zweites Lichtleitungselement entlang eines Lichtweges angeordnet und optisch miteinander verbunden. Die Phasenverzögerungswinkel ρ,ρ' der Phasenverzögerungselemente weichen um Winkel ε,ε' ≠ 0° mit -90° < ε, ε' < 90° von einem ungeradzahligen Vielfachen von 90° ab. Eine Hauptachse des ersten Lichtleitungselements schliesst mit einer Hauptachse des ihm benachbarten ersten Phasenverzögerungselements einen Winkel von 45° ± Δα mit Δα ≠ 0° und 0° < Δα < 45° ein, welcher in Abhängigkeit von den Winkeln ε,ε' gewählt wird. Nichtlinearitäten zwischen einem unmittelbaren Mess-Signal und einem zu messenden elektrisehen Strom oder Magnetfeld, die aufgrund von ε,ε' ≠ 0° resultieren, können durch eine entsprechende ε,ε'-abhängige Wahl des Winkels Δα mindestens annähernd kompensiert werden. Dadurch entsteht ein mindestens annähernd linearer Zusammenhang zwischen dem unmittelbaren Mess-Signal und dem zu messenden elektrischen Strom oder Magnetfeld. Dies hat den Vorteil, eine einfache Auswertung der Messung zu ermöglichen, und eine grössere Messgenauigkeit zu erreichen, ohne eine aufwendige Signalverarbeitung zu benutzen.The optical current or magnetic field sensor has a sensor head with a sensor element and two phase delay elements as well two light pipe elements. The components of the sensor head are in the Sequence first light pipe element, first phase delay element, Sensor element, second phase delay element, second light pipe element arranged along a light path and optically interconnected. The phase delay angles ρ, ρ 'of the phase delay elements soft by angle ε, ε '≠ 0 ° with -90 ° <ε, ε' <90 ° of an odd multiple of 90 °. A major axis of the first light pipe element closes with a Main axis of the adjacent first phase delay element a Angle of 45 ° ± Δα with Δα ≠ 0 ° and 0 ° <Δα <45 °, which depends on is selected from the angles ε, ε '. Nonlinearities between an immediate measurement signal and an electrical current to be measured Current or magnetic field, which result from ε, ε '≠ 0 °, can by a corresponding ε, ε'-dependent choice of the angle Δα at least approximately be compensated. This creates an at least approximate linear relationship between the immediate measurement signal and the electric current or magnetic field to be measured. This has the advantage of a to allow easy evaluation of the measurement, and greater measurement accuracy reach without consuming a complex signal processing.

In dem erfindungsgemässen Verfahren zur Herstellung eines optischen Strom- oder Magnetfeldsensors werden die genannten Bestandteile des Sensorkopfes in der genannten Weise angeordnet und dimensioniert. Insbesondere wird der genannte Winkel Δα in Abhängigkeit von den Winkeln ε,ε' gewählt.In the inventive method for producing a optical current or magnetic field sensor are called Components of the sensor head arranged and dimensioned in the manner mentioned. In particular, said angle Δα is dependent on the angles ε, ε 'chosen.

Ein in Sagnac-Konfiguration aufgebauter Sensor ist kostengünstig herstellbar, da eine kommerziell erhältliche Detektionseinheit ohne aufwendige Anpassungen eingesetzt werden kann. A Sagnac-configured sensor is inexpensive can be produced, since a commercially available detection unit without consuming Adjustments can be used.

In einer vorteilhaften Ausführungsform der Erfindung ist der Winkel Δα in Abhängigkeit von ε,ε' derart gewählt, dass die genannten Nichtlinearitäten um mindestens eine halbe Grössenordnung, also einen Faktor 3, gegenüber dem Fall Δα = 0° verringert sind.In an advantageous embodiment of the invention, the angle Δα is dependent of ε, ε 'selected such that the said nonlinearities um at least half an order of magnitude, ie a factor of 3, compared to Case Δα = 0 ° are reduced.

In einer bevorzugten Ausführungsform der Erfindung weisen beide Phasenverzögerungselemente eine von null verschiedene Abweichung ε,ε' ihrer Phasenverzögerungswinkel ρ,ρ' von ungeradzahligen Vielfachen von 90° auf, und beide Phasenverzögerungselemente zusammen weisen eine Temperaturabhängigkeit auf, die die Temperaturabhängigkeit der Verdet-Konstanten V des Sensorelementes mindestens annähernd kompensiert. Das heisst, die beiden Phasenverzögerungselemente liefern zusammen einen solchen Beitrag zur Temperaturabhängigkeit des unmittelbaren Mess-Signals, dass die Temperaturabhängigkeit der Verdet-Konstanten V des Sensorelementes mindestens annähernd kompensiert ist. Die aus der Kombination der beiden Phasenverzögerungselemente resultierende Temperaturabhängigkeit ist also in der geschilderten Art gewählt. Auf diese Weise weist der Sensor nicht nur einen mindestens annähernd linearen Zusammenhang zwischen dem unmittelbaren Mess-Signal und dem zu messenden elektrischen Strom oder Magnetfeld auf, sondern auch eine verbesserte Temperaturstabilität.In a preferred embodiment of the invention, both have phase delay elements a non-zero deviation ε, ε 'of their Phase delay angle ρ, ρ 'of odd multiples of 90 °, and both phase delay elements together have a temperature dependence on that the temperature dependence of the Verdet constants V of the sensor element at least approximately compensated. The means, the two phase delay elements together provide one such contribution to the temperature dependence of the instantaneous measurement signal, that the temperature dependence of the Verdet constant V of the sensor element is at least approximately compensated. The ones from the combination the two phase delay elements resulting temperature dependence is thus chosen in the described way. In this way, the Sensor not only an at least approximately linear relationship between the immediate measurement signal and the electrical to be measured Current or magnetic field, but also improved temperature stability.

In einer weiteren bevorzugten Ausführungsform des Erfindungsgegenstandes sind zusätzlich die Phasenverzögerungswinkel ρ,ρ' gleich (ρ = ρ' und ε = ε'). Und die relative Ausrichtung der Phasenverzögerungselemente zu den mit ihnen jeweils optisch verbundenen Lichtleitungselementen ist gleichartig gewählt, das heisst, dass für beide Phasenverzögerungselemente mindestens eine Hauptachse des Phasenverzögerungselements mit mindestens einer Hauptachse des Lichtleitungselements den gleichen Winkel Δα = Δα' einschliessen. Durch diesen symmetrischen Aufbau des Sensorkopfes wird eine verbesserte Herstellbarkeit und eine grosse Unempfindlichkeit gegenüber Störeinflüssen erreicht.In a further preferred embodiment of the subject invention In addition, the phase delay angles ρ, ρ 'are equal (ρ = ρ' and ε = ε '). And the relative alignment of the phase delay elements too is the optically associated with each optical fiber elements selected the same, that is, for both phase delay elements at least one major axis of the phase delay element with at least a major axis of the light pipe element the same angle Include Δα = Δα '. Due to this symmetrical design of the sensor head is an improved manufacturability and a great insensitivity achieved against interference.

Weiterhin ist es vorteilhaft, wenn die Einkopplung der linear polarisierten Lichtwellen in die Phasenverzögerungselemente mittels polarisationserhaltender Fasern als Lichtleitungselemente erfolgt. Dadurch kann die Erzeugung der linear polarisierten Lichtwellen in grosser räumlicher Entfernung von den Phasenverzögerungselementen und dem Sensorelement angeordnet sein, während trotzdem die Einkopplung der linear polarisierten Lichtwellen stets unter demselben Winkel erfolgt.Furthermore, it is advantageous if the coupling of the linearly polarized Light waves in the phase delay elements by means of polarization-preserving Fibers as light pipe elements takes place. This can cause the generation of the linearly polarized light waves in a large spatial distance from the Phase delay elements and the sensor element to be arranged while still the coupling of linearly polarized light waves always takes place at the same angle.

In einer anderen bevorzugten Ausführungsform des Erfindungsgegenstandes ist mindestens eines der beiden Phasenverzögerungselemente, vorzugsweise beide Phasenverzögerungselemente, als Faserstück mit elliptischem Kern ausgebildet, das einen Phasenverzögerungswinkel von 90°+ ε (beziehungsweise 90°+ ε') aufweist. Derartige Phasenverzögerungselemente sind einfach und preisgünstig herstellbar.In another preferred embodiment of the subject invention is at least one of the two phase delay elements, preferably both phase delay elements, as fiber piece with elliptical core formed, which has a phase delay angle of 90 ° + ε (or 90 ° + ε '). Such phase delay elements are simple and inexpensive to produce.

Es ist von Vorteil, das Sensorelement so zu wählen, dass es einen Stromleiter spulenförmig umfassen kann, denn so kann die Messgenauigkeit und Empfindlichkeit des Sensors erhöht werden.It is advantageous to choose the sensor element so that it has a current conductor can include coil-shaped, because so can the measurement accuracy and sensitivity of the sensor can be increased.

Vorteilhaft ist es weiterhin, als Sensorelement eine magnetooptisch aktive Glasfaser einzusetzen, die nahezu frei von mechanischen Spannungen ist. Dadurch wird eine Temperaturabhängigkeit des Sensors reduziert. It is also advantageous, as a sensor element, a magneto-optically active To use glass fiber, which is almost free of mechanical stresses. As a result, a temperature dependence of the sensor is reduced.

Weitere bevorzugte Ausführungsformen gehen aus den Patentansprüchen hervor.Further preferred embodiments are based on the patent claims out.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Im folgenden wird der Erfindungsgegenstand anhand von bevorzugten Ausführungsbeispielen und den beiliegenden Zeichnungen näher erläutert. Es zeigen:

Fig. 1
Schematische Darstellung eines Teils eines erfindungsgemässen Sensors;
Fig. 2
Schematische Darstellung eines erfindungsgemässen Strom- oder Magnetfeldsensors in Sagnac-Konfiguration;
Fig. 3
Schematische Darstellung der Ausbreitungsrichtung von sich im Betrieb eines erfindungsgemässen Strom- oder Magnetfeldsensors im Sensorkopf ausbreitenden Lichtwellen;
Fig. 4
Graphische Darstellung des berechneten Zusammenhangs zwischen der differentiellen Phasenverschiebung ΔS (normiert auf 2 ϕF) und dem Zweifachen der Faraday-Phasenverschiebung ϕF, 2 ϕF = 2 V N I, bei zueinander parallel ausgerichteten schnellen Achsen der Phasenverzögerungselemente (χ=0°) und Δα = Δα' = 0°, für verschiedene Winkel ε;
Fig. 5
Graphische Darstellung des berechneten Zusammenhangs zwischen der differentiellen Phasenverschiebung ΔS (normiert auf 2 ϕF) und dem Zweifachen der Faraday-Phasenverschiebung ϕF, 2 ϕF = 2 V N I, bei zueinander parallel ausgerichteten schnellen Achsen der Phasenverzögerungselemente (χ=0°) und ε = 0°, für verschiedene Winkel Δα = Δα';
Fig. 6
Graphische Darstellung des berechneten Zusammenhangs zwischen der differentiellen Phasenverschiebung ΔS (normiert auf 2 ϕF) und dem Zweifachen der Faraday-Phasenverschiebung ϕF, 2 ϕF = 2 V N I, bei zueinander parallel ausgerichteten schnellen Achsen der Phasenverzögerungselemente (χ=0°) und ε = 13°, für verschiedene Winkel Δα = Δα';
In the following the subject invention will be explained in more detail with reference to preferred embodiments and the accompanying drawings. Show it:
Fig. 1
Schematic representation of a part of a sensor according to the invention;
Fig. 2
Schematic representation of a current or magnetic field sensor according to the invention in Sagnac configuration;
Fig. 3
Schematic representation of the propagation direction of propagating in the operation of a current or magnetic field sensor according to the invention in the sensor head propagating light waves;
Fig. 4
Graphical representation of the calculated relationship between the differential phase shift Δ S (normalized to 2 φ F ) and twice the Faraday phase shift φ F , 2 φ F = 2 VNI, with parallel fast axes of the phase delay elements (χ = 0 °) and Δα = Δα '= 0 °, for different angles ε;
Fig. 5
Graphical representation of the calculated relationship between the differential phase shift Δ S (normalized to 2 φ F ) and twice the Faraday phase shift φ F , 2 φ F = 2 VNI, with parallel fast axes of the phase delay elements (χ = 0 °) and ε = 0 °, for different angles Δα = Δα ';
Fig. 6
Graphical representation of the calculated relationship between the differential phase shift Δ S (normalized to 2 φ F ) and twice the Faraday phase shift φ F , 2 φ F = 2 VNI, with parallel fast axes of the phase delay elements (χ = 0 °) and ε = 13 °, for different angles Δα = Δα ';

Die in den Zeichnungen verwendeten Bezugszeichen und deren Bedeutung sind in der Bezugszeichenliste zusammengefasst aufgelistet. Grundsätzlich sind in den Figuren gleiche Teile mit gleichen Bezugszeichen versehen. Die beschriebenen Ausführungsbeispiele stehen beispielhaft für den Erfindungsgegenstand und haben keine beschränkende Wirkung.The reference numerals used in the drawings and their meaning are listed in the list of references summarized. in principle In the figures, like parts are given the same reference numerals. The described embodiments are exemplary of the subject invention and have no restrictive effect.

Wege zur Ausführung der ErfindungWays to carry out the invention

Figur 1 zeigt schematisch einen Teil eines Sensorkopfes 1 für einen optischen Strom- oder Magnetfeldsensor. Ein erstes Lichtleitungselement 11, das als eine polarisationserhaltende optische Faser mit elliptischem Kernquerschnitt ausgebildet ist, ist mit einem ersten Ende 131 eines ersten Phasenverzögerungselementes 13 optisch verbunden, d.h. Lichtwellen können von dem Lichtleitungselement 11 in das erste Ende 131 des ersten Phasenverzögerungselementes 13 eingekoppelt werden und umgekehrt. Als erstes Phasenverzögerungselement 13 wird ein Stück Faser mit elliptischem Kernquerschnitt eingesetzt, dessen Länge derart gewählt ist, dass sein Phasenverzögerungswinkel ρ = 90° + ε mit einem Winkel ε ≠ 0° beträgt. Aus der eingangs genannten EP 1 115 000 ist bekannt, dass eine geschickte Wahl des Winkels ε zu einer Verbesserung der Temperaturstabilität eines optischen Stromsensors führen kann. Ein zweites Ende 132 des ersten Phasenverzögerungselementes 13 ist mit einem Sensorelement 15 optisch verbunden, bei welchem es sich vorzugsweise um eine magnetooptisch aktive Faser mit rundem Kernquerschnitt handelt.FIG. 1 shows schematically a part of a sensor head 1 for an optical current or magnetic field sensor. A first light pipe element 11, which is used as a polarization-maintaining optical fiber with elliptical Core cross-section is formed, with a first end 131 of a first phase delay element 13 optically connected, i. light waves can from the light pipe element 11 in the first end 131 of first phase delay element 13 are coupled and vice versa. As a first phase delay element 13 is a piece of fiber with elliptical Core cross section used, whose length is chosen such that its phase delay angle ρ = 90 ° + ε with an angle ε ≠ 0 °. From the aforementioned EP 1 115 000 is known to be a skillful Choice of the angle ε to improve the temperature stability of an optical Current sensor can lead. A second end 132 of the first phase delay element 13 is optically connected to a sensor element 15, which is preferably a magneto-optically active fiber with a round core cross-section.

In den drei Graphiken im oberen Teil von Figur 1 sind Lichtwellen 3,4x,4y,6, die sich in den drei genannten Fasersegmenten 11,13,15 ausbreiten, sowie bevorzugte Kernquerschnitte und Hauptachsen x,x',y,y' schematisch dargestellt. Die Lichtwellen werden durch dicke Pfeile dargestellt, die die E-Feld-Vektoren der Lichtwellen symbolisieren sollen. In dem ersten Lichtleitungselement 11 breiten sich erste linear polarisierte Lichtwellen 3 aus, die in diesem Fall eine Polarisationsachse y' aufweisen, welche mit der langsamen, langen Hauptachse y' des ersten Lichtleitungselementes 11 zusammenfällt. Die Hauptachse y' des ersten Lichtleitungselementes 11 schliesst mit einer Hauptachse y des ersten Phasenverzögerungselementes 13 einen Winkel von 45° + Δα ein, wobei Δα ≠ 0° ein Winkel ist, der in Abhängigkeit von dem Winkel ε gewählt wird. Beim Eintritt der ersten linear polarisierten Lichtwellen 3 in das erste Phasenverzögerungselement 13 werden diese zu zweiten linear polarisierten Lichtwellen 4, umfassend zweite linear polarisierte Lichtwellen 4x und zweite linear polarisierte Lichtwellen 4y, deren Polarisationsachsen entlang der beiden Hauptachsen x,y des ersten Phasenverzögerungselementes 13 liegen.In the three graphs in the upper part of Figure 1 are light waves 3,4 x , 4 y , 6, which propagate in the three fiber segments mentioned 11,13,15, and preferred core cross-sections and major axes x, x ', y, y' shown schematically. The light waves are represented by thick arrows that symbolize the E-field vectors of the light waves. First linearly polarized light waves 3, which in this case have a polarization axis y 'which coincides with the slow, long main axis y' of the first light-conducting element 11, propagate in the first light-conducting element 11. The main axis y 'of the first light-conducting element 11 encloses an angle of 45 ° + Δα with a main axis y of the first phase-delay element 13, where Δα ≠ 0 ° is an angle that is selected as a function of the angle ε. When the first linearly polarized light waves 3 enter the first phase delay element 13, they become second linearly polarized light waves 4, comprising second linearly polarized light waves 4 x and second linearly polarized light waves 4 y , their polarization axes along the two main axes x, y of the first phase delay element 13 lie.

Die zwei Graphiken im unteren Teil von Figur 1 stellen die zweiten linear polarisierten Lichtwellen 4 in dem ersten Phasenverzögerungselement 13 schematisch dar. Am ersten Ende 131 des ersten Phasenverzögerungselementes 13 sind die entlang der langsamen Hauptachse y des ersten Phasenverzögerungselementes 13 polarisierten zweiten linear polarisierten Lichtwellen 4y mit den entlang der schnellen Hauptachse x des ersten Phasenverzögerungselementes 13 polarisierten zweiten linear polarisierten Lichtwellen 4x in Phase. Nach Durchlaufen des ersten Phasenverzögerungselementes 13 entlang der Ausbreitungsrichtung z hat sich an dem zweiten Ende 132 des ersten Phasenverzögerungselementes 13 zwischen den Lichtwellen 4x und den Lichtwellen 4y der Phasenunterschied ρ = 90° + ε akkumuliert.The two graphs in the lower part of Figure 1 schematically illustrate the second linearly polarized light waves 4 in the first phase delay element 13. At the first end 131 of the first phase delay element 13, the second linearly polarized light waves polarized along the slow main axis y of the first phase delay element 13 are 4 y with the second linearly polarized light waves 4 x in phase polarized along the fast main axis x of the first phase delay element 13. After passing through the first phase delay element 13 along the propagation direction z, the phase difference ρ = 90 ° + ε has accumulated at the second end 132 of the first phase delay element 13 between the light waves 4 x and the light waves 4 y .

Durch die Einkopplung der zweiten linear polarisierten Lichtwellen 4 in das Sensorelement 15 an dem zweiten Ende 132 des Phasenverzögerungselementes 13 entstehen dort elliptisch polarisierte Lichtwellen 6, die sich dann in dem Sensorelement 15 ausbreiten.By the coupling of the second linearly polarized light waves 4 in the Sensor element 15 at the second end 132 of the phase delay element 13 arise there elliptically polarized light waves 6, which then propagate in the sensor element 15.

Figur 2 zeigt einen erfindungsgemässen Strom- oder Magnetfeldsensor, der eine Sagnac-Konfiguration aufweist. Auf den grundsätzlichen Aufbau und auf die Funktionsweise des Sensors wird hier nicht in Detail eingegangen. Dem eingangs zitierten Stand der Technik können entsprechende Informationen entnommen werden. Neben dem Sensorkopf 1 verfügt der Strom- oder Magnetfeldsensor noch über eine Sende-Auswerte-Einheit 2. Diese umfasst im dargestellten Beispiel eine Lichtquelle 20, einen Faserkoppler 21, einen Faserpolarisator 22, einen zweiten Faserkoppler 24 und einen Phasenmodulator 25, sowie einen Detektor 26, einen Signalprozessor 27 und eine Messwert-Ausgabe 28. Die Sende-Auswerte-Einheit 2 dient der Erzeugung und Detektion von Licht sowie der Auswertung und Ausgabe von Messdaten.FIG. 2 shows a current or magnetic field sensor according to the invention has a Sagnac configuration. On the basic structure and on the operation of the sensor will not be discussed in detail here. The cited prior art can provide appropriate information be removed. In addition to the sensor head 1 has the current or Magnetic field sensor still has a transmitter-evaluation unit 2. This includes In the example shown, a light source 20, a fiber coupler 21, a Fiber polarizer 22, a second fiber coupler 24 and a phase modulator 25, and a detector 26, a signal processor 27 and a measured value output 28. The transmitter-evaluation unit 2 is used to generate and Detection of light and the evaluation and output of measured data.

In Figur 3 sind die Ausbreitungsrichtungen der im Betrieb des in Figur 2 gezeigten Strom- oder Magnetfeldsensors im Sensorkopf 1 ausbreitungsfähigen Lichtwellen dargestellt. Die offenen Pfeile über den Bezugszeichen geben die Ausbreitungsrichtung an. In Figur 2 sind aus Gründen der Übersichtlichkeit nur wenige der Lichtwellen und Ausbreitungsrichtungen dargestellt. Für die folgenden Erläuterungen wird auf die Figuren 2 und 3 verwiesen.In FIG. 3, the directions of propagation are those of the operation shown in FIG Current or magnetic field sensor in the sensor head 1 capable of propagation Light waves shown. Give the open arrows by the reference sign the propagation direction. In FIG. 2, for reasons of clarity only a few of the light waves and propagation directions are shown. For the following explanations, reference is made to FIGS. 2 and 3.

Über das erste Lichtleitungselement 11 und ein zweites Lichtleitungselement 12 oder entprechende Verlängerungen oder Verbindungen ist die Sende-Auswerte-Einheit 2 mit dem Sensorkopf 1 verbunden. Letzterer weist neben dem ersten Phasenverzögerungselement 13 noch ein zweites Phasenverzögerungselement 14 auf, welches analog zu dem ersten Phasenverzögerungselement 13 an einem ersten Ende 141 mit dem zweiten Lichtleitungselement 12 optisch verbunden ist, und an einem zweiten Ende 142 mit einem zweiten Ende des Sensorelements 15 optisch verbunden ist. Das Sensorelement 15 ist als magnetooptisch aktive Faser ausgebildet, die spulenförmig einen Stromleiter S umschliesst. Die Lichtleitungselemente 11 und 12 sind als polarisationserhaltende Fasern mit elliptischem Kernquerschnitt ausgebildet.Via the first light-conducting element 11 and a second light-conducting element 12 or entprechende extensions or connections is the transmitter-evaluation unit 2 connected to the sensor head 1. The latter shows beside the first phase delay element 13 nor a second phase delay element 14, which is analogous to the first phase delay element 13 at a first end 141 with the second light pipe element 12 is optically connected, and at a second end 142 with a second end of the sensor element 15 is optically connected. The sensor element 15 is formed as a magneto-optically active fiber, the coil-shaped a current conductor S encloses. The light pipe elements 11 and 12 are polarization-maintaining fibers with an elliptical core cross-section educated.

In der Sende-Auswerte-Einheit 2 wird linear polarisiertes Licht erzeugt, aus welchen dann in den beiden Lichtleitungselementen 11 und 12 die ersten linear polarisierten Lichtwellen 3 bzw. 3' werden. Die Graphiken in der Mitte der Figur 2 symbolisieren diese Lichtwellen 3,3' als dicke Pfeile. Die offenen Pfeile geben die Ausbreitungsrichtung der Lichtwellen 3,3' an.In the transmitter-evaluation unit 2 linearly polarized light is generated, from Which then in the two light pipe elements 11 and 12, the first linear polarized light waves 3 and 3 'are. The graphics in the middle of Figure 2 symbolize these light waves 3,3 'as thick arrows. The open Arrows indicate the propagation direction of the light waves 3,3 '.

Die ersten linear polarisierten Lichtwellen 3 aus dem ersten Lichtleitungselement 11 werden, wie im Zusammenhang mit Figur 1 beschrieben, mittels des (ersten) Phasenverzögerungselements 13 in elliptisch polarisierte Lichtwellen 6 umgewandelt, die dann in dem Sensorelement 15 propagieren. Dabei schliesst eine Hauptachse des ersten Lichtleitungselements 11 mit einer Hauptachse des ersten Phasenverzögerungselementes 13 den genannten Winkel 45° + Δα ein, und der Phasenverzögerungswinkel ρ des ersten Phasenverzögerungselementes 13 beträgt die genannten ρ = 90° + ε.The first linearly polarized light waves 3 from the first light pipe element 11, as described in connection with Figure 1, means of the (first) phase delay element 13 in elliptically polarized light waves 6, which then propagate in the sensor element 15. there closes a main axis of the first light pipe element 11 with a Main axis of the first phase delay element 13 the mentioned Angle 45 ° + Δα, and the phase delay angle ρ of the first phase delay element 13 is the stated ρ = 90 ° + ε.

Wird der Stromleiter S von einem elektrischen Strom I durchflossen, so erfahren die elliptisch polarisierten Lichtwellen 6 durch den Faraday-Effekt eine magnetooptisch induzierte Phasenverschiebung. Nach Durchlaufen der Sensorfaser koppeln die elliptisch polarisierten Lichtwellen 6 in das zweite Ende 142 des zweiten Phasenverzögerungselementes 14 ein, in welchem sie in dritte linear polarisierte Lichtwellen 5, umfassend linear polarisierte Lichtwellen 5x und 5y, umgewandelt werden. Diese dritten linear polarisierten Lichtwellen 5 regen in dem zweiten Lichtleitungselement 12 vierte linear polarisierte Lichtwellen 5a an, welche dann über das zweite Lichtleitungselement 12 der Sende-Auswerte-Einheit 2 zugeführt werden. Dort werden die Lichtwellen detektiert. Dritte Lichtwellen 5a, deren Polarisationsachse senkrecht zu der Polarisationsachse der ersten linear polarisierten Lichtwellen 3 ausgerichtet sind, können in dem Faserpolarisator 22 blockiert werden, so dass sie nicht detektiert werden.If the current conductor S is traversed by an electric current I, the elliptically polarized light waves 6 experience a magneto-optically induced phase shift due to the Faraday effect. After passing through the sensor fiber, the elliptically polarized light waves 6 couple into the second end 142 of the second phase retarding element 14 where they are converted to third linearly polarized lightwaves 5 comprising linearly polarized lightwaves 5 x and 5 y . These third linearly polarized light waves 5 excite fourth linearly polarized light waves 5 a in the second light conduction element 12, which are then supplied via the second light conduction element 12 to the transmit-evaluation unit 2. There, the light waves are detected. Third light waves 5a, whose polarization axis is oriented perpendicular to the polarization axis of the first linearly polarized light waves 3, can be blocked in the fiber polarizer 22 so that they are not detected.

Analog verhält es sich mit den ersten linear polarisierten Lichtwellen 3' in dem zweiten Lichtleitungselement 12. Die daraus entstehenden Lichtwellen sind mit gestrichenen Bezugszeichen versehen. Die ersten linear polarisierten Lichtwellen 3' werden mittels des zweiten Phasenverzögerungselements 14 in elliptisch polarisierte Lichtwellen 6' umgewandelt, die dann in dem Sensorelement 15 propagieren, und zwar mit einer Propagationsrichtung, die der der elliptisch polarisierten Lichtwellen 6 entgegengesetzt ist. Dabei schliesst eine Hauptachse des zweiten Lichtleitungselements 12 mit einer Hauptachse des zweiten Phasenverzögerungselementes 14 einen Winkel 45° + Δα' ein, mit einem Winkel Δα', für den 0° ≤ Δα' < 45° gilt. Das zweite Phasenverzögerungselement 14 weist einen Phasenverzögerungswinkel ρ' auf der um einen Winkel ε' von 90° verschieden ist, das heisst ρ' = 90° + ε'. Es gilt ε' ≠ 0°.The same applies to the first linearly polarized light waves 3 'in the second light pipe element 12. The resulting light waves are provided with primed reference numerals. The first linearly polarized Light waves 3 'are detected by means of the second phase delay element 14 converted into elliptically polarized light waves 6 ', which then in the sensor element 15 propagate, with a propagation direction, that of the elliptically polarized light waves 6 is opposite. In this case, a main axis of the second light-conducting element 12 includes a major axis of the second phase retarding element 14 an angle 45 ° + Δα ', with an angle Δα', for which 0 ° ≤ Δα '<45 °. The second phase delay element 14 has a phase delay angle ρ 'is different on the by an angle ε' of 90 °, that is ρ '= 90 ° + ε'. It is ε '≠ 0 °.

Ein Magnetfeld, das aufgrund eines in dem Stromleiter S fliessenden elektrischen Stroms I entsteht, verursacht über den Faraday-Effekt eine magnetooptisch induzierte Phasenverschiebung der elliptisch polarisierten Lichtwellen 6'. Nach Durchlaufen des Sensorelements 15 koppeln die elliptisch polarisierten Lichtwellen 6' in das zweite Ende 132 des ersten Phasenverzögerungselementes 13 ein. Es werden dritte linear polarisierte Lichtwellen 5' erzeugt, welche dritte linear polarisierte Lichtwellen 5x' und 5y' umfassen, und es findet eine Phasenverschiebung um 90° + ε zwischen diesen dritten linear polarisierten Lichtwellen 5x' und 5y' statt. Danach entstehen an dem ersten Ende 131 des ersten Phasenverzögerungselementes 13 vierte linear polarisierte Lichtwellen 5a', die dann über das erste Lichtleitungselement 11 der Sende-Auswerte-Einheit 2 zugeführt werden. In dieser werden die Lichtwellen detektiert, und die magnetooptisch induzierte Phasenverschiebung wird bestimmt. Dritte Lichtwellen 5a', deren Polarisationsachse senkrecht zu der Polarisationsachse der ersten linear polarisierten Lichtwellen 3' ausgerichtet sind, können in dem Faserpolarisator 22 blockiert werden, so dass sie nicht detektiert werden. Die magnetooptisch induzierte Phasenverschiebung aus den elliptisch polarisierten Lichtwellen 6 oder die aus den in dem Sensorelement 15 sich gegenläufig ausbreitenden elliptisch polarisierten Lichtwellen 6' kann als ein unmittelbares Mess-Signal zur Bestimmung des elektrischen Stroms I dienen. Die Bezeichnung "unmittelbares" Mess-Signal soll bedeuten, dass keine Signal-Aufbereitung stattgefunden hat, um aus dem Mess-Signal ein mindesten annähernd zum elektrischen Strom I proportionales Signal zu erzeugen.A magnetic field, which arises due to an electric current I flowing in the current conductor S, causes a magneto-optically induced phase shift of the elliptically polarized light waves 6 'via the Faraday effect. After passing through the sensor element 15, the elliptically polarized light waves 6 'couple into the second end 132 of the first phase delay element 13. Third linearly polarized light waves 5 'are generated, which comprise third linearly polarized light waves 5 x ' and 5 y ', and there is a phase shift of 90 ° + ε between these third linearly polarized light waves 5 x ' and 5 y '. Then arise at the first end 131 of the first phase delay element 13 fourth linearly polarized light waves 5a ', which are then fed via the first optical fiber element 11 of the transmitter-evaluation unit 2. In this, the light waves are detected, and the magneto-optically induced phase shift is determined. Third light waves 5a 'whose polarization axis is oriented perpendicular to the polarization axis of the first linearly polarized light waves 3' can be blocked in the fiber polarizer 22 so that they are not detected. The magneto-optically induced phase shift from the elliptically polarized light waves 6 or from the elliptically polarized light waves 6 'propagating in opposite directions in the sensor element 15 can serve as an immediate measurement signal for determining the electrical current I. The term "immediate" measurement signal is intended to mean that no signal conditioning has taken place in order to generate a signal which is at least approximately proportional to the electrical current I from the measurement signal.

Zur einfachen Bestimmung der magnetooptisch induzierten Phasenverschiebung wird in einem Sensor in Sagnac-Konfiguration vorzugsweise das Signal der einen elliptisch polarisierten Lichtwellen 6 als Referenz-Signal für die anderen gegenläufigen elliptisch polarisierten Lichtwellen 6' benutzt. Als unmittelbares Mess-Signal wird dann eine differentielle Phasenverschiebung ΔΦS der beiden elliptisch polarisierten Lichtwellen 6 und 6' genommen. Dieses unmittelbare Mess-Signal ist genau doppelt so gross wie die magnetooptisch induzierte Phasenverschiebung, die jede der elliptisch polarisierten Lichtwellen 6 und 6' einzeln erfährt. In dem aus EP 0 856 737 A1 bekannten Fall ε = 0°, ε' = 0°, Δα = 0°, Δα' = 0° beläuft sich dieses unmittelbare Mess-Signal dann auf das Doppelte der Faraday-Phasenverschiebung ϕF, 2ϕF = 2 V N I, und ist somit proportional zu dem elektrischen Strom I.For easy determination of the magneto-optically induced phase shift, the signal of one elliptically polarized lightwave 6 is preferably used in a sensor in Sagnac configuration as a reference signal for the other counter-rotating elliptically polarized lightwaves 6 '. As a direct measurement signal then a differential phase shift ΔΦ S of the two elliptically polarized light waves 6 and 6 'is taken. This direct measurement signal is exactly twice as large as the magneto-optically induced phase shift, which experiences each of the elliptically polarized light waves 6 and 6 'individually. In the case known from EP 0 856 737 A1 ε = 0 °, ε '= 0 °, Δα = 0 °, Δα' = 0 °, this direct measurement signal then amounts to twice the Faraday phase shift φ F , 2φ F = 2 VNI, and is thus proportional to the electric current I.

Wenn, wie in der genannten EP 1 115 000, ε ≠ 0° und ε' ≠ 0° ist, aber Δα = 0° und Δα' = 0°, so ist der Zusammenhang zwischen dem unmittelbaren Mess-Signal und dem elektrischen Strom I nicht mehr linear. Beschreibt man die Propagation der elliptisch polarisierten Lichtwellen 6,6' mit Hilfe von Jones-Matrizen und leitet man ihre differentielle Phasenverschiebung ΔS aus den komplexen Amplituden der beiden im Detektor 26 in der Sende-Auswerte-Einheit 2 miteinander interferierenden Lichtwellen ab, so erhält man für das unmittelbare Mess-Signal ΔS Δ S = arctan(cosε + cosε')sin(2ϕ F )(1 + cosε cosε')cos(2ϕ F ) - sinε sinε' cos(2χ) If, as in said EP 1 115 000, ε ≠ 0 ° and ε '≠ 0 °, but Δα = 0 ° and Δα' = 0 °, then the relationship between the immediate measurement signal and the electric current I no longer linear. If one describes the propagation of the elliptically polarized light waves 6,6 'with the aid of Jones matrices and one derives their differential phase shift Δ S from the complex amplitudes of the two in the detector 26 in the transmitter-evaluation unit 2 interfering light waves, so one obtains for the immediate measurement signal Δ S Δ S = arctane (cosε + cosε ') sin (2φ F ) (1 + cosε cosε ') cos (2φ F ) - sinε sinε 'cos (2χ)

Dabei ist χ der Winkel zwischen den schnellen Achsen der beiden Phasenverzögerungselemente 13 und 14. Für den Spezialfall χ = 0° und ε = ε' ergibt dies für kleine Faraday-Phasenverschiebungen ϕF näherungsweise ΔS = 2ϕF/cosε, was für kleine Winkel ε als ΔS = 2ϕF (1 +ε2/2) genähert werden kann. Für den Spezialfall χ = 90° und ε = ε' ergibt dies für kleine ϕF näherungsweise ΔS = 2ϕFcosε, was für kleine Winkel ε als ΔS = 2ϕF (1-ε2/2) genähert werden kann.In this case, χ is the angle between the fast axes of the two phase delay elements 13 and 14. For the special case χ = 0 ° and ε = ε 'this results for small Faraday phase shifts φ F approximately Δ S = 2φ F / cosε, which is for small angle ε as Δ S = 2φ F (1 + ε 2/2) can be approximated. For the special case χ = 90 ° and ε = ε ', this gives for small φ F approximately Δ S = 2φ F cosε what ε for small angles than Δ S = 2φ F (1-ε 2/2) can be approximated ,

Für ε = ε' = 13° und χ = 0° beträgt die relative Abweichnung von der Linearität des Verhältnisses zwischen dem unmittelbaren Mess-Signal ΔS und dem zu messenden elektrischen Strom I etwa -0.21% bei 2ϕF = 40° und -0.92% bei 2ϕF = 90°. So weit wurde noch Δα = 0° und Δα' = 0° angenommen, d.h. die Hauptachsen der Lichtleitungselemente 11 und 12 schliessen mit den Hauptachsen der Phasenverzögerungselemente 13 beziehungsweise 14 jeweils einen Winkel von genau 45° ein.For ε = ε '= 13 ° and χ = 0 °, the relative deviation from the linearity of the ratio between the instantaneous measurement signal Δ S and the electric current I to be measured is approximately -0.21% at 2φ F = 40 ° and 0.92% at 2φ F = 90 °. So far, Δα = 0 ° and Δα '= 0 ° were assumed, ie the main axes of the light-conducting elements 11 and 12 each include an angle of exactly 45 ° with the main axes of the phase-delay elements 13 and 14.

Wenn, entsprechend dem erfindungsgemässen Fall, ε,ε' ≠ 0° ist, und zusätzlich Δα ≠ 0° und/oder Δα' ≠ 0° gewählt wird, so lautet der Zusammenhang zwischen dem unmittelbaren Mess-Signal ΔS und der zum elektrischen Strom I proportionalen Faraday-Phasenverschiebung ϕF Δ S = arctan∟(cosε cos(2Δα) + cosε' cos(2Δα')┘sin(2ϕ F ) A 1 cos(2ϕ F ) + A 2 cos(2χ) - A 3 sin(2χ) mit A1 = 1 + cos ε cos ε' cos(2Δα) cos(2Δα') A2 = sin(2Δα) sin(2Δα') - sin ε sin ε' cos(2Δα) cos(2Δα') A3 = sin ε cos(2Δα) sin(2Δα') + sin ε' cos(2Δα') sin(2Δα) If, according to the inventive case, ε, ε '≠ 0 °, and in addition Δα ≠ 0 ° and / or Δα' ≠ 0 ° is selected, then the relationship between the immediate measurement signal .DELTA. S and that to the electrical Current I proportional Faraday phase shift φ F Δ S = arctane ∟ (cosε cos (2Δα) + cosε 'cos (2Δα') ┘sin (2φ F ) A 1 cos (2φ F ) + A 2 cos (2χ) - A 3 sin (2χ) With A 1 = 1 + cos ε cos ε 'cos (2Δα) cos (2Δα') A 2 = sin (2Δα) sin (2Δα ') - sin ε sin ε' cos (2Δα) cos (2Δα ') A 3 = sin ε cos (2Δα) sin (2Δα ') + sin ε' cos (2Δα ') sin (2Δα)

Durch die Wahl der Winkel Δα und Δα' kann also, wie auch in Fig. 6 gezeigt ersichtlich, das nicht-lineare Verhältnis zwischen dem unmittelbaren Mess-Signal ΔS und dem elektrischen Strom 1 beeinflusst werden, so dass die Nichtlinearität verringert wird. Eine geschickte Wahl der Winkel Δα und Δα' in Abhängigkeit von den Winkeln ε und ε' erlaubt es, diese aus ε ≠ 0° und ε' ≠ 0° resultierende Nichtlinearität mindestens annähernd zu kompensieren. Dann liegt ein mindestens annähernd lineares Verhältnis zwischen dem unmittelbaren Mess-Signal ΔS und dem elektrischen Strom I vor. Im allgemeinen lässt sich die Nichtlinearität um mindestens eine halbe Grössenordnung, also einen Faktor 3, verringern gegenüber dem Fall Δα = Δα' = 0°. Eine im mathematischen Sinne vollständige Kompensation der Nichtlinearität ist wegen der Unterschiedlichkeit der funktionalen Zusammenhänge für die Winkel ε, ε' und für die Winkel Δα, Δα' nicht möglich. Aber die Nichtlinearität kann so weit reduziert und kompensiert werden, dass sie für die Praxis bedeutungslos ist.Can be obtained by the choice of the angles Δα and Δα 'Thus, as in Fig. 6 can be seen, the non-linear relationship between the direct measurement signal Δ S and the electric current 1 are influenced so that the non-linearity is reduced. A clever choice of the angles Δα and Δα 'as a function of the angles ε and ε' makes it possible to compensate at least approximately for these nonlinearities resulting from ε ≠ 0 ° and ε '≠ 0 °. Then there is an at least approximately linear relationship between the direct measurement signal Δ S and the electric current I. In general, the non-linearity can be reduced by at least half a magnitude, ie a factor of 3, compared to the case Δα = Δα '= 0 °. A mathematically complete compensation of the nonlinearity is not possible because of the difference in the functional relationships for the angles ε, ε 'and for the angles Δα, Δα'. But nonlinearity can be reduced and compensated for enough to make it meaningless in practice.

Der obigen Gleichung kann entnommen werden, dass die Vorzeichen der Winkel Δα und Δα' unerheblich sind, da sie sich bezüglich dieser Vorzeichen symmetrisch verhält. Nur die Beträge der Winkel Δα und Δα' sind von Bedeutung. Ein Beispiel, wie die Winkel für eine mindestens annähernde Kompensation berechnet werden, wird im folgenden für eine Sensor-Konfiguration gegeben, bei welcher die schnellen Achsen der Phasenverzögerungselemente 13,14 parallel zueinander ausgerichtet sind, also χ=0°.From the above equation it can be seen that the signs of the Angle .DELTA..alpha. And .DELTA..alpha. 'Are insignificant, since they relate to these signs behaves symmetrically. Only the magnitudes of the angles Δα and Δα 'are of Importance. An example of how the angles are at least approximate Compensation will be calculated below for a sensor configuration given where the fast axes of the phase delay elements 13,14 are aligned parallel to each other, so χ = 0 °.

Figur 4 gibt für χ=0°, Δα = Δα' = 0° und verschiedene Winkel ε = ε' den gemäss obiger Gleichung berechneten Zusammenhang zwischen dem unmittelbaren Mess-Signal ΔS und dem Zweifachen des Faraday-Phasenverzögerungswinkels, 2ΔϕF, an. ΔS ist dabei auf 2ϕF normiert.FIG. 4 indicates for χ = 0 °, Δα = Δα '= 0 ° and different angles ε = ε' the relation between the direct measurement signal Δ S and twice the Faraday phase delay angle, 2Δφ F , calculated according to the above equation , Δ S is normalized to 2φ F.

Deutlich ist zu erkennen, dass die Nichtlinearität für grössere Winkel ε zunimmt. Die Grösse der Nichtlinearitäten liegt im Promille- bis Prozentbereich. Für ε = 13° beträgt die relative Nichtlinearität -0.21% bei 2ϕF = 40° und -0.92% bei 2ϕF = 90°. Diese Nichtlinearitäten berechnet man gemäss {ΔS/(2ϕF)[2ϕF = 40°] - ΔS/(2ϕF)[2ϕF = 0°]} / ΔS/(2ϕF)[2ϕF = 0°] bzw. {ΔS/(2ϕF)[2ϕF = 90°] - ΔS/(2ϕF)[2ϕF = 0°]} / ΔS/(2ϕF)[2ϕF = 0°], also aus der Differenz von ΔS/(2ϕF) bei 2ϕF = 40° beziehungsweise 2ϕF = 90° und ΔS/(2ϕF) bei 2ϕF = 0°, normiert mit ΔS/(2ϕF) bei 2ϕF = 0°.It can be clearly seen that the nonlinearity increases for larger angles ε. The size of the non-linearities is in the per thousand to percent range. For ε = 13 ° the relative nonlinearity is -0.21% at 2φ F = 40 ° and -0.92% at 2φ F = 90 °. These nonlinearities are calculated according to {Δ S / (2φ F ) [2φ F = 40 °] - Δ S / (2φ F ) [2φ F = 0 °]} / Δ S / (2φ F ) [2φ F = 0 °] respectively. {Δ S / (2φ F ) [2φ F = 90 °] - Δ S / (2φ F ) [2φ F = 0 °]} / Δ S / (2φ F ) [2φ F = 0 °], ie from the difference of Δ S / (2φ F ) at 2φ F = 40 ° or 2φ F = 90 ° and Δ S / (2φ F ) at 2φ F = 0 °, normalized with Δ S / (2φ F ) at 2φ F = 0 °.

Figur 5 gibt für den Fall ε = ε' = 0° für verschiedene Winkel Δα = Δα' den gemäss obiger Gleichung für χ=0° berechneten Zusammenhang zwischen dem unmittelbaren Mess-Signal ΔS und dem Zweifachen des Faraday-Phasenverzögerungswinkels, 2ΔS, an. ΔS ist dabei auf 2ϕF normiert. Deutlich ist zu erkennen, dass die Nichtlinearität für grössere Winkel Δα zunimmt. Die Grösse der Nichtlinearitäten liegt im Promille-Bereich. Es fällt auf, dass die Krümmung der Kurven in Figur 5 der Krümmung der Kurven in Figur 4 entgegengesetzt ist. Dies eröffnet die Möglichkeit der genannten erfindungsgemässen Kompensation von auf ε ≠ 0° und/oder ε' ≠ 0° zurückzuführenden Nichtlinearitäten durch geschickte Wahl der Winkel Δα, Δα'.FIG. 5 shows, for the case ε = ε '= 0 ° for different angles Δα = Δα', the relationship between the direct measurement signal Δ S and twice the Faraday phase delay angle, 2Δ, calculated in accordance with the above equation for χ = 0 ° S , on. Δ S is normalized to 2φ F. It can be clearly seen that the nonlinearity increases for larger angles Δα. The size of the nonlinearities is in the per thousand range. It is noticeable that the curvature of the curves in FIG. 5 is opposite to the curvature of the curves in FIG. This opens up the possibility of said inventive compensation of nonlinearities attributable to ε ≠ 0 ° and / or ε '≠ 0 ° by clever choice of the angles Δα, Δα'.

Figur 6 gibt für den Fall ε = ε' = 13° und χ=0° für verschiedene Winkel Δα = Δα' den gemäss obiger Gleichung berechneten Zusammenhang zwischen dem unmittelbaren Mess-Signal ΔS und dem Zweifachen des Faraday-Phasenverzögerungswinkels, 2ΔS, an. ΔS ist dabei auf 2ϕF normiert. Deutlich ist zu erkennen, dass für Winkel Δα um 5.85° die auf ε ≠ 0° zurückzuführende Nichtlinearität mindestens annähernd kompensiert ist. Auf diese Weise kann der erfindungsgemässe Winkel Δα graphisch ermittelt werden. FIG. 6 shows, for the case ε = ε '= 13 ° and χ = 0 ° for different angles Δα = Δα', the relationship between the direct measurement signal Δ S and twice the Faraday phase delay angle, 2Δ, calculated according to the above equation S , on. Δ S is normalized to 2φ F. It can be clearly seen that for angles Δα of 5.85 °, the nonlinearity attributable to ε ≠ 0 ° is at least approximately compensated. In this way, the inventive angle Δα can be determined graphically.

Eine Berechnung von Δα in Abhängigkeit von ε ist aber zu bevorzugen. Bei einem gegebenen Phasenverzögerungswinkel ρ=ρ', also einem gegebenen Winkel ε=ε', lässt sich der erfindungsgemässe Winkel Δα=Δα' wie folgt mit Hilfe der oben angegebenen Gleichung berechnen:However, a calculation of Δα as a function of ε is to be preferred. at a given phase delay angle ρ = ρ ', that is a given Angle ε = ε ', the inventive angle Δα = Δα' can be as follows Help calculate the equation given above:

In der Praxis soll die Funktion ΔS(ε=ε', Δα=Δα', ϕF)/2ϕF insbesondere für Werte von 2ϕF zwischen 0° und 90° unabhängig von 2ϕF sein. Der dafür zu wählende Winkel Δα = Δα' ergibt sich aus ΔS(ε, Δα=Δα', ϕF=0°)/(2ϕF) = ΔS(ε, Δα=Δα', ϕF=90°)/(2ϕF) In practice, the function Δ S (ε = ε ', Δα = Δα', φ F ) / 2φ F should be independent of 2φ F in particular for values of 2φ F between 0 ° and 90 °. The angle Δα = Δα 'to be chosen for this results from Δ S (ε, Δα = Δα ', φ F = 0 °) / (2φ F ) = Δ S (ε, Δα = Δα ', φ F = 90 °) / (2φ F )

Diese Gleichung kann man numerisch lösen. Alternativ erhält man für χ = 0° und kleine Winkel ε auch den folgenden analytischen Ausdruck: sin2(2Δα) ≈ sin2 ε - 2 [(π-1)/(π-2)] sin4 ε + ... This equation can be solved numerically. Alternatively, for χ = 0 ° and small angles ε, the following analytical expression is also obtained: sin 2 (2Δα) ≈ sin 2 ε - 2 [(π-1) / (π-2)] sin 4 ε + ...

Terme höherer Ordnung sind hier weggelassen. Hieraus ergibt sich als Näherungslösung für Δα = Δα' Δα ≈ ±(1/2) arcsin {sin2 ε - 2 [(π-1)/(π-2)] sin4 ε}1/2 Higher order terms are omitted here. This results in an approximate solution for Δα = Δα ' Δα ≈ ± (1/2) arcsin {sin 2 ε - 2 [(π-1) / (π-2)] sin 4 ε} 1.2

Für ε = 13° findet man mittels dieser Gleichung Δα = ±5.85° (vergleiche auch Figur 6). In diesem Fall variiert das Verhältnis ΔS/2ϕF zwischen 2ϕF=0° und 2ϕF=90° um weniger als 0.02%. Es variiert also um fast einen Faktor 50 und somit um mehr als anderthalb Grössenordnungen weniger ist als die oben genannten 0.92% im Falle Δα = Δα' = 0°. Falls eine noch weitergehende Linearisierung erwünscht wird, so kann mittels eines iterativen Verfahrens diese Variation in einem vorgegebenen Wertebereich der Variablen 2ϕF, zum Beispiel zwischen 2ϕF = 0° und 2ϕF = 90°, minimiert werden. Für ε =13° erhält man dann Δα = ±5.9° als optimalen Winkel. Das Vorgehen im Falle eines Sensors mit χ ≠ 0° ist völlig analog. Von besonderem Interesse ist der Fall orthogonal zueinander ausgerichteter schneller Achsen der Phasenverzögerungselemente 13,14, also χ = 90°. Für χ = 90° ergibt sich bei sonst unveränderten Parametern für eine optimale Kompensation der Nichtlinearitäten Δα = Δα' = ±6.8°.For ε = 13 °, this equation yields Δα = ± 5.85 ° (see also FIG. 6). In this case, the ratio Δ S / 2φ F between 2φ F = 0 ° and 2φ F = 90 ° varies by less than 0.02%. It therefore varies by almost a factor of 50 and thus is more than one and a half orders of magnitude less than the above-mentioned 0.92% in the case of Δα = Δα '= 0 °. If an even more extensive linearization is desired, then this variation can be minimized by means of an iterative method in a predetermined value range of the variable 2φ F , for example between 2φ F = 0 ° and 2φ F = 90 °. For ε = 13 °, one then obtains Δα = ± 5.9 ° as the optimum angle. The procedure in the case of a sensor with χ ≠ 0 ° is completely analog. Of particular interest is the case of orthogonal aligned fast axes of the phase delay elements 13,14, ie χ = 90 °. For χ = 90 °, with otherwise unchanged parameters, an optimal compensation of the nonlinearities Δα = Δα '= ± 6.8 ° results.

Neben den im Zusammenhang mit der Figur 2 diskutierten Ausführungsbeispielen sind zahlreiche andere Varianten möglich. Die Lichtleitungselemente 11, 12 können auch als andere Typen polariationserhaltender optischer Fasern ausgebildet sein, wie beispielsweise sogenannten Panda-Fasern, Bowtie-Fasern oder Fasern mit einem zusätzlichen, inneren, elliptischen Cladding (Fasermantel). Alternativ ist auch denkbar, die ersten linear polarisierten Lichtwellen 3,3' direkt oder mittels einer Linse oder einer optischen Baugruppe in die Phasenverzögerungselemente 13,14 einzuleiten. Dann wären die Lichtleitungselemente 11,12 Luft oder Vakuum, oder die Linse oder die optische Baugruppe. Als Hauptachsen der Lichtleitungselemente 11,12 werden stets die Achsen bezeichnet, die durch die Polarisationsvektoren der ersten linear polarisierten Lichtwellen 3,3' gegeben sind.In addition to the discussed in connection with Figure 2 embodiments Many other variants are possible. The light pipe elements 11, 12 can also be used as other types of polarization preserving optical Be formed fibers such as so-called panda fibers, Bowtie fibers or fibers with an additional, inner, elliptical Cladding (fiber coat). Alternatively, it is also conceivable that the first linearly polarized Light waves 3,3 'directly or by means of a lens or an optical Module in the phase delay elements 13,14 initiate. Then you would be the light pipe elements 11,12 air or vacuum, or the lens or the optical assembly. As main axes of the light guide elements 11,12 always the axes are referred to, by the polarization vectors of the first linearly polarized light waves 3,3 'are given.

Die optischen Verbindungen zwischen den Phasenverzögerungselementen 13,14 und den Lichtleitungselementen 11,12 beziehungsweise dem Sensorelement 15 können direkte Verbindungen sein, wie sie beispielsweise durch Zusammenschweissen mittels eines sogenannten Splice-Geräts erstellt werden. Oder es sind Verbindungen über ein Zwischenmedium, beispielsweise ein Gel, Klebstoff oder ein Faserstück oder eine optische Baugruppe. Oder die Einkopplung von Lichtwellen findet durch ein Vakuum oder durch ein Gas statt. The optical connections between the phase delay elements 13,14 and the light pipe elements 11,12 or the sensor element 15 can be direct connections, as for example created by welding together using a so-called Splice device become. Or they are connections via an intermediate medium, for example a gel, glue or piece of fiber or an optical assembly. Or the coupling of light waves takes place through a vacuum or through a gas instead.

Die Phasenverzögerungselemente 13,14 können optische Faserstücke sein mit geometrisch induzierter Doppelbrechung, zum Beispiel durch einen elliptischen Kern, oder mit spannungsinduzierter Doppelbrechung, wie beispielsweise Bowtie- oder Panda-Fasern oder Fasern mit einem innerem elliptischen Mantel. Sie können auch als Schlaufen gewöhnlicher Einmoden-Fasern mit rundem Kern ausgebildet sein. Hier wird die Phasenverzögerung über die Doppelbrechung erzeugt, welche durch die Faserkrümmung hervorgerufen wird. Weiterhin sind auch λ/4-Plättchen denkbar. Die Phasenverzögerungswinkel ρ,ρ' können um Winkel ε,ε' von einem beliebigen ungeradzahligen Vielfachen von 90° abweichen. Die Winkel ε,ε' sind vorzugsweise dadurch vorgegeben, dass sie gerade so gross sind, dass die Temperaturabhängigkeit der Verdet-Konstanten des Sensorelementes 15 durch die Temperaturabhängigkeit der Phasenverzögerungselemente 13,14 kompensiert wird. Dies kann positive wie auch negative Winkel ε,ε' zur Folge haben.The phase delay elements 13, 14 may be optical fiber pieces with geometrically induced birefringence, for example by an elliptical one Core, or with stress-induced birefringence, such as Bowtie or panda fibers or fibers with an inner elliptical Coat. They can also be used as loops of ordinary single-mode fibers be formed with a round core. Here is the phase delay generated via the birefringence, which is caused by the fiber curvature becomes. Furthermore, λ / 4 plates are also conceivable. The phase delay angle ρ, ρ 'can be subtended by angles ε, ε' from any odd number Multiples of 90 °. The angles ε, ε 'are preferably given that they are just so big that the temperature dependence the Verdet constants of the sensor element 15 by the temperature dependence the phase delay elements 13,14 compensated becomes. This can result in positive as well as negative angles ε, ε '.

Die Winkel ε und ε' können verschieden gross sein. Weiterhin gibt es für einen gegebenen Winkel χ im allgemeinen viele verschiedene Paare von Winkeln Δα, Δα', die zu einer mindestens annähernden Kompensation der aus ε ≠ 0° und/oder ε' ≠ 0° resultierenden Nichtlinearitäten führen. Trotzdem ist die Wahl von Δα dann noch abhängig von ε, aber Δα hängt dann zusätzlich von ε' und Δα' sowie von χ ab. Man kann auch sagen, dass Δα und Δα' in Abhängigkeit von mindestens den Winkeln ε und ε' gewählt werden. Der Winkel χ kommt noch als Einflussgrösse hinzu.The angles ε and ε 'can be of different sizes. There is still one for you given angle χ in general many different pairs of angles Δα, Δα ', which leads to an at least approximate compensation of ε ≠ 0 ° and / or ε '≠ 0 ° resulting nonlinearities. Nevertheless, it is the choice of Δα then still depends on ε, but Δα then depends in addition from ε 'and Δα' and from χ. One can also say that Δα and Δα 'in Depending on at least the angles ε and ε 'are selected. Of the Angle χ is still added as an influence.

Das Sensorelement 15 kann, wie oben angegeben spulenförmig, vorzugsweise in mehreren Windungen, den Stromleiter S umfassen. Es sind aber auch Bruchteile einer Windung möglich, und es können auch anders gekrümmte oder ungekrümmte Sensorelemente 15 eingesetzt werden. Vorzugsweise besteht das Sensorelement 15 aus einer optischen Faser, die frei von mechanischen Spannungen ist, wie es in EP 0 856 737 A1 beschrieben ist. Besonders vorteilhaft ist der Einsatz einer solchen spannungsfreien Sensorfaser 15 zusammen mit einem temperaturabhängigkeitskompensierenden Phasenverzögerungselement 13, 14, wie es in EP 1 115 000 beschrieben ist. Ein derartiger erfindungsgemässer Strom- oder Magnetfeldsensor weist praktisch keine Temperaturabhängigkeit auf, hat aber ein lineares Verhältnis zwischen einem zu messenden Strom I und dem unmittelbaren Mess-Signal ΔΦS.The sensor element 15 may, as indicated above coil-shaped, preferably in several turns, the current conductor S include. However, fractions of a turn are also possible, and differently curved or non-curved sensor elements 15 can also be used. Preferably, the sensor element 15 consists of an optical fiber which is free of mechanical stresses, as described in EP 0 856 737 A1. Particularly advantageous is the use of such a stress-free sensor fiber 15 together with a temperature-dependence-compensating phase delay element 13, 14, as described in EP 1 115 000. Such a current or magnetic field sensor according to the invention has virtually no temperature dependence, but has a linear relationship between a current I to be measured and the instantaneous measurement signal ΔΦ S.

Ausser magnetooptisch aktiven Fasern sind auch massive Gläser oder magnetooptische Kristalle, wie beispielsweise Yttrium-Eisen-Granat, Y3 Fe5 O12, als Sensorelement 15 einsetzbar. Speziell, wenn der Strom- oder Magnetfeldsensor zur lokalen Messung von Magnetfeldern eingesetzt wird, sind diese Varianten vorteilhaft. Das Sensorelement 15 muss mit dem zu messenden Magnetfeld wirkverbunden sein, vorzugsweise an einem Ort, an dem das Magnetfeld gross ist, so dass die elliptisch polarisierten Lichtwellen 6,6' aufgrund des Magnetfeldes eine möglichst grosse magnetooptisch induzierte Phasenverschiebung erfahren. Es ist fernerhin auch möglich, mehrere Sensorelemente 15 in einem Sensorkopf 1 einzusetzen.In addition to magneto-optically active fibers and solid glasses or magneto-optical crystals, such as yttrium-iron garnet, Y 3 Fe 5 O 12 , can be used as a sensor element 15. Especially when the current or magnetic field sensor is used for the local measurement of magnetic fields, these variants are advantageous. The sensor element 15 must be operatively connected to the magnetic field to be measured, preferably at a location where the magnetic field is large, so that the elliptically polarized light waves 6, 6 'experience the greatest possible magneto-optically induced phase shift due to the magnetic field. Furthermore, it is also possible to use a plurality of sensor elements 15 in a sensor head 1.

Für die Winkel ε, ε' und Δα, Δα' gelten die Bedingungen 0° < ε, ε' < 90° und 0° < Δα,Δα' < 45°, wobei gegebenenfalls auch Δα' = 0° und/oder ε' = 0 sein kann. Da, wie oben dargelegt, das Vorzeichen von Δα keine Rolle spielt, kann man sich auf positive Δα beschränken. Werden ε, ε' für die oben genannte Temperaturkompensation gewählt, so ergeben sich aufgrund der heute erhältlichen Fasermaterialien Werte von bis zu etwa 20° für ε, ε' bei ε = ε' und χ = 0° oder χ = 90°. Somit kommen vorzugsweise Winkel ε kleiner als etwa 30° vor. Für solche ε ergeben sich Winkel Δα von bis zu etwa 10°. Wie oben erwähnt, ist es bei Δα ≠ Δα' möglich, verschiedene Paare Δα,Δα' erfindungsgemäss zu wählen, so dass bei ε ≈ 30° auch erfindungsgemässe Winkel Δα grösser als 10° möglich sind.For the angles ε, ε 'and Δα, Δα' the conditions 0 ° <ε, ε '<90 ° and 0 ° <Δα, Δα '<45 °, where appropriate also Δα' = 0 ° and / or ε '= 0 be can. Since, as stated above, the sign of Δα does not matter, one can limit oneself to positive Δα. Be ε, ε 'for the above Temperature compensation selected, resulting from the Fiber materials available today have values of up to about 20 ° for ε, ε ' ε = ε 'and χ = 0 ° or χ = 90 °. Thus, preferably angles ε are smaller than about 30 ° before. For such ε, angles Δα of up to about 10 ° result. As mentioned above, with Δα ≠ Δα ', it is possible to have different pairs Δα, Δα 'to choose according to the invention, so that at ε ≈ 30 ° and inventive Angle Δα greater than 10 ° are possible.

Als Sende-Auswerte-Einheit 2 sind interferometrisch wie auch polarimetrisch detektierende Varianten möglich. Aus dem Stand der Technik sind verschiedene Möglichkeiten zur Auswertung der unmittelbaren Mess-Signale bekannt. In dem Beispiel aus Figur 2 wurden jeweils die einen elliptisch polarisierten Lichtwellen 6 als Referenzsignal für die anderen elliptisch polarisierten Lichtwellen 6' genutzt, wobei beide dem Einfluss des elektrischen Stroms I oder des Magnetfeldes ausgesetzt waren. Es ist aber auch möglich, die magnetooptisch induzierte Phasenverschiebung zu messen, ohne voneinander verschiedene elliptisch polarisierte Lichtwellen 6 und 6' einzusetzen. Beispielsweise können innerhalb der Sende-Auswerte-Einheit 2 linear polarisierte Lichtwellen erzeugt werden, die keine magnetooptisch induzierte Phasenverschiebung erleiden, und gegenüber denen sich die magnetooptisch induzierten Phasenverschiebungen der elliptisch polarisierten Lichtwellen 6 oder 6' bestimmen lassen.As transmitter-evaluation unit 2 are interferometric as well as polarimetric Detecting variants possible. From the prior art are various Possibilities for evaluating the immediate measurement signals known. In the example of FIG. 2, each one was elliptically polarized Light waves 6 as a reference signal for the other elliptically polarized Light waves 6 'used, both of which are influenced by the electric Electricity I or the magnetic field were exposed. But it is also possible to measure the magneto-optically induced phase shift without each other to use different elliptically polarized light waves 6 and 6 '. For example, within the transmitter-evaluation unit 2 linear polarized light waves are generated, which induced no magneto-optically Phase shift, and opposite to which the magneto-optically induced phase shifts of the elliptically polarized light waves 6 or 6 'determine.

Als Lichtquelle 20 wird typischerweise eine niederkohärente Halbleiterquelle eingesetzt, wie beispielsweise eine Superluminiszenzdiode, eine Multimode-Laserdiode, eine unterhalb der Laserschwelle betriebene Laserdiode, oder eine Luminiszenzdiode (LED), vorzugsweise mit Wellenlängen um etwa 800 nm, 1300 nm oder 1550 nm. Aber verschiedenste Wellenlängen, zum Beispiel aus dem ultravioletten, dem sichtbaren oder dem infraroten Bereich sind einsetzbar.As the light source 20 is typically a low-coherence semiconductor source used, such as a superluminescent diode, a multimode laser diode, a laser diode operated below the laser threshold, or a luminescent diode (LED), preferably with wavelengths around 800 nm, 1300 nm or 1550 nm. But different wavelengths, for Example from the ultraviolet, the visible or the infrared range are usable.

Bei der Herstellung eines Sensorkopfes werden also die Winkel Δα,Δα' in Abhängigkeit von den Winkeln ε,ε' derart gewählt, dass die genannten Nichtlinearitäten deutlich verringert oder sogar mindestens annähernd kompensiert werden. Dies kann beispielsweise in einer der oben beschriebenen Arten geschehen. Man kann darum auch von einem definierten Winkel Δα sprechen, der erfindungsgemäss gewählt wird. Dies grenzt ihn klar von zufällig zustandekommenden, beispielsweise toleranzbedingten Winkeln Δα ab, die vorzugsweise so klein wie möglich, also etwa 0° sind. Bei der Durchführung der Erfindung ist es unerheblich, ob, beispielsweise aufgrund von Fertigungstoleranzen, ein vom optimalen Winkel Δα leicht abweichender Winkel realisiert wird. Wesentlich ist, dass ein definierter Winkel Δα unter der Massgabe gewählt wird, die genannten Nichtlinearitäten zu verringern, und dass ein entsprechendes Ergebnis erzielt wird. In the manufacture of a sensor head so are the Angle Δα, Δα 'as a function of the angles ε, ε' in such a way chosen that the nonlinearities mentioned significantly reduced or even be compensated at least approximately. This can be, for example done in one of the ways described above. You can therefore also speak of a defined angle Δα, selected according to the invention becomes. This clearly borders him on chance, for example Tolerance-related angles Δα, preferably as small as possible, ie are about 0 °. In carrying out the invention, it is irrelevant whether for example due to manufacturing tolerances, one of the optimum angle Δα slightly different angle is realized. It is essential that one defined angle .DELTA..alpha. is chosen with the proviso that said Reduce nonlinearities, and that a corresponding result is achieved.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Sensorkopfsensor head
1111
erstes Lichtleitungselementfirst light pipe element
1212
zweites Lichtleitungselementsecond light pipe element
1313
erstes Phasenverzögerungselementfirst phase delay element
131131
erstes Ende des ersten Phasenverzögerungselementsfirst end of the first phase delay element
132132
zweites Ende des ersten Phasenverzögerungselementssecond end of the first phase delay element
1414
zweites Phasenverzögerungselementsecond phase delay element
141141
erstes Ende des zweiten Phasenverzögerungselementsfirst end of the second phase delay element
142142
zweites Ende des zweiten Phasenverzögerungselementssecond end of the second phase delay element
1515
Sensorelementsensor element
22
Sende-Auswerte-EinheitTransmission evaluation unit
2020
Lichtquellelight source
2121
Faserkopplerfiber coupler
2222
Faserpolarisatorfiber polarizer
2424
zweiter Faserkopplersecond fiber coupler
2525
Phasenmodulatorphase modulator
2626
Detektordetector
2727
Signalprozessorsignal processor
2828
Messwert-AusgabeMeasured value output
3, 3'3, 3 '
erste linear polarisierte Lichtwellenfirst linearly polarized light waves
4,4x,4y,4',4x',4y'4.4 x , 4 y , 4 ', 4 x ', 4 y '
zweite linear polarisierte Lichtwellensecond linearly polarized light waves
5, 5'5, 5 '
dritte linear polarisierte Lichtwellenthird linearly polarized light waves
5a, 5a'5a, 5a '
vierte linear polarisierte Lichtwellenfourth linearly polarized light waves
6, 6'6, 6 '
elliptisch polarisierte Lichtwellenelliptically polarized light waves
II
elektrischer Strom, Stromstärkeelectric current, amperage
NN
Anzahl WindungenNumber of turns
SS
Stromleiterconductor
VV
Verdet-KonstanteVerdet constant
ΔαΔα
Winkel, um den der Einkopplungswinkel in das (erste) Phasenverzögerungselement von 45° abweichtAngle by which the coupling angle into the (first) phase delay element deviates from 45 °
Δα'Δα '
Winkel, um den der Einkopplungswinkel in das (zweite) Phasenverzögerungselement von 45° abweichtAngle by which the coupling angle into the (second) phase delay element deviates from 45 °
ΔS Δ S
differentielle Phasenverschiebung bei Sagnac-Konfiguration, unmittelbares Mess-Signal bei Sagnac-Konfigurationdifferential phase shift in Sagnac configuration, immediate measurement signal with Sagnac configuration
εε
Winkel, um den der Phasenverzögerungswinkel ρ des (ersten) Phasenverzögerungselements von einem ungeradzahligen Vielfachen von 90° abweichtAngle by which the phase delay angle ρ of the (first) Phase delay element of an odd number Multiple deviates from 90 °
ε'ε '
Winkel, um den der Phasenverzögerungswinkel ρ' des (zweiten) Phasenverzögerungselements von einem ungeradzahligen Vielfachen von 90° abweichtAngle by which the phase delay angle ρ 'of the (second) Phase delay element of an odd number Multiple deviates from 90 °
ϕF φ F
Faraday-Phasenverschiebung, ϕF = V N IFaraday phase shift, φ F = VNI
ρρ
Phasenverzögerungswinkel des (ersten) PhasenverzögerungselementsPhase delay angle of the (first) phase delay element
ρ'ρ '
Phasenverzögerungswinkel des (zweiten) PhasenverzögerungselementsPhase delay angle of the (second) phase delay element
χχ
Winkelangle

Claims (11)

  1. Method for production of an optical current or magnetic field sensor, which comprises a transmission evaluation unit (2) and a sensor head (1), in which case the transmission evaluation unit (2) can produce light at a wavelength λ, and in which case the sensor head (1) comprises a first optical fibre element (11), a second optical fibre element (12), a first phase delay element (13), a second phase delay element (14) and a sensor element (15), in which case each of the two optical fibre elements (11, 12) each has at least one major axis (x', y'), in which case each of the two phase delay elements (13, 14) each has at least one major axis (x, y), and in which case elliptically polarized light waves (6; 6') can propagate in the sensor element (15) and are subjected to a magnetooptically induced phase shift as a result of an electric current or magnetic field to be measured,
    with a first end (131) of the first phase delay element (13) being optically connected to the first optical fibre element (11), and a second end (132) of the first phase delay element (13) being optically connected to a first end of the sensor element (15),
    with a first end (141) of the second phase delay element (14) being optically connected to the second optical fibre element (12), and a second end (142) of the second phase delay element (14) being optically connected to a second end of the sensor element (15),
    with the transmission evaluation unit (2) being optically connected to the first optical fibre element (11) and to the second optical fibre element (12),
    with the first phase delay element (13) being designed such that its phase delay angle p differs from an odd-numbered multiple of 90° by an angle ε where ε ≠ 0° and -90° < ε < 90°, and
    with the second phase delay element (14) being designed such that its phase delay angle ρ' differs from an odd-numbered multiple of 90° by an angle ε' where ε' ≠ 0° and -90° < ε' < 90°, and
    with the first optical fibre element (11) being arranged relative to the first phase delay element (13) such that the at least one major axis (x', y') of the first optical fibre element (11) includes an angle which differs from 45° by an angle Δα with the at least one major axis (x, y) of the first phase delay element (13),
    characterized in that the angle Δα is defined by: 0° < Δα < 45° and in that the angle Δα is chosen as a function of at least the angles ε and ε' such that any non-linearities in the relationship between the magnetooptically induced phase shift of the elliptically polarized light waves (6; 6') and the electric current or magnetic field to be measured, which occur when the current or magnetic field is measured by means of the optical current or magnetic field sensor, are less than in the situation Δα = 0°.
  2. Production method according to claim 1, characterized in that the angle Δα is chosen as a function of at least the angle ε such that the non-linearities in the relationship between the magnetooptically induced phase shift of the elliptically polarized light waves (6; 6') and the electric current or magnetic field to be measured, which occur when the current or magnetic field is measured by means of the optical current or magnetic field sensor, are reduced by a factor of at least 3 in comparison to the situation Δα = 0°.
  3. Production method according to Claim 1,
    characterized in that phase delay elements (13, 14) are used which together have a temperature dependency which at least approximately compensates for any temperature dependency of a Verdet constant of the sensor element (15).
  4. Production method according to Claim 3,
    characterized in that the two phase delay elements (13, 14) are designed such that their phase delay angles p, p' are the same, and in that the second optical fibre element (12) is arranged relative to the second phase delay element (14) such that the at least one major axis (x', y') of the second optical fibre element (12) includes an angle which differs from 45° by an angle Δα', where 0° < Δα' < 45°, with the at least one major axis (x, y) of the second phase delay element (14), and
    in that the angles Δα and Δα' are chosen to be the same.
  5. Production method according to Claim 1,
    characterized in that polarization-maintaining fibres are used as the optical fibre elements (11, 12), and in that these are connected to the phase delay elements (13, 14).
  6. Production method according to Claim 1,
    characterized in that a piece of fibre with an elliptical core is used as at least one of the two phase delay elements (13, 14) and is designed such that its phase delay angle ρ, ρ' differs from 90° by the angle ε, ε'.
  7. Production method according to Claim 1,
    characterized in that a sensor element (15) is used which can be arranged such that it has an electrical conductor (S) in the form of a coil.
  8. Production method according to Claim 7,
    characterized in that a magnetooptically active fibre which has a round core cross section and is virtually free of mechanical stresses is used as the sensor element (15).
  9. Production method according to Claim 1,
    characterized in that the magnitude of the angle ε is chosen to be less than 30°, and in that the angle Δα is chosen to be less than 10°.
  10. Optical current or magnetic field sensor, comprising a transmission evaluation unit (2) and a sensor head (1), in which case the transmission evaluation unit (2) can produce light at a wavelength λ, and in which case the sensor head (1) comprises a first optical fibre element (11), a second optical fibre element (12), a first phase delay element (13), a second phase delay element (14) and a sensor element (15), in which case each of the two optical fibre elements (11, 12) each has at least one major axis (x', y'), in which case each of the two phase delay elements (13, 14) each has at least one major axis (x, y), and in which case elliptically polarized light waves (6; 6') can propagate in the sensor element (15) and are subjected to a magnetooptically induced phase shift as a result of an electric current or magnetic field to be measured, with a first end (131) of the first phase delay element (13) being optically connected to the first optical fibre element (11), and a second end (132) of the first phase delay element (13) being optically connected to a first end of the sensor element (15), with a first end (141) of the second phase delay element (14) being optically connected to the second optical fibre element (12), and a second end (142) of the second phase delay element (14) being optically connected to a second end of the sensor element (15), with the transmission evaluation unit (2) being optically connected to the first optical fibre element (11) and to the second optical fibre element (12),
    with the first phase delay element (13) being designed such that its phase delay angle ρ differs from an odd-numbered multiple of 90° by an angle ε where ε ≠ 0° and -90° < ε < 90°, and with the second phase delay element (14) being designed such that its phase delay angle p' differs from an odd-numbered multiple of 90° by an angle ε' where ε' ≠ 0° and -90° < ε' < 90°, and
    with the first optical fibre element (11) being arranged relative to the first phase delay element (13) such that the at least one major axis (x', y') of the first optical fibre element (11) includes an angle which differs from 45° by an angle Δα with the at least one major axis (x, y) of the first phase delay element (13),
    characterized in that the angle Δα is defined by: 0° < Δα < 45° and in that the angle Δα is chosen as a function of at least the angles ε, ε' such that any non-linearities in the relationship between the magnetooptically induced phase shift of the elliptically polarized light waves (6; 6') and the electric current or magnetic field to be measured, which occur when the current or magnetic field is measured by means of the optical current or magnetic field sensor, are reduced by a factor of at least 3 in comparison to the situation Δα = 0°.
  11. Method for measurement of an electric current or a magnetic field, with first linearly polarized light waves (3) being produced in a transmission evaluation unit (2) and being injected into a first end (131) of a first phase delay element (13),
    with the first linearly polarized light waves (3) exciting second linearly polarized light waves (4; 4x, 4y) in the first phase delay element (13), which pass through the first phase delay element (13) and in consequence are subject to a phase shift through an angle ρ with respect to one another,
    with the second linearly polarized light waves (4; 4x, 4y) stimulating elliptically polarized light waves (6) in a sensor element (15) whose first end is connected to a second end (132) of the first phase delay element (13), which elliptically polarized light waves (6) are subjected to a magnetooptically induced phase shift produced by the electric current (I) or the magnetic field,
    with the elliptically polarized light waves (6) then being injected into a second phase delay element (14), whose second end (142) is connected to a second end of the sensor element (15),
    with the elliptically polarized light waves (6) exciting third linearly polarized light waves (5; 5x, 5y) in the second phase delay element (14), which pass through the second phase delay element (14) and in consequence are subjected to a phase shift through an angle ρ' with respect to one another,
    with the third linearly polarized light waves (5; 5x, 5y) being emitted from a first end (141) of the second phase delay element (14) and exciting fourth linearly polarized light waves (5a) which are supplied to the transmission evaluation unit (2),
    with the fourth linearly polarized light waves (5a) being detected, and the measured data being evaluated, in the transmission evaluation unit (2),
    with the angle ρ differing from an odd-numbered multiple of 90° by an angle ε, where ε ≠ 0° and -90° < ε < 90°, and with the angle ρ' differing from an odd-numbered multiple of 90° by an angle ε', where ε' ≠ 0° and -90 < ε' < 90° and
    with a polarization axis (x', y') of the first linearly polarized light waves (3) being arranged relative to a polarized axis (x, y) of the second linearly polarized light waves (4), and/or a polarization axis (x, y) of the third linearly polarized light waves (5) being arranged relative to a polarization axis (x', y') of the fourth linearly polarized light waves (5a) such that the corresponding polarization axes include an angle which differs from 45° by an angle Δα,
    characterized in that the angle Δα is defined by: 0° < Δα < 45° and in that the angle Δα is chosen as a function of at least the angles ε, ε' such that any non-linearities in the relationship between the magnetooptically induced phase shift of the elliptically polarized light waves (6; 6') and the electric current (I) or magnetic field to be measured, are less than in the situation Δα = 0°.
EP02806845A 2001-08-31 2002-08-29 Optical current sensors Expired - Lifetime EP1421393B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02806845A EP1421393B1 (en) 2001-08-31 2002-08-29 Optical current sensors

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP01810843 2001-08-31
EP01810843 2001-08-31
EP02806845A EP1421393B1 (en) 2001-08-31 2002-08-29 Optical current sensors
PCT/CH2002/000473 WO2003071290A1 (en) 2001-08-31 2002-08-29 Production method for a sensor head of optical current sensors

Publications (2)

Publication Number Publication Date
EP1421393A1 EP1421393A1 (en) 2004-05-26
EP1421393B1 true EP1421393B1 (en) 2005-01-19

Family

ID=27741098

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02806845A Expired - Lifetime EP1421393B1 (en) 2001-08-31 2002-08-29 Optical current sensors

Country Status (8)

Country Link
US (1) US20040246467A1 (en)
EP (1) EP1421393B1 (en)
JP (1) JP2005517961A (en)
CN (1) CN1549928A (en)
AT (1) ATE287541T1 (en)
AU (1) AU2002367698A1 (en)
DE (1) DE50202070D1 (en)
WO (1) WO2003071290A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE377195T1 (en) 2003-09-03 2007-11-15 Abb Research Ltd TEMPERATURE STABILIZED SENSOR COIL AND CURRENT SENSOR
EP1745300B1 (en) 2004-05-13 2017-05-31 ABB Research Ltd. Fiber optical sensor coil and current- or magnetic field sensor
CN101320055B (en) * 2007-06-06 2011-05-11 上海康阔光通信技术有限公司 Full optical fiber current sensor
CN102449491B (en) * 2009-05-25 2014-05-28 釜山大学产学协力团 Polymer optical waveguide current sensor
US20120007584A1 (en) * 2010-07-12 2012-01-12 Honeywell International Inc. Fiber current sensor with reduced temperature sensitivity
RU2627021C2 (en) 2013-03-28 2017-08-02 Абб Рисерч Лтд Fiber optic current sensor with spun fiber and temperature compensation
CN103776393B (en) * 2014-01-08 2016-04-27 浙江大学 The evaluation method of polarization maintaining optical fibre optical axis welding angular error and device
CN103954827A (en) * 2014-04-03 2014-07-30 易能乾元(北京)电力科技有限公司 Optical current sensor
CN110687337B (en) * 2019-09-17 2021-11-19 中国计量科学研究院 Self-compensating device and method for inhibiting nonlinearity of optical fiber current sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19506169A1 (en) * 1995-02-22 1996-08-29 Siemens Ag Method and arrangement for measuring a magnetic field using the Faraday effect with compensation for changes in intensity
US5987195A (en) * 1996-08-01 1999-11-16 The Texas A&M University System Fiber optics apparatus and method for accurate current sensing
DE19703128A1 (en) * 1997-01-29 1998-08-06 Abb Research Ltd Magneto-optical current sensor
DE19958600A1 (en) * 1999-12-06 2001-06-07 Abb Research Ltd Method of manufacturing a fiber optic waveguide
DE10000306B4 (en) * 2000-01-05 2012-05-24 Abb Research Ltd. Fiber optic current sensor

Also Published As

Publication number Publication date
JP2005517961A (en) 2005-06-16
AU2002367698A1 (en) 2003-09-09
DE50202070D1 (en) 2005-02-24
CN1549928A (en) 2004-11-24
EP1421393A1 (en) 2004-05-26
WO2003071290A1 (en) 2003-08-28
US20040246467A1 (en) 2004-12-09
ATE287541T1 (en) 2005-02-15

Similar Documents

Publication Publication Date Title
EP1154278B1 (en) Fibre-optic current sensor
EP0430060B1 (en) Fibre-optic current transducer
EP0011110B1 (en) Arrangement for electro-optical voltage measuring
EP1115000B1 (en) Fibre optic current sensor
DE3049033C2 (en)
EP0706662B1 (en) Optical method of measuring an alternating electrical current, including temperature compensation, and a device for carrying out the method
EP0706661B1 (en) Optical method of measuring an alternating electrical current, including temperature compensation, and a device for carrying out the method
DE19703128A9 (en) Magneto-optical current sensor
DE69208296T2 (en) Fiber optic gyroscope
DE19703128A1 (en) Magneto-optical current sensor
DE112013006884T5 (en) Fiber optic current sensor with spun fiber and temperature compensation
EP1299736A1 (en) Fiber-optic current sensor
EP0776477B1 (en) Method and device for the measurement of electric currents in at least two measurement ranges
DE2541072C3 (en) Magneto-optical transducer for the production of high voltage currents
EP1421393B1 (en) Optical current sensors
EP0356670B1 (en) Fibre-optical current sensor
EP0864098B1 (en) Process and device for measuring a quantity, in particular an electric current, with a high measurement resolution
EP0529339B1 (en) Fibre optic sensor
EP0241766A2 (en) Sensor device
DE3039235A1 (en) Pressure sensitive fibre=optic sensor e.g. hydrophone - has reacting fibre in series with optical delay line with light source coupled to one end of light path
EP1229337A1 (en) Procedure for temperaturecompensated electro-optic measuring of a voltage
CH686744A5 (en) Fiberoptic current sensor.
DE10112835B4 (en) Method and device for current measurement by means of a fiber optic in-line Sagnac interferometer and suitable phase modulator
DE69232546T2 (en) CURRENT SENSOR
DE69210774T2 (en) Optical fiber gyroscope

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040131

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: OPTICAL CURRENT SENSORS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050119

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050119

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050119

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050119

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050119

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050119

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050119

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050119

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50202070

Country of ref document: DE

Date of ref document: 20050224

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABB SCHWEIZ AG (INTELLECTUAL PROPERTY CH-LC/IP)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050419

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050419

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050430

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050426

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050812

Year of fee payment: 4

Ref country code: DE

Payment date: 20050812

Year of fee payment: 4

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050829

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20051020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060831

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060829

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060829

BERE Be: lapsed

Owner name: ABB RESEARCH LTD.

Effective date: 20050831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070829