EP1417060B1 - Casting mould and method for the production thereof - Google Patents
Casting mould and method for the production thereof Download PDFInfo
- Publication number
- EP1417060B1 EP1417060B1 EP03740129A EP03740129A EP1417060B1 EP 1417060 B1 EP1417060 B1 EP 1417060B1 EP 03740129 A EP03740129 A EP 03740129A EP 03740129 A EP03740129 A EP 03740129A EP 1417060 B1 EP1417060 B1 EP 1417060B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- binder component
- water
- particulate material
- polyamine
- binder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C1/00—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
- B22C1/16—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
- B22C1/18—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
- B22C1/185—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents containing phosphates, phosphoric acids or its derivatives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C1/00—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
- B22C1/16—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
- B22C1/167—Mixtures of inorganic and organic binding agents
Definitions
- the invention relates to a water-dispersible casting mold, in particular casting core, for the production of castings, the a water-insoluble, particulate material, in particular Foundry sand, a binder, which acts as a first binder component has at least one condensing phosphate.
- the invention further relates to a process for the preparation such a mold by a water-insoluble, Particulate material, in particular molding sand, with a binder, which as a first binder component at least having a condensed phosphate, with addition mixed by water, the mixture is shaped and at least one Part of the added free water is removed.
- Foundry cores of the aforementioned composition are known. They are usually in core boxes using core shooters manufactured for mass production.
- the core boxes are provided with corresponding mold cavities, in which Introductory openings lead, via the so-called Shooting head a water-insoluble, provided with a binder, particulate material using compressed air is injected into the mold cavities.
- particulate Material is generally molding sand, such as silica, zircon, chromite sands or the like, which are solidifiable by the binder.
- the molding sand should be a have good flowability.
- DE 195 49 469 A1 describes a casting core on the Base of solidified by means of a water-soluble binder Foundry sand, wherein as a binder phosphoric acid or condensed Phosphates, such as sodium polyphosphate and sodium hexametaphosphate, are provided.
- a binder phosphoric acid or condensed Phosphates such as sodium polyphosphate and sodium hexametaphosphate
- a casting core can be removed, which for Solidification of the molding sand a binder of a polyphosphate chains having water-soluble phosphate glass or from a water-soluble borate glass.
- the foundry core is the molding sand with the binder under Adding water mixed, the mixture in the core box shot in and the excess water by heating expelled from the mold.
- the known casting cores are water-dispersible after casting, i.e. they dissolve after immersion in water again, which eliminates the time-consuming coring.
- Another advantage of casting cores of this type is that both in the manufacture of the casting cores and the casting of the Castings as well as the coring of the castings no polluting Release substances.
- the binders used also have an inorganic chemistry, so that a burning of the binder during the casting reliably is avoided.
- the invention is based on the object of a casting mold, in particular a casting core, with a first binder component increased on the basis of condensed phosphates To give bending and abrasion resistance and temperature resistance to increase, but acceptable Cycle times in the core production to receive and none or release only small quantities of environmentally harmful substances. It is also concerned with the production of such a mold directed.
- this object is in a mold he mentioned type in that the binder as a second binder component comprises at least one polyamine.
- both the bending and the abrasion resistance of a casting mold or a casting core of a water-insoluble, particulate material and a binder based on condensed phosphates can be significantly increased even by the addition of only small amounts of polyamines, without the water dispersibility affect the cast casting core.
- bending strengths of more than 150 N / cm 2 can be achieved, reliably avoiding a failure of the casting core and resulting defective castings.
- the abrasion resistance of the casting mold or of the casting core is improved in such a way that impairments of the casting by sand particles are virtually ruled out.
- polyamines are in this context saturated or unsaturated, open-chain or cyclic organic compounds with multiple primary, secondary and / or tertiary amino groups, especially in liquid Form, meant.
- water-insoluble, particulate materials in particular any known form sands, e.g. Silica, zirconium, chromite sands or the like, or Other temperature-resistant materials, such as aluminum oxide, Aluminum silicate, quartz glass etc. in fine particulate Form, into consideration.
- sands e.g. Silica, zirconium, chromite sands or the like
- Other temperature-resistant materials such as aluminum oxide, Aluminum silicate, quartz glass etc. in fine particulate Form, into consideration.
- other can also Be provided binder components.
- polyamines such as ethylene, propylene, butylenediamines, etc. and their condensation products
- the polyamine is selected from the group of polymeric polyamines.
- the polyethyleneimines, ie branched polymers having primary, secondary and tertiary amino groups, polyvinylamines (vinylamine polymers) and / or copolymers thereof have proven to be particularly advantageous.
- the flexural strength of a foundry core of a foundry sand and a binder based on sodium polyphosphate can be almost doubled by the addition of 0.1% by mass of polyvinylamine, based on the molding sand.
- the polymeric polyamines can be provided in particular with a molecular weight between about 400 g / mol and about 10 7 g / mol.
- the chemical formulas for polyvinylamine (I) and polyethyleneimine (II) are exemplified below:
- the polyamine has a nitrogen content (N content) of between 1 and 35% by weight N / polymer unit, preferably between 10 and 33% by weight N / polymer unit, in particular between 20 and 33% by mass.
- N / polymer unit Particularly good flexural strengths of the casting core of more than 200 N / cm 2 could be achieved in particular with polymeric polyamines having a relatively high amino group density in the range of 30% by weight N / polymer unit, eg with polyvinylamines, which have a nitrogen content of up to 33% by weight. Having polymer unit and in particular with polyvinyl amines having a high proportion of free amino groups, can be achieved.
- the amount of polyamine provided as the second binder component is preferably between 0.001 and 1 mass%, in particular between 0.005 and 0.5 mass%, based on polyamine on the particulate material. It is aimed primarily according to the type of polyamine, the amount of In general, the higher the polyamine can be, the lower it can be the free amino group density of the polyamine is the binder properties in terms of bending and abrasion resistance to improve.
- the first binder component based on condensed phosphates may contain or consist entirely of polyphosphates, preferably alkali metal polyphosphates, in particular sodium polyphosphate, and / or metaphosphates, preferably alkali metal metaphosphates, in particular sodium metaphosphates, for example sodium hexametaphosphate.
- the first binder component contains or entirely consists of a water-soluble phosphate glass containing poly- and / or metaphosphate chains, wherein the phosphate glass preferably contains between 58 and 75 mass% phosphorus pentoxide (P 2 O 5 ) and between 25 and 42 Mass .-% alkali metal oxide, in particular sodium oxide (Na 2 O), having.
- the binders mentioned are known as such and ensure a quick and lump-free dissolution of the casting core when it is immersed in the finished casting in water. Another advantage of this binder is that they lead even with relatively low moisture content to an optimal mixing with the molding sand and thereby ensure a sufficient initial strength of the casting core or the mold, so that only very short drying times required and thus very short cycle times for the production possible are.
- the amount of the first binder component based on Condensed phosphates is useful between 0.25 and 25 mass%, preferably between 0.5 and 10 mass%, based on the water-insoluble, particulate material.
- the invention is characterized by at least one additive, preferably in the form of sulfates, carbonates and / or nitrates from the group of alkali metals and / or alkaline earth metals, such as alkali metal carbonates, in particular sodium carbonate (Na 2 CO 3 ).
- alkali metal carbonates in particular sodium carbonate (Na 2 CO 3 ).
- alkali metal carbonates increases the dispersibility of the casting core in water and thus facilitates the gutting of the finished casting.
- the molding material mixture for the mold or the Casting core usually still has a moisture content between 0.01 and 35 mass%, in particular between 0.1 and 5 mass%. After drying, the moisture content is the casting mold or the casting core usually about 0.01 mass% or less.
- the method according to the invention is characterized that a second binder component based on at least a polyamine is added.
- a second binder component based on at least a polyamine is added.
- a preferred embodiment provides that the second binder component in liquid form with the particulate Material brought into contact and then the first binder component is added in dry form, the Mixture of water is added.
- the second binder component may be in the liquid phase or as particular aqueous solution are present. Unless an aggregate, such as Alkali metal carbonates, this may be in the dissolved the mixture added water and the solution of Mixture be added.
- Another preferred embodiment provides that the first Binder component dry with the particulate material mixed and then an aqueous solution with the second Binder component is added, again, if desired, the aggregate before adding the solution in this can be solved.
- the binder and optionally the aggregate dissolved in water and the solution with the particulate material is brought into contact.
- the most homogeneous possible distribution of the water-soluble binder and optionally the additive can be achieved with the particulate material.
- the mixture first dried to a predetermined residual moisture, the mixture then added water again and formed the mixture is at least a portion of the added free Water is removed again.
- the mixture may preferably initially to a predetermined residual moisture of about 0.1 mass .-% are dried. Let that way the cycle times for the preparation of the invention Further reduce the casting mold or the casting core by the Total amount of added water can be reduced.
- the dried to a predetermined residual moisture Formstoffmischung well storable and by the re-addition of water easily processable.
- the casting mold or the casting core after the Shaping appropriate to a residual moisture content of about 0.01 wt .-% based on the particulate material dried.
- Composition A A:
- Composition B is a composition of Composition B:
- composition A For the preparation of the casting core according to composition A was dry mixed with the molding sand of the binder.
- the casting core according to composition B became the second Binder component in dissolved form homogeneous with the molding sand mixed and the mixture then the first binder component mixed dry. Subsequently, each about 1.4 Mass .-% water based on the foundry sand added.
- the Molding compound mixture was injected in each case in a core box and to a residual moisture content of about 0.01 mass% dried.
- the casting cores produced in this way were different Service life t on their flexural strength ⁇ examined.
- the flexural strength of the casting core can be improved by the Addition of only small amounts (0.1% by mass based on the Molding sand) of polyvinylamine are practically doubled.
- Composition B according to Example 1 (molding sand, 2% by mass of sodium polyphosphate (binder component 1), 0.1% by mass of liquid polyvinylamine (binder component 2) and 1.4% by mass of moisture, based in each case on the molding sand) was used Increasing the temperature resistance additionally added sodium carbonate (Na 2 CO 3 ) as an additive. Casting cores were produced from the resultant molding material mixture in the manner described above and these were examined for their bending strength ⁇ after various service lives t.
- the example shows that the bending strength of the casting core is not impaired by the addition of Na 2 CO 3 .
- the addition of Na 2 CO 3 gives the casting core a significantly better temperature resistance, so that it is suitable for example for the production of aluminum castings with a casting temperature of about 800 ° C, with deformations of the casting core during the casting process safely and reliably avoided.
- the addition of Na 2 CO 3 increases the water solubility of the foundry core, thus facilitating gutting of the finished casting.
- the example makes it clear that the molding material mixture a good storability identifies and still several hours dried after the mixing process to form the casting core can be.
- polyethylenimines A, B
- polyethylenimines A, B
- polyethyleneimines with a molecular weight of about 2000 g / mol (A) or 750,000 g / mol (B).
- polyvinylamines (C, D, E) used with a molecular weight of about 400,000 g / mol, which is due to the proportion of free amino groups differ, which in turn corresponds to the degree of hydrolysis.
- the polyvinylamine (C) has the highest degree of hydrolysis, the polyvinylamine (E) a lower contrast Degree of hydrolysis and the polyvinylamine (D) the lowest Degree of hydrolysis of polyvinylamines (C, D, E).
- the production of the cores was done according to the example 1 described method. Then they were like that produced casting cores after different service lives t examined for their bending strength ⁇ .
- the molding material mixtures were injected into a core box after different storage times t 1 of 0, 1, 2 and 3 h and dried.
- the best values for the flexural strength of the casting core were obtained after a storage time t 1 of the molding material mixture of one hour, the mixture also being obtained immediately or at least three hours after mixing the but slightly poorer flexural strength Single component was processable, so that also here a good shelf life was found.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Mold Materials And Core Materials (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- External Artificial Organs (AREA)
Abstract
Description
Die Erfindung betrifft eine wasserdispergierbare Gießform, insbesondere Gießkern, zur Herstellung von Gussstücken, die ein wasserunlösliches, partikelförmiges Material, insbesondere Formsand, einen Binder, welcher als eine erste Binderkomponente wenigstens ein kondensierendes Phosphat aufweist. Die Erfindung betrifft ferner ein Verfahren zur Herstellung einer solchen Gießform, indem ein wasserunlösliches, partikelförmiges Material, insbesondere Formsand, mit einem Binder, welcher als eine erste Binderkomponente wenigstens ein kondensiertes Phosphat aufweist, unter Zugabe von Wasser gemischt, die Mischung geformt und zumindest ein Teil des zugesetzten freien Wassers entfernt wird.The invention relates to a water-dispersible casting mold, in particular casting core, for the production of castings, the a water-insoluble, particulate material, in particular Foundry sand, a binder, which acts as a first binder component has at least one condensing phosphate. The invention further relates to a process for the preparation such a mold by a water-insoluble, Particulate material, in particular molding sand, with a binder, which as a first binder component at least having a condensed phosphate, with addition mixed by water, the mixture is shaped and at least one Part of the added free water is removed.
Gießkerne der vorgenannten Zusammensetzung sind bekannt. Sie werden in der Regel in Kernkästen mittels Kernschießmaschinen für die Serienfertigung hergestellt. Die Kernkästen sind mit entsprechenden Formhohlräumen versehen, in welche Einführöffnungen münden, über die aus einem sogenannten Schießkopf ein mit einem Binder versehenes wasserunlösliches, partikelförmiges Material unter Einsatz von Druckluft in die Formhohlräume eingeschossen wird. Bei dem partikelförmigen Material handelt es sich im allgemeinen um Formsande, wie Silica-, Zirkon-, Chromitsande oder dergleichen, welche durch den Binder verfestigbar sind. Zur Herstellung von Kernen mit komplexer Geometrie sollte der Formsand eine gute Fließfähigkeit aufweisen.Foundry cores of the aforementioned composition are known. They are usually in core boxes using core shooters manufactured for mass production. The core boxes are provided with corresponding mold cavities, in which Introductory openings lead, via the so-called Shooting head a water-insoluble, provided with a binder, particulate material using compressed air is injected into the mold cavities. At the particulate Material is generally molding sand, such as silica, zircon, chromite sands or the like, which are solidifiable by the binder. For the production of cores with complex geometry, the molding sand should be a have good flowability.
Als Binder für den Formsand wurden herkömmlich flüssige Kunstharze sowie zusätzliche Additive eingesetzt. Um die Nachteile von Kunstharzbindern - Entstehung gesundheitsschädlicher Dämpfe bei der Herstellung, teilweises Verbrennen des Binders beim Gießen, aufwendiges Entkernen, Entsorgung des Kernaltsändes - zu vermeiden, wurde schon die Verwendung von zumindest in gewissem Umfang wasserlöslichen anorganischen Bindern vorgeschlagen.As binders for the molding sand were conventionally liquid Synthetic resins and additional additives used. To the Disadvantages of synthetic resin binders - formation harmful to health Vapors during production, partial burning the binder when pouring, elaborate coring, disposal of the Kernaltsändes - to avoid, was already the use of at least some water-soluble proposed inorganic binders.
So beschreibt die DE 195 49 469 A1 einen Gießkern auf der Basis von mittels eines wasserlöslichen Binders verfestigtem Formsand, wobei als Binder Phosphorsäure oder kondensierte Phosphate, wie Natriumpolyphosphat und Natriumhexametaphosphat, vorgesehen sind.Thus, DE 195 49 469 A1 describes a casting core on the Base of solidified by means of a water-soluble binder Foundry sand, wherein as a binder phosphoric acid or condensed Phosphates, such as sodium polyphosphate and sodium hexametaphosphate, are provided.
Der WO 92/06808 Al ist ein Gießkern entnehmbar, welcher zur Verfestigung des Formsandes einen Binder aus einem Polyphosphatketten aufweisenden, wasserlöslichen Phosphatglas oder aus einem wasserlöslichen Boratglas aufweist. Zur Herstellung des Gießkerns wird der Formsand mit dem Binder unter Zugabe von Wasser gemischt, die Mischung in den Kernkasten eingeschossen und das überschüssige Wasser durch Erhitzen aus der Gießform ausgetrieben.WO 92/06808 Al, a casting core can be removed, which for Solidification of the molding sand a binder of a polyphosphate chains having water-soluble phosphate glass or from a water-soluble borate glass. For the production the foundry core is the molding sand with the binder under Adding water mixed, the mixture in the core box shot in and the excess water by heating expelled from the mold.
Die bekannten Gießkerne sind nach dem Abgießen wasserdispergierbar, d.h. sie lösen sich nach Eintauchen in Wasser wieder auf, wodurch das aufwändige Entkernen entfällt. Vorteilhaft bei Gießkernen dieser Art ist weiterhin, dass sowohl beim Herstellen der Gießkerne und beim Abgießen der Gussstücke als auch beim Entkernen der Gussstücke keine umweltschädlichen Stoffe freiwerden. Die eingesetzten Binder weisen ferner einen anorganischen Chemismus auf, so dass ein Verbrennen des Binders beim Gießvorgang zuverlässig vermieden wird.The known casting cores are water-dispersible after casting, i.e. they dissolve after immersion in water again, which eliminates the time-consuming coring. Another advantage of casting cores of this type is that both in the manufacture of the casting cores and the casting of the Castings as well as the coring of the castings no polluting Release substances. The binders used also have an inorganic chemistry, so that a burning of the binder during the casting reliably is avoided.
Es hat sich jedoch gezeigt, dass Binder der vorgenannten Art dem Gießkern eine für viele Anwendungen nur unzureichende Biegefestigkeit verleihen. Folglich kann sich der Gießkern bei der Entnahme oder bei der Lagerung nach dem Formen, beim Einsetzen in die Gießform oder beim Gießvorgang verformen oder gar brechen, so dass die erhaltenen Gussstücke fehlerhaft sein können und als Ausschussteile anfallen. Darüber hinaus weisen Gießkerne dieser Art häufig eine ungenügende Abriebfestigkeit auf, wodurch sich beim Abgießen Sandkörner an der Oberfläche des Gießkerns ablösen und zu einer rauhen Oberfläche und/oder zu Sandverunreinigungen des Gussstücks führen. Beim Einsatz eines Binders auf der Basis von reinen kondensierten Phosphaten kommt hinzu, dass der Binder eine für Legierungen mit verhältnismäßig hohem Schmelzpunkt nur unzureichende Temperaturbeständigkeit aufweist, so dass die Herstellung von Gussstücken aus solchen Legierungen nicht möglich ist. Dem Auftreten der genannten Nachteile kann insbesondere auch durch Variation der Verfahrensparameter bei der Herstellung des Gießkerns, wie der Zusammensetzung des Gießkerns, der Trocknungstemperatur, dem Restwasseranteil etc., nicht wirkungsvoll begegnet werden.However, it has been shown that binder of the aforementioned Kind the casting core one for many applications only inadequate Give flexural strength. Consequently, the Foundry core during removal or storage after Shapes, when inserted into the mold or during the casting process deform or even break, leaving the obtained Castings can be faulty and as scrap parts attack. In addition, foundry cores of this type often insufficient abrasion resistance, resulting in the Drain off Sand grains on the surface of the casting core and a rough surface and / or sand contamination lead the casting. When using a binder comes on the basis of pure condensed phosphates added that the truss one for alloys with relative high melting point only insufficient temperature resistance so that the production of castings from such alloys is not possible. The occurrence the disadvantages mentioned can in particular by Variation of process parameters in the production of Gießkerns, such as the composition of the casting core, the Drying temperature, the residual water content, etc., not effective be countered.
Der Erfindung liegt die Aufgabe zugrunde, einer Gießform, insbesondere einem Gießkern, mit einer ersten Binderkomponente auf der Basis von kondensierten Phosphaten eine erhöhte Biege- und Abriebfestigkeit zu verleihen und die Temperaturbeständigkeit zu erhöhen, dabei aber akzeptable Taktzeiten bei der Kernherstellung zu erhalten und keine oder nur geringe Mengen umweltschädlicher Stoffe freizusetzen. Sie ist ferner auf die Herstellung einer solchen Gießform gerichtet.The invention is based on the object of a casting mold, in particular a casting core, with a first binder component increased on the basis of condensed phosphates To give bending and abrasion resistance and temperature resistance to increase, but acceptable Cycle times in the core production to receive and none or release only small quantities of environmentally harmful substances. It is also concerned with the production of such a mold directed.
Erfindungsgemäß wird diese Aufgabe bei einer Gießform er eingangs genannten Art dadurch gelöst, dass der Binder als eine zweite Binderkomponente wenigstens ein Polyamin aufweist.According to the invention this object is in a mold he mentioned type in that the binder as a second binder component comprises at least one polyamine.
Überraschenderweise wurde gefunden, dass sich sowohl die Biege- als auch die Abriebfestigkeit einer Gießform oder eines Gießkerns aus einem wasserunlöslichen, partikelförmigen Material und einem Binder auf der Basis von kondensierten Phosphaten bereits durch den Zusatz nur geringer Mengen an Polyaminen signifikant erhöhen lassen, ohne die Wasserdispergierbarkeit des abgegossenen Gießkerns zu beeinträchtigen. Auf diese Weise lassen sich Biegefestigkeiten von mehr als 150 N/cm2 erzielen, die ein Versagen des Gießkerns und hieraus resultierende fehlerhafte Gussstücke zuverlässig vermeiden. Zugleich wird die Abriebfestigkeit der Gießform bzw. des Gießkerns derart verbessert, dass Beeinträchtigungen des Gussstückes durch Sandpartikel praktisch ausgeschlossen sind.Surprisingly, it has been found that both the bending and the abrasion resistance of a casting mold or a casting core of a water-insoluble, particulate material and a binder based on condensed phosphates can be significantly increased even by the addition of only small amounts of polyamines, without the water dispersibility affect the cast casting core. In this way, bending strengths of more than 150 N / cm 2 can be achieved, reliably avoiding a failure of the casting core and resulting defective castings. At the same time, the abrasion resistance of the casting mold or of the casting core is improved in such a way that impairments of the casting by sand particles are virtually ruled out.
Es wird vermutet, dass die polaren Aminogruppen der erfindungsgemäßen zweiten Binderkomponente auf der Basis von Polyaminen mit den polaren Phosphatgruppen der ersten Binderkomponente auf der Basis von kondensierten Phosphaten in Wechselwirkung treten und deren Bindereigenschaften dadurch verbessern. Mit "Polyaminen" sind in diesem Zusammenhang gesättigte oder ungesättigte, offenkettige oder cyclische organische Verbindungen mit mehreren primären, sekundären und/oder tertiären Aminogruppen, insbesondere in flüssiger Form, gemeint. Als wasserunlösliche, partikelförmige Materialien kommen insbesondere beliebige bekannte Formsande, z.B. Silica-, Zirkon-, Chromitsande oder dergleichen, oder auch andere temperaturbeständige Materialien, wie Aluminiumoxid, Aluminiumsilikat, Quarzglas etc. in feinpartikulärer Form, in Betracht. Selbstverständlich können auch weitere Binderkomponenten vorgesehen sein.It is believed that the polar amino groups of the inventive second binder component based on polyamines with the polar phosphate groups of the first binder component based on condensed phosphates in Interaction and their binding properties thereby improve. With "polyamines" are in this context saturated or unsaturated, open-chain or cyclic organic compounds with multiple primary, secondary and / or tertiary amino groups, especially in liquid Form, meant. As water-insoluble, particulate materials in particular any known form sands, e.g. Silica, zirconium, chromite sands or the like, or Other temperature-resistant materials, such as aluminum oxide, Aluminum silicate, quartz glass etc. in fine particulate Form, into consideration. Of course, other can also Be provided binder components.
Während grundsätzlich auch niedermolekulare Polyamine, wie Ethylen-, Propylen-, Butylendiamine etc. sowie deren Kondensationsprodukte, als zweite Binderkomponente vorgesehen sein können, sieht eine bevorzugte Ausführung vor, dass das Polyamin aus der Gruppe der polymeren Polyamine gewählt ist. Hierunter haben sich insbesondere die Polyethylenimine, also verzweigte Polymere mit primären, sekundären und tertiären Aminogruppen, Polyvinylamine (Vinylamin-Polymere) und/oder deren Copolymere als besonders vorteilhaft erwiesen. So lässt sich beispielsweise die Biegefestigkeit eines Gießkerns aus einem Formsand und einem Binder auf der Basis von Natriumpolyphosphat durch den Zusatz von 0,1 Mass.-% Polyvinylamin bezogen auf den Formsand nahezu verdoppeln. Die polymeren Polyamine können insbesondere mit einer Molmasse zwischen etwa 400 g/mol und etwa 107 g/mol vorgesehen sein. Nachstehend sind die chemischen Formeln für Polyvinylamin (I) und Polyethylenimin (II) beispielhaft wiedergegeben: While in principle also low molecular weight polyamines, such as ethylene, propylene, butylenediamines, etc. and their condensation products, may be provided as the second binder component, a preferred embodiment provides that the polyamine is selected from the group of polymeric polyamines. Of these, in particular the polyethyleneimines, ie branched polymers having primary, secondary and tertiary amino groups, polyvinylamines (vinylamine polymers) and / or copolymers thereof have proven to be particularly advantageous. Thus, for example, the flexural strength of a foundry core of a foundry sand and a binder based on sodium polyphosphate can be almost doubled by the addition of 0.1% by mass of polyvinylamine, based on the molding sand. The polymeric polyamines can be provided in particular with a molecular weight between about 400 g / mol and about 10 7 g / mol. The chemical formulas for polyvinylamine (I) and polyethyleneimine (II) are exemplified below:
In bevorzugter Ausführung ist vorgesehen, dass das Polyamin einen Stickstoffanteil (N-Anteil) zwischen 1 und 35 Mass.-% N/Polymereinheit, vorzugsweise zwischen 10 und 33 Mass.-% N/Polymereinheit, insbesondere zwischen 20 und 33 Mass.-% N/Polymereinheit, aufweist. Besonders gute Biegefestigkeiten des Gießkern von über 200 N/cm2 konnten insbesondere mit polymeren Polyaminen mit verhältnismäßig hoher Aminogruppendichte im Bereich von 30 Mass.-% N/Polymereinheit, z.B. mit Polyvinylaminen, welche einen Stickstoffanteil von bis zu 33 Mass.-% N/Polymereinheit aufweisen und insbesondere mit Polyvinylaminen mit einem hohen Anteil an freien Aminogruppen, erzielt werden.In a preferred embodiment, it is provided that the polyamine has a nitrogen content (N content) of between 1 and 35% by weight N / polymer unit, preferably between 10 and 33% by weight N / polymer unit, in particular between 20 and 33% by mass. N / polymer unit. Particularly good flexural strengths of the casting core of more than 200 N / cm 2 could be achieved in particular with polymeric polyamines having a relatively high amino group density in the range of 30% by weight N / polymer unit, eg with polyvinylamines, which have a nitrogen content of up to 33% by weight. Having polymer unit and in particular with polyvinyl amines having a high proportion of free amino groups, can be achieved.
Die Menge des als zweite Binderkomponente vorgesehenen Polyamins beträgt bevorzugt zwischen 0,001 und 1 Mass.-%, insbesondere zwischen 0,005 und 0,5 Mass.-%, Polyamin bezogen auf das partikelförmige Material. Sie richtet sich vornehmlich nach der Art des Polyamins, wobei die Menge des Polyamins im allgemeinen um so geringer sein kann, je höher die freie Aminogruppendichte des Polyamins ist, um die Bindereigenschaften hinsichtlich Biege- und Abriebfestigkeit zu verbessern.The amount of polyamine provided as the second binder component is preferably between 0.001 and 1 mass%, in particular between 0.005 and 0.5 mass%, based on polyamine on the particulate material. It is aimed primarily according to the type of polyamine, the amount of In general, the higher the polyamine can be, the lower it can be the free amino group density of the polyamine is the binder properties in terms of bending and abrasion resistance to improve.
Die erste Binderkomponente auf der Basis von kondensierten Phosphaten kann Polyphosphate, vorzugsweise Alkalimetallpolyphosphate, insbesondere Natriumpolyphosphat, und/oder Metaphosphate, vorzugsweise Alkalimetallmetaphosphate, insbesondere Natriummetaphosphate, z.B. Natriumhexametaphosphat, enthalten oder gänzlich hieraus bestehen. Des weiteren kann vorgesehen sein, dass die erste Binderkomponente ein Poly- und/oder Metaphosphatketten enthaltendes, wasserlösliches Phosphatglas enthält oder gänzlich hieraus besteht, wobei das Phosphatglas bevorzugt zwischen 58 und 75 Mass.-% Phosphorpentoxid (P2O5) und zwischen 25 und 42 Mass.-% Alkalimetalloxid, insbesondere Natriumoxid (Na2O), aufweist. Die genannten Binder sind als solche bekannt und sorgen für ein schnelles und klumpenfreies Auflösen des Gießkerns, wenn dieser mit dem fertigen Gussstück in Wasser getaucht wird. Ein weiterer Vorteil dieser Binder liegt darin, dass sie schon bei verhältnismäßig geringem Feuchteanteil zu einer optimalen Vermischung mit dem Formsand führen und dabei eine hinreichende Anfangsfestigkeit des Gießkerns bzw. der Gießform gewährleisten, so dass nur sehr kurze Trocknungszeiten erforderlich und somit sehr kurze Taktzeiten zur Herstellung möglich sind.The first binder component based on condensed phosphates may contain or consist entirely of polyphosphates, preferably alkali metal polyphosphates, in particular sodium polyphosphate, and / or metaphosphates, preferably alkali metal metaphosphates, in particular sodium metaphosphates, for example sodium hexametaphosphate. Furthermore, it can be provided that the first binder component contains or entirely consists of a water-soluble phosphate glass containing poly- and / or metaphosphate chains, wherein the phosphate glass preferably contains between 58 and 75 mass% phosphorus pentoxide (P 2 O 5 ) and between 25 and 42 Mass .-% alkali metal oxide, in particular sodium oxide (Na 2 O), having. The binders mentioned are known as such and ensure a quick and lump-free dissolution of the casting core when it is immersed in the finished casting in water. Another advantage of this binder is that they lead even with relatively low moisture content to an optimal mixing with the molding sand and thereby ensure a sufficient initial strength of the casting core or the mold, so that only very short drying times required and thus very short cycle times for the production possible are.
Die Menge der ersten Binderkomponente auf der Basis von kondensierten Phosphaten beträgt zweckmäßig zwischen 0,25 und 25 Mass.-%, vorzugsweise zwischen 0,5 und 10 Mass.-%, bezogen auf das wasserunlösliche, partikelförmige Material.The amount of the first binder component based on Condensed phosphates is useful between 0.25 and 25 mass%, preferably between 0.5 and 10 mass%, based on the water-insoluble, particulate material.
In Weiterbildung ist die Erfindung gekennzeichnet durch mindestens einen Zuschlagstoff, vorzugsweise in Form von Sulfaten, Carbonaten und/oder Nitraten aus der Gruppe der Alkalimetalle und/oder Erdalkalimetalle, wie Alkalimetallcarbonate, insbesondere Natriumcarbonat (Na2CO3). Überraschenderweise wurde gefunden, dass ein solcher Zuschlagstoff zu einer wesentlichen Verbesserung der Temperaturbeständigkeit der Gießform bzw. des Gießkerns auf einen Wert über 800°C beiträgt, so dass das Gießen von Legierungen mit relativ hohem Schmelzpunkt, z.B. Aluminiumlegierungen, sowie von thermoplastischen Kunststoffen aus hochschmelzenden Polymeren möglich wird, ohne dass Deformationen der Gießform bzw. des Gießkerns beim Gießvorgang auftreten. Ferner wurde festgestellt, dass ein Anteil an Alkalimetallcarbonaten die Dispergierbarkeit des Gießkerns in Wasser erhöht und die Entkernung des fertigen Gussstücks somit erleichtert. Je nach der geforderten Temperaturbeständigkeit sind zweckmäßig zwischen 20 und 90 Mass.-%, insbesondere zwischen 30 und 85 Mass.-%, Alkalimetallcarbonat bezogen auf die erste Binderkomponente auf der Basis von kondensierten Phosphaten vorgesehen.In a further development, the invention is characterized by at least one additive, preferably in the form of sulfates, carbonates and / or nitrates from the group of alkali metals and / or alkaline earth metals, such as alkali metal carbonates, in particular sodium carbonate (Na 2 CO 3 ). Surprisingly, it has been found that such an additive contributes to a substantial improvement in the temperature resistance of the casting mold or the core to a value above 800 ° C, so that the casting of alloys with a relatively high melting point, for example aluminum alloys, as well as thermoplastics from high-melting polymers becomes possible without deformations of the mold or the casting core occur during the casting process. It has also been found that a proportion of alkali metal carbonates increases the dispersibility of the casting core in water and thus facilitates the gutting of the finished casting. Depending on the required temperature resistance, it is expedient to provide between 20 and 90% by weight, in particular between 30 and 85% by weight, of alkali metal carbonate, based on the first binder component based on condensed phosphates.
Zusätzlich zu dem wasserunlöslichen, partikelförmigen Material, wie Formsand, dem sowohl kondensierte Phosphate als auch Polyamine enthaltenden Binder und gegebenenfalls dem Zuschlagstoff, insbesondere den Alkalimetallcarbonaten, enthält die Formstoffmischung für die Gießform bzw. den Gießkern in der Regel noch einen Feuchtigkeitsanteil zwischen 0,01 und 35 Mass.-%, insbesondere zwischen 0,1 und 5 Mass.-%. Nach der Trocknung beträgt der Feuchtigkeitsanteil der Gießform bzw. des Gießkerns in der Regel etwa 0,01 Mass.-% oder weniger.In addition to the water-insoluble, particulate material, as foundry sand containing both condensed phosphates as also polyamine-containing binder and optionally the Aggregate, in particular the alkali metal carbonates, contains the molding material mixture for the mold or the Casting core usually still has a moisture content between 0.01 and 35 mass%, in particular between 0.1 and 5 mass%. After drying, the moisture content is the casting mold or the casting core usually about 0.01 mass% or less.
Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, dass eine zweite Binderkomponente auf der Basis wenigstens eines Polyamins zugesetzt wird. Dabei werden vorzugsweise die oben beschriebenen Arten an erster und zweiter Binderkomponente und gegebenenfalls an Zuschlagstoffen in der oben beschriebenen Menge eingesetzt.The method according to the invention is characterized that a second binder component based on at least a polyamine is added. These are preferably the types of first and second binder components described above and optionally aggregates in the above used amount described.
Eine bevorzugte Ausführung sieht vor, dass die zweite Binderkomponente in flüssiger Form mit dem partikelförmigen Material in Kontakt gebracht und sodann die erste Binderkomponente in trockener Form beigemischt wird, wobei der Mischung Wasser zugesetzt wird. Die zweite Binderkomponente kann dabei in der Flüssigphase oder auch als insbesondere wässrige Lösung vorliegen. Sofern ein Zuschlagstoff, wie Alkalimetallcarbonate, erwünscht ist, kann dieser in dem der Mischung zugesetzten Wasser gelöst und die Lösung der Mischung zugesetzt werden.A preferred embodiment provides that the second binder component in liquid form with the particulate Material brought into contact and then the first binder component is added in dry form, the Mixture of water is added. The second binder component may be in the liquid phase or as particular aqueous solution are present. Unless an aggregate, such as Alkali metal carbonates, this may be in the dissolved the mixture added water and the solution of Mixture be added.
Eine andere bevorzugte Ausführung sieht vor, dass die erste Binderkomponente trocken mit dem partikelförmigen Material gemischt und sodann eine wässrige Lösung mit der zweiten Binderkomponente zugesetzt wird, wobei auch hier, falls erwünscht, der Zuschlagstoff vor dem Zusetzen der Lösung in dieser gelöst werden kann. Another preferred embodiment provides that the first Binder component dry with the particulate material mixed and then an aqueous solution with the second Binder component is added, again, if desired, the aggregate before adding the solution in this can be solved.
Alternativ ist es möglich, dass der Binder und gegebenenfalls der Zuschlagstoff in Wasser gelöst und die Lösung mit dem partikelförmigen Material in Kontakt gebracht wird. In jedem Fall sollte eine möglichst homogene Verteilung des wasserlöslichen Binders und gegebenenfalls des Zuschlagstoffs mit dem partikelförmigen Material erzielt werden.Alternatively, it is possible that the binder and optionally the aggregate dissolved in water and the solution with the particulate material is brought into contact. In In any case, the most homogeneous possible distribution of the water-soluble binder and optionally the additive can be achieved with the particulate material.
Zweckmäßig werden bis zu 35 Mass.-% Wasser bezogen auf das partikelförmige Material zugesetzt und wird die Gießform bzw. der Gießkern nach der Formgebung z.B. bis auf eine Restfeuchte von etwa 0,01 Mass.-% bezogen auf das partikelförmige Material getrocknet. Die eingesetzte Wassermenge wird vorzugsweise möglichst gering gehalten, um für kurze Taktzeiten bei der Herstellung zu sorgen, die wiederum maßgeblich von der Trocknungszeit abhängen. Andererseits lässt sich die Biegefestigkeit der Gießform bzw. des Gießkerns durch den Wasseranteil in gewissen Grenzen beeinflussen und sorgt der Wasseranteil für die erforderliche Fließfähigkeit der Mischung beim Einschießen in den Formkasten. Es hat sich als vorteilhaft erwiesen, zwischen 0,1 und 5 Mass.-%, insbesondere zwischen etwa 0,1 und 3 Mass.-%, Wasser bezogen auf das partikelförmige Material zuzusetzen, um für kurze Taktzeiten bei einer zufriedenstellenden Fließfähigkeit der Formstoffmischung zu sorgen.Appropriately, up to 35 Mass .-% of water based on the added particulate material and becomes the casting mold or the casting core after molding, e.g. except one Residual moisture content of about 0.01% by weight based on the particulate Dried material. The amount of water used is preferably kept as low as possible for short Cycle times in the production to ensure, in turn, significantly depend on the drying time. On the other hand lets the flexural strength of the casting mold or of the casting core within certain limits and influence by the water content the water content ensures the required flowability the mixture when shooting into the box. It has proved to be advantageous between 0.1 and 5 mass%, in particular between about 0.1 and 3% by weight, based on water to add to the particulate material for short cycle times with a satisfactory flowability to provide the molding material mixture.
In Weiterbildung ist vorgesehen, dass die Mischung zunächst bis auf eine vorgegebene Restfeuchte getrocknet, der Mischung sodann wieder Wasser zugesetzt und die Mischung geformt wird, wobei zumindest ein Teil des zugesetzten freien Wassers wieder entfernt wird. Die Mischung kann dabei vorzugsweise zunächst bis auf eine vorgegebene Restfeuchte von etwa 0,1 Mass.-% getrocknet werden. Auf diese Weise lassen sich die Taktzeiten zur Herstellung der erfindungsgemäßen Gießform bzw. des Gießkerns weiter verringern, indem der Gesamtanteil des zugesetzten Wassers reduziert werden kann. In further training it is provided that the mixture first dried to a predetermined residual moisture, the mixture then added water again and formed the mixture is at least a portion of the added free Water is removed again. The mixture may preferably initially to a predetermined residual moisture of about 0.1 mass .-% are dried. Let that way the cycle times for the preparation of the invention Further reduce the casting mold or the casting core by the Total amount of added water can be reduced.
Ferner ist die bis auf eine vorgegebene Restfeuchte getrocknete Formstoffmischung gut lagerfähig und durch das erneute Zusetzen von Wasser leicht verarbeitbar. Auch in diesem Fall wird die Gießform bzw. der Gießkern nach der Formgebung zweckmäßig bis auf eine Restfeuchte von etwa 0,01 Mass.-% bezogen auf das partikelförmige Material getrocknet.Furthermore, the dried to a predetermined residual moisture Formstoffmischung well storable and by the re-addition of water easily processable. Also in In this case, the casting mold or the casting core after the Shaping appropriate to a residual moisture content of about 0.01 wt .-% based on the particulate material dried.
Nachstehend ist die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen näher erläutert. Dabei zeigen:
- Fig. 1
- ein Diagramm zur Veranschaulichung der Biegefestigkeit
σ eines Gießkerns mit einem Natriumpolyphosphatbinder
ohne Zusatz von Polyaminen (A) und
0,1 Mass.-% Polyvinylamin (B) zu verschiedenen Standzeiten t;mit Zusatz von - Fig. 2
- ein Vergleichsdiagramm zur Veranschaulichung der Biegefestigkeit σ eines Gießkerns mit einem Binder ausschließlich aus Polyvinylamin zu verschiedenen Standzeiten t;
- Fig. 3
- ein Diagramm zur Veranschaulichung der Biegefestigkeit σ eines Gießkerns der Zusammensetzung (B) gemäß Fig. 1, welcher zusätzlich einen Zuschlagstoff in Form von Natriumcarbonat enthält, zu verschiedenen Standzeiten t;
- Fig. 4
- ein Diagramm zur Veranschaulichung der Biegefestigkeit σ eines Gießkerns der Zusammensetzung gemäß Fig. 3 nach verschiedenen Lagerzeiten t1 der Formstoffmischung und nach verschiedenen Standzeiten t2;
- Fig. 5
- ein Diagramm zur Veranschaulichung der Biegefestigkeit σ je eines Gießkerns mit einem Binder aus Natriumpolyphosphat und verschiedenen Polyaminen mit unterschiedlicher Aminogruppendichte (A, B, C, D, E) zu verschiedenen Standzeiten t und
- Fig. 6
- ein Diagramm zur Veranschaulichung der Biegefestigkeit σ je eines Gießkerns mit den Zusammensetzungen (A, B, C, D, E) gemäß Fig. 5 nach verschiedenen Lagerzeiten t1 der Formstoffmischung und nach verschiedenen Standzeiten t2.
- Fig. 1
- a diagram illustrating the bending strength σ of a casting core with a Natriumpolyphosphatbinder without the addition of polyamines (A) and with the addition of 0.1 Mass .-% polyvinylamine (B) at different service lives t;
- Fig. 2
- a comparison diagram illustrating the bending strength σ of a casting core with a binder exclusively of polyvinylamine at different service lives t;
- Fig. 3
- a diagram illustrating the bending strength σ of a casting core of the composition (B) of Figure 1, which additionally contains an additive in the form of sodium carbonate, at different service lives t;
- Fig. 4
- a diagram illustrating the bending strength σ of a casting core of the composition of Figure 3 after different storage times t 1 of the molding material mixture and after different service life t 2 .
- Fig. 5
- a diagram illustrating the flexural strength σ each of a casting core with a binder of sodium polyphosphate and various polyamines with different amino group density (A, B, C, D, E) at different service lives t and
- Fig. 6
- a diagram for illustrating the bending strength σ depending on a casting core having the compositions (A, B, C, D, E) of Fig. 5 after different storage times t 1 of the molding mixture and after various periods t2.
Es wurden jeweils Gießkerne mit den folgenden Zusammensetzungen hergestellt.Each casting cores were made with the following compositions produced.
- Formsand,Molding sand,
- 2 Mass.-% Natriumpolyphosphat bezogen auf den Formsand (Binder),2 Mass .-% sodium polyphosphate based on the molding sand (Binder),
- 1,4 Mass.-% Feuchtigkeit bezogen auf den Formsand;1.4% by mass of moisture based on the foundry sand;
- Formsand,Molding sand,
- 2 Mass.-% Natriumpolyphosphat (Binderkomponente 1) bezogen auf den Formsand2 Mass .-% sodium polyphosphate (binder component 1) based on the molding sand
- 0,1 Mass.-% flüssiges Polyvinylamin (Binderkomponente 2) bezogen auf den Formsand, 0.1% by mass of liquid polyvinylamine (binder component 2) based on the molding sand,
- 1,4 Mass.-% Feuchtigkeit bezogen auf den Formsand.1.4 Mass .-% moisture based on the molding sand.
Zur Herstellung des Gießkerns gemäß Zusammensetzung A wurde dem Formsand der Binder trocken beigemischt. Zur Herstellung des Gießkerns gemäß Zusammensetzung B wurde die zweite Binderkomponente in gelöster Form homogen mit dem Formsand vermischt und der Mischung sodann die erste Binderkomponente trocken beigemischt. Anschließend wurden jeweils ca. 1,4 Mass.-% Wasser bezogen auf den Formsand zugesetzt. Die Formstoffmischung wurde jeweils in einen Kernkasten eingeschossen und bis auf eine Restfeuchte von etwa 0,01 Mass.-% getrocknet. Die derart erzeugten Gießkerne wurden nach unterschiedlichen Standzeiten t auf ihre Biegefestigkeit σ untersucht.For the preparation of the casting core according to composition A was dry mixed with the molding sand of the binder. For the production the casting core according to composition B became the second Binder component in dissolved form homogeneous with the molding sand mixed and the mixture then the first binder component mixed dry. Subsequently, each about 1.4 Mass .-% water based on the foundry sand added. The Molding compound mixture was injected in each case in a core box and to a residual moisture content of about 0.01 mass% dried. The casting cores produced in this way were different Service life t on their flexural strength σ examined.
Wie aus Fig. 1 ersichtlich, betrug die Biegefestigkeit σ der Zusammensetzung A ausschließlich mit einem herkömmlichen Natriumpolyphosphatbinder unmittelbar nach der Trocknung (t = 0) etwa 80 N/cm2. Nach etwa zwei Stunden (t = 120 min) stellte sich eine im wesentlichen konstante Biegefestigkeit σ von etwa 100 N/cm2 ein. Demgegenüber betrug die Biegefestigkeit der Zusammensetzung B, welche zusätzlich zu der ersten Binderkomponente in Form von Natriumpolyphosphat geringe Mengen einer zweiten Binderkomponente in Form von Polyvinylamin enthielt, unmittelbar nach der Trocknung (t = 0) bereits mehr als 150 N/cm2, wobei sich nach etwa vier Stunden (t = 240 min) eine im wesentlichen konstante Biegefestigkeit von mehr als 200 N/cm2 eingestellt hat.As can be seen from Fig. 1, the flexural strength σ of the composition A excluding a conventional sodium polyphosphate binder immediately after drying (t = 0) was about 80 N / cm 2 . After about two hours (t = 120 min), a substantially constant bending strength σ of about 100 N / cm 2 was established . On the other hand, the flexural strength of composition B, which in addition to the first binder component in the form of sodium polyphosphate contained small amounts of a second binder component in the form of polyvinylamine, was already greater than 150 N / cm 2 immediately after drying (t = 0) about four hours (t = 240 min) has set a substantially constant bending strength of more than 200 N / cm 2 .
Folglich kann die Biegefestigkeit des Gießkerns durch den Zusatz nur geringer Mengen (0,1 Mass.-% bezogen auf den Formsand) an Polyvinylamin praktisch verdoppelt werden. Consequently, the flexural strength of the casting core can be improved by the Addition of only small amounts (0.1% by mass based on the Molding sand) of polyvinylamine are practically doubled.
Als Vergleichsversuch wurden auf die vorbeschriebene Weise Gießkerne hergestellt, wobei als Binder ausschließlich Polyvinylamin eingesetzt wurde. Die erhaltenen Gießkerne wurden sodann nach unterschiedlichen Standzeiten t auf ihre Biegefestigkeit σ untersucht.As a comparative experiment were in the manner described above Casting cores produced, with as binder exclusively polyvinylamine was used. The obtained casting cores were then after different service lives t on their Flexural strength σ investigated.
Wie aus Fig. 2 ersichtlich, ergab sich unmittelbar nach der Trocknung (t = 0) eine hohe Biegefestigkeit von mehr als 250 N/cm2, welche nach etwa zwei Stunden (t = 120 min) auf einen Wert im Bereich von 100 N/cm2 abgefallen ist. Ferner wurde festgestellt, dass, die Kerne mit zunehmender Lagerzeit der Formstoffmischung vor Einschießen in den Kernkasten und Trocknen ein elastisches Verhalten aufweisen, was zu Deformationen der Kerne beim Gießvorgang führen kann. Folglich erweist sich reines Polyvinylamin als Binder für den Formsand als wenig geeignet.As can be seen from FIG. 2, immediately after drying (t = 0), a high flexural strength of more than 250 N / cm 2 was found , which after about two hours (t = 120 min) reached a value in the range of 100 N / cm 2 has fallen off. It has also been found that the cores have an elastic behavior with increasing storage time of the molding mixture before shooting into the core box and drying, which can lead to deformation of the cores during the casting process. Consequently, pure polyvinylamine proves to be less suitable as a binder for the molding sand.
Der Zusammensetzung B gemäß Beispiel 1 (Formsand, 2 Mass.-% Natriumpolyphosphat (Binderkomponente 1), 0,1 Mass.-% flüssiges Polyvinylamin (Binderkomponente 2) und 1,4 Mass.-% Feuchtigkeit jeweils bezogen auf den Formsand) wurde zur Erhöhung der Temperaturbeständigkeit zusätzlich Natriumcarbonat (Na2CO3) als Zuschlagstoff zugesetzt. Aus der erhaltenen Formstoffmischung wurden auf die vorbeschriebene Weise Gießkerne hergestellt und diese nach verschiedenen Standzeiten t auf ihre Biegefestigkeit σ untersucht.Composition B according to Example 1 (molding sand, 2% by mass of sodium polyphosphate (binder component 1), 0.1% by mass of liquid polyvinylamine (binder component 2) and 1.4% by mass of moisture, based in each case on the molding sand) was used Increasing the temperature resistance additionally added sodium carbonate (Na 2 CO 3 ) as an additive. Casting cores were produced from the resultant molding material mixture in the manner described above and these were examined for their bending strength σ after various service lives t.
Wie der Fig. 3 zu entnehmen ist, ergab sich unmittelbar nach der Trocknung (t = 0) eine Biegefestigkeit von mehr als 200 N/cm2, die kurzzeitig (t = 10 min) etwas absank und sich nach etwa zwei Stunden (t = 120 min) auf einen im wesentlichen konstanten Wert oberhalb 200 N/cm2 einstellte, welcher der Biegefestigkeit eines Gießkerns ohne den Zusatz von Na2CO3, aber mit ansonsten entsprechender Zusammensetzung (vgl. Zusammensetzung B der Fig. 1), entspricht.As can be seen from FIG. 3, a bending strength of more than 200 N / cm 2 was obtained immediately after drying (t = 0), which dropped slightly for a short time (t = 10 min) and after about two hours (t = 120 min) to a substantially constant value above 200 N / cm 2 , which corresponds to the flexural strength of a casting core without the addition of Na 2 CO 3 , but with an otherwise corresponding composition (compare Composition B of FIG.
Das Beispiel zeigt, dass die Biegefestigkeit des Gießkerns durch den Zusatz von Na2CO3 nicht beeinträchtigt wird. Der Zusatz von Na2CO3 verleiht dem Gießkern jedoch eine erheblich bessere Temperaturbeständigkeit, so dass dieser beispielsweise zur Herstellung von Aluminiumgussteilen mit einer Gießtemperatur von über 800°C geeignet ist, wobei Verformungen des Gießkerns während des Gießvorgangs sicher und zuverlässig vermieden werden. Überdies erhöht der Zusatz von Na2CO3 die Wasserlöslichkeit des Gießkerns, so dass die Entkernung des fertigen Gussteils erleichtert wird.The example shows that the bending strength of the casting core is not impaired by the addition of Na 2 CO 3 . However, the addition of Na 2 CO 3 gives the casting core a significantly better temperature resistance, so that it is suitable for example for the production of aluminum castings with a casting temperature of about 800 ° C, with deformations of the casting core during the casting process safely and reliably avoided. Moreover, the addition of Na 2 CO 3 increases the water solubility of the foundry core, thus facilitating gutting of the finished casting.
Zur Untersuchung der Lagerfähigkeit der Formstoffmischung für einen Gießkern gemäA Beispiel 3 wurden Formsand, 2 Mass.-% Natriumpolyphosphat (Binderkomponente 1) und 0,1 Mass.-% flüssiges Polyvinylamin (Binderkomponente 2), jeweils bezogen auf den Formsand, sowie Natriumcarbonat (Na2CO3) mit ca. 1,4 Mass.-% Wasser bezogen auf den Formsand homogen gemischt. Die derart gebildete Formstoffmischung wurde nach verschiedenen Lagerzeiten t1 von 0, 1, 2 und 3 h in einen Kernkasten eingeschossen und bis auf eine Restfeuchte von etwa 0,01 Mass.-% bezogen auf den Formsand getrocknet. Es wurde die Biegefestigkeit σ nach verschiedenen Standzeiten t2, nämlich einerseits unmittelbar nach dem Trocknen (t2 = 0), andererseits nach einem Tag (t2 = 24 h) bestimmt. To investigate the shelf life of the molding material mixture for a casting core according to Example 3, foundry sand, 2% by weight of sodium polyphosphate (binder component 1) and 0.1% by weight of liquid polyvinylamine (binder component 2), based in each case on the foundry sand, and sodium carbonate (Na 2 CO 3 ) homogeneously mixed with about 1.4 mass .-% of water based on the molding sand. The molding material mixture thus formed was injected after various storage times t 1 of 0, 1, 2 and 3 h in a core box and dried to a residual moisture content of about 0.01 mass .-% based on the molding sand. The bending strength σ was determined after different service lives t 2 , namely on the one hand immediately after drying (t 2 = 0), on the other hand after one day (t 2 = 24 h).
Wie aus Fig. 4 ersichtlich, ergaben sich für Lagerzeiten t1 der Formstoffmischung zwischen einer Stunde und drei Stunden nur geringfügig schlechtere Biegefestigkeiten im Bereich knapp unterhalb 200 N/cm2 als bei sofortigem Einschießen (t1 = 0) der Mischung in den Kernkasten, was eine Biegefestigkeit von etwa 220 N/cm2 ergab. Die Biegefestigkeit des Gießkerns unmittelbar nach dem Trocknen (t2 = 0) entsprach in allen Fällen etwa der Biegefestigkeit nach einer Standzeit von einem Tag (t2 = 24 h), was mit dem in Fig. 3 gezeigten Verlauf der Biegefestigkeit korrespondiert.As can be seen from FIG. 4, for bearing times t 1 of the molding material mixture, only slightly worse bending strengths in the range of just below 200 N / cm 2 were found between one hour and three hours than with immediate injection (t 1 = 0) of the mixture into the core box, which gave a flexural strength of about 220 N / cm 2 . The bending strength of the casting core immediately after drying (t 2 = 0) in all cases corresponded approximately to the flexural strength after a service life of one day (t 2 = 24 h), which corresponds to the course of the flexural strength shown in FIG. 3.
Das Beispiel macht deutlich, dass die Formstoffmischung eine gute Lagerfähigkeit ausweist und noch mehrere Stunden nach dem Mischvorgang unter Bildung des Gießkerns getrocknet werden kann.The example makes it clear that the molding material mixture a good storability identifies and still several hours dried after the mixing process to form the casting core can be.
Es wurden jeweils Gießkerne mit den folgenden Zusammensetzungen hergestellt:
- Formsand,
- 2 Mass.-% Natriumpolyphosphat bezogen auf den Formsand,
- 0,1 Mass.-% eines Polyamins bezogen auf den Formsand,
- 1,4 Mass.-% Feuchtigkeit.
- Molding sand,
- 2% by mass of sodium polyphosphate, based on the molding sand,
- 0.1% by mass of a polyamine based on the molding sand,
- 1.4 mass% moisture.
Als Polyamine wurden einerseits verschiedene Polyethylenimine (A, B) eingesetzt, nämlich mit Wasser modifizierte Polyethylenimine mit einer Molmasse von etwa 2000 g/mol (A) bzw. 750.000 g/mol (B). Andererseits wurden Polyvinylamine (C, D, E) mit einer Molmasse von etwa 400.000 g/mol eingesetzt, welche sich durch den Anteil an freien Aminogruppen unterscheiden, der wiederum mit dem Hydrolysegrad korrespondiert. Das Polyvinylamin (C) weist den höchsten Hydrolysegrad, das Polyvinylamin (E) einen demgegenüber geringeren Hydrolysegrad und das Polyvinylamin (D) den niedrigsten Hydrolysegrad der Polyvinylamine (C, D, E) auf.As polyamines were on the one hand different polyethylenimines (A, B) used, namely water-modified polyethyleneimines with a molecular weight of about 2000 g / mol (A) or 750,000 g / mol (B). On the other hand, polyvinylamines (C, D, E) used with a molecular weight of about 400,000 g / mol, which is due to the proportion of free amino groups differ, which in turn corresponds to the degree of hydrolysis. The polyvinylamine (C) has the highest degree of hydrolysis, the polyvinylamine (E) a lower contrast Degree of hydrolysis and the polyvinylamine (D) the lowest Degree of hydrolysis of polyvinylamines (C, D, E).
Die Herstellung der Gießkerne geschah nach dem in Beispiel 1 beschriebenen Verfahren. Anschließend wurden die derart erzeugten Gießkerne nach unterschiedlichen Standzeiten t auf ihre Biegefestigkeit σ untersucht.The production of the cores was done according to the example 1 described method. Then they were like that produced casting cores after different service lives t examined for their bending strength σ.
Fig. 5 zeigt, dass die besten Biegefestigkeiten mit dem Polyvinylamin (C) mit hohem Anteil an freien Aminogruppen erzielt werden konnten. Es wird vermutet, dass die freien Aminogruppen des Polyvinylamin mit den Phosphatgruppen des Natriumpolyphosphates in Wechselwirkung treten und dessen Bindereigenschaften verbessern. Aus Fig. 5 wird ferner deutlich, dass nach einer Standzeit von etwa zwei Stunden (t = 120 min) eine im wesentlichen konstante Biegefestigkeit erreicht werden konnte, die im Falle des Polyvinylamins (C) wenigstens 200 N/cm2 betrug.Fig. 5 shows that the best flexural strengths could be achieved with the polyvinylamine (C) having a high content of free amino groups. It is believed that the free amino groups of the polyvinylamine interact with the phosphate groups of the sodium polyphosphate and improve its binding properties. From Fig. 5 it is also clear that after a life of about two hours (t = 120 min), a substantially constant bending strength could be achieved, which was at least 200 N / cm 2 in the case of polyvinylamine (C).
Zur Untersuchung der Lagerfähigkeit der Zusammensetzungen (A, B, C, D, E) für einen Gießkern gemäß Beispiel 5 wurden die Formstoffmischungen nach verschiedenen Lagerzeiten t1 von 0, 1, 2 und 3 h in einen Kernkasten eingeschossen und getrocknet. Es wurde die Biegefestigkeit σ nach verschiedenen Standzeiten t2, nämlich einerseits unmittelbar nach dem Trocknen (t2 = 0), andererseits nach einem Tag (t2 = 24 h) ermittelt.To study the shelf life of the compositions (A, B, C, D, E) for a casting core according to Example 5, the molding material mixtures were injected into a core box after different storage times t 1 of 0, 1, 2 and 3 h and dried. The bending strength σ was determined after different service lives t 2 , namely on the one hand immediately after drying (t 2 = 0), on the other hand after one day (t 2 = 24 h).
Wie der Fig. 6 zu entnehmen ist, ergaben sich für die Biegefestigkeit des Gießkerns die besten Werte nach einer Lagerzeit t1 der Formstoffmischung von einer Stunde, wobei die Mischung unter Erhalt einer demgegenüber nur geringfügigen schlechteren Biegefestigkeit auch sofort oder mindestens drei Stunden nach Mischen der Einzelkomponente verarbeitbar war, so dass auch hier eine gute Lagerfähigkeit festgestellt werden konnte. Als am geeignetsten hat sich in allen Fällen das Polyvinylamin (C) mit einem hohen Anteil an freien Aminogruppen erwiesen. Nach einer Standzeit des Gießkerns von einem Tag (t2 = 24 h) stellte sich jeweils eine gegenüber der Biegefestigkeit unmittelbar nach Trocknen der Mischung (t2 = 0) verbessere Biegefestigkeit ein, was mit dem in Fig. 5 dargestellten Verlauf der Biegefestigkeit korrespondiert.As can be seen from FIG. 6, the best values for the flexural strength of the casting core were obtained after a storage time t 1 of the molding material mixture of one hour, the mixture also being obtained immediately or at least three hours after mixing the but slightly poorer flexural strength Single component was processable, so that also here a good shelf life was found. The polyvinylamine (C) with a high proportion of free amino groups has proven most suitable in all cases. After a service life of the foundry core of one day (t 2 = 24 h), in each case a bending strength which improved immediately after drying of the mixture (t 2 = 0) arose, which corresponds to the curve of the flexural strength shown in FIG. 5.
Die Beispiele machen deutlich, dass durch den Zusatz von geringen Mengen an Polyaminen als zusätzliche Binderkomponente zu einem herkömmlichen Binder auf der Basis von Natriumpolyphosphat die Biegefestigkeit des Gießkerns signifikant erhöht werden kann, wobei die Biegefestigkeit auch durch den Zusatz eines Zuschlagsstoffs in Form von Natriumcarbonat zur Verbesserung der Temperaturbeständigkeit des Gießkerns nicht beeinträchtigt wird. Die Mischung weist eine gute Lagerfähigkeit und Wasserlöslichkeit und folglich eine einwandfreie Verarbeitbarkeit auf.The examples make it clear that through the addition of small amounts of polyamines as an additional binder component to a conventional binder based on sodium polyphosphate the flexural strength of the core is significant can be increased, the flexural strength also by the addition of an additive in the form of sodium carbonate to improve the temperature resistance of the Casting core is not affected. The mixture has a good shelf life and water solubility and therefore a perfect processability.
Claims (36)
- Water-dispersible casting mould, particularly core, for the manufacture of castings, comprisinga water-insoluble, particulate material, particularly moulding sand,a binder, having as a first binder component at least one condensed phosphate,
component at least one polyamine. - Mould according to claim 1, wherein the polyamine is chosen from the group of polymeric polyamines.
- Mould according to claim 1 or 2, wherein the polyamine is chosen from the group of polyethylene imines, polyvinyl amines and/or their copolymers.
- Mould according to claims 2 or 3, wherein the polyamine has a nitrogen proportion between 1 and 35 wt.% N/polymer unit.
- Mould according to one of the claims 2 to 4, wherein the polyamine has a nitrogen proportion between 10 and 33 wt.% N/polymer unit.
- Mould according to one of the claims 2 to 5, wherein the polyamine has a nitrogen proportion between 20 and 33 wt.% N/polymer unit.
- Mould according to one of the claims 1 to 6, wherein there are between 0.001 and 1 wt.% polyamine, based on the particulate material.
- Mould according to one of the claims 1 to 7, wherein there are between 0.005 and 0.5 wt.% polyamine, based on the particulate material.
- Mould according to one of the claims 1 to 8, wherein the first binder component comprises or entirely consists of a polyphosphate.
- Mould according to claim 9, wherein the polyphosphate is an alkali metal polyphosphate, particularly sodium polyphosphate.
- Mould according to one of the claims 1 to 8, wherein the first binder component comprises or entirely consists of a metaphosphate.
- Mould according to claim 11, wherein the metaphosphate is an alkali metal metaphosphate, particularly sodium metaphosphate.
- Mould according to one of the claims 1 to 8, wherein the first binder component comprises or entirely consists of a polyphosphate and/or metaphosphate chain-containing, water-soluble phosphate glass.
- Mould according to claim 13, wherein the phosphate glass contains between 58 and 75 wt.% phosphorus pentoxide (P2O5) and between 25 and 42 wt.% alkali metal oxide, particularly sodium oxide (Na2O).
- Mould according to one of the claims 1 to 14, wherein there are between 0.25 and 27 wt.% of the first binder component, based on the particulate material.
- Mould according to one of the claims 1 to 15, wherein there are between 0.5 and 10 wt.% of the first binder component, based on the particulate material.
- Mould according to one of the claims 1 to 16, wherein by at least one flux, preferably in the form of sulphates, carbonates and/or nitrates from the group of alkali metals and/or alkaline earth metals, such as alkali metal carbonates, particularly sodium carbonate (Na2CO3).
- Mould according to claim 17, wherein there are between 20 and 90 wt.% alkali metal carbonate, based on the first binder component.
- Mould according to claim 17 or 18, wherein there are between 30 and 85 wt.% alkali metal carbonate, based on the first binder component.
- Mould according to one of the claims 1 to 19, wherein by a moisture proportion of the moulding material mixture between 0.01 and 35 wt.%, based on the particulate material.
- Mould according to claim 20, wherein the moisture proportion of the moulding material mixture is between 0.1 and 5 wt.%, based on the particulate material.
- Method for the manufacture of a water-dispersible casting mould, particularly core, for the manufacture of castings, in that a water-insoluble, particulate material, particularly moulding sand, is mixed, accompanied by the addition of water, with a binder having as a first binder component at least one condensed phosphate, the mixture is moulded and at least part of the added free water is removed, wherein a second binder component based on at least one polyamine is added.
- Method according to claim 22, wherein a polyamine according to one of the claims 2 to 6 is added.
- Method according to claim 22 or 23, wherein the polyamine is used in a quantity between 0.001 and 1 wt.%, particularly between 0.005 and 0.5 wt.%, based on the particulate material.
- Method according to one of the claims 22 to 24, wherein a first binder component according to one of the claims 9 to 14, is used.
- Method according to one of the claims 22 to 25, wherein the first binder component is used in a quantity between 0.25 and 25 wt.%, particularly between 0.5 and 10 wt.%, based on the particulate material.
- Method according to one of the claims 22 to 26, wherein use is made of at least one flux, preferably in the form of sulphates, carbonates and/or nitrates from the group of alkali metals and/or alkaline earth metals, such as alkali metal carbonates, particularly sodium carbonate (Na2CO3).
- Method according to claim 27, wherein the alkali metal carbonate is used in a quantity between 20 and 90 wt.%, particularly between 30 and 85 wt.%, based on the first binder component.
- Method according to one of the claims 22 to 28, wherein the second binder component in liquid form is brought into contact with the particulate material and then the first binder component is admixed in dry form, water being added to the mixture.
- Method according to claim 27, wherein the flux is dissolved in water and the solution is added to the mixture.
- Method according to one of the claims 22 to 28, wherein the first binder component is mixed dry with the particulate material and then an aqueous solution is added with the second binder component.
- Method according to claim 31, wherein prior to the addition of the solution, a flux is dissolved in the latter.
- Method according to claim 27 or 28, wherein all the binder components and optionally a flux are dissolved in water and the solution is contacted with the particulate material.
- Method according to one of the claims 22 to 33, wherein up to 35 wt.% water, based on the particulate material, are added.
- Method according to one of the claims 22 to 34, wherein the mixture is initially dried to a predetermined residual moisture content, the mixture is then again mixed with water and the mixture is moulded and at least part of the added free water is removed again.
- Method according to claim 35, wherein the mixture is initially dried to a predetermined residual moisture content of approximately 0.1 wt.%.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10226817A DE10226817C1 (en) | 2002-06-15 | 2002-06-15 | Water-dispersible casting mold, especially foundry core, for producing castings, comprises water-insoluble particulate material, especially molding sand, condensed phosphate as binder, and polyamine as second binder |
DE10226817 | 2002-06-15 | ||
PCT/EP2003/004802 WO2003106071A1 (en) | 2002-06-15 | 2003-05-08 | Casting mould and method for the production thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1417060A1 EP1417060A1 (en) | 2004-05-12 |
EP1417060B1 true EP1417060B1 (en) | 2005-08-03 |
Family
ID=29225180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03740129A Expired - Lifetime EP1417060B1 (en) | 2002-06-15 | 2003-05-08 | Casting mould and method for the production thereof |
Country Status (7)
Country | Link |
---|---|
US (1) | US20040238156A1 (en) |
EP (1) | EP1417060B1 (en) |
AT (1) | ATE301013T1 (en) |
AU (1) | AU2003276882A1 (en) |
DE (2) | DE10226817C1 (en) |
MX (1) | MXPA04001282A (en) |
WO (1) | WO2003106071A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005024524A1 (en) * | 2005-03-08 | 2006-09-14 | Meg Binder Technologien Gmbh & Co. Kg | Mold or core sand, for casting, has a bonding agent with a first component of a condensed phosphate with a macro-molecular polycarbonic acid additive |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005051439B4 (en) * | 2004-11-05 | 2014-11-27 | Bayerische Motoren Werke Aktiengesellschaft | Application of a water-dispersible support core for producing a structural hollow component |
US20160158829A1 (en) * | 2014-12-05 | 2016-06-09 | Hyundai Motor Company | Core composition for casting, and method for preparing core for casting using the same |
DE102015223008A1 (en) * | 2015-11-21 | 2017-05-24 | H2K Minerals Gmbh | Mold, process for its preparation and use |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4078599A (en) * | 1976-07-26 | 1978-03-14 | National Research Institute For Metals | Self-curing and water-soluble mold |
GB9022754D0 (en) * | 1990-10-19 | 1990-12-05 | Pilkington Controlled Release | Improvements in or relating to water dispersible moulds |
GB9226815D0 (en) * | 1992-12-23 | 1993-02-17 | Borden Uk Ltd | Improvements in or relating to water dispersible moulds |
DE19549469C2 (en) * | 1995-07-12 | 1999-05-12 | Eichenauer Gmbh & Co Kg F | Casting core for casting molding and method for producing such a casting core |
DE19525307C2 (en) * | 1995-07-12 | 2003-04-03 | Eichenauer Gmbh & Co Kg F | Molding compound for the production of casting cores and method for producing a casting core |
US5908889A (en) * | 1997-12-03 | 1999-06-01 | Nalco Chemical Company | Polyamide binders for ceramics manufacture |
DE10022008B4 (en) * | 2000-05-05 | 2004-12-09 | Agrolinz Melamin Gmbh | Molding compounds made from wood particles and thermoset prepolymers and a process for their production |
-
2002
- 2002-06-15 DE DE10226817A patent/DE10226817C1/en not_active Expired - Fee Related
-
2003
- 2003-05-08 AU AU2003276882A patent/AU2003276882A1/en not_active Abandoned
- 2003-05-08 US US10/486,656 patent/US20040238156A1/en not_active Abandoned
- 2003-05-08 DE DE50300900T patent/DE50300900D1/en not_active Expired - Lifetime
- 2003-05-08 EP EP03740129A patent/EP1417060B1/en not_active Expired - Lifetime
- 2003-05-08 AT AT03740129T patent/ATE301013T1/en active
- 2003-05-08 WO PCT/EP2003/004802 patent/WO2003106071A1/en not_active Application Discontinuation
- 2003-05-08 MX MXPA04001282A patent/MXPA04001282A/en active IP Right Grant
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005024524A1 (en) * | 2005-03-08 | 2006-09-14 | Meg Binder Technologien Gmbh & Co. Kg | Mold or core sand, for casting, has a bonding agent with a first component of a condensed phosphate with a macro-molecular polycarbonic acid additive |
DE102005024524B4 (en) * | 2005-03-08 | 2006-12-07 | Meg Binder Technologien Gmbh & Co. Kg | Mold and method for its production |
Also Published As
Publication number | Publication date |
---|---|
DE50300900D1 (en) | 2005-09-08 |
AU2003276882A8 (en) | 2003-12-31 |
ATE301013T1 (en) | 2005-08-15 |
DE10226817C1 (en) | 2003-11-13 |
AU2003276882A1 (en) | 2003-12-31 |
US20040238156A1 (en) | 2004-12-02 |
EP1417060A1 (en) | 2004-05-12 |
MXPA04001282A (en) | 2004-05-27 |
WO2003106071A1 (en) | 2003-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2097192B1 (en) | Moulding material mixture containing phosphorus for producing casting moulds for machining metal | |
EP1802409B1 (en) | Material mixture for producing casting moulds for machining metal | |
DE69517319T2 (en) | IRON POWDER COMPONENTS WITH THERMOPLASTIC RESIN AND METHOD FOR THE PRODUCTION THEREOF | |
EP3495073B1 (en) | Low emission cold curing binders for foundry industry | |
DE102012020511A1 (en) | Forming substance mixtures based on inorganic binders and process for producing molds and cores for metal casting | |
EP3986634A1 (en) | Sized molds obtainable from a molding material mixture containing an inorganic bonding agent and phosphatic compounds and oxidic boron compounds and method for production and use thereof | |
DE69209348T2 (en) | Binder made from alkaline phenol aldehyde resole resins | |
DE19938043C2 (en) | Resol-based binder system containing aluminum, process for its production and use, and molding compound | |
EP1417060B1 (en) | Casting mould and method for the production thereof | |
DE2413925A1 (en) | Process for the production of resin-coated refractory granular masses, in particular molding sand | |
DE102005024524B4 (en) | Mold and method for its production | |
DE69203898T2 (en) | Binder made from alkaline phenol aldehyde resole resins. | |
DE102016211971A1 (en) | Aqueous alkaline binder composition for curing with carbon dioxide gas and their use, a corresponding molding material mixture for producing a foundry molding, a corresponding foundry molding and a process for producing a foundry molding | |
DE3527086A1 (en) | THROUGH HARDENABLE BINDING AGENT FOR FOUNDRY MOLDING MIXTURES | |
EP1414901A1 (en) | Resol-based co 2-hardenable binding agent system | |
DE3302330A1 (en) | METHOD FOR THE PRODUCTION OF FOUNDRY CORE AND FOUNDRY FORM, HYDROGEL BINDING AGENT FOR FOUNDRY AGGREGATES AND FOUNDRY CORE AND FOUNDRY FORM PRODUCED THEREWAY | |
EP0032596B1 (en) | Process for producing lost moulds | |
EP3551360B1 (en) | Alkaline resol binders having improved flowability | |
DE102016211970A1 (en) | Aqueous alkaline binder composition for curing with carbon dioxide gas and their use, a corresponding molding material mixture for producing a foundry molding, a corresponding foundry molding and a process for producing a foundry molding | |
DE1433992C (en) | Process for the production of a silica-containing binder | |
DE102021116930A1 (en) | PROCESS FOR LAYERING UP OF MOLDS AND CORE WITH A BINDER CONTAINING WATER GLASS | |
DE1095516B (en) | Process for the production of thermosetting synthetic resin compounds | |
DE2413765B2 (en) | MOLDING COMPOUND FOR THE MANUFACTURING OF FOUNDRY SHAPES AND CORES | |
DE1284046B (en) | Mixture for making molds | |
DD218846A1 (en) | METHOD FOR PRODUCING HOLLOW CORE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040120 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050803 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050803 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050803 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050803 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050803 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050803 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050803 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050803 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050803 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050803 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50300900 Country of ref document: DE Date of ref document: 20050908 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051103 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051103 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051103 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060103 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060204 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060531 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060531 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060504 |
|
EN | Fr: translation not filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060929 |
|
BERE | Be: lapsed |
Owner name: MEG BINDER TECHNOLOGIEN G.M.B.H. & CO. KG Effective date: 20060531 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050803 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060531 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20110520 Year of fee payment: 9 Ref country code: GB Payment date: 20110523 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50300900 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50300900 Country of ref document: DE Owner name: HAENSEL, HELGE, DE Free format text: FORMER OWNER: EICHENAUER HEIZELEMENTE GMBH & , JOHANN GROHMANN GMBH & CO.KG,, , DE Effective date: 20120531 Ref country code: DE Ref legal event code: R081 Ref document number: 50300900 Country of ref document: DE Owner name: HAENSEL, HELGE, DE Free format text: FORMER OWNERS: EICHENAUER HEIZELEMENTE GMBH & CO. KG, 76870 KANDEL, DE; JOHANN GROHMANN GMBH & CO.KG,, 72406 BISINGEN, DE Effective date: 20120531 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 50300900 Country of ref document: DE Effective date: 20120611 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 301013 Country of ref document: AT Kind code of ref document: T Effective date: 20120508 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120508 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170512 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50300900 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181201 |